
Yes, @vollermsj, I certainly miss being in the same room with a blackboard!

Here is my initial response to the proposal as kindly detailed by @DilumAluthge. I'm sorry this does include
some more technical discussion. Be assured I appreciate acutely your patience to endure these so far. I am
being more verbose than you may like, but only to mitigate further possible misunderstandings.

At present, the only kind of probablistic supervised learning model that MLJ designed to interface is a model
that:

(i) Assumes data is generated by an i.i.d process; and

(ii) Is capable of delivering, after seeing training data , a probability distribution , defined for
each new single input observation .

Given a probabilistic scoring rule (e.g., Brier score) the expected loss of the model is then well-defined.
There a number of algorithms, such as cross-validation, implemented in MLJ (and all such ML toolboxes)
that take the function as input and estimate this loss. While not without controversy, these estimates are
ubiquitous and well-studied. Furthermore, both the definition of the expected loss, and the algorithms for
estimating the loss do not depend on any other feature of the model (e.g., "model is Bayesian", or "model is
linear"). It is therefore possible to compare all such models in a consistent way using such estimates, which
is crucial.

Here are goals that have been articulated so far, as best as I can gather:

(i) We integrate into MLJ Bayesian models that fit into the framework outlined in 1.

(ii) Certain functionality of Bayesian models not shared by all models (but not unique to them) is exposed in
MLJ. Specifically, "correlated predictions" (see 5. below) should be exposed.

(iii) New functionality is added to MLJ that would allow evaluation of Bayesian models in ways that do not fit
into the framework outlined in 1, even though the models themselves may do so. This goal requires (ii).
(Here I'm thinking of things like implementing
brier_score(dist::Distribution{Vector{T}}) where T , as discussed in @DilumAluthge's

proposal.)

(iv) We additionally integrate Bayesian models that do not fit into the framework outlined in 1, such as
models for non i.i.d. processes. Here "integrate" is not the best word, because currently MLJ has little to
offer in the way of meta-algorithms to support such models. But the implication seems to be that realizing

1. Loss estimates in MLJ and their scope of application

(,), (,), . . .X1 y1 X2 y2

D p(y|x, D)
x

p

2. Goals for Bayesian model / MLJ interaction

(iii) would change this (?)

In principle, I do not have objections to any one goal. However:

For me (and I expect most general MLJ users) (i) is the highest priority. It seems to me (i) can be
achieved independently of the other goals. I would not support adding i.i.d. Bayes models to MLJ that
can be fit into framework 1 but do no actually implement the necessary part of the API needed to
include them. This is not to say that i.i.d. models are only valuable as part of the framework, only that
integration into MLJ only makes sense if they participate. I realize that to implement this goal it may be
necessary to generalize some measures so that they can deal with (vectors of) Sampler

predictions, and not just Distriubtion predictions, which I would support.

It seems (ii) can be readily achieved somehow. However, I do see a flaw in the current proposal for
doing so, in which goal (i) is compromised. See 6 below. I may also simply misunderstand the
proposal.

I don't believe (iii) is a trivial undertaking. I therefore suggest these enhancements be added by a new
third party package. Here are some reasons: (a) MLJBase is already large and the performance
measures interface (which should be a package in its own right) is large, growing and a bit
complicated; (b) Limited resources now mean it's hard to justify an enhancement that is neither small,
simple, nor adding value across the board (to all models); (c) Having this externalized might help you
rally the necessary expertise and would give you independence (you wouldn't have to wait a week+ for
every PR review from me).

Well, (iv) seems to depend on (iii). Realistically, it is probably out-of-scope for now.

Before responding to the specific design proposal, I think I need to clarify the relationship between the API
specs and the framework defined in 1.

While the MLJ API specifies that each Probabilistic model should implement a
predict(mach, Xnew) method that returns a vector of probability distributions
[d1, d2, ..., dk] for each multi-observation input X (a table with k rows, say) it is tacitly

assumed that this method is equivalent to broadcasting a single observation predict method, corresponding
to the distribution above. In other words, predict should just be an implementation of the vector-
valued function , given by

This assumption is necessary unless we agree to depart from the framework 1 (which would exclude us
from comparing all models in a consistent way).

3. Comment

4. A clarification of the API for probablisitic models

p
P

P(, , . . . , | , , . . . , , D) = (p(| , D), p(| , D), . . . , p(| , D)).y1 y2 yk x1 x2 xk y1 x1 y2 x2 yk xk

Let me note here a trivial corollary of our assumption: the single component of is the same
thing as the first component of , or in MLJ syntax:

predict(mach,	Xnew[1,	:])[1]	==	predict(mach,	Xnew)[1,	:]

for any table Xnew with two rows. I will call this property consistency below.

Distilling previous disucssions:

Given a family of probabilistic predictors , parameterized by (each fitting into the framework of 1 above)
and a mixing pdf (possibly depending on the training data) then we can construct a multivariate
distribution function

whose marginals are generally correlated. This framework includes Bayesian models, where is the
posterior for model hyperparameters.

Note that if we take the special case our multivariate distribution becomes a univariate one, and we
obtain a candidate for placing a mixture model into the framework 1 (I'm assuming the setting is
i.i.d data). However, this does not appear to factor into @DilumAluthge's proposal.

To achieve goal 2(ii) @DilumAluthge is proposing that for a class of models with the new subtype
ProbablisiticJoint , we should declare that predict(mach, Xnew) return a representation of

correlated predictions , evaluated on the rows x_1 , ..., x_k of the table Xnew . (Actually,
version 2 of the proposal just says this needs to be probability distribution, but in that case there is no
suggestion as to how to fit the model into framework 1.)

As I understand it (and maybe I have this wrong) one then obtains the "vector of distributions" required for
fitting the model into framework 1 by computing the marginals of p_corr ? If that is so, and we call the
result of this operation predict_marginals(mach, Xnew) , then it must be consistent, in the sense of
4. That is, we require

predict_marginal(mach,	Xnew[1,	:])[1]	==	predict_marginal(mach,	Xnew)[1,	:]

for any table Xnew with two rows. This is evidently not the case. An equal mixture of two binary
classifiers already provides a counter example.

P(| , D)y1 x1
P(, | , , D)y1 y2 x1 x2

5. Correlated predictions for "mixture models"

pθ θ
w(θ) D

(, . . . , | , . . . , |D) = ∫ (| , D)dθpcorr y1 yk x1 xk ∏
i

pθ yi xi

w(θ)

k = 1
p(y|x, D)

6. On the proposal to integrate models into MLJ

pcorr

Julia

Julia

I would be very surprised if there is any way to construct a consistent "vector of distributions" from the
correlated predictions predict(mach, Xnew) . Of course, the predict function (as opposed to a
single evaluation) can be used to get this, as the last observation in 5 shows. But the idea that we can
convert a ProbablisiticJoint model into a regular Probabilistic model by simply composing
it with a marginalization operation (or any operation) would not appear to work, right?

Very happy to see a revised update to the proposal or have my misunderstandings corrected. However, my
own view is that this is not the right approach. Since i.i.d Bayes models are expected to implement
framework 1, they must share all the behaviour of the existing Probabilistic models and so ought to
have this type. Extra functionality goes on top by adding methods, such as predict_joint . To flag
those models that support the extra functionality, we could introduce a subtype
JointProbabilistic <: Probabilistic or a trait. (Actually, the implemented_methods trait

may already serve this purpose.)

I understand @DilumAluthge has already given this approach a lot of thought, which I appreciate:

I believe that this would lead to way too much code churn throughout the entire MLJ ecosystem.
Additionally, it would require a lot of breaking changes in both the MLJ ecosystem as well as all Julia
packages that currently implement Probabilistic MLJ models. I think that this would be quite disruptive
and would require a lot of person-hours.

It's not clear to me is why adding functionality should be disruptive. Could you give an example?

7 Comment

