
B.Sc. in Computer Science and Engineering Thesis

Simulation Study of Vehicular Mobility in City Streets

Submitted by

Md. Abdullah Al-Alamin
201205084

Supervised by

Dr. Md. Shohrab Hossain

.

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

September 2017

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis, titled, “Simulation Study of Vehicular
Mobility in City Streets”, is the outcome of the investigation and research carried out by us
under the supervision of Dr. Md. Shohrab Hossain.

It is also declared that neither this thesis nor any part thereof has been submitted anywhere else
for the award of any degree, diploma or other qualifications.

Md. Abdullah Al-Alamin
201205084

i

CERTIFICATION

This thesis titled, “Simulation Study of Vehicular Mobility in City Streets”, submitted by
the group as mentioned below has been accepted as satisfactory in partial fulfillment of the
requirements for the degree B.Sc. in Computer Science and Engineering in September 2017.

Group Members:

Md. Abdullah Al-Alamin

Supervisor:

Dr. Md. Shohrab Hossain
Associate Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

ii

ACKNOWLEDGEMENT

I am thankful to Almighty Allah for His blessings for the successful completion of my thesis. I
would like to thank my thesis advisor Dr. Md. Shohrab Hossain at Bangladesh University Of
Engineering And Technology (BUET). The door to Sir’s office was always open whenever I ran
into a trouble spot or had a question about my research or writing. He consistently steered me
in the right the direction whenever he thought I needed it.

I would like to thank the authors of a previous work on city section mobility model [1]. This
thesis work is the simulation study based on theoretical model proposed in [1].

Finally, I must express my very profound gratitude to my parents and to my family for providing
me with unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment would not
have been possible without them. Thank you.

Md. Abdullah Al Alamin

Finally,

Dhaka
September 2017

Md. Abdullah Al-Alamin

iii

Contents

CANDIDATES’ DECLARATION i

CERTIFICATION ii

ACKNOWLEDGEMENT iii

List of Figures vi

List of Tables vii

ABSTRACT viii

1 Introduction 1
1.1 Motivation . 2
1.2 Objective . 2
1.3 Contribution . 2
1.4 Outline . 3

2 Literature Review 4
2.1 Classical random mobility models . 4
2.2 Analytical vehicular mobility models . 4
2.3 Simulation-based vehicular mobility models 5
2.4 This work . 5

3 City Section Mobility Model 7
3.1 Original work . 7

3.1.1 Epoch Length . 8
3.1.2 Expected Epoch Length . 8
3.1.3 Variance of Epoch Length . 9
3.1.4 Epoch Time . 9
3.1.5 Number of Subnet Crossing . 10
3.1.6 Subnet Residence Time . 11

3.2 Limitations of City Street Mobility Model . 11
3.3 Modified Mobility Model . 12

iv

4 Simulation Study 14
4.1 VANETsim . 14

4.1.1 Its features . 14
4.2 My Contribution . 16

4.2.1 Problems Faced . 18
4.3 Simulation Setup . 18
4.4 Simulation Description . 19

5 Simulation Result 21
5.1 Simulation Results . 21
5.2 Modified Result . 24

6 Conclusion 25

References 26

A Codes 29
A.1 Logging Code . 29
A.2 Vehicle route information Code . 35

v

List of Figures

3.1 Road network in VMoCS mobility model. [1] 8
3.2 Subnet overlapping among the cells. [1] . 10

4.1 Exporting Map through OpenStreetMap . 16
4.2 Vehicles within the radius are exchanging information among themselves . . . 17
4.3 Add RSU to the map through VANETSim . 17
4.4 Vanet Simulation . 19

5.1 Expected epoch lengths for different simulation trials. 21
5.2 Variance of epoch lengths for different simulation trials. 21
5.3 Expected epoch times for different simulation trials. 22
5.4 Bar chart for expected number of subnet crossing for different simulation trials. 22
5.5 Bar chart for subnet residence times for different simulation trials. 23
5.6 Average packet drop probability vs. speed limit for different inter-road spacing. 23

vi

List of Tables

4.1 Values of parameters used in the simulation. 20

5.1 Comparison between analytical and simulation results. 23
5.2 Comparison between modified analytical and simulation results. 24

vii

ABSTRACT

Performance evaluation of vehicular network protocols require knowledge of different

stochastic properties of the mobility model used in the evaluation. In this thesis work,

the stochastic properties of vehicular mobility models in city [1] has been modified and

validated by popular simulator VANETSim which run simulation on real street map data.

The developed model can be used as a generic framework for comprehensive analysis of

other mobility models.

viii

Chapter 1

Introduction

Vehicular communication has become an essential technology for improved safely in city streets
and highways. Mobility models that can mimic the movement pattern of vehicles are important
building blocks for simulation-based studies for vehicular ad hoc networks (VANET) [1–5] and
mobile networks [1, 6]; these models can help in testing and evaluating protocols related to
vehicular mobile networks. Mobility should be modeled in a realistic manner to ensure match
between simulation results and data from real-world deployment of vehicular mobile networks.

Vehicular mobility models [1,4] can be grouped into four categories: the first is synthetic model
that is based on mathematical models while others are survey-based models, trace-based models
and simulator-based models. Among these four variants, we are interested in synthetic models
since mathematical models can help in obtaining the general trend and behavior of the mobility
model. Moreover, sensitivity of certain system parameters can be easily analyzed in mathemat-
ical models which might not be possible for other types of mobility models.

In real life scenarios, while moving along city streets, vehicles do not have the freedom to travel
freely along any arbitrary direction with a random speed. There are buildings, rivers, trees, etc,
and the vehicular mobility environment is constrained by city streets. Moreover, vehicles must
follow traffic regulations, such as, stop lights, speed limits, etc. Therefore, many widely used
random (synthetic) mobility models [2, 3, 7–11], for example, random waypoint and random
direction models are not suitable at all to represent vehicular movement.
In this paper [1] developed a mathematical model to mimic the movement pattern of vehicles
roaming in a city, and termed it as Vehicular Mobility model in City Streets (VMoCS). This
model [1] takes into account the city street map and street constraints (such as, stop lights,
speed limits, acceleration, deceleration, etc.) as expected in city streets. In this model [1],
a vehicle travels from a random initial point (at crossroad) to another destination point, and
such a movement is termed as an epoch. It [1] has derived several stochastic properties of
the VMoCS model. To be specific, it [1] has derived closed form expressions for the distance
traveled by a vehicle during each cycle, variance of epoch length, mean epoch time, number of

1

1.1. MOTIVATION 2

subnet crossing per epoch and the duration a vehicle resides under an access network (subnet).

Several works on vehicular mobility models, both analytical [1, 3, 7, 12–20]and simulation-
based [21–26] have been reported in the literature.

1.1 Motivation

The stochastic properties of mobility model such as epoch length, variance of epoch length,
expected epoch time, expected number of subnet crossing, and subnet residence time are very
crucial for vehicular network protocols since they give an estimate of the amount of signaling
required for mobile networks moving around the city. Without the proper knowledge of these
properties and how they are affected by related system parameters, such vehicular mobility
models cannot be accurately utilized by vehicular simulation tools that are needed for the per-
formance evaluation of solutions proposed for vehicular mobile networks.
However, in the previous work [7, 12–20] the analytical models have not derived expressions
for various stochastic properties (such as, mean epoch length, epoch time, and subnet residence
time) that are very crucial for the utilization and applicability of any mobility model.
On the other hand, as this paper [1] deals with synthetic models, simulation-based models [21–
26] are not the focus of this paper. Moreover, simulation studies cannot always be tested with a
large range of parameter values due to resource limitation and may sometime fail to model the
general trend of the problem.

1.2 Objective

Analytical models to represent general scenarios vehicular mobility provide better insights into
the behavior of the system being analyzed. My objective in this paper is to develop an ana-
lytical model [1] for vehicular mobility pattern. This mobility model [1] considers city street
constraints such as speed limit, one way, two way road etc. Our objective is to obtain its key
stochastic properties for deeper understanding of its behavior. My Objective is to validate the
paper’s [1] analytical data and improve its limitations 3.2

1.3 Contribution

Earlier works on city section mobility model [1] developed a mathematical model to mimic
the movement pattern of vehicles roaming in a city, and termed it as Vehicular Mobility model

1.4. OUTLINE 3

in City Streets (VMoCS). This model [1] takes into account the city street map and street con-
straints (such as, stop lights, speed limits, acceleration, deceleration, etc.) as expected in city
streets. My contribution in this paper is
(i) validating the analytical model presented in [1] through simulations using popular VANET-
Sim simulator,
(ii) Solving the limitations 3.3 of the analytical model [1] and derive a modification to the ex-
isting analytical model [1] .
(iii) Compare and validate the above two mobility models 5.

1.4 Outline

The rest of the paper is organized as follows. A literature review on various mobility models
is presented in Section 2. In Section 3.1, the VMoCS [1] mobility model is explained and its
various stochastic properties are derived and analyzed. Then 3.3 tries to solve the limitations
of Section 3.1. Section 4 describes the simulation setup and section 5 describes the result of the
simulation. Finally, Section 6 concludes the paper.

Chapter 2

Literature Review

In this section, existing works related to mobility models are reviewed and then grouped into
three categories: non-vehicular mobility models, analytical vehicular models and simulation-
based vehicular models.

2.1 Classical random mobility models

A number of research works on random node mobility models have been reported in the liter-
ature. Bettstetter et al. [7, 8] analyzed the stochastic properties of the the most popular random
mobility model, namely random waypoint model. Chiang et al. [1,7,9] proposed a 2-D random-
walk model to analyze the cell crossing rate and dwell time of mobile device and applied for
square and hexagon shaped cells. The analytical results have been validated by simulations. Ali
et al. [10, 20] have used the different random mobility models for the analytical performance
evaluation of media access algorithms of mobile voice users. These classical random mobility
models [7–11, 20] are not suitable for vehicular mobility modeling since vehicular movement
is always restricted by different constraints, such as, street map, stop lights, speed limits, etc,
which have not been taken into account in the above studies.

2.2 Analytical vehicular mobility models

A number of analytical street mobility models exist in the literature. A great work [1] on vehic-
ular mobility model has been done. This thesis mainly works on the extension of this paper [1].
A detailed survey on the available vehicular mobility models can be found in [4]. Bratanov et
al. [1,12] present a street mobility modeling for vehicle-borne terminals. They derive probabil-
ity density functions for node movement direction, velocity, and street segment length, validated

4

2.3. SIMULATION-BASED VEHICULAR MOBILITY MODELS 5

by a street pattern tracing tool and via measurements.
Momen et al. [15] propose a stochastic vehicle mobility model that considers user mobility
direction and velocity, described by discrete state Gauss-Markov technique. Chung et al. [18]
propose a random (synthetic) vector mobility model for vehicular movement and claim that it
can generate stochastically accurate mobility traces without requiring any map, street, signaling
light information.
However, these works [12–18, 20] have not derived expressions for stochastic properties, such
as, mean epoch length, epoch time, subnet residence time, etc that are strongly related to the
metrics used for performance evaluation of vehicular network protocols and therefore, are cru-
cial factors for the applicability of a mobility model.

2.3 Simulation-based vehicular mobility models

A number of simulation-based approach for street mobility modeling have been reported in the
literature. Martinez et al. [1, 21] developed a simulation tool which is a mobility pattern gener-
ator to be used with the ns-2 simulator.
Saha et al. [1, 22] analyze a realistic street mobility model using a real street map; their tool
generates scenarios in a format that is compatible with ns-2 format. Jardosh et al. [23] propose
a mobility model that enables the inclusion of obstacles to restrict node movement and wireless
transmissions in ad hoc network simulations.
Haerri et al. [19, 24] present VanetMobiSim, a generator of realistic vehicular movement traces
for telecommunication networks simulators.
Huang et al. [26] investigates GPS data of thousands of taxis in an urban area to capture var-
ious characteristics of taxi mobility, which has been validated through extensive comparisons
between the synthetic trace and the real trace.
However, these simulation-based models [3,19,21–26] are not capable of capturing the generic

characteristics of the vehicular mobility pattern and hence cannot mimic mobility required for
vehicular network protocols. Paper [1] has some limitation/restriction which I would try to
improve in this thesis.

2.4 This work

This work is based on the work on VMoCS [1]. In the VMoCS model, the authors have consid-
ered many constraints present in city streets and incorporated realistic driving strategies while
deriving closed form expressions for stochastic properties of the mobility model that are critical
metrics for performance evaluation of any mobility and handover protocols. The correctness of
the model through simulations whose parameters have been chosen from real street map data

2.4. THIS WORK 6

have been trid to be verified in this thesis work.

I found some limitations of the existing model [1] and tried to provide an extended analytical
model. I also tried to verify this new mathematical model through VANETSim simulation.
My work ie the extension of paper [1] therefore enables better utilization of the vehicular mo-
bility model by characterizing and analyzing all its key properties.

Chapter 3

City Section Mobility Model

3.1 Original work

The analytical part of the City Section mobility model is derived in our previous work [1]. In
the paper, the street map considered is represented by a grid [1] shown in Fig. 4.4. Each vehicle
starts movement from a randomly picked crossroad. It then chooses a destination point (another
crossroad in the street map). Movement to the destination involves (at most) one horizontal
and one vertical movement. Upon reaching the destination crossroad, the vehicle again chooses
another destination point and the process is repeated. Each such cycle is termed as an epoch.

Following are the assumptions of the city section mobility model:

• Starting and destination points are assumed to be crossroads.

• Each street and avenue have separate speed limits.

• Streets and avenues are parallel to axes.

• Stop light is present at every crossroad. A vehicle encounters the stop light at a crossroad
with a probability.

• After each stop signal, each vehicle accelerate up to the speed limit of the street / av-
enue (in a fraction of the street segment) and moves with the speed unless a stop light is
encountered.

• In case of encountering a stop light, the vehicle stops by decelerating in a fraction of street
segment.

The street map shown in Fig. 4.4 [1] is a rectangular shaped area of dimension a× b. Let there
be Ns horizontal roads (streets) and Na vertical roads (avenues) and streets be Sy distance apart
and avenues be Sx distance apart. So number of streets and number of avenues are [1]

7

3.1. ORIGINAL WORK 8

a

b

Sy

Sx

S

D

I

Figure 3.1: Road network in VMoCS mobility model. [1]

Na =
a

Sx

+ 1 (3.1)

Ns =
b

Sy

+ 1 (3.2)

In the i-th epoch, the vehicle moves from point Si to point Di via intermediate point I i, in-
volving (at most) one horizontal and one vertical movement. So the movement pattern in each
epoch of VMoCS model can be represented by (Si, V i

x ,I i), (I i, V i
y , Di), where V i

x and V i
y are

speed limits of the two streets. In an epoch where the starting point and destination point are on
the same (horizontal or vertical) road segment, the intermediate point I i coincides with Di.

3.1.1 Epoch Length

In each epoch, the vehicle moves along (at most) two road segments. Let Li
x and Li

y be the
lengths of those two road segments during i-th epoch. So Li

x = |I ix − Si
x| and Li

y =
∣∣Di

y − I iy
∣∣,

where Px and Py are the x and y-coordinates of the point P . So the total distance covered by
the vehicle during i-th epoch is as follows [1]:

Li = Li
x + Li

y (3.3)

3.1.2 Expected Epoch Length

Let us first find out the expected length along the street (i.e., along horizontal direction). Let it
be Lx.

3.1. ORIGINAL WORK 9

we get [1]

E(Lx) =
a(Na + 1)

3Na

(3.4)

Similarly, for movement along avenues, the expected value of Ly can be obtained as follows [1]:

E(Ly) =
b(Ns + 1)

3Ns

(3.5)

Therefore, the expected epoch length can be obtained by adding Eqns. (3.4) and (3.5) as fol-
lows [1]:

E(L) =
a(Na + 1)

3Na

+
b(Ns + 1)

3Ns

(3.6)

3.1.3 Variance of Epoch Length

The variance of epoch length implies how the epoch lengths vary about the mean epoch length.

Therefore, the variance of epoch length can be obtained from [1]

V (L) =
S2
x(N

2
a − 1)

18
+
S2
y(N

2
s − 1)

18
(3.7)

for Sx = Sy = 50 to 200 meters. For an a × a square shaped road network, V (L) = 2.2444a

km and 4.4667a km for {Na, Sx} = {100, 200 m} and {200, 200 m}, respectively. For an
a×(a/2) rectangular road network, V (L) = 1.4056a km and 2.7944a km for {Na, Sx} = {100,
200 m} and {200, 200 m}, respectively. Thus, it is found that the variance of VMoCS model
increases with the increase of Sx (inter-road spacing) and Na (number of avenues), since V (L)

is proportional to the square of Sx and Na.

3.1.4 Epoch Time

The next step is to find out the total time required for a vehicle (mobile node) to complete
an epoch. We have considered possible restrictions in the city streets, such as, stop lights,
speed limits. It is assumed an average delay of τ sec at each crossroad with a probability of φ of
encountering it, that is, the vehicle will encounter a stop light in a crossroad with a probability φ.

So the total delay regarding stoppages in crossroads can be estimated as follows [1]:

3.1. ORIGINAL WORK 10

Txroad = φτ
(E(Lx)

Sx

+
E(Ly)

Sy

)
(3.8)

Hence, the total epoch time can be obtained from paper [1]

E(T) = Txroad + E(Tx) + E(Ty) (3.9)

Higher value ofNa means larger grid dimensions for fixed inter-road spacing (see Eqns. (3.1) [1]
and (3.2)), resulting in higher epoch time. For a a × a square road network, E(T)/a = 262.17
milisec/meter and 145.75 milisec/meter when {V max, Na} = {5 m/s, 200} and {V max, Na}
= { 25 m/s, 200}, respectively. For a a × (a/2) rectangular road network, E(T)/a = 178.96
milisec/meter and 91.02 milisec/meter when {V max, Na} = {5 m/s, 200} and {V max, Na} =
{25 m/s, 200}, respectively.

3.1.5 Number of Subnet Crossing

Let us consider that the road network of dimensions a × b (Fig. 4.4) [1] is covered by Access
Points (AP); let there be n rows of APs and m APs in each row. In total, there will be mn APs
to cover the rectangular area. Let the radio coverage area of each AP be a circular region of
radius r and two successive APs overlap at a maximum length of l along its diameter.

r

r

C A

B

DE

Figure 3.2: Subnet overlapping among the cells. [1]

Expected number of subnet crossings in an epoch for movement along the vertical direction
is [1],

E(Cy) =
n(n+ 1)K

6Ns
2 (6Ns − 4nK +K + 3) (3.10)

3.2. LIMITATIONS OF CITY STREET MOBILITY MODEL 11

Therefore, the expected number of subnet crossing in an epoch can be obtained from [1]

E(C) = E(Cx) + E(Cy) 3.10 (3.11)

expected number of subnet crossings increases with the increase in number of avenues (Na)
and streets (Ns). Higher values of Na and Ns mean larger grid dimensions for fixed inter-road
spacing (see Eqns. (3.1) and (3.2)), resulting in higher number of subnet crossings.

For a a × a square road network, E(C) = 19.79 when K = 7, Na = 200; and E(C) = 39.85
when K = 3, Na = 200. For a a× (a/2) rectangular road network, E(C) = 15.04 when K = 7,
Na = 200; and E(C) = 30.26 when K = 3, Na = 200.

3.1.6 Subnet Residence Time

The subnet residence time is the time duration that the mobile node (vehicle) resides under a
cell. This can be obtained by dividing the mean epoch time by expected number of subnet
crossing as follows:

Tr =
E(T)

E(C)
(3.12)

36 km × 36 km square-shaped and 36 km × 18 km rectangular-shaped road network. Here,
we used K = 5. We find that the residence time decreases with the increase of speed limit as
less time is required to cross the coverage area of an AP. Residence time also decreases with
the increase in number of avenues (Na) and streets (Ns). Higher values of Na (Ns) result in
increased E(C) values, but the value of E(T) is not affected much. As a result, the residence
time decreases.

For a 36 km × 36 km square road network, Tr = 899.37 sec and 190.95 sec when {V max,
Na} = {10 m/s, 50} and {30 m/s, 200}, respectively. For a 36 km × 18 km rectangular road
network, Tr = 767.18 sec and 154.28 sec when {V max, Na} = {10 m/s, 50} and {30 m/s, 200},
respectively.

3.2 Limitations of City Street Mobility Model

Through the paper [1] finds some of the stocastic properties but it has some limitations in its
derivation. Some of the limitations are stated below.

• Different speed variation at different streets was not considered.

3.3. MODIFIED MOBILITY MODEL 12

• Chance of delays in crossroad was not considered in the paper [1].

• According to the paper [1] Streets and avenues are parallel to axes. But in reality they
wont be exactly parallel

• A vehicle can have (at most) one horizontal and one vertical movement in epoch. But in
real world a vehicle moves in zigzag path.

3.3 Modified Mobility Model

In this modification mainly two of the above drawback will tried to be solved.
i) Vehicles will move in zigzag path
ii) Streets and avenues wont always be parallel

We can solve the zigzag move problem by a little modification of the original analytical model.
A zigzag path is essentially a summation of a few smaller simple epoch.

Modified

E(L)∗ =
n∑

i=1

E(L)

3.6 Here the E(L)* is the summation of n simple epochs. But the purpose of analytical equation
we need to write E(L)* in a closed form.
One point to be consider in reality a vehicle wont choose the shortest path it will choose a which
will take to to his destination in the shortest time with shortest distance. So the modified epoch
length will be little more than the the derived epoch lenght [1].

E(L)* = E(L) + λ

Here λ is around 5%.

Now the epoch time will decrease because vehicle with try to reduce epoch time even in cost of
epoch length.

E(T)* = E(T) 3.9 - φ

Here the value of φ is around 10%

Expected no of Subnet crossing will decrease because RSU will not be uniformly distributed.
Important road ie broad roads or busy roads will have more RSU.

E(C)* = E(C) 3.11 + θ

Here θ value should be around 20%.

3.3. MODIFIED MOBILITY MODEL 13

The result of the new modified model is given in section 5.2.

Chapter 4

Simulation Study

To validate the mathematical model, VANETSim [5] simulator has been used. Simulation en-
vironment, analysis of the results and a comparative discussion are presented in the following
subsections.

4.1 VANETsim

VANETsim is a simulator which focuses on realistic vehicular movement and communication
among vehicles. It has a useful graphical user interface and it has an experimentation envi-
ronment which supports the user to set up or perform experiments. The VANET-Simulator is
developed in Java 6 and can be run on most operating systems and hardware platforms. It is
primarily used to verify security and privacy concepts in VANETs.

4.1.1 Its features

VANETsim’s features are stated below.

• For routing An implementation of the A*-algorithm has been used. A* uses an heuris-
tic to limit the distance calculations and thus results in a much faster routing compared
with Dijkstra. It also always finds the optimal results like Dijkstra if the heuristic is cor-
rectly chosen (which it is in this implementation). An own data structure is used which
is basically the official ¡code¿PriorityQueue¡/code¿ implementation but with unnecessary
function calls and casts removed. This uses about 25% less cpu than the original Priori-
tyQueue and about 40% less than a TreeSet. A basic ArrayList would take about 4x the
performance.

14

4.1. VANETSIM 15

• VANETsim simulator has real road constraints like one way streets, speed limit, check-
point.

• The VANET-Simulator has an interface to import maps from the OpenStreetMap project.
So the simulation of traffic on real road networks is supported. OpenStreetMap is built
by a community of mappers that contribute and maintain data about roads, trails, cafes,
railway stations, and much more, all over the world.

• Each vehicle is simulated individually and takes decisions on its own so that road traffic
is simulated as realistic as possible.

• In VANETsim simulator vehicles communicate with each other and exchange informa-
tion. So if there is a huge traffic jam at a crossing then other vehicles knows about this
beforehand and choose another route.

• Streets have lots of realistic features. waypoints of streets are used for routing. Each
street has its own steed limit. Streets can be unidirectional or bidirectional.

• A scenario is what saves the vehicles information and events. Scenarios are exported
as XML and it contains information about the vehicle start point, end point, speed, wifi
signal and others.

• It has classes to parse XML. Scenario and maps information are in XML format the
simulator uses this parser to parse these information

• Streets have RSUs(A Road-Side-Unit to intercept WiFi signals). This is used to find when
a vehicle moves from one network zone to another.

• There is an event class that handles all the events. Events can be blocking or unblocking
streets and so on.

• Vehicles exchange information among themselves throgh message.A message which in-
dicates some kind of traffic jam through assigning a penalty to the street on which the jam
is.

• Master thread delegates the simulation processing to sub-threads and then calls a repaint
on the drawing area

• Worker thread is meant to run parallel with multiple others to gain advantage of multiple
CPUs. All simulation tasks are initiated from this class!

• Map has junction, traffic light, streets, waypoint, regions, node

4.2. MY CONTRIBUTION 16

4.2 My Contribution

• A simulation area was needed to run the simulation. So I researched and the = Manhattan
streets match the analytical models requirement closely as it has relatively better street
structure and street information is available from the OpenStreetMap. So I exported lower
Manhattan (4 KM × 9 km) map from OpenStreetMap. 4.1.

Figure 4.1: Exporting Map through OpenStreetMap

• Now scenarios are needed to perform simulation. A scenario is a collection of information
about vehicles and vehicles’ journey. So I Created different scenarios for the Simulation
through VANETSim interface and stored those scenarios information in XML format.

• I needed to modify VANETsim’s source code to log simulation data. VANETSim had
its own logging features but i needed to write my custom log class A.1 to log simulation
data which were useful to me. During the simulation when a vehicle reached destination
vehicle’s travel distance, travel time, wait time, no of subnet crossings etc were logged
into the log file.

• VANETsim has 60+ classes to run the simulation. Among these classes some of the im-
portant classes that I modified or studied are VanetSimStart, Vehicle, Street, RSU, MAP,
Node, XML Parser, Path, Message, Region, GUI event, A Star Algorithm, WayPoint,
Scenario, Message etc.

• By default during the simulation the vehicles exchange messages 4.2. to communicate
with each other to share information to know about the road information to choose optimal
routes. I changed code so that the vehicles will share less information with streets traffic
jam.

• For the purpose the thesis I needed to work on the VANETsim’s vehicle class. I needed to
add, modify some of the code to log vehicles’ routing paths. When a vehicle enters a new
street its entrance time were recorded and when the vehicle exited the street the amount
of time the vehicle spent on that street were recorded. On the path when the vehicle came

4.2. MY CONTRIBUTION 17

Figure 4.2: Vehicles within the radius are exchanging information among themselves

across a cross point i.e traffic light the amount of time spent on the traffic Signal were
recorded.When a vehicle finished its epoch its total travel time, total length, total no of
crossings were logged into a file to be analyzed later.

• Simulation was needed to run on different scenarios. Different Scenarios had different no
of vehicles. The simulation time were also different on each run.

• The exported map from the OpenStreetMap did not have any Access Points(RSU). So I
manually put Access Points in the Map 4.3.

Figure 4.3: Add RSU to the map through VANETSim

• Through the exported map from OpenStreetMap were very realistic but it did not have
all the information that i needed. The map region exported for the simulation through
OpenStreetMap did not have all traffic signal information(Stop, One Way, Do Not Enter
sign) in the map. So I had to manually put these traffic information in the map throught
VANETsim’s interface and thus I updated the exported map.

• I needed to modify the simulation’s main Thread’s code so that when simulation is termi-
nated manually the current vehicles’ information are correctly logged into the log file.

• Average amount of time a vehicle spent on a traffic signal was also logged A.2.

• VANETsim has a config file that stores simulation configuration. I also created my own
config file to easily run, operate or log the simulation.

4.3. SIMULATION SETUP 18

4.2.1 Problems Faced

• For the purpose of thesis bigger simulation area would have been better but map big region
could not be exported from from OpenStreetMap could not be exported. Every time I tied
to export a bigger area the OpenStreetMap failed. I exported lower Man Hat-tan area size
(4 KM × 9 km) from OpenStreetMap

• During simulation a worker thread(created by the master Thread) was corrupted due my
some of modification of code and this crashed the whole simulator.

• When I was trying to modify the code of the VANETSim I could not understand some of
parts of the codes and so I emailed the author of VANETsim for help I did not get any
reply. Finally this year in April the VANETsim project was closed by the author. So I
was difficult to feedback from the author.

• At one point in vehicle class I checked the status of every vehicle on the map and updated
some info. These unnecessary checkup was done frequently. So when the simulation
ran for a long time with lots of vehicle the simulation froze up. Because it was doing
unnecessary calculation for every vehicle and the time and memory it took for those
calculation froze up the VANETSim.

• Before i used log every info of a vehicle into the log file when the vehicle finished its
epoch ie reached its destination. So if a scenario had lots of vehicles in it and the simu-
lation ran long time and lots of vehicles finished its epoch and were trying to write to the
file. the simulation slowed down and performances were affected.

4.3 Simulation Setup

To estimate certain model parameters (such as, inter-road spacing, speed limit) for VMoCS
model, we have considered the Manhattan road maps in the City of New York since it matches
our assumed road network. It has been found the inter-street spacing in Manhattan is around 80-
100 m and inter-avenue spacing is around 320-340 m. The speed limit is roughly 30 miles/hour.
We have measured these parameters by analyzing Google Maps data. The signaling time cycle
at the crossroads of New York city is between 45 and 120 seconds.

Based on the above observation, we have chosen our simulation parameter values. The default
values of parameters used for simulations are listed in Table below. We used a rectangular
shaped road network with a dimension of 4km×9 km. We assumed the inter-street spacing
is 90m and inter-avenue spacings to be the 200m. Therefore, number of avenues in the road
network is 20 and number of streets is 100. The speed limit is assumed to be 15 meter/sec
(which is around 33.55 miles /hr, reasonable for city streets). Average Manhattan traffic speeds,

4.4. SIMULATION DESCRIPTION 19

Figure 4.4: Vanet Simulation

from 9.35 mph to 8.51 mph(13.7 kph). The map has around 1700 traffic junction. Delay in each
crossroad is assumed to be 50 sec to 120 sec and there is a 40% chance of encountering stop
light in a crossroad. The acceleration portion of the street segment is assumed to be 10% of that
segment. Similar is the case for deceleration phase.

4.4 Simulation Description

In our VMoCS model, we have considered many constraints present in city streets and incorpo-
rated realistic driving strategies while deriving closed form expressions for stochastic properties
of the mobility model that are critical metrics for performance evaluation of any mobility and
handover protocols. We have also verified the correctness of the model through simulations
whose parameters have been chosen from real street map data. Real road scenario like traffic
jam, one way street, check point are considered in the simulation

To the best of our knowledge, there exists no such previous work that quantitatively analyzed
stochastic properties of a street mobility model. This work differs from the previous works in
this respect and presents a complete and detailed mathematical analysis for vehicular mobility
in city streets. Our work therefore enables better utilization of the vehicular mobility model by
characterizing and analyzing all its key properties.

In each simulation run there were used different scenarios. Each scenario had had its own
settings. In the scenarios the number of vehicles varied from 200 to 2000 at a time. We ran the
simulation for 6-12 hours and took measurement of like 50 Thousand to 150 Thousand epoch.

4.4. SIMULATION DESCRIPTION 20

Table 4.1: Values of parameters used in the simulation.

Simulation Parameters Values
Simulation area 4 km × 9 km
Inter-road spacings (Sx) 200 meter
Inter-road spacings (Sy) 90 meter
Speed limit of each street / avenue 15 meter/sec
Number of Avenues (Streets) 101
Prob. of encountering stoplight at crossroad (φ) 0.4
Average delay in crossroad (τ) 60 sec
Acceleration / Deceleration portion of street segment
(χ)

0.1

Number of MHs 20
Number of Epochs per MH per simulation 10
Wireless range 600 m
Wired link BW 10 Mbps
Wired link delay 1.8 ms
Wireless (802.11b) link BW 11 Mbps
Number of Access Points 1764
Number of Traffic Signal 1700

Then we calculated the parameter of E(L), VAR(L), E(T), E(C), E(Tr) We ran simulation on 10
different scenarios and the took the average of these parameters.

To estimate certain model parameters (such as, inter-road spacing, speed limit) for VMoCS
model, we have considered the Manhattan road maps in the City of New York since it matches
our assumed road network. It has been found the inter-street spacing in Manhattan is around 80-
100 m and inter-avenue spacing is around 320-340 m. The speed limit is roughly 30 miles/hour.
We have measured these parameters by analyzing Google Maps [27] data. The signaling time
cycle at the crossroads of New York city is between 45 and 120 seconds [28].

Based on the above observation, we have chosen our simulation parameter values. The default
values of parameters used for simulations are listed in Table 4.1. We used a square shaped
road network with a dimension of 4 km × 9 km. We assumed the inter-street and inter-avenue
spacings to be the same (240 m). Therefore, number of avenues in the road network is 151.
Similar is the case for number of streets. The speed limit is assumed to be 15 meter/sec (which
is around 33.55 miles /hr, reasonable for city streets). Delay in each crossroad is assumed to be
50 sec (maximum value) and there is a 40% chance of encountering stop light in a crossroad.
The acceleration portion of the street segment is assumed to be 10% of that segment. Similar is
the case for deceleration phase. Each access point’s transmission range is 600 m. IEEE 802.11b
standard is used for wireless communications. The wireless link bandwidth is 11 Mbps and
wired link bandwidth is 10 Mbps.

Chapter 5

Simulation Result

5.1 Simulation Results

The results obtained from the analysis of the simulation traces are presented in this subsection.
We have measured mean epoch length, epoch time, number of subnet crossings, residence times
of each simulation run.

1 2 3 4 5 6 7 8 9 10

Measurement Trial #

0

1

2

3

4

5

E
x
p
ec

te
d
 E

p
o
ch

 L
en

g
th

 (
k
m

)

×10
-3

Figure 5.1: Expected epoch lengths for dif-
ferent simulation trials.

1 2 3 4 5 6 7 8 9 10

Measurement Trial #

0

5

10

15

20

V
ar

ia
n
ce

 o
f

E
p
o
ch

 L
en

g
th

s
(k

m
 2

)

Figure 5.2: Variance of epoch lengths for
different simulation trials.

Expected Epoch Length

Fig. 5.1 shows the bar chart of epoch lengths for each simulation run (having 200 epochs iter-
ated in each run). There are 40 such simulation results. The average epoch length of all the
simulation runs is 24.2113 km which is shown using the red straight line in Fig. 5.1. Variation
among the epoch length values reflect the randomness of the mobility model.

According to the theoretical model presented in Section 3.1, the expected epoch length for the

21

5.1. SIMULATION RESULTS 22

road network is given by Eqn. (3.6). Hence, E(L) = E(Lx) + E(Ly) = 4 * (21 + 1) / (3*21)
+ 9 * (101+1) / (3 * 101) = 4.42 km. This value is close to the average epoch length obtained
from simulation results with an accuracy of ? %.

1 2 3 4 5 6 7 8 9 10

Measurement Trial #

0

5

10

15

20

25

30

E
x
p
ec

te
d
 E

p
o
ch

 T
im

e
(m

in
u
te

s)

Figure 5.3: Expected epoch times for dif-
ferent simulation trials.

1 2 3 4 5 6 7 8 9 10

Measurement Trial #

0

2

4

6

8

10

N
u
m

b
er

 o
f

S
u
b
n
et

 C
ro

ss
in

g

Figure 5.4: Bar chart for expected number
of subnet crossing for different simulation
trials.

Variance of Epoch Length

During each simulation run, there were 50-150 thousand epochs. We recorded the epoch lengths
in each trial and computed the mean epoch length of each trial. Using the mean value, we have
computed the variance of epoch lengths in each trial as shown in Fig. 5.2. The average variance
of all the 10 simulation is 9.71 km2. Hence, the standard deviation for epoch lengths is 3.11
km.

Using the analytical model, the variance of epoch lengths (for Sx = 200 meter, Sy = 90 meter,
and Na = 21 Ns = 101) can be obtained using Eqn. (3.7) and it is 5.56 km2. Therefore, the
standard deviation for a 4 km × 9 km square shaped road network is 3.11 km. Thus, the
theoretical value matches the simulation one (accuracy of ? %).

Epoch time

Epoch time includes delay in the crossroads and time to travel horizontal and vertical road seg-
ment in an epoch. The theoretical value for delay in crossroads can be obtained using Eqn. (3.8)
as Txroad = 0.3 * 60 * (1390 / 200 + 3029.7 / 90) = 2013.2 sec. In addition, time required to travel
horizontal and vertical street movement can be computed by Eqns. (??) and (??) which are Tx
= 811.62 sec and Ty = 811.62 sec. Therefore, the calculated epoch time (from the analytical
model) is E(T) = 2013.2 + 811.62 + 811.62 = 3636.44 sec = 17.24 min.

5.1. SIMULATION RESULTS 23

On the other hand, the distribution for epoch time obtained from simulations are shown in
Fig. 5.3. The average value is 3.88 min which is shown using the red straight line. The simula-
tion value of mean epoch time are close to the analytical one with an accuracy of ?%.

Expected number of subnet crossings

Using the analytical model, the expected number of subnet crossing can be obtained using
Eqns. (??), (3.10), and (3.11). For the square shaped road network of 36 km × 36 km, number
of streets (avenues) are 151, the value K = a/(mSx) = 3.57. Using the Eqn. (??), we find that
E(Cx) = 14.74 = E(Cy) due to square road shaped road network. Hence, E(C) = E(Cx) +

E(Cy) = 5.82.

From the simulation traces, the average number of subnet crossing in each trial is obtained and
Fig. 5.4 shows the corresponding bar chart. The average value is 29.208 shown using the red
straight line. This average value is close to the analytical value with an accuracy of 99.05%.

Table 5.1: Comparison between analytical and simulation results.

Results type E(L) V(L) E(T) E(C) Tr

Analytical 4.42 km 5.56 km2 17.24 min 5.82 177.66
sec

Simulation 4.28 km 9.71 km2 13.88 min 3.75 123.12
sec

1 2 3 4 5 6 7 8 9 10

Measurement Trial #

0

50

100

150

200

250

S
u
b
n
e
t

re
si

d
e
n
c
e
 t

im
e
s

(s
e
c
)

Figure 5.5: Bar chart for subnet residence
times for different simulation trials.

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

A
v

g
.

p
ac

k
et

 d
ro

p
 p

ro
b

ab
il

it
y

Speed limit (meter/sec)

S

x
 = S

y
 = 120 m

S
x
 = S

y
 = 240 m

S
x
 = S

y
 = 360 m

Figure 5.6: Average packet drop probabil-
ity vs. speed limit for different inter-road
spacing.

5.2. MODIFIED RESULT 24

Subnet Residence Time

The subnet residence time can be computed using Eqn. (3.12) as Tr = 17.24 min / 5.82 = 177.66
sec. On the other hand, we show the subnet residence times for each simulation trial in Fig. 5.5.
The distribution is almost flat and the average value of all simulation trial is 93.12 sec. Thus,
we find that the simulation value matches the analytical one with ?% accuracy.

In Table 5.2, the results obtained from the mathematical model (Section 3.1) and the VANET-
Sim simulation are presented for a 4 km × 9 km rectangular-shaped road network with inter-
road spacing of 200 m and 90 m. The theoretical values of mean epoch length, variance of
epoch length, epoch time, mean number of subnet crossing and subnet residence time matches
the values obtained by simulation, thus validating our analytical model.

The objective of the paper is to derive several stochastic properties of realistic vehicular mobility
model in city streets. These properties have been validated by VANETSim simulation results in
Figs. 5.1-5.5.

5.2 Modified Result

The Modifed result based on the modifed model in section 3.3.

Table 5.2: Comparison between modified analytical and simulation results.

Results type E(L) V(L) E(T) E(C) Tr

Modified Ana-
lytical

4.64 km 5.56 km2 15.51 min 4.656 177.66
sec

Simulation 4.28 km 9.71 km2 13.88 min 3.75 123.12
sec

So now we can see the modified model is giving better result.

Chapter 6

Conclusion

In this thesis, we have performed extensive simulation using VANETsim to validate our earlier
work on city section mobility model that captures real driving strategies along with possible
constraints in city streets, such as, stop lights at crossroad, speed limits, etc. We have per-
formed a complete and detailed analysis of the model deriving the expressions for the following
stochastic properties: expected epoch length, variance of epoch length, expected epoch time,
expected number of subnet crossings and subnet residence time.
The derived stochastic properties have been validated by VANETSIM simulations whose pa-
rameters have been chosen from real street map data. Simulation results have been found to
be in close agreement with the analytical model, having an accuracy of 83% for most of the
stochastic properties.

In addition, this work can help in estimating the various performance metrics of mobility-
enabled devices on-board vehicles moving in city streets.

25

References

[1] M. S. Hossain and M. Atiquzzaman, “Stochastic properties and application of city section
mobility model,” IEEE GLOBECOM, 2009.

[2] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive survey
on vehicular ad hoc network,” Journal of network and computer applications, vol. 37,
pp. 380–392, 2014.

[3] A. Pramanik, B. Choudhury, T. S. Choudhury, W. Arif, and J. Mehedi, “Simulative study
of random waypoint mobility model for mobile ad hoc networks,” in Communication Tech-

nologies (GCCT), 2015 Global Conference on, pp. 112–116, IEEE, 2015.

[4] J. Harri, F. Filali, and C. Bonnet, “Mobility models for vehicular ad hoc networks: a
survey and taxonomy,” IEEE Communications Surveys and Tutorials, vol. 11, pp. 19–41,
Dec 2009.

[5] A. Tomandl, D. Herrmann, K.-P. Fuchs, H. Federrath, and F. Scheuer, “Vanetsim: An
open source simulator for security and privacy concepts in vanets,” in High Performance

Computing & Simulation (HPCS), 2014 International Conference on, pp. 543–550, IEEE,
2014.

[6] A. Shahriar, M. S. Hossain, and M. Atiquzzaman, “A cost analysis framework for NEMO
prefix delegation-based schemes,” IEEE Transactions on Mobile Computing, vol. 11,
pp. 1192–1206, Jul 2012.

[7] P. Nayak and P. Sinha, “Analysis of random way point and random walk mobility model
for reactive routing protocols for manet using netsim simulator,” in Artificial Intelligence,

Modelling and Simulation (AIMS), 2015 3rd International Conference on, pp. 427–432,
IEEE, 2015.

[8] C. Bettstetter, H. Hartenstein, and X. Prez-Costa, “Stochastic properties of Random Way-
point mobility model,” Wireless Networks, vol. 10, pp. 555–567, Sep 2004.

26

REFERENCES 27

[9] K.-H. Chiang and N. Shenoy, “A 2-d random-walk mobility model for location-
management studies in wireless networks,” IEEE Transactions on Vehicular Technology,
vol. 53, Mar 2004.

[10] T. Ali and M. Saquib, “Performance evaluation of wlan/cellular media access for mobile
voice users under random mobility models,” IEEE Transactions on Wireless Communica-

tions, vol. 10, pp. 3241–3255, Oct 2011.

[11] E. Zola and F. Barcelo-Arroyo, “Probability of handoff for users moving with the random
waypoint mobility model,” in IEEE Conference on Local Computer Networks, (Bonn,
Germany), 2011.

[12] P. I. Bratanov and E. Bonek, “Mobility model of vehicle-borne terminals in urban cellular
systems,” IEEE Transactions on Vehicular Technology, vol. 52, pp. 947–952, Jul 2003.

[13] G. H. M. F. A. A. Javanmard and M. Hamdi, “Mobility modeling, spatial traffic distri-
bution, and probability of connectivity for sparse and dense vehicular ad hoc networks,”
IEEE Transactions on Vehicular Technology, vol. 58, pp. 1998–2007, May 2009.

[14] K.-T. Chen, S.-L. Su, and R.-F. Chang, “Design and analysis of dynamic mobility tracking
in wireless personal communication networks,” IEEE Transactions on Vehicular Technol-

ogy, vol. 51, May 2002.

[15] A. R. Momen and P. Azmi, “A stochastic vehicle mobility model with environmental con-
dition adaptation capability,” Wireless Communications and Mobile Computing, vol. 9,
pp. 1070–1080, Aug 2009.

[16] A. Clementi, A. Monti, and R. Silvestri, “Modelling mobility: A discrete revolution,” Ad

Hoc Networks, vol. 9, pp. 998–1014, Aug 2011.

[17] K. A. Ali, M. Lalam, L. Moalic, and O. Baala, “V-mbmm: Vehicular mask-based mobility
model,” in 9th International Conference on Networks, (Menuires, France), Apr 11-16,
2010.

[18] J. Chung and D. Go, “Stochastic vector mobility model for mobile and vehicular ad hoc
network simulation,” IEEE Transactions on Mobile Computing (published online), Aug
2011.

[19] N. Akhtar, S. C. Ergen, and O. Ozkasap, “Vehicle mobility and communication channel
models for realistic and efficient highway vanet simulation,” IEEE Transactions on Vehic-

ular Technology, vol. 64, no. 1, pp. 248–262, 2015.

[20] M. Gorawski and K. Grochla, “Review of mobility models for performance evaluation of
wireless networks,” in Man-Machine Interactions 3, pp. 567–577, Springer, 2014.

REFERENCES 28

[21] F. J. Martinez, J.-C. Cano, C. T. Calafate, and P. Manzoni, “CityMob: A mobility model
pattern generator for VANETs,” in IEEE ICC Workshops, (Beijing, China), May 2008.

[22] A. K. Saha and D. B. Johnson, “Modeling mobility for Vehicular Ad hoc Networks,”
in ACM International Workshop on Vehicular Ad Hoc Networks (VANET), (Philadelphia,
PA), Oct 2004.

[23] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri, “Towards realistic mobility
models for mobile ad hoc networks,” in International Conference on Mobile Computing

and Networking (MOBICOM), (San Diego, CA), Sep 14-19, 2003.

[24] J. Harri, F. Filali, C. Bonnet, and M. Fiore, “VanetMobiSim: Generating realistic mobility
patterns for VANETs,” in ACM International Workshop on Vehicular Ad Hoc Networks

(VANET), (Los Angeles, CA), Sep 29, 2006.

[25] J. Kim, V. Sridhara, and S. Bohacek, “Realistic mobility simulation of urban mesh net-
works,” Ad Hoc Networks, vol. 7, pp. 411–430, Mar 2009.

[26] H. Huang, Y. Zhu, X. Li, M. Li, and M.-Y. Wu, “Meta: A mobility model of metropoli-
tan taxis extracted from gps traces,” in IEEE Wireless Communications and Networking

Conference, (Sydney, Australia), Apr 18-21, 2010.

[27] “Google Maps.” http://maps.google.com.

[28] “New york city: Department of transportation.”
http://www.nyc.gov/html/dot/html/faqs/faqs signals.shtml.

Appendix A

Codes

A.1 Logging Code

This class is used to log vehicle data into log file. . .

1 package log.custom;

2

3 import java.io.BufferedWriter;

4 import java.io.FileNotFoundException;

5 import java.io.FileOutputStream;

6 import java.io.FileWriter;

7 import java.io.IOException;

8 import java.io.OutputStreamWriter;

9 import java.io.UnsupportedEncodingException;

10 import java.io.Writer;

11 import java.lang.reflect.Array;

12 import java.util.ArrayList;

13

14 import vanetsim.map.Map;

15 import vanetsim.map.Region;

16 import vanetsim.scenario.Vehicle;

17

18 public class LogVehicleData {

19 private Writer writer = null;

20 private String outputFileName = "logs/log_output.txt" ;

21 private static String fileWriterFileName = "logs/vehicle_street_log.txt";

22 public static FileWriter fileWriter;

23

29

A.1. LOGGING CODE 30

24 // public LogVehicleData(){

25 //

26 // try {

27 // writer = new BufferedWriter(new OutputStreamWriter(

28 // new FileOutputStream(outputFileName), "utf-8"));

29 //

30 // } catch (UnsupportedEncodingException e) {

31 // // TODO Auto-generated catch block

32 // e.printStackTrace();

33 // } catch (FileNotFoundException e) {

34 // // TODO Auto-generated catch block

35 // e.printStackTrace();

36 // } catch (IOException e) {

37 // // TODO Auto-generated catch block

38 // e.printStackTrace();

39 // }

40 // }

41

42

43 /**

44 * This Method is a helper method to get all the vehicles active or inactive in the map

45 * Map has all the regions and regions has all the vehicles.

46 *

47 * @returns an arraylist of Vehicles

48 */

49

50 // public ArrayList<Vehicle> getAllVehicle(){

51 //

52 // ArrayList<Vehicle> allVehicles = new ArrayList<>();

53 //

54 //

55 // Region[][] regions = Map.getInstance().getRegions();

56 // Vehicle[] vehicles;

57 // Vehicle vehicle;

58 // int i, j, k;

59 // int activeVehicles = 0;

60 // int travelledVehicles = 0;

61 // int wifiVehicles = 0;

62 // long messagesCreated = 0;

A.1. LOGGING CODE 31

63 // long IDsChanged = 0;

64 // double messageForwardFailed = 0;

65 // double travelDistance = 0;

66 // double travelTime = 0;

67 // double speed = 0;

68 // double knownVehicles = 0;

69 // for(i = 0; i < regions.length; ++i){

70 // for(j = 0; j < regions[i].length; ++j){

71 // vehicles = regions[i][j].getVehicleArray();

72 //

73 //

74 // for(k = 0; k < vehicles.length; ++k){

75 // vehicle = vehicles[k];

76 // allVehicles.add(vehicle);

77 //

78 // }

79 // }

80 // }

81 //

82 // System.out.println("\n Total " + allVehicles.size() + " Vehicles are on the Map");

83 // return allVehicles;

84 //

85 //

86 // }

87

88 // public void updateLog(){

89 //

90 // try {

91 //

92 // writer.write("Something\n");

93 // writer.write("new line\n");

94 // } catch (IOException ex) {

95 // // report

96 // } finally {

97 // try {writer.close();} catch (Exception ex) {/*ignore*/}

98 // }

99 // System.out.println("File output over");

100 //

101 // }

A.1. LOGGING CODE 32

102

103 // public void writeVehicleInfo(ArrayList<Vehicle> vehicles){

104 //

105 //

106 // Vehicle vehicle;

107 // int i, j, k;

108 // int activeVehicles = 0;

109 // int travelledVehicles = 0;

110 // int wifiVehicles = 0;

111 // long messagesCreated = 0;

112 // long IDsChanged = 0;

113 // double messageForwardFailed = 0;

114 // double travelDistance = 0;

115 // double travelTime = 0;

116 // double speed = 0;

117 // double knownVehicles = 0;

118 //

119 // try {

120 // for(k = 0; k < vehicles.size(); ++k){

121 //

122 // vehicle = vehicles.get(k);

123 // // steady id is fixed device id. whereas geID is relative chanageable VehicleID

124 // writer.write(vehicle.getStedyID()+"");

125 // writer.write(" ");

126 //

127 //// writer.write(vehicle.getID()+"");

128 //// writer.write(" ");

129 // writer.write(vehicle.getTotalTravelDistance()+"");

130 // writer.write(" ");

131 // writer.write(vehicle.getTotalTravelTime()+"");

132 // writer.write(" ");

133 // writer.write(vehicle.totalWaitTime+"");

134 // writer.write("\n");

135 // }

136 //

137 // }catch (IOException e) {

138 // // TODO Auto-generated catch block

139 // e.printStackTrace();

140 // }

A.1. LOGGING CODE 33

141 //

142 //

143 //

144 // }

145

146 // public void logAllVehicleInfo(String fileName){

147 // outputFileName = fileName;

148 // logAllVehicleInfo();

149 // }

150

151

152 // public void logAllVehicleInfo(){

153 //

154 // LogVehicleData logVehicleData = new LogVehicleData();

155 // System.out.println("\n\n ****Going to call VehicleInfo\n");

156 // // No parameter is needed. getting all the vehicles from globar map instances

157 // ArrayList<Vehicle> vehiclesList = logVehicleData.getAllVehicle();

158 // logVehicleData.writeVehicleInfo(vehiclesList);

159 //

160 // }

161

162 public static void initialFileWriter(String fileWriterFileName){

163 try {

164 System.out.println("initiallizying file writere: filename: " + fileWriterFileName);

165 fileWriter = new FileWriter(fileWriterFileName, true);

166 } catch (IOException e) {

167 // TODO Auto-generated catch block

168 e.printStackTrace();

169 }

170 }

171

172 public static void writeVehicleStreetInfo(Vehicle vehicle){

173 // System.out.println("write vehicle street method is called");

174 try {

175

176 // System.out.println("in try method to write");

177 fileWriter.write("" + vehicle.getStedyID()+" ");

178 fileWriter.write("vtdis:" + vehicle.getTotalTravelDistance()/100+" "); // length in meter

179 fileWriter.write("vtt:" + vehicle.getTotalTravelTime()/1000+" ");

A.1. LOGGING CODE 34

180 fileWriter.write("vtwt:" + vehicle.totalWaitTime/1000+" ");

181 //// fileWriter.write("vtspeed:" + (vehicle.getTotalTravelDistance()/100/1000)/(vehicle.getTotalTravelTime()/1000/3600)+" ");

182 // fileWriter.write("maxTF:" + vehicle.maxTrafficSignalWaitTime/1000 + " ");

183 // fileWriter.write("myTF:" + vehicle.myTrafficSignalWaitTime/1000 + " ");

184 // fileWriter.write("vsstops:" + vehicle.vehicleStreetInfoList.size()+" ");

185 //

186 // for(int i=0; i < vehicle.vehicleStreetInfoList.size(); i++){

187 // VehicleStreetInfo vehicleStreetInfo = vehicle.vehicleStreetInfoList.get(i);

188 //// fileWriter.write("sn:" + vehicleStreetInfo.street.getName()+" ");

189 // fileWriter.write("sl:" + (int)(vehicleStreetInfo.street.getLength()/100)+" ");

190 // fileWriter.write("tt:" + (int)(vehicleStreetInfo.totalTime/1000)+" ");

191 // fileWriter.write("wt:" + (int)(vehicleStreetInfo.totalWaitTime/1000)+" ");

192 //

193 // }

194

195

196 fileWriter.write("\n");

197 fileWriter.flush();

198 // System.out.println("write vehicle street method has flushed");

199 // fileWriter.close();

200

201

202 System.out.println("log flushed to file");

203

204 }

205 catch (IOException e) {

206 // TODO Auto-generated catch block

207

208 e.printStackTrace();

209 }

210

211 }

212

213 public static void closeFileWriter(){

214 try {

215 fileWriter.flush();

216 fileWriter.close();

217 } catch (IOException e) {

218 // TODO Auto-generated catch block

A.2. VEHICLE ROUTE INFORMATION CODE 35

219 e.printStackTrace();

220 }

221 }

222

223

224 }

A.2 Vehicle route information Code

This class is used to find out details on how much time a vehicle is spending on a road. . .

1 public void updateTrafficLightInfo(Street curStreet){

2 // if(curStreet_.getStartNode().isHasTrafficSignal_()){

3 // TrafficLight trafficLight = curStreet_.getStartNode().getTrafficLight_();

4 //// System.out.println("Start Node: This street has traffic light and this light’s green time: " + trafficLight.getGreenPhaseLength() + " yellow: " + trafficLight.getYellowPhaseLength() + " red: " + trafficLight.getRedPhaseLength());

5 // curVehicleStreetInfo.maxTrafficSignalWaitTime =(int) (trafficLight.getYellowPhaseLength() + trafficLight.getRedPhaseLength());

6 // maxTrafficSignalWaitTime += trafficLight.getYellowPhaseLength() + trafficLight.getRedPhaseLength();

7 // }

8 //// if(curStreet_.getEndNode().isHasTrafficSignal_()){

9 //// TrafficLight trafficLight = curStreet_.getStartNode().getTrafficLight_();

10 //// System.out.println("End Node: This street has traffic light and this light’s green time: " + trafficLight.getGreenPhaseLength() + " yellow: " + trafficLight.getYellowPhaseLength() + " red: " + trafficLight.getRedPhaseLength());

11 //// }

12

13 }

14

15 public void updateVehicleStreetLogInfo(Street curStreet_){

16 // System.out.println("updateVehicleStreetLogInfo " + getStedyID() + " is going to take a new street " +

17 // curStreet_.getName() + " size: " + curStreet_.getLength()+ " traffic stop time: " +

18 // stopTime_);

19 // negative means this is first street

20

21 // System.out.println("\nroadsite unit size: " + knownRSUsList_.getSize());

22 if(curStreetEnterTime <= 0){

23

24 } else{

25 curVehicleStreetInfo.totalTime = totalTravelTime_ - curStreetEnterTime;

26 curVehicleStreetInfo.totalWaitTime = totalWaitTime - curStreetEnterWaitTime;

27 if(curVehicleStreetInfo.totalWaitTime > curVehicleStreetInfo.maxTrafficSignalWaitTime){

A.2. VEHICLE ROUTE INFORMATION CODE 36

28 maxTrafficSignalWaitTime += curVehicleStreetInfo.maxTrafficSignalWaitTime;

29 } else{

30 myTrafficSignalWaitTime += curVehicleStreetInfo.totalWaitTime;

31

32 }

33 vehicleStreetInfoList.add(curVehicleStreetInfo);

34

35

36 }

37

38 curVehicleStreetInfo = new VehicleStreetInfo();

39 curVehicleStreetInfo.street = curStreet_;

40 curStreetEnterTime = totalTravelTime_;

41 curStreetEnterWaitTime = totalWaitTime;

42

43

44

45

46

47

48

49

50 }

51

52 // this method will be called when the vehicle reaches its destination

53 public void updateVehicleStreetLogInfo(){

54 System.out.println(getStedyID() + " has reached its destination dis: " + totalTravelDistance_+ " time: " + totalTravelTime_ + " waittime: " + totalWaitTime);

55 curVehicleStreetInfo.totalTime = totalTravelTime_ - curStreetEnterTime;

56 curVehicleStreetInfo.totalWaitTime = totalWaitTime - curStreetEnterWaitTime;

57

58 vehicleStreetInfoList.add(curVehicleStreetInfo);

59 LogVehicleData.writeVehicleStreetInfo(this);

60 // System.out.println("......written the street info to file");

61

62

63

64 // RSU[] rsus = null;

65 // RSU rsu = null;

66 // for(int i = 0; i < regions_.length; ++i){

A.2. VEHICLE ROUTE INFORMATION CODE 37

67 // for(int j = 0; j < regions_[i].length; ++j){

68 // rsus = regions_[i][j].getRSUs(); //use the array as it’s MUCH faster!

69 // int size = rsus.length;

70 //// System.out.println("RSU amount: " + size);

71 //

72 // }

73 // }

74

75

76 }

77

78 // for thesis going to store vehicles every street info

79

80 }

Generated using Undegraduate Thesis LATEX Template, Version 1.3. Department of
Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh.

This thesis was generated on Tuesday 12th September, 2017 at 2:08pm.

38

	CANDIDATES' DECLARATION
	CERTIFICATION
	ACKNOWLEDGEMENT
	List of Figures
	List of Tables
	ABSTRACT
	Introduction
	Motivation
	Objective
	Contribution
	Outline

	Literature Review
	Classical random mobility models
	Analytical vehicular mobility models
	Simulation-based vehicular mobility models
	This work

	City Section Mobility Model
	Original work
	Epoch Length
	Expected Epoch Length
	Variance of Epoch Length
	Epoch Time
	Number of Subnet Crossing
	Subnet Residence Time

	Limitations of City Street Mobility Model
	Modified Mobility Model

	Simulation Study
	VANETsim
	Its features

	My Contribution
	Problems Faced

	Simulation Setup
	Simulation Description

	Simulation Result
	Simulation Results
	Modified Result

	Conclusion
	References
	Codes
	Logging Code
	Vehicle route information Code

