A gait calibration system for personalized walking speed estimation for people with Multiple Sclerosis (MS).
- bokeh (0.12.4)
- Flask (0.12)
- Flask-Bootstrap (3.3.7.1)
- Flask-Script (2.0.5)
- Jinja2 (2.9.4)
- matplotlib (1.5.3)
- numpy (1.12.0)
- pandas (0.19.2)
- Pillow (4.0.0)
- pyparsing (2.1.10)
- python-dateutil (2.6.0)
- PyYAML (3.12)
- scikit-learn (0.18.1)
- scipy (0.18.1)
- simplejson (3.10.0)
- Werkzeug (0.11.15)
cd /path/to/ms-gait-calibrate
pip install -e .
- Start the flask server
python run.py
- Check the server IP address such as
ifconfig
in Linux - Open web browser then go to
http://<ip-address>:5000
- Go to
Upload
page and upload files
- Go to
Prepare
page to prepare files for training
- Go to
Calibrate
page, clickcheck
button to scan for the files used for training, give the name of the model, and clickCalibrate
button. Note that this process can take a while as it will calibrate a model.
- Go to
Estimate
page, select the uploaded file and the calibrated model, and clickEstimate
button
These are additional scripts used to preprocess some CSV files.
This script is used to segment a very large CSV file collected in home environment into multiple CSV files containing 1-h of acceleration data. No preprocessing is applied here.
python scripts/segment_csv_data.py --csv_file /path/to/csv_file --sampling_rate 100 --body_location lower_back --position center_right --output_dir /path/to/save/output_dir
Extract walks from CSV files in the specified directory. The extracted walks will be applied with transform_orientation
to transform from x, y, z
into fwd, hor, ver
axes based on body_location
and position
. These walks will be then stored in NPY files as a list of Acceleration
objects.
python scripts/extract_walk.py --data_dir /path/to/directory/csv_files --output_dir /path/to/output_npy_files
Estimate walking speeds from CSV and NPY files that contain walks.
python scripts/estimate_speed.py --input_file /path/to/input_csv_or_npy_file --model_file /path/to/model_file --output_dir /path/to/output_dir
Visualize estimated walking speeds and their corresponding acceleration data of all walks. Each output is saved in html generated using Bokeh.
python visualize/speed.py --acc_file /path/to/input_csv_or_npy_file --speed_file /path/to/speed_file --output_dir /path/to/output_dir
python scripts/reverse_csv_data.py --input_csv_file /path/to/input_csv_file --output_csv_file /path/to/output_csv_file
- For academic and non-commercial use only
- For commercial use, please contact akara.spt@gmail.com and p.matthews@imperial.ac.uk
- Apache License 2.0