
Supervised forecasting

Ahmed Guecioueur 1,3 and Franz J. Király † 1,2

1 Department of Statistical Science, University College London,
Gower Street, London WC1E 6BT, United Kingdom

2The Alan Turing Institute,
The British Library, Kings Cross, London NW1 2DB, United Kingdom

3INSEAD, Boulevard de Constance, 77300 Fontainebleau, France

November 19, 2019

TODO: rewrite Abstract & Intro, once we’re done with everything.

Abstract

The classical predictive tasks of forecasting and supervised learning have been extensively studied,
and benefit from the availability of various machine learning & statistical models. These may be applied
to sequential series, with adaptations where necessary. However, in situations when multiple such series
are available, neither of those tasks benefit from that additional information. We call this task supervised
forecasting, and in this dissertation we present a unified theoretical and practical framework for it.

We construct an interface-based framework to theoretically adapt the classical predictive tasks to our
new setting. Within this framework, we design various composite prediction strategies that enable us
to adopt a wide range of statistical and machine learning models to our task (including Functional Data
Analysis and LSTM-based strategies). We also design a kernel-based prediction strategy that is native to
the task, without any composition.

We underpin our prediction strategies with a common framework for model comparison, through a
statistically-sound workflow that empirically estimates the generalisation error. We use this to perform
various experiments on multiple datasets to justify the feasibility of our approach.

Practically, we design & implement the open-source pysf package to deal with all stages of supervised
forecasting, from data storage and resampling through to composite tunable prediction strategies and an
implementation of the evaluation workflow. Written in Python, the package is compatible with popular
machine learning libraries such as scikit-learn and keras.

ahmed.guecioueur@insead.edu
†fkiraly@turing.ac.uk

1

ahmed.guecioueur@insead.edu
fkiraly@turing.ac.uk

Contents

1 An Introduction to Supervised Forecasting 4
1.1 Illustrating Examples . 4
1.2 Main contributions . 5
1.3 Related prior art . 6

1.3.1 Supervised forecasting from the framework perspective 6
1.3.2 Supervised forecasting methodology - tasks vs algorithms 6
1.3.3 Supervised forecasting methodology - statistics and econometrics 6
1.3.4 Supervised forecasting methodology - machine learning 7
1.3.5 Reduction-based approaches to supervised forecasting 7
1.3.6 Toolboxes and API designs for supervised forecasting 8

1.4 Outline of the manuscript . 8

2 The supervised forecasting task 10
2.1 Introducing the supervised forecasting task . 10
2.2 Notational and mathematical conventions . 10
2.3 The generative setting: panel data . 11
2.4 Formulating the supervised forecasting task . 13

2.4.1 Setting: supervised forecasting . 13
2.4.2 Functionals and learning strategies . 13
2.4.3 The supervised forecasting task . 14

2.5 Performance quantification: generalization error . 14
2.6 Comparison to closely related learning tasks . 15

2.6.1 Comparison to functional regression . 15
2.7 Comparison with the classical forecasting task . 16
2.8 Comparison to the classical supervised learning task . 17
2.9 Variants not discussed in this manuscript . 18

3 Interface-based framework for supervised forecasting 19
3.1 Interface notation and convention for specifying abstract class interfaces 19
3.2 Defining interfaces for prediction strategies . 20

3.2.1 Interface for classical supervised learning . 20
3.2.2 Interface for classical forecasting . 20
3.2.3 Interface for supervised forecasting . 21

3.3 A framework for defining predictors as wrappers . 21
3.3.1 First-order methods for interface transformation . 21
3.3.2 Overview of the composite prediction strategy . 21

3.4 Relationship to reduction . 22
3.5 Implementing predictors as wrappers around classical models 22
3.6 Baseline predictors for comparison . 25

4 Supervised forecasting in the literature 26

5 Generalisation error estimation for strategy evaluation 28
5.1 Preliminaries . 28
5.2 Estimators for a single training-test split . 31

5.2.1 Estimators of the generalisation error . 31
5.2.2 Estimators of the variances of the estimators . 32
5.2.3 Central Limit Theorems . 33
5.2.4 Consistency . 34

2

5.3 Cross-validated estimation across multiple splits . 34
5.3.1 Approach . 34
5.3.2 Estimators in the CV case . 35
5.3.3 The need for nested CV . 37

6 The pysf package 38
6.1 Use cases . 38
6.2 Requirements . 38
6.3 Software features . 39

6.3.1 Predictors & their fit-predict-score workflow . 39
6.3.2 Transformers & pipelining . 39
6.3.3 Data container . 40
6.3.4 Defining prediction strategies through interfacing, wrapping & composition 40
6.3.5 Tuning hyperparameters . 40
6.3.6 Workflow to estimate generalisation error . 41

6.4 Discussion . 43

7 Experiments 44
7.1 Methodology . 44

7.1.1 Software packages . 44
7.1.2 Estimating the generalisation error . 44
7.1.3 Prediction strategies being evaluated . 44
7.1.4 Baselines being evaluated . 46
7.1.5 Datasets . 47
7.1.6 Significance testing . 51

7.2 Results . 52
7.3 Discussion . 57

8 Conclusion 59
8.1 Contributions & findings . 59
8.2 Future work . 59

References 61

A Walkthrough of the pysf package 64

B Example Gram matrices of series kernels 72

C Prediction error metrics 75
C.1 Mean Squared Error . 75
C.2 Mean Absolute Error . 75
C.3 Root Mean Squared Error . 75

D Individual experimental results 77
D.1 On Berkeley growth data . 78
D.2 On Canadian weather data . 79
D.3 On ECG data . 81
D.4 On Power data: multiple days for a single site . 82
D.5 On Power data: multiple sites & multiple days . 83
D.6 On Power data: multiple sites for a single day . 84
D.7 On Starlight data . 85

3

1. An Introduction to Supervised Forecasting

We consider the situation in which one wishes to forecast the future of a time series, with other independent
realisations of the same time series, as well as meta-data features, available for training. For example,
predicting the heart rate of a patient, having already observed other patients’ heart rates over time; or,
predicting operation characteristics of a machine, having already observed other machines over time. This
task naturally sits in the intersection of:

(i) supervised learning, where independent examples are used to learn a (non-temporal) feature/label
relationship, with the task being predicting labels from features, and

(ii) forecasting, where the temporo-sequential dependencies within a single time series in isolation are
observed and modelled, with the task of predicting the future given the past.

In the situation where the goal is temporal prediction (= forecasting), and multiple time series are
available, one may - and in general, should - leverage both the temporal association within each sample,
as well as the past/future relationship observed across the independent samples of time series. For this
reason, we term this learning task “supervised forecasting”.

This manuscript formally introduces and investigates the supervised forecasting task. We make our
contributions more precise after an example illustrating the need for this viewpoint.

1.1. Illustrating Examples

As an example, Table 1 shows the heights of 39 boys and 54 girls from the ages of 1 to 18 and the ages
at which they were collected1. This is a single dataset, consisting of 93 subjects, their genders (a binary
boy/girl series label) and a time series of height measurements for each of those subjects. The structure of
the dataset is, thus, hierarchical (sample, time).

If we wished to forecast one subject’s height from the ages of 12 to 18, say, a traditional forecasting
model might only consider the height measurements for that one subject up to the age of 12 as inputs - for
training as well as forecasting. One would plausibly expect a smarter, “supervised” forecasting procedure
to benefit from being trained on the 92 other time series in the dataset, instead of ignoring them. Similarly,
one may also expect the same procedure to become more effective by learning how male vs female genders
modify the past/future relationship used in the forecast.

Our interest in multiple independent realisations of time series should not be confused with modelling
multivariate time series; in the latter, multiple time series occur, but these are not statistically independent
realisations. However, in applications one frequently finds a combination: multiple independent realisa-
tions of multivariate time series. For example, Table 2 shows such a dataset: it consists of average daily
temperature and precipitation readings taken at 35 different weather stations in Canada2. This dataset
may be considered to consist of 35 independent realisations of a bi-variate time series - or, equivalently, 35
independent realisations of pairs of univariate time series, where the task may be to forecast the future of
either of the temporal variables, temperature or precipitation.

From an algorithmic perspective it is interesting - and crucial - to note that one may apply both super-
vised learning and forecasting methods in an attempt to solve the above:

(i) In order to apply a supervised learning method, one needs to bring the dataset in question in tabular
form. This can be achieved, e.g., by aggregating or tabulating height/temperature/precipitation in
yearly/montly bins, such that each time series has an entry for that year/month. The “past” bins, and
meta-data variables (e.g., gender) are considered features, the “future” bins are considered labels.

(ii) In order to apply a forecasting method, one simply ignores the presence of other time series, and
meta-data, and applies the forecasting method to each time series in isolation.

1Measurements were taken by Tuddenham and Snyder [43].
2Adapted from Ramsay and Silverman [35].

4

The interesting (and crucial) observation is that both of the above are potential solutions to a joint,
supervised forecasting task. One may also imagine (or be aware of) methods which solve the task but are
not of the above kind, i.e., make use other series without tabulating them first. A satisfactory formulation
and investigation of supervised forecasting hence needs to encompass all the above possibilities, and also
make the relation to supervised learning and forecasting precise - both on the level of tasks and algorithms.

Series index Series label Timestamp Time label
Subject Gender Age Height (cm)

0 boy

1.00 81.3
1.25 84.2
1.50 86.4

.
17.00 193.8
17.50 194.3
18.00 195.1

.

92 girl

1.00 76.1
1.25 78.4
1.50 82.3

.
17.00 168.6
17.50 168.9
18.00 169.2

Table 1: Subset of the Berkeley “growth” data.

Series index Timestamp Time labels
Weather station Day of year Avg. temperature (◦C) Avg. precipitation (mm)

0

1 -3.6 5.2
2 -3.1 5.8
3 -3.4 3.9

.
363 -3.2 3.0
364 -2.8 8.4
365 -4.2 2.6

.

34

1 -30.7 0.1
2 -30.6 0.1
3 -31.4 0.0

.
363 -29.0 0.2
364 -29.4 0.2
365 -30.5 0.1

Table 2: Subset of the Canadian weather data.

1.2. Main contributions

Our main scientific contribution is introduction and investigation of the supervised learning task, more
precisely: In this manuscript, we attempt to formulate, investigate, and provide solutions for the supervised
forecasting task from a formal black-box perspective, i.e., defining the task, strategies that solve it, goodness
and evaluation criteria, and

(i) we attempt a precise mathematical formulation of the supervised learning task, including generative
setting, nature of a solution, validation and success control - from the black-box perspective.

5

(ii) we provide meta-algorithms for model visualization, model diagnostics and evaluation, hyper-parameter
tuning, model validation, and benchmarking

(iii) we design and formalize an algorithmic sklearn-like interface for supervised forecasting

(iv) we investigate reduction approaches from supervised forecasting to supervised learning and fore-
casting

(v) we propose a kernel-based algorithm for supervised forecasting which does not arise from reduction,
and which is based on a double kernelization (in-between and across samples)

(vi) we implement all the above in a sklearn compatible python toolbox, pysf, which is available on pyPI

(vii) using the pysf toolbox, we conduct a benchmarking study of interface reduction based, and genuine
supervised forecasting strategies, on some well-known functional datasets

1.3. Related prior art

The synthetic nature of our contributions touches multiple aspects of existing prior art - from the for-
mal framework specification over meta-algorithms, reduction approaches, concrete supervised forecasting
algorithms, and package interface designs. These will be discussed below.

1.3.1. Supervised forecasting from the framework perspective

To the best of our knowledge, a prior formal-mathematical formulation of the supervised forecasting frame-
work does not exist, nor formal descriptions of meta-learning algorithms such as for tuning or evaluation.

The closest formal-statistical setting, from which we adapt a number of important ideas, is that of
supervised learning, as for example exposited in the book of Hastie et al. [19]. This includes the set-up of
the task as well as formalization of a learning strategy, as well as theory for estimating the generalisation
error with its common applications in model tuning and model evaluation. Of particular relevance is out-
of-sample evaluation in general, and cross-validation; Arlot and Celisse [2] provide a survey of the different
variants of cross-validation and their properties.

1.3.2. Supervised forecasting methodology - tasks vs algorithms

While a reasonable number of supervised forecasting strategies have already been proposed in multiple
branches statistical and machine learning literature, to the best of our knowledge, none of these branches
adopt the formal black-box view we propose. More precisely, while most existing branches of literature
describe the data type as samples of time series, they usually make additional assumptions that are specific
to the model class. They also often do not entirely separate the “problem” (the supervised forecasting task)
from its potential “solution” (the learning algorithm). As a consequence, none of these research areas have
a name dedicated to describe the “problem” - which we term supervised forecasting - while all tend to
refer to themselves by the name of an algorithm class (e.g., Gaussian processes), or a data model (e.g.,
functional data analysis), which, furthermore, is usually unspecific to the supervised learning task.

1.3.3. Supervised forecasting methodology - statistics and econometrics

The classical statistical approach to modelling discrete, sequentially-correlated observations is to use stochas-
tic models. These usually incorporate autoregressive and moving-average components. Box et al. [8] pro-
vided a widely-followed procedure for specifying & estimating the ARIMA model, which combines both
components is usually used to model a single non-stationary time series.

When multiple independent time series are observed, one corresponding to one subject, these are
known as panel data in econometrics, or longitudinal data in biostatistics. Baltagi [3] details a number of

6

approaches to panel data: at their core, these are linear fixed & random effects models with various exten-
sions to account for serial correlation, heteroscedasticity and other properties like restrictions imposed by
economic theory. Diggle et al. [15] show how more traditional statistical techniques, such as generalized
linear models and analysis of variance, may be applied to panel data.

The second statistical field in which supervised forecasting is studied is the field of functional data anal-
ysis (FDA). In FDA, the multiple samples of time series are considered to arise from a two-step generative
process: each single time series is assumed to be a temporal samples from continuous functions which
are i.i.d. samples. In FDA, these generative continuous functions are called curves, and the data is called
“functional”. Historically, this modelling approach is motivated by Rao [36] recognising that samples of
human growth curves were “functional” and could be studied via PCA (principal component analysis) in
terms of functional basis expansion coefficients. Ramsay [34] provided a simple conceptual framework to
extend this PCA-driven approach of mapping data to functions, to enable the use of other techniques such
as canonical correlation analysis. Since then, FDA has grown to encompass a variety of techniques, such as
smoothing, dimension reduction, or supervised regression; for example, the functional PCR & PLS models
of Reiss and Ogden [39] addresses the latter task, and makes joint use of the former two. Supervised fore-
casting is a more recent topic: Gooijer and Hyndman [18] relate FDA methods to panel data, and identify
the task of multi-step forecasting on panel data (a sub-case of supervised forecasting) as a “fruitful future
research area”.
[be mention functional regression!]

1.3.4. Supervised forecasting methodology - machine learning

The field of machine learning has produced a vast number of techniques focussed on prediction - most but
not all on non-sequential, tabular data, for supervised classification or regression. Hastie et al. [19] detail
many such techniques, with some of the most popular method classes being ensemble methods including
random forests, kernel methods, and neural networks aka deep learning. While most variants deal with
supervised learning or other tasks, we detail below a few known methods for supervised forecasting.

Deep learning techniques may target a variety of tasks depending on the architecture of the underlying
neural network: recurrent neural networks (RNNs) are a variant whose connectivity structure specifically
suits sequential data and that can be used for prediction. Williams and Zipser [45] showed how they may
be trained. Hochreiter and Schmidhuber [20] re-architected RNNs to deal with the vanishing gradient
problem, and their long short-term memory (LSTM) architecture has now been widely adopted. LSTMs
(and RNNs in general) are trained on samples of sequential data, e.g., in audio or text modelling. The
multiple samples naturally correspond to individual series (full or sampled) of a panel dataset.

Kernel-based or Gaussian process based methods include support vector machines and Gaussian process
regression (GPR). The kernel trick by Aizerman et al. [1] allows any type of input data including time series
as input features [41, 12]. On the other hand, structured output prediction or multi-task learning [29, 7] is
concerned prediction of a high-dimensional (and potentially sequentially structured) output. Combining
the two, one may theoretically construct kernel-based composite supervised forecasting strategies - though
we are not aware of an application case in which this has actually been done.

1.3.5. Reduction-based approaches to supervised forecasting

Reduction is the general term for meta-algorithms converting between machine learning tasks - usually
converting a more difficult task to a simpler one, then obtaining a solution to the former from a solution
to the latter. For example, Langford et al. [25] have reduced the task of quantile regression to that of
classification, while Dietterich [14] discusses the use of sliding windows as a technique to adapt machine
learning algorithms to a sequential setting.

Reduction of supervised forecasting to forecasting is straightforward by forgetting the training exam-
ples. While it is intuitive that this is a bad idea in general, we are unaware of an explicit discussion or
empirical study; or, of other reduction approaches.

7

Reduction of supervised forecasting to classical supervised learning is less straightforward and could
be achieved in may ways (as we discuss later). The most common way to do so are variants of binning-
aggregation of both the input/past and the output/future domain, as done for example in “deep feature
synthesis” as used by the featuretools package [23] for python, or as done in the fda module of the mlr
package [5] for R.

1.3.6. Toolboxes and API designs for supervised forecasting

For supervised forecasting, two aspects of toolbox and API design are crucial: data container design to
store the samples of time series with meta-data (“panel data”), and modelling pipeline object design to
model3 the algorithmic strategy.

A number of data containers for panel data in python exist, including: xarray [21], xpandas [13],
and the entity collection in featuretools [23]. We decided to build a custom data container for pysf,
generalising the state-of-art pandas data container [27], due to limitations in all of these (outlined in detail
in Section 6), though we may choose to adopt one of the above as a data container in future development.

Regarding modelling pipeline design, current state-of-art designs for classical supervised learning
include that of: scikit-learn Buitinck et al. [9] which models the prediction use case, and that of mlr [5]
which models the full benchmarking workflow. Our design for pysf is heavily inspired by these; we consider
pysf to be an interface-compatible extension of scikit-learn for the supervised forecasting task.

In R, there are 2 R packages with a joint design for storage and manipulation of functional data: mlr
and fda. The mlr package allows equal length panel data to be stored as part of a data frame and supports
multiple panel based tasks, including feature extraction, classical supervised learning, and supervised fore-
casting - as long as the data is equal length and can be stored in a 2D data frame. The fda package, which
directly implements key methods from the book of Ramsay and Silverman [35], models data as coefficients
to a particular basis expansion. The fda package also implements prediction strategies that may be applied
directly to the functional data as represented by the basis expansion(s).

While featuretools, xpandas, mlr, and ultimately even scikit-learn may be used for method-agnostic
supervised forecasting if the data is brought into the right format, it is limited through exactly that, i.e.,
the necessity to change the data format back and forth - hence carrying out method reduction implicitly
and manually (and tediously). To our knowledge, pysf is the first attempt of providing an interface design
and implementation without such a limitation.

1.4. Outline of the manuscript

We begin our exposition in §2 by defining our problem as the supervised forecasting predictive task, relating
it to classical predictive tasks, and explaining how we will evaluate the effectiveness of prediction strategies.
In §3 we then design a theoretical framework to enable us to build prediction strategies for this new task by
using existing prediction models as building blocks. Of course, it is also possible to design native prediction
strategies that do not make use of other prediction models, and in ?? we take this approach to design a
kernel-based predictor. In §5 we flesh out the approach to model evaluation that we had introduced
earlier. In §6 we describe pysf, an open-source code implementation of our framework. In §7 we conduct
an empirical investigation to validate our approach, before concluding in §8.

Authors’ contributions

This manuscript is based on AG’s data science MSc thesis, supervised by FK and submitted in August 2018.
Revisions were made [describe once done].

3Due to an unresolved clash in terminology between the fields of data science and computer science, the word “model” is used in
two senses here: “modelling pipeline” refers to a model in the sense of statistical/ML model - as in modelling the data. The second
occurrence refers to a model in the sense of class/code/data model: here, the model models the model - or slightly more legibly, the
software model mirrors (models) the process of statistically modelling the data - which makes the terminology clash quite bizarre.

8

FK conceived the original ideas for the supervised forecasting framework, the kernel algorithm in Sec-
tion ??, and the high-level package interface. The theoretical framework was worked out as part of AG’s
thesis work, and jointly in supervision meetings. AG conceived the concrete package interface and imple-
mented the pysf package. AG conducted the benchmarking experiments.

Acknowledgments

We would like to thank Ricardo Silva for pointing out the machine learning literature on reduction. We
would like to thank Giovanni Colavizza for discussions on selection of LSTM architectures and hyper-
parameters.

We would like to thank the Tools, Systems and Practices interest group at the Alan Turing Institute
for stimulating conversations, particularly: Raphael Sonabend for his suggestions around the use of task
objects as part of evaluation/validation workflows; Frithjof Gressmann for suggestions on the topic of
reduction APIs to interface scikit-learn; and Markus Löning for pointing out to us the featuretools package.

9

2. The supervised forecasting task

In this section, we will describe the supervised forecasting task, which we aim to solve as the primary aim
of this manuscript. We begin with an intuitive introduction, and then formalise our notions precisely more
precisely. Based on the same notation, we then close the section by contrasting our supervised forecasting
task with more classical prediction tasks involving time series-like data: supervised learning (on tabular
data) and forecasting (on a single time series).

2.1. Introducing the supervised forecasting task

Figure 2.1 is a stylised depiction of the supervised forecasting task.
TODO: intuition in this subsection, then link to the formalisms in the next subsection!

0 1 2 3 4 5 6

Time t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ea

li
sa

ti
on

s
of
X
i(
t)

TT T∗

X1(t) X2(t) X∗(t) ≡ X3(t)

Figure 2.1: Stylized representation of the supervised forecasting setting, in a functional setting. The black
dots are the observed training series. Note the black curves may be hypothesized, but are not actually
observed. The supervised forecasting task is to forecast, given observation of the blue dots, the behavior
along the blue dotted curve. In time-stamped forecasting, the value is queried at certain times, while in
functional supervised forecasting, the entire curve is the return object.

2.2. Notational and mathematical conventions

Random variables. To avoid confusion between quantities which are random and non-random, we always
explicitly say if a quantity is a random variable. Furthermore, instead of declaring the type of a random
variable, say X , by writing it out as a measurable function X : Ω→ X, we say “X is a random variable taking
values in X”, or abbreviated “X t.v.in X”, suppressing mention of the probability space Ω which we assume
to be the same for all random variables appearing. For reading convenience, we will usually denote sets
which are the value taking domains of random variables by the same letter in calligraphic script. E.g., X
t.v.in X, Y t.v.in Y, and so on.

Sets and tuples. We will use standard set and tuple notation.

10

Sets of functions. We will denote the set of functions from a set A to a set B by A→ B, with bracketing
as appropriate. For example, for sets A, B, C we will denote by A→ [B→ C] the set of functions with input
in A and output in the set of functions B→ C .

2.3. The generative setting: panel data

We first define the type domains in which panel data takes values: sequences and time series.

Definition 2.1. Let X be any set (for example, X= Rd for some integer d). Let T ⊆ R.

(i) We denote by seq(X) the set of arbitrary finite length tuples with entries inX, i.e, seq(X) := {(x1, ..., xm) ; m ∈
N, x i ∈ X}. We call an element of seq(X) a sequence (with values) in X. For x ∈ seq(X), we denote by
`(x) the length of x , as a tuple.

(ii.a) We denote by ∆(T) the ascending sequences in T, i.e., t ∈∆(T) iff t ∈ seq(T) and t i ≤ t j for all i ≤ j.
We call an element of ∆(T) a time sequence (with time points in T), and write ∆ :=∆(R).

(ii.b) We denote by ∆◦(T) the strictly ascending sequences in T, i.e., t ∈∆◦(T) iff t ∈ seq(T) and t i � t j for
all i ≤ j. We will write ∆◦ := ∆◦(R), and canonically (and by slight abuse of notation) identify finite
sub-sets of T with ∆◦.

(iii.a) We denote series(X,T) := {(x , t) ∈ seq(X) ×∆(T) ; `(t) = `(x)} and call elements of series(X,T)
(discrete) time series in X (at time points in T). We will write abbreviatingly series(X) := series(X,R).

(iii.b) In analogy, we write series(X,T) := {(x , t) ∈ seq(X)×∆◦(T) ; `(t) = `(x)}. Canonically, series◦(X,T) ⊆
series(X,T).

(iii.c) for any s = (x , t) ∈ series(X,T), we write abbreviatingly vals(s) := x , time(s) := t). By abuse of
notation, we will also consider vals(s), time(s) column vectors.

Remark 2.2. Some remarks about our choice of terminology:

(i) In common usage, elements of series(X,T) and seq(X,T) are called multivariate (time series or se-
quences) if elements of X are tuples of length 2 or longer, otherwise univariate.

(ii) In common usage, instead of time series, elements of series(X,T) are also sometimes called indexed
series or functional data record, when the index in T is not interpreted as time - e.g., observations at a
certain distance, wavelength, energy, etc.

(iii) Generally, we will avoid the terminology “series” (in isolation, i.e., without “time”), or “curve”, as those
terms’ usage in literature is non-uniform. For example, series may refer to elements of series(X,T), to
elements of seq(X), or to related mathematical structures where the index set is a non-finite domain.

We would like to stress that our definition of time series is somewhat of a departure from more classical
definitions, through the fact that our time series’ values are only available at some specific time stamps
rather than at an infinity of time points; also, these time stamps are made explicit through the tuple
representations. The key reasons for this choice are:

(i) We wish to avoid mixing a hypothesized generative process (of an infinity of data) with what is
actually observed in reality (a finite amount of data). Actual time-stamped observations in real
world data always take the form of elements of series(X) where X is the inhabitant set of some
primitive data type (e.g., a real number or a real vector).

(ii) We wish to model knowledge of the time stamps at which the process is observed explicitly. For this,
this information needs to be explicitly referrable to, such as through the projection of series(X) onto
∆T . In the classical view where the time series is a function, reference to its domain, even when
restricted, is notationally cumbersome.

11

For notational convenience, we introduce further notation to more easily refer to time stamps or values
at certain time points:

Notation 2.3. Let x := (v , t) ∈ series(X) be a time series.

(i) For a set U ⊆ R, we denote by x ∩ U the time series ((v i ; v i ∈ U), (t i ; v i ∈ U)). That is, x ∩ U is the
time series where the observation times are sub-set to include only those in U.

For the following definitions, further assume that x ∈ (v , t) ∈ series◦(X).

(ii) Let t := t i for some i ∈ N. We will denote x (t) := x i .
(iii) More generally, by abuse of notation, we will occasionally identify x with the function time(x)→ X, t 7→

x (t). Note that if x is a random variable rather than a constant (such as here), x will be a random
function with this type.

We are now ready to formally define the generative setting for panel data.

Definition 2.4. In the following, we will consider panel data, defined as being an i.i.d. sample of the form

(X1, Z1), . . . , (XN , ZN)
i.i.d.∼ (X , Z) jointly, (2.1)

where X , X i t.v.in series(X), and Z , Zi t.v.in Z, for some fixed domain sets X,Z.

In common use cases (but not necessarily assumed here), X = Rk and Z = Rn for some integers
k, n ∈ N.

Informally, for some sample index i, we intuitively interpret

• the random variable X i as the i-th time series observed, modelling the i-th (independent) temporal
observation process,

• the set-valued random variable time(X i) as the time stamps at which the i-th process is observed,

• the random variable Zi as meta-data for the i-th time series observations. Zi is not assumed to
be observed at a particular time, i.e., not observed at or in conjunction with a time stamp. Zi is
sometimes referred to as a time-invariant individual effect in the econometrics literature.

Besides the joint i.i.d. assumption of Eqn. 2.1 we make no further assumptions of independence. As
a consequence, the functions X i are in-principle capable of modelling (observations from) auto-correlated
or non-stationary time series.

12

2.4. Formulating the supervised forecasting task

We now define the supervised forecasting task. Intuitively, we wish to mathematically model the task
where an algorithm is asked to make forecasts for the future given the past, after having had the opportu-
nity to train on independent examples, with fully observed past and future. For this, we adopt the usual
exposition sequence from supervised learning: (i) specifying the task given the data generative process,
(ii) specifying what a “solution” strategy to the task is, and (iii) specifying quantitatively what it means for
such a strategy to be “good”.
One key distinction which will emerge, to our knowledge so far unrecognized in literature, is whether the
algorithmic strategy already knows for which future time stamps the prediction is to be made, at the time
of training. Practically, the distinction lies in whether the result of fitting the model are the predictions
themselves - or, an algorithm which can be queried to produce predictions once given the information of
the time points for which predictions are needed. Due to semantic and procedural similarities with super-
vised learning resp. prediction in functional data analysis, we will call the former time-stamped supervised
forecasting (or supervised forecasting in the narrow sense), and the latter functional supervised forecasting.
See Figure 2.1 for a stylized description. Note that algorithms that solve the functional supervised fore-
casting task can be easily leveraged to solve the time-stamped functional forecasting task, by evaluating at
the prediction time stamps.

2.4.1. Setting: supervised forecasting

For both supervised forecasting tasks, we consider the following objects:

• A set of training instances, which is panel data (X1, Z1), . . . , (XN , ZN)
i.i.d.∼ (X , Z) jointly, taking

values in series(X)×Z, as in Definition 2.4.

• A test instance observation period T ⊆ R in which observations to forecast from are made. We will
assume that T = (−∞,τ] for some fixed cut-off time τ.

• A set of forecast time stamps T ∗ ⊆ (τ,∞). We will assume that T ∗ is a finite set for the time-stamped
supervised forecasting task (thus identified with an element of seq◦(τ,∞)), and an open interval
in the functional supervised forecasting task.

Qualitatively, the task will be to train a forecasting algorithm on the training data (X1, Z1), . . . , (XN , ZN),
such that on further data from the generative process (X , Z), forecasts made for time stamps in T ∗, based
on all observations in T , have a low expected loss.

The formal nature of “training the algorithm” and the meaning of “low expected loss” will be detailed
in the subsequent paragraphs.

2.4.2. Functionals and learning strategies

In this section, we specify the (type theoretic) types of functions and algorithms involved.
A fitted forecasting strategy for supervised forecasting takes the form of a functional

bf : series(X)
︸ ︷︷ ︸

observed portion

× Z
︸︷︷︸

features

→ [T ∗→ X]
︸ ︷︷ ︸

forecast

(where the brackets are for illustration and not part of formal type notation).

The output/range of bf , that is, T ∗→ X, has a different real world implementation in the two sub-cases,
to which we associate different mathematical representations in alignment with said implementation.
In the time-stamped case, T ∗ is a finite set of time stamps, thus for x ∈ series(X, T), z ∈ Z the forecast
bx = bf (x , z) will be a time series bx ∈ series◦(X, T ∗) such that time(bx) = T ∗. I.e., the output is aligned with

13

the finitely many forecast time stamps T ∗, which can easily be stored or represented. Therefore, one may
also identify the strategy with a functional

bf : series(X)
︸ ︷︷ ︸

observed portion

× Z
︸︷︷︸

features

→ series◦(X, T ∗)
︸ ︷︷ ︸

forecast

,

where the forecast output is a series in series◦(X), with time stamps in T ∗.
In the functional case, T ∗ is infinite, therefore there is an (uncountably) infinite progression of values
bf (x , z)(t), t ∈ T ∗, which cannot be stored in a computer. Therefore, the output, an element of [T ∗→ X],
must be stored as an algorithm. Hence bf is a function which, given a series to forecast from, forecasts an
algorithm, which, when given (at the time of forecasting unknown) time stamps, can produce the fore-
casts.
In a sense, the functional case provides a more complete forecast model of the future, at the cost of such a
model in general not being describable by a finite set of values, and in general taking a complex algorithmic
form.

2.4.3. The supervised forecasting task

As stated above, in the supervised forecasting task, a learning strategy has access to training data based
on which it should estimate a forecasting functional, defined as in the previous Section 2.4.2. The training
data is panel data, as described in Section 2.4.1.

Therefore, a deterministic learning strategy takes the form

h :
�

series(X)×Z
�N

︸ ︷︷ ︸

training (panel) data

→ Type(bf)
︸ ︷︷ ︸

prediction functional

, (2.2)

where, abbreviatingly (and to keep the type readable), we write Type(bf) for the formal type of bf in Sec-
tion 2.4.2, that is,

Type(bf) = series(X)×Z→ [T ∗→ X].

In this case, the fitted functional is obtained as f := h((X1, Z1), . . . , (XN , ZN)), which is a Type(bf)-valued
random variable.

Since, more generally, the learning strategy itself may be stochastic, hence introduce randomness which
is not covered in the above deterministic learning setting, we will consider the more general (but slightly
less intuitive) formalism of a general function-valued random variable f which takes values in Type(bf), not
necessarily arising from a deterministic learning strategy h as above. We will assume that f may depend
on the training data, but that f and the training data are independent from any other random variable
encountered, e.g., the test data.

2.5. Performance quantification: generalization error

In order to complete a reasonable specification of the supervised forecasting task, it must be said in which
respect a concrete forecasting functional, or a supervised forecasting strategy, is considered “good” or
“bad”, with respect to a given data generating process (X , Z). This a simple corollary of a definition of a
learning task necessarily containing a definition of a goal, thus of what constitutes a solution.

There are two important and distinct ways in which a forecasting algorithm can be good:

(a) the process of fitting and predicting possessing a low expected generalization error
ε(t) := E [L (f (x , Z)(t), X (t))] , where x := X (T), L : X×X→ R is a choice of loss function, and t
potentially ranges over all time stamps in T ∗.

14

(b) a specific fitted prediction functional possessing a low conditional generalization error
η(t) := E [L (f (x , Z)(t), X (t))| f] , where x := X (T), L : X×X→ R is a choice of loss function, and
t potentially ranges over all time stamps in T ∗.
Note that ν is a random variable, depending on f , and constant once f is fixed. For a (non-random)
realization bf of f , i.e., a concrete fitted functional, the realization of η(t) is E

�

L
�

bf (x , Z)(t), X (t)
��

.

Standard choices for the loss function are the squared loss L : (x∗, x) 7→ ‖x∗− x‖2
2, or the absolute loss

L : (x∗, x) 7→ ‖x∗ − x‖1.

Remark 2.5. A few important observations about the above (implicit) definition of η,ν and the associated
convention of goodness:

(i) the quantities ε and η are unknown generative quantities, as they comprise expectations over the gener-
ative distribution (X , Z) whose law is unknown. Therefore, they are accessible only via estimates, based
on the data. Such estimators will be discussed in the later Section 5.

(ii) ε and η depend on t. In either sub-case of the supervised forecasting task (time-stamped or functional),
only a finite number of t will be available in the dataset, therefore if estimates are to be obtained for an
infinity of t, these will necessarily be based on assumptions about how the functions ε,η depend on t.
This will be briefly discussed in Section 5.

(iii) The cases (a), (b), correspond to different performance guarantees arising. (a) quantifies how well an
algorithm will perform when fitted to, and predicting on, similar data. (b) quantifies how well a fitted
prediction functional will perform when asked to make predictions on similar data. This difference is
also mirrored in the method interface later presented in Section 3.2.3.

2.6. Comparison to closely related learning tasks

We proceed by comparing the above defined supervised forecasting tasks to learning tasks and

2.6.1. Comparison to functional regression

Functional regression with functional response is closely related to functional supervised forecasting. Two
common sub-cases of functional regression are functional regression with functional response and scalar
covariates, where fitted prediction functionals take the form

bf : series(X)
︸ ︷︷ ︸

covariates

→ [T ∗→ Y]
︸ ︷︷ ︸

response

,

and functional regression with functional response and functional covariates, where fitted prediction func-
tionals take the form

bf : Z
︸︷︷︸

covariates

→ [T ∗→ Y]
︸ ︷︷ ︸

response

,

in both cases T ∗ usually being R or a real interval. The union case of functional responses with functional
and scalar covariates is less commonly studied, with prediction functionals

bf : series(X)
︸ ︷︷ ︸

functional covariates

× Z
︸︷︷︸

scalar covariates

→ [T ∗→ Y]
︸ ︷︷ ︸

response

.

In the last, (slightly unusual but) most general case, a functional with type TypeOf(bf) is estimated from

i.i.d. samples (X1, Z1, Y1), . . . , (XN , ZN , YN)
i.i.d.∼ (X , Z , Y), t.v.in series(X)×Z× series(Y). This is almost the

supervised forecasting setting - it were identical if X i , Yi were part of the same time series.
Key distinctions to the functional supervised forecasting task are:

(i) in functional regression literature, usually, the task is not clearly separated from the model, which
usually takes the form of a (functional) generalized linear model.

15

(ii) in functional regression literature, it is uncommon to assume that the response series and the covari-
ate series are parts of the same time series. It is of course possible to apply functional regression to a
supervised forecasting problem, which is an explicit act of reduction, i.e., of supervised forecasting
to functional regression. The reverse is not generally or canonically possible, exposing supervised
forecasting as the more complex learning problem.

(iii) in functional regression literature, it is usually assumed that the covariates and responses are con-
tinuous, i.e., are continuous, non-discrete sub-domains X,Y ⊆ Rd for some d.

Further discussion of specific functional regression methodology may be found in Section[reference
section with taxonomy].

2.7. Comparison with the classical forecasting task

As the name implies, the supervised forecasting task is closely related to the (classical) forecasting task. In
this, the learner is asked to predict the future values of a series in T ∗ ⊆ (τ,∞), from an observed series
x t.v.in series(X, T) with T ∗ = (−∞,τ]. See Figure 2.2 for a stylised depiction of the classical forecasting
task.

0 10 20 30 40 50 60

Time t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
se

ri
es
X

(t
)

TT T∗

Past observations

Forecast

Figure 2.2: Stylised representation of the forecasting setting in ??.

A key property of forecasting methods, and the setting itself is that a solution, or a sound definition
of a solution, is not possible without assuming any kind of regular temporal dependency that replaces
the i.i.d. assumption. As such, model fitting over, subject to auto-correlation, such as via common auto-
regressive assumptions (such as in the ARIMA class models) are core to the setting.

Formally, forecasting is identical with supervised forecasting without any independent training exam-
ples, i.e., the case of N = 0 and empty Z in Section 2.4.1 - the functional as well as the time-stamped
sub-cases are commonly considered. As a noteworthy consequence, under this identification, the “fitted”
forecasting functional, f , does not depend on any training data. The computational burden of ingest-
ing data, that is, the “fitting”, occurs in evaluation and application of f , rather than its computation from
training data.

Especially when comparing this with the case of functional regression in the previous Section 2.6.1
this crucially highlights the existence of (at least) two different, relevant modes of data ingestion within the
problem: first, the “fitting” of f to the training series; second, the “fitting” of the within-time-series-model
on one test series, when substituting the potentially auto-correlated past of the test series into f .

This double ingestion, in particular with the joint view of the two relevant corner cases of functional
regression and forecasting, are at the basis our interface based approach discussed in Section 3.

16

2.8. Comparison to the classical supervised learning task

Sub-cases of time-stamped supervised forecasting are also in close correspondence to the supervised learn-
ing task.

In the general supervised learning task, prediction functionals are f taking values in Z
︸︷︷︸

features

→ Z
︸︷︷︸

labels
(notation chosen slightly non-standard to avoid a clash later on). These are estimated from N feature-
label pairs that are sampled i.i.d. from some data-generating process,

(Z1, Y1), . . . , (ZM , YM)
i.i.d.∼ (Z , Y), t.v.in Z× Y (2.3)

If Y can continuously vary as some Y ⊆ Rd for some integer d, the task is called supervised regression; if Y
is finite, it is called supervised classification. If d ≥ 2 the task is called multi-output or multi-target.

The functional f is usually fitted to minimize some expected generalization loss E [L(f (Z), Y)] in the
above setting.

Interestingly, there are multiple distinct ways to identify supervised regression as a sub-case of super-
vised forecasting. For convenience, we briefly repeat the supervised forecasting setting, without scalar
features:

X1, . . . , XN
i.i.d.∼ X , t.v.in series(X,T), (2.4)

and we are seeking a prediction functional series(X, T)→ series(X, T ∗).
In the first identification of supervised learning, we assume, restrictively, that all series are observed at

exactly the same time points. Thus, T = T] T ∗, and it is identical to the time stamps time(X i) for any i.
From the X i , we can create data for the above supervised learning scenario by assigning Zi := vals(X i∩T),
and Yi := vals(X i ∩ T ∗), thus M = N . On this, we train bf : Z→ Y, and obtain a functional series(X, T)→
series(X, T ∗) by ignoring time stamps (since they are the same for different i).

Pictorially and intuitively, the above strategy corresponds to arranging the values within the series X i
in two tables: those at time stamps before or at τ in the “features” table (Z1, . . . , ZN), those at time stamps
after τ in a “targets” table (Y1, . . . , YN). A supervised learning method is trained on this table, and applied
to a new time series by applying it to a row it would correspond to, in that table.

A second identification is also possible, with a specific approach to functional (supervised) forecasting.
Instead of identifying “before τ” and “after τ” values with features and labels, we can also identify time
stamps with features, and values with labels. This strategy is depicted in figure 2.3 is a stylised way.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Covariates X

1

2

3

4

5

R
es

p
on

se
s
Y

Training points (Xi, Yi)

True function f(X)

Fitted function f̂(X)

Figure 2.3: Stylised representation of forecasting by supervised learning extrapolation.

Formally, on one instance of test series X∗ t.v.in series(X, T) we set (Z1, . . . , ZM) := time(X∗), and
(Y1, . . . , YM) := vals(X∗), and a supervised prediction functional bf : R→ X is fitted. A prediction for t ∈ T ∗
is made as the evaluation bf (t). A more sophisticated version of this strategy could be fitted to the pooled

17

pairs obtained from time(X i) and vals(X i).

While the above strategies may or may not be particularly performant (in particular, the first is often
much better than the second), they illustrate a key feature of the supervised forecasting task: it can be
reduced to a number of related tasks, and it can be reduced in different, not necessarily canonical ways.

Defining this precisely, and showcasing algorithmic relations will be a key part of our interface based
approach showcased in Section 3.2.

2.9. Variants not discussed in this manuscript

We would like to point out a few potential variations not discussed here due to scope, but to which extension
- in terms of the set-up - is mostly straightforward.

(i) Supervised forecasting, with a sliding observation horizon. This can be treated as a sub-case where,
for the same data, different observation horizons are considered.

(ii) Supervised forecasting, with value sets or cut-off times τ that may vary by sample. From the frame-
work perspective, generalization is straightforward, though it incurs a methodological (and nota-
tional) overhead.

(iii) Supervised forecasting with multivariate input or output time series where different components may
be observed at different times. This introduces complications in methodology and also evaluation.

(iv) Probabilistic supervised forecasting, where the objective of prediction is the conditional distribution
of future observation rather than a point prediction value. In this case, the range of the forecasting
algorithms needs to be replaced with a corresponding set of distributions, and the point prediction
losses need to be replaced by probabilistic losses.

18

3. Interface-based framework for supervised forecasting

This section explains how we can solve the supervised forecasting task by building prediction strategies out
of classical predictors. In Section 2.6, we have defined and discussed predictive tasks at a high level, high-
lighting the similarities & differences among each. We will now formalise interfaces for prediction strategies
addressing these tasks, in a simplified language of structured type notation (or class type notation).

The interfaces then enable discussion of reduction and composition strategies, and lend themselves
easily to direct implementation in object oriented software design patterns, such as in the pysf package
discussed in Section 6 which serves as proof-of-concept and the computational basis for empirical compar-
isons.

3.1. Interface notation and convention for specifying abstract class interfaces

We introduce some formal notation to allow discussion of data ingestion steps and computation in relation
to prediction strategies f and functionals bf as discussed in section Section 2.4.2 and later. The notation
will follow common notation on definition of (abstract) classes in (typed) object oriented programming.
A reader more familiar with mathematical formalism may recognize its equivalence to specification of
mutable structured types with function members in a first-order type theory, while a reader more familiar
with practical software engineering may opt to entirely ignore that equivalence. In either case, we adopt
a number of slightly non-standard conventions:

(i) We will use types and inhabitant sets interchangeably, in line with common mathematical type no-
tation, but in slight departure from formal, or computer scientific type notation. That is, instead of
introducing formal types such as integer or positive_real, we will simply use the mathe-
matical symbols for the inhabitant sets, such as Z or R+. This avoids unnecessary parallel notation.

(ii) We adopt the use of field names instead of a type, prefixed by self. This indicates that inputs
are read from, or results are stored in, the field - similar to common object orientation paradigms
such as in python. The type of the field is given with the field. In the showcase example below,
the reference to the field stored_number, by self.stored_number within the methods
store_number and compute_square, instead of reference to the field type R, is an example.
This allows us to distinguish inputs and return values by their location in relation to the type - internal
(if prefixed by self) vs external (if only a type is given).

(iii) In common convention, inhabitants of class types are called objects (of that class), and they usually
share implementation in practice. We will not make objects or implementation explicit, leaving it
to a concrete package implementation to introduce additional layers of inheritance which we thus
avoid to discuss.

For example, consider the following type of a (mutable) class which stores a number and can be queried
to return its square:

class squarer
public method store_number : R→ self.stored_number
public method compute_square : self.stored_number→ R+
private variable stored_number : R

The so-defined structured type, squarer, is the type of a mutable class (of the same name) which
can be accessed by methods store_number and compute_square.

In the squarer example, the method store_number takes, as input a number in R and out-
puts a result to the field stored_number within the class - nothing is returned to the outside, or the
“user”, the internal state is mutated. Upon call of the method method compute_square:, the field
stored_number is read out, and from it an external output in R+, i.e., a positive number is produced.

19

Note that the class type does specify only type, not semantics of an inhabitant. That is, only input and
return types, and where they are stored is specified - what the functions precisely do remains ambiguous
from the interface specification in isolation, i.e., typical behaviour, or typical implementation is not specified
in the type itself.

In the example, the semantics would include specifying that a typical implementation would store the
same number that it would receive as the input to store_number in stored_number, that it would
return that number squared when compute_square is invoked, and that the methods are meant to be
invoked in that sequence. In this manuscript, explanation of semantics will be presented separately, and
all happen in-text, as we think none of the cases are complex enough to justify the use of state-transition
diagrams.

3.2. Defining interfaces for prediction strategies

A prediction strategy solves a predictive task, and there can be multiple strategies solving the same pre-
dictive task. Thus it is natural to use the “strategy” design pattern, which results in (at most) one class
interface per predictive task.

All prediction strategies discussed share a common baseline workflow, hence share a common predic-
tion interface:

1. (user) specification of hyper-parameters that determine behaviour

2. “fitting”, i.e., ingestion of data, resulting in a trained model, then

3. making predictions, based on the fitted model

This maps directly onto three distinct interface points:

1. hyper-parameter fields and interface methods, here: setters and getters

2. fit methods and a model field to store the model

3. predict methods to obtain predictions from

The main difference will lie in the type and behaviour of the fit and predict interface points,
mirroring the mathematical particulars of fitting and prediction in the Section §2.

As in common machine learning toolboxes, this would be combined with an inheritance hierarchy for
modelling of distinct implementations of the interface, i.e., distinct strategies.

For convenience of the reader, we begin presenting the supervised learning interface which is consoli-
dated through well-known and widely used toolboxes such as [mlr] and [scikit-learn], and then proceed
to our suggestions for the more complex learning tasks.

3.2.1. Interface for classical supervised learning

A classical supervised learning predictor is trained on N data points, to predict labels for M test points.
Refer to §2.8 for the definitions of X,Y and further background.

class classical_suplearner:
method fit: (X× Y)N × parameters → model
method predict: XM × model × parameters → YM

public variable parameters

3.2.2. Interface for classical forecasting

A classical forecasting predictor is trained on a single series over some number of time points, to predict
future values of the same series a specified number of steps ahead. Refer to ?? for the definition of X and
further background.

20

class classical_forecaster:
method fit: X × parameters → model
method predict: Z+ × model × parameters → X

public variable parameters

3.2.3. Interface for supervised forecasting

A supervised forecasting predictor is trained on N samples of panel data, with common training times (TT

and prediction times T ∗). It then predicts the value of a given test series – whose value at the training times
is known – at the common prediction times. Refer to §2.4 for type definitions and further background.

class supervised_forecaster:

method fit:
�

Z× Fun
�

TT ,X
�

× Fun
�

T ∗,X
�

�N
× parameters

→ model

method predict: Z× Fun
�

TT ,X
�

× model × parameters
→ Fun

�

T ∗,X
�

public variable parameters

3.3. A framework for defining predictors as wrappers

It is an important insight that the supervised forecasting task of §2.4 can be implemented by a prediction
strategy that is built out of classical predictors. This is the foundation on which we will implement most
of the prediction strategies evaluated in this dissertation.

3.3.1. First-order methods for interface transformation

The interface for the wrapping – or composition – of prediction strategies can be defined very simply as
overloaded first-order methods, each named wrap and acting on predictor types. (Alternative, more
complex, definitions are possible but unnecessary.)

method wrap: classical_suplearner → supervised_forecaster
method wrap: classical_forecaster → supervised_forecaster

The simplicity of this approach allows us to define type-invariant wrap methods as well, enabling
practical machine learning workflow tasks like pipelining and hyperparameter tuning to be brought under
the same conceptual umbrella:

method wrap: classical_suplearner → classical_suplearner
method wrap: classical_forecaster → classical_forecaster
method wrap: supervised_forecaster → supervised_forecaster

3.3.2. Overview of the composite prediction strategy

In general terms, we may formulate a prediction strategy for the supervised forecasting task as a composite
prediction strategy, wrapping around some prediction model.

The inner prediction model learns a predefined mapping between inputs & outputs (and is backed by
its own assumptions and mathematical theory), while the outer wrapper implementation must convert
the training & prediction inputs into a format that is suitable for the inner predictor. Both layers may be
controlled by hyperparameters, so the composite prediction strategy must distinguish between the inner
hyperparameters and the outer ones, while ensuring that they are tuned jointly during the fitting process.
Figure 3.1 provides a visual depiction of this framework.

Importantly, the inner prediction model may itself be a prediction strategy that implements one of the
3 tasks we have encountered (classical supervised learning, classical forecasting, or supervised forecasting
itself). In this case, implementing the composite prediction strategy is equivalent to implementing the

21

Prediction
strategy

Prediction model

Training series
ZT & XT(TT ∪ T ∗)
Prediction times T ∗

Prediction series
X∗(TT)

Prediction times T ∗

Hyperparameters θ

Predicted series
bX∗(T ∗)

fit

predict

predict

Figure 3.1: Framework for implementing a supervised forecasting prediction strategy as a wrapper around
some inner prediction model.

appropriate wrap first-order method from §3.3.1. By implementing prediction strategies in conformance
with the interfaces of §3.2, we ensure that we are able to use them to build composite prediction strategies.
In so doing, we solve the supervised forecasting task using an interface-driven approach.

3.4. Relationship to reduction

Reduction is an approach to solving machine learning problems by decomposing them into smaller sub-
problems, often necessitating the definition of new loss or regret functions, as in Langford et al. [25].
Our interface-based approach shares the motivation but is applied on the level of the overall prediction
strategies rather than the learning algorithms. The use of interfaces limits the extent of coupling between
independent prediction strategies. Moreover, our conceptual focus is on the differing tasks, rather than
mapping data points and their associated loss or regret functions between two contexts.

3.5. Implementing predictors as wrappers around classical models

We are now in a position to specify how the first-order method wrap is implemented for each of the 2
type-transforming cases:

method wrap: classical_suplearner → supervised_forecaster
method wrap: classical_forecaster → supervised_forecaster

We do so by dealing with each element of a prediction strategy, as defined by the interfaces of §3.2.
An implementation of method wrap will create & return a new prediction strategy (of the given output
type), with an association to an inner prediction strategy (of the given input type), and whoseparameters
and methods fit & predict are specified explicitly in a way that manipulates the fit & predict
methods of the inner prediction strategy.

See Table 3 for side-by-side definitions of the 4 implementations that we will focus on in this disserta-
tion. (The reader may find it useful to refer to Figures ?? or 5.2 as a visual aid.)

Given the opportunities and constraints of the tasks, other definitions are clearly possible, though these
4 are sufficiently distinct that they serve as useful strategies to evaluate later in this dissertation.

Predictors are either

• multi-series, meaning that they take advantage of information available in the set of multiple training
series afforded to us by the supervised forecasting setting, or

22

• single-series, meaning they ignore this additional training information, just like predictors in classical
settings do.

They also differ in the very nature of the relationships that they learn from the data, as detailed in
Table 3:

• The series relationship is the least restrictive, since any prediction times may be supplied during the
prediction step. Its disadvantage is that it is only suitable for single-series methods.

• The tabular relationship is suited specifically to the multi-series setting and may be expected to
be more powerful. Its disadvantage is that the prediction timestamps T ∗ must be available in the
training data (i.e. T ∗ ⊆ T i ∀X i ∈ XT). It is a special case of a multi-series windowed approach,
where the window size covers the entire data width.

• The windowed relationship is suitable for either single- or multi-series approaches. It involves passing
a pair of contiguous sliding windows over the training data, one looking α steps backwards and the
other β steps forwards. This typically increases the number of samples available during training. Like
many successful classical forecasting methods it is autoregressive, meaning that it predicts covariates
from their past selves. Its disadvantages are that it assumes regularly-spaced timestamps, it is only
valid for predicting the future (i.e. we require Min(T ∗) > Min(TT)), and the forecasting error may
compound.

Algorithm 1 defines a sliding window forecasting strategy that, when given X∗(TT) as a covariate,
generates a forecast for any timestamp X∗(t∗).

Algorithm 1 Sliding window forecasting strategy
Input: prediction series observations X∗(TT), a fitted prediction model bf , prediction times T ∗, hyperpa-
rameters α & β
Output: prediction series forecasts X∗(T ∗)

1: define a variable to hold both observations & predictions: X∗(T all)≡ X∗(TT)
2: do
3: extract the last α (by timestamp) instances of X∗(T all)
4: predict β steps forward in time using the fitted inner prediction model bf
5: append these β predicted values to X∗(T all)
6: until all prediction timestamps have been walked over: T ∗ ⊆ T all
7: extract and return X∗(T ∗) from X∗(T all)

23

Prediction strategy First-order method wrap being
implemented

Additional
parameters

fit
to multiple series XT

predict
for a single series X∗

Single-series classical_forecaster→
supervised_forecaster

or
classical_suplearner→
supervised_forecaster

None Do nothing: the training series XT are ignored
by single-series strategies

1. Fit the inner model to X∗(TT) to learn the re-
lationship t → X∗(t) ∀ t ∈ TT

2. Predict X∗(T ∗) given T ∗, directly

Single-series
Tabular Windowed classical_suplearner→

supervised_forecaster

• α is the trailing / sliding
window size

• β is the forward / pre-
diction window size

1. Fit the inner model to X∗(TT) to learn
the relationship X∗({t j−α−1, . . . , t j−1})
→ X∗({t j , . . . , t j+β }), where j is an
appropriately-bounded iteration index,
incrementing by β , that ranges over TT

2. Predict X∗(T ∗) given X∗(TT), using the slid-
ing window forecasting strategy (Algorithm
1)

Multi-series Tabular None Fit the inner model to XT(TT) to learn the
relationship X i(TT)→ X i(T ∗) ∀ X i ∈ XT

Predict X∗(T ∗) given X∗(TT), directly

Multi-series Tabular
Windowed

• α, as above

• β , as above

• a parameter to control
whether to train over

– XT(TT) only, or

– XT(TT ∪ T ∗)

Fit the inner model to XT(TT) to learn the
relationship X i({t j−α−1, . . . , t j−1})
→ X i({t j , . . . , t j+β }), where

• i iterates over all X i ∈ XT

• j is an appropriately-bounded iteration index,
incrementing by β , that ranges over either TT

or XT(TT∪T ∗), according to the hyperparam-
eter setting

Predict X∗(T ∗) given X∗(TT), using the sliding
window forecasting strategy (Algorithm 1)

Table 3: Side-by-side comparison of the 4 supervised forecasting prediction strategies implemented as type-varying wrappers.

24

3.6. Baseline predictors for comparison

When we evaluate various composite prediction strategies later on it will prove useful to compare them
to baseline predictors. These baselines provide naïve, easily-understood predictions that serve as a useful
yardstick by which to evaluate the performance of other prediction strategies in the experimental section
of this dissertation.

Baseline name Description Prediction strategy Inner classical estimator

Zero predictor Predict a constant value of 0:
bX∗(t∗) = 0 ∀ t∗ ∈ T

Single-series
predictor

fclassic(X test) = 0

Series means
predictor

Predict the mean of a series over all
training timestamps:

bX∗(t∗) =
1

#TT

∑#TT

j=1 X∗(t j) ∀ t∗ ∈ T ∗,
where t j is iterated over the training

timestamps TT .

Single-series
predictor

fclassic(X test)
=Mean(Yt rain)

Timestamp
means predictor

Predict the mean of a timestamp over all
training series:

bX∗(t∗) =
1

#XT

∑#XT

i=1 X i(t∗) ∀ t∗ ∈ T ∗,
where i is an iterator over the training

series XT .

Multi-series tabular
predictor

fclassic(X test)
=Mean(Yt rain)

Series linear
interpolator

For each timestamp t∗ ∈ T ∗, predict
either:

• bX∗(t∗) = X∗
�

Min(TT)
�

∀ t∗ <
Min(TT)

• bX∗(t∗) = X∗
�

Max(TT)
�

∀ t∗ >Max(TT)

• A linear interpolation between
the training neighbours of t∗
∀ Min(TT)≤ t∗ ≤Max(TT)

depending on t∗’s relationship to the
training timestamps TT .

Single-series
predictor

Custom implementation

Table 4: Our 4 baseline prediction strategies.

25

4. Supervised forecasting in the literature

In this section we will review existing supervised forecasting techniques in the literature and show how they
fit within our conceptual framework. Some of these techniques are native to the supervised forecasting
task, while most implicitly make use of reduction. Considering these diverse techniques within a single
framework emphasises the fact that reduction is a key concept in solving the supervised forecasting task.

We will also make clear what inputs these models are trained on. Recall that we wish to predict a
sequence of time labels, and in order to make that prediction one may train a model on some combination
of (i) the sequence of time labels, (ii) the timestamps for those time labels, and (iii) the series labels
associated with each individual time series.

From the literature:

• Dietterich [14] describes sliding window methods for the task of “sequential supervised learning”.
This task is very similar to supervised forecasting, with the main difference being that supervised
forecasting includes series labels and time indices in the panel data set.

• ?] solve a particular probabilistic version of the supervised forecasting task, where the test series
is considered to be conditionally exchangeable with the training series. They do so by specifying a
Bayesian linear model, and their model makes use of series labels (“characteristics” of the subjects)
as well as sequences of time labels, in order to predict conditional distributions.

• ?] solve the supervised forecasting task through a reduction to supervised learning: time series
are split into two portions, and a Gaussian Process-based regression (equivalent to kernel ridge
regression) model is trained on the past time series (as inputs) and then used to predict the values
of future time series. This model makes use of sequences of time labels as well as their associated
timestamps.

• ?] reviews functional regression, which is an offshoot of the field of functional data analysis that
Ramsay and Silverman [35] originated. Functional regression is a reduction to supervised learning,
where the inputs may include scalars and functions, and the outputs are functions. It is also clearly
a case of supervised forecasting, since the future portion of the time series that we wish to forecast
can be considered a function. In principle, such models may make use of the time labels only, or the
time labels (considered a discretely-observed “function”) and series labels (considered “scalars”).

• ?] proposed a diffusion-based model of new product adoption. In practice, using this model for
forecasting a new product’s sales is frequent in industry practice; it is a native supervised forecasting
task to estimate some of the parameters from one or more existing time series of similar products
and another parameter from preliminary data for the new product. This model acts on sequences of
time labels.

• In classical econometrics, panel data is typically assumed to have an underlying structure that is
some variant of the Error Correction Model, and is typically estimated using fixed or random effects.
?] explains that such models may also be used for forecasting when an econometric panel data
model is jointly fit to all series, including the test series for which we aim to make forecasts, and
then step-ahead forecasts can be generated for any of the series. When the estimation procedure is
some form of regression, this supervised forecasting task is therefore a reduction to regression. Note,
however, that classical econometric panel data models cannot be fit to the entire set of time periods
that are available in the training set, as they are limited to times that are common to the training
and test series. These econometric models act on sequences of time labels.

• ?] survey the “nowcasting” task, which produces forecasts for one time series from a collection
of others, typically at different frequencies. One common general approach is to fit a state space
model (perhaps with dimensionality reduction) to the existing series to estimate some common latent
variable, and link the latent variable to a model of the series to be forecast. Such an approach could
be extended to be a supervised forecasting task. These models act on sequences of time labels.

26

•

•

TODO: other models that could be easily turned into supervised forecasting

• LSTM models are often used for time series forecasting, but a literature review did not find any
instances where an LSTM model was trained on multiple time series, even though there does not
seem to be any mechanical impediment to doing so. Training an LSTM on a set of multiple time
series and then applying the trained model to produce forecasts for an additional time series would
be an instance of supervised forecasting. This model acts on sequences of time labels.

• TODO: in the above, for LSTM, talk about batch sizes? actually I think that doesn’t make sense

• TODO: but see the following for some justification of an LSTM trained on many test series: https:
//stats.stackexchange.com/questions/412276/how-to-handle-many-times-series-simultaneously

• TODO: factor models

• TODO: panel regression

• TODO: some preprocessing to convert multiple ARIMA values into the same series, based on the
following conversation: https://stats.stackexchange.com/questions/23036/
estimating-same-model-over-multiple-time-series and maybe mention at the
same time that VAR-like methods do not apply here because each series is a different instance of the
same underlying process, rather than a different variable

• TODO: there may be a link to hierarchical forecasting if we modify that somewhat: maybe a single-
level hierarchy?

27

https://stats.stackexchange.com/questions/412276/how-to-handle-many-times-series-simultaneously
https://stats.stackexchange.com/questions/412276/how-to-handle-many-times-series-simultaneously
https://stats.stackexchange.com/questions/23036/estimating-same-model-over-multiple-time-series
https://stats.stackexchange.com/questions/23036/estimating-same-model-over-multiple-time-series

5. Generalisation error estimation for strategy evaluation

In ?? we defined the generalisation error in 2 ways and stated that we would estimate it in order to evaluate
and compare the performances of our prediction strategies. In this section, we will derive valid estimators
for the generalisation error and will show that they have good properties (unbiasedness & consistency).
We will then extend the estimation procedure from a single training-test split to multiple ones, using the
procedure of cross validation.

5.1. Preliminaries

Before proceeding with our derivations, we will explicitly set up the assumptions and notation that we will
use. We will also state some preliminary results for later.

We first encountered the loss function L : X × X → R in §2.4. Based on its arguments, we must
distinguish between fixed and random loss values: if a loss function L is evaluated against known, fixed
observations then it must have a fixed, deterministic value; similarly, if one or both of its arguments are
random then the result of applying L must be a generative random variable.

Notation 5.1. Throughout this section, let

• L
�

bX i(t), X i(t)
�

denote the fixed, known loss value calculated from observations X i(t) and known pre-
dicted values bX i(t) for a series index i, and

• L
�

bX (t), X (t)
�

denote the generative, unobservable loss value theoretically calculated from the generative
process X (t) and the corresponding output of the prediction strategy bX (t),

for some convex loss function L and a given time index t.

We do not specify a particular form of loss function L in this section since our results are valid in a
general setting. For specific implementations, refer to Appendix C.

Assumption 5.2. Throughout this section, we will assume a fixed set of N series samples

{X1, X2, . . . , XN} (5.1)

that are each fully observed at a fixed set of K timestamps

{t1, t2, . . . , tK}. (5.2)

We are now able to define a fixed loss matrix M based on our observations, and the underlying random
loss matrix L.

Notation 5.3. The N × K data matrix M of fixed loss values contains the observed loss value for series i and
time point t j at row i column j:

M i j = L
�

bX i(t j), X i(t j)
�

(5.3)

⇔ M =







L
�

bX1(t1), X1(t1)
�

. . . L
�

bX1(tK), X1(tK)
�

...
. . .

...
L
�

bXN (t1), XN (t1)
�

. . . L
�

bXN (tK), XN (tK)
�






(5.4)

Notation 5.4. The K × 1 column vector L of generative random variables contains the loss random variable
associated with time point t j at row j:

L j = L
�

bX (t j), X (t j)
�

(5.5)

⇔ L=







L
�

bX (t1), X (t1)
�

...
L
�

bX (tK), X (tK)
�






(5.6)

28

M is also related to L via the sample covariance matrix. We will make use of the following lemma in a
later derivation but it is useful to state now.

Lemma 5.5. The K × K sample covariance matrix Σ is an unbiased estimator for Var[L], the covariance
between the generative loss random values associated with the K time points. It can be calculated as

Σ=
1

N − 1
︸ ︷︷ ︸

unbiased

N
∑

i=1

�

M i −M
��

M i −M
�T

(5.7)

where

• M i is the 1× K vector containing the ith series of observations of the loss random variables; i.e. the ith
row of M ,

• M is the 1× K vector containing the sample mean of the loss observations at each of the K time points,

• the pre-factor 1
N−1 results in an unbiased estimator of the true “population” covariance,

• IN denotes the N × N Identity matrix, and 1N denotes the N × 1 vector of ones.

Proof. See Johnson and Wichern [22] pp. 138-139 for derivations of Σ and pp. 121-123 for a proof that
this definition of the sample variance is an unbiased estimator of the population variance.

Notation 5.6. Throughout this dissertation, we denote

• convergence in distribution by
D
−→, and

• convergence in probability by
P
−→.

The following collections of well-known results will be useful in our derivations.

Lemma 5.7. For a sequence Y1, Y2, . . . and random variable Y ,

1. if Yn
P
−→ Y and h is a continuous function, then h(Yn)

P
−→ h(Y), and

2. if Yn
P
−→ Y then Yn

D
−→ Y .

Proof. See Casella and Berger [10] pp. 233, 236 & 262 for sketches of proofs.

Theorem 1. Let Y1, . . . , Yn be a random sample from a population Y with mean µ, variance σ2 <∞ and
kurtosis γ. Define the sample mean Y = 1

n

∑n
i=1 Yi and the sample variance s2 = 1

n−1

∑n
i=1(Yi − Y)2. Then

1. E[Y] = µ

2. Var[Y] = σ2/n

3. E[s2] = σ2

4. (Central Limit Theorem)

p
n(Y −µ)

D
−→N(0,σ2),

with the additional assumption of Y1, . . . , Yn being i.i.d.

29

5. (Central Limit Theorem for the sample variance)

p
n(s2 −σ2)

D
−→N

�

0 , (γ+ 2)σ4

︸ ︷︷ ︸

Var[(Y−E[Y])2]

�

,

with the additional assumption of E[Y 4] <∞. This also holds if the sample variance s2 is defined as
biased (i.e. with prefactor 1/n) and refers to the kurtosis defined as γ = σ−4 E

��

Y − E[Y]
�4� − 3 =

σ−4 Var
��

Y −E[Y]
�2�− 2.

Proof. For Parts 1-3, see Casella and Berger [10] pp. 212-214. For Part 4, see Billingsley [4] pp. 357-361.
For Part 5, see Omey and Van Gulck [33] Theorems 1 & 2.

30

5.2. Estimators for a single training-test split

Now that we have the preliminaries in place, Figure 5.1 shows the path that this subsection’s exposition
will take: we will derive estimators for the timestamp-specific generalisation error ε(t) and the overall
generalisation error ε. We will also derive estimators of the variances of the estimators themselves – these
are needed to quantify and distinguish the predictors’ performance. Throughout, we will show that the
estimators are unbiased. At the end, we will use the Central Limit Theorem and other properties to show
that the estimators are consistent.

ε(t) → ε Generalisation error
↓ ↓
bε(t) bε Estimators of the generalisation error
↓ ↓

v(t) v Variances of the estimators
↓ ↓
bv(t) bv Estimators of the variances of the estimators

Figure 5.1: Generalisation error quantities & related estimators. Arrows indicate the direction in which
the terms are derived from one another.

5.2.1. Estimators of the generalisation error

Lemma 5.8. Consider the sample mean of the N observed loss values at timestamp t,

bε(t) =
1
N

N
∑

i=1

L
�

bX i(t), X i(t)
�

. (5.8)

This is an unbiased estimator of ε(t), the expected prediction error at time t.

Proof. By Theorem 1 Part 1, E[bε(t)] = ε(t).

Lemma 5.9. Consider the sample mean of the loss observations over all N series and K timestamps,

bε =
1

NK

N
∑

i=1

K
∑

j=1

L
�

bX i(t j), X i(t j)
�

. (5.9)

This is an unbiased estimator of ε, the expected prediction error over all K time points.

Proof. By Theorem 1 Part 1, E[bε] = ε.

Remark 5.10. Our definition of bε is equivalent to an unweighted mean of the estimators {bε(t j)}Kj=1,

bε =
1
K

K
∑

j=1

bε(t j), (5.10)

while the more general case of a weighted mean,

bεW =
K
∑

j=1

w jbε(t j) subject to
K
∑

j=1

w j = 1, (5.11)

combined with additional assumptions, might allow us to find an estimator with lower variance: Var[bεW] <
Var[bε]. For example, if we were to (unrealistically) assume the random variables {bε(t j)}Kj=1 were independent
with known variance then the estimator with minimum variance would be the well-known solution w j =

1/Var[bε(t j)]
∑K

k=1
1/Var[bε(tk)]

, as per Meier [28].

31

5.2.2. Estimators of the variances of the estimators

The estimators that we have just derived (bε & bε(t)) have variances (v & v(t)) that we must now also derive
estimators for (bv & bv(t)).

Lemma 5.11. An unbiased estimator for the variance v(t) = Var[bε(t)] is 1/N the unbiased sample variance:

bv(t) =
1

N (N − 1)
︸ ︷︷ ︸

unbiased

N
∑

i=1

�

L
�

bX i(t), X i(t)
�

− bε(t)
�2

(5.12)

Proof. We will apply Theorem 1. To show that it is a valid estimator, recall that bε(t) is a sample mean,
with variance

v(t) = Var[bε(t)] by definition (5.13)

=
Var

�

L
�

bX (t), X (t)
��

N
by Theorem 1 Part 2 (5.14)

Plugging in an estimator for Var
�

L
�

bX (t), X (t)
��

into the above – in this case the unbiased sample variance

of the observed loss values 1
(N−1)

∑N
i=1

�

L
�

bX i(t), X i(t)
�

− bε(t)
�2

– results in that estimator for v(t). To show
that this estimator is unbiased,

E[Nbv(t)
︸ ︷︷ ︸

s2

] = N v(t)
︸ ︷︷ ︸

σ2

by Theorem 1 Part 3 (5.15)

⇔ E[bv(t)] = v(t) by linearity of Expectation (5.16)

Lemma 5.12. An unbiased estimator for v = Var[bε] can be written in terms of the unbiased sample covariance
matrix Σ as

bv =
1

NK2

K
∑

i=1

K
∑

j=1

Σi j (5.17)

Proof.

v = Var[bε] (5.18)

= Var
�

1
NK

11×N M 1K×1

�

rewriting Lemma 5.9 using Notation 5.3 (5.19)

=
1

K2
Var

�

1
N
11×N M 1K×1

�

since Var[ax] = a2 Var[x] (5.20)

=
1

K2
Var

�

M 1K×1

�

rewriting sample means using Lemma 5.5 (5.21)

=
1

K2
11×K Var

�

M
�

1K×1 since Var[Ax] = AVar[x]AT (5.22)

=
1

NK2
11×K Var

�

M
�

1K×1 by Theorem 1 Part 2 (5.23)

According to Lemma 5.5, Σ is an unbiased estimator for Var
�

M
�

. Therefore we plug it in to derive bv as an
unbiased estimator for v:

bv =
1

NK2
11×K Σ 1K×1 by Lemma 5.5 (5.24)

=
1

NK2

K
∑

i=1

K
∑

j=1

Σi j in element-wise form (5.25)

32

Remark 5.13. The above estimator of the variance of the estimator of the generalisation error over all time
points is valid in the general case where observations at different time points are correlated with one other. If
we were to assume independence between different time points, the resulting estimator

bvindependent =
1

NK (NK − 1)
︸ ︷︷ ︸

unbiased

N
∑

i=1

K
∑

j=1

�

Li(t j)− bε
�2

(5.26)

would underestimate the true variance v in the presence of non-negatively correlated error terms. This would
lead to Type I errors when comparing the uncertainties of different prediction methods, so we cannot make this
assumption.

5.2.3. Central Limit Theorems

Proposition 5.14. For a large number of samples N,

bε(t)− ε(t)
p

v(t)

D
−→N(0, 1) (5.27)

bε − ε
p

v
D
−→N(0, 1) (5.28)

Proof. Our estimators bε(t) and bε are sample means, so we apply the CLT (Theorem 1 Part 4) to them
directly:

p
N
�

bε(t)− ε(t)
�

p

N v(t)

D
−→N(0,1) (5.29)

p
N
�

bε − ε
�

p
N v

D
−→N(0,1) (5.30)

and then simplify the left-hand sides.

Proposition 5.15. For a large number of samples N,

p
N
�

bv(t)− v(t)
� D
−→N

�

0 , (γ+ 2)[v(t)]2
�

, (5.31)

where γ is the kurtosis of L(t).

Proof. Our estimator bv(t) is 1/N the sample variance, so we apply the sample variance CLT (Theorem 1 Part
5) to Nbv(t) as the estimator for N v(t) = Var[L(t)]:

p
N
�

Nbv(t)− N v(t)
� D
−→N

�

0 , (γ+ 2)[N v(t)]2
�

by Theorem 1 Part 5 (5.32)

⇔
p

N
�

Nbv(t)− N v(t)
� D
−→ N N

�

0 , (γ+ 2)[v(t)]2
�

property of a Gaussian (5.33)

⇔
p

N
�

bv(t)− v(t)
� D
−→N

�

0 , (γ+ 2)[v(t)]2
�

by Lemma 5.7 Part 1 (5.34)

33

5.2.4. Consistency

We will now show that the 4 unbiased estimators that we have derived are also consistent4.

Proposition 5.16.

bε(t)
P
−→ ε(t) (5.35)

bε
P
−→ ε (5.36)

bv(t)
P
−→ v(t) (5.37)

Proof. We have used the CLT to show that the estimators bε(t), bε and bv(t) are asymptotically Gaussian: see
Eqns. 5.27, 5.28 & 5.31, respectively. Therefore, this implies consistency of the estimators as means of
those distributions. Refer to Casella and Berger [10] pp. 472-473 for a more detailed reasoning: in short, as
N →∞ the estimators will converge in distribution to the constant means of the asymptotic distributions,
and thence converge in probability. This special case is essentially a partial converse of Lemma 5.7 Part
2.

Lemma 5.17.
Σ

P
−→ Var[L] (5.38)

Proof. Johnson and Wichern [22] pp. 175 shows that any multidimensional empirical covariance matrix
(including our unbiased definition Σ) will converge in probability to the true population variance.

Proposition 5.18.

bv
P
−→ v (5.39)

Proof. Although bv is not directly amenable to a CLT, we can show it is consistent by leaning on the con-
sistency of the empirical covariance matrix Σ and the preservation of consistency under a continuous
transformation:

Σ
P
−→ Var[L] by Lemma 5.17 (5.40)

⇒
1
N

1
K2

11×K Σ 1K×1
P
−→

1
N

1
K2

11×K Var
�

L
�

1K×1 by Lemma 5.7 Part 1 (5.41)

⇔ bv
P
−→ v by definition (5.42)

5.3. Cross-validated estimation across multiple splits

Cross validation (CV) estimates the generalisation error by splitting our dataset into training & test sets
(each combination of which is known as a fold), repeating on varied combinations, and then taking the
average of the metric over those folds to reduce the variance of the estimate. CV is a popular empirical
technique. It makes efficient use of the full training data and directly estimates the generalisation error.

5.3.1. Approach

In our setting, each sample is a time series of data, so the series i.i.d. assumption of Definition 2.4 is
consistent with the CV assumption of i.i.d. samples. Figure 5.2 shows a stylised example of one such split
into a training set XT and validation set XV; this split is orthogonal to the training and prediction times
TT & TV, which remain constant throughout.

4A consistent estimator converges in probability as the number of data points increases without bound.

34

0 10 20 30 40 50
t

0

1

2

3

4

5

6

7
i+

re
al

is
at

io
n

s
of
X
i(
t)

XT (TT) XT (TV)

XV(TT) XV(TV)

Figure 5.2: Stylised example of splitting multiple series over multiple timestamps into training and test
sets. XT = {X1, X2, X3}, XV = {X4, X5, X6}, TT = {1, . . . , 25}, TV = {26, . . . , 50}.

We will use k-fold CV because of its good balance between bias, variance and computational time.
Chapter 7 of Hastie et al. [19] suggests using 5 or 10 folds as a rule of thumb to balance bias against
variance. Refer to Arlot and Celisse [2] for an extensive survey of different CV methods and their properties.

Chapter 12 of Efron and Hastie [16] raises a subtle objection to our approach – that our decision to
use CV is not in itself cross-validated – but otherwise supports the use of CV to choose among competing
prediction strategies. Cawley and Talbot [11] also support our approach – calling it “more pragmatic than
some evaluation methodologies” and “based on much weaker assumptions” – while highlighting a potential
issue that we will address in §5.3.3.

5.3.2. Estimators in the CV case

All the estimators that we have so far derived have been for the case of a single training-test split. We now
extend them to K cross-validated splits.

35

Definition 5.19. K-fold cross-validation estimators of our single-fold estimators bε, bε(t),bv,bv(t) are

bεCV =
1
K

K
∑

k=1

bε[Dk], (5.43)

bε(t)CV =
1
K

K
∑

k=1

bε(t)[Dk], (5.44)

bvCV =
1
K

K
∑

k=1

bv[Dk], (5.45)

bv(t)CV =
1
K

K
∑

k=1

bv(t)[Dk], (5.46)

where the notation [D] denotes an estimator that has been trained on a single training set D, and there are
K such folds of training-test splits.

The definition above actually applies to any type of resampling scheme where the folds are identically
sampled. We will now discuss a major implication for our setting.

Proposition 5.20. Taking the mean is a conservative way of aggregating variance estimates. In our setting,

Var
�

bεCV

�

≤ bvCV , (5.47)

Var
�

bε(t)CV

�

≤ bv(t)CV . (5.48)

Proof. This follows from Nadeau and Bengio [31] Lemma 1 (the Variance Reduction Lemma): for any
number of (correlated) random variables Z1, . . . , ZM with Var[Zi] = σ2, Corr(Zi , Z j) = ρ for i 6= j, we have

Var

�

1
M

M
∑

i=1

Zi

�

= ρσ2 +
1−ρ

M
σ2. (5.49)

For the estimator bε, and assuming the fold errors bε[D] are identical and exchangeable for the sake of
argument,

Var
�

bεCV

�

︸ ︷︷ ︸

Var of CV estimate

=
�

ρ +
1−ρ

K

�

︸ ︷︷ ︸

≤1

Var
�

bε[D]
�

︸ ︷︷ ︸

Var of one-split estimate

(5.50)

⇔ Var
�

bεCV

�

≤ Var
�

bε[D]
�

. (5.51)

Importantly, bvCV is an estimator of Var
�

bε[D]
�

and not of Var
�

bεCV

�

. Since we assumed the fold errors bε[D]
are identical and exchangeable, bvCV will be an unbiased estimator and so the result follows. A similar
argument applies to the estimator bv(t)CV .

We have just shown that our cross-validation estimators of the variances will conservatively overesti-
mate the true variances, under reasonable assumptions. Such conservatism is an acceptable result for our
setting.

Also, the inequality of Eqn. 5.51 is a statement of the well-known argument that taking the mean of
the generalisation error estimate over several folds should reduce the overall variance. This is often the
primary justification for adopting CV estimates in the first place.

36

5.3.3. The need for nested CV

Cawley and Talbot [11] discuss a potential issue for our approach of using CV for model comparison: unless
we treat “model selection” (i.e. tuning of predictors’ hyperparameters) as an integral part of the fitting
process, our approach would be susceptible to “selection bias” caused by overfitting. Varma and Simon
[44] relate this to the estimate of the generalisation error: this “re-substitution estimate” would provide a
falsely low estimate of the true quantity, especially when there are few samples. They also explain how to
mitigate this potential issue by applying nested cross validation with 2 nested iteration loops:

• Outer loop: Estimate the true error for the optimised predictor (i.e. generalisation error).

• Inner loop: Perform the optimisation. Train the predictor by computing the CV error estimate for
different values of the tuning parameters, then select the parameters with the smallest CV error
estimate and use them to train the predictor on all the data within the whole fold.

We will follow their recommendation and design our software package to use nested CV.

37

6. The pysf package

TODO: UML diagram for compositor pattern, lozenge-ended arrow
TODO: the xpandas reference is appropriate when talking about the data container; may be worth also

talking about column-typed data containers, which Markus will probably add to sktime.
So far, we have put in place a conceptual and mathematical framework to define and evaluate prediction

strategies in the multi-series supervised forecasting setting. In practical terms, we demonstrate our ideas
through the pysf5 Python package, which implements a supervised forecasting data science workflow. The
package is open-source and freely available6. This section will describe the package’s functionality and
some of the design choices we have made. Refer to Appendix A for a code demonstration of the package.

6.1. Use cases

Users of our package should be able to:

(U1) Define supervised forecasting prediction strategies based on the ideas in this manuscript, with con-
sistent usage patterns.

(U2) Define other custom prediction strategies to aid in experimentation, including wrapped self-tuning
and pipelining predictors, much like scikit-learn’s.

(U3) Instantiate baseline supervised forecasting prediction strategies to compare user-defined predictors
against.

(U4) Estimate the generalisation error of a set of user-defined predictors for a user-specified error metric
over a user-specified set of prediction times for a given multi-series data set.

6.2. Requirements

The package itself fulfils the following core requirements:

(R1) Provide a data container for efficiently storing & safely manipulating multi-series time- and series-
labelled data in a single object.

(R2) Enable resampling to be conducted along series indices, particularly using k-fold CV, in an object-
oriented manner.

(R3) Within the same code framework, provide an implementation of the conceptual framework of §3.5
for defining supervised forecasting predictors as wrappers around classical predictors.

(R4) Provide an object-oriented framework that implements the statistically-safe evaluation framework
of §5, including single-fold and cross-validated estimators for various prediction metrics.

(R5) Provide implementations of self-tuning cross-validating predictors as wrappers, particularly:

(a) one that optimises over all timestamps.

(b) one that optimises per prediction timestamp (by selecting the optimal hyperparameters and/or
predictor for each) and that multiplexes the outputs together.

(R6) Provide other common components of a data science workflow, as described in Buitinck et al. [9]:

5Abbreviates “python supervised forecasting”.
6The source code is available at https://github.com/alan-turing-institute/pysf and documentation at

https://alan-turing-institute.github.io/pysf. Also, the package can be installed using the popular pip pack-
age management system; see https://pypi.org/project/pysf.

38

https://github.com/alan-turing-institute/pysf
https://alan-turing-institute.github.io/pysf
https://pypi.org/project/pysf

(a) a predictor that pipelines others, by passing the output of one to the input of the next in se-
quence, thus enabling joint fitting and prediction.

(b) a data transformer framework that enabled transformers to be composed with predictors, with
a reference implementation of a smoothing spline transformer.

(R7) Provide a convenient entry point to the user for defining combinations of multiple prediction strate-
gies and sets of training & prediction features, and then performing fair evaluation of each over a
common set of prediction times. The cross-validated evaluation metrics of (R4) should be reported
to the user, who should also be able to easily visualise these results.

6.3. Software features

In this section, we will review the main features of the pysf package, making references to other packages
when appropriate.

6.3.1. Predictors & their fit-predict-score workflow

In code, prediction strategies are objects that extend an AbstractPredictor, which in turn provides
fit & predict methods that correspond to the theoretical interface methods of §3.2.3. As well as
following our interface design, this has direct parallels to scikit-learn’s own time-tested fit-predict
workflow. Buitinck et al. [9] justifies this design from an object-oriented programming (OOP) perspective.

In addition, we provide a score method for convenience in the case where test samples are known
and we wish to quantify the accuracy of our predictor against them. Internally, it calls predict on the
known test samples and returns various result objects that allow the user to access residuals and view
calculated error metrics (of the 3 types described in Appendix C).

Predictors may inherit from each other; indeed, this is encouraged as it allows them to extend & reuse
one another’s functionality. For example, some predictors inherit from an
AbstractWindowedPredictor, which allows them to benefit from common code to store sliding
window-related hyperparameters, whether they are single- or multi-series predictors.

A user may define their own prediction strategy, providing they extend & implementAbstractPredictor.
A number of predefined predictors are provided in the predictorsmodule. Figure 6.1 is an inheritance
diagram that lists these in a family tree. The predefined predictors fall into 4 categories: baselines (imple-
mentations of §3.6), pipelines, wrapping predictors (both to be discussed shortly) and a native supervised
forecasting prediction strategy (MultiCurveKernelsPredictor, an implementation of Gaussian
Process-based regression using the series kernel of ?].

All predictors solve the task of supervised forecasting. Being able to define them & use them to make
predictions using the fit-predict-score workflow are key deliverables of the pysf package. We will see
related objects that interact with them, drill down into how to implement some, and see how they are
used in a wider workflow.

6.3.2. Transformers & pipelining

Transformers do not provide predictions, but instead modify the data in some manner when theirtransform
methods are called on a data container. A predefined B-spline smoothing transformer is provided in the
transformersmodule, and users may implement their own by extendingAbstractTransformer.

Transformers are useful as a means to preprocess data being input into a predictor (whether for training
or prediction). The PipelinePredictor pipelines transformers and predictors into a sequence of
processing steps for a given data input. It is initialised with7 a chain of transformers and predictors; and
when its fit or predict methods are called it steps through each element in the chain, calling the
same method on predictors and transform on transformers, and passing the data between each step.

7i.e. it is created by calling the class constructor, and this constructor has a parameter that accepts this object as an input.

39

6.3.3. Data container

Prediction strategies need training data samples and test samples at different points of a workflow. We
store multiple samples together in a single MultiSeries data container object, with the container
providing methods to safely access parts of that data (for example, during resampling operations like cross
validation).

Internally, a MultiSeries object holds series labels and time labels in a pair of indexed data frames,
and maintains references to subsets of the indices that it is allowed to access. It can extract and return
these subsets in a variety of different forms. This frees users from having to perform data manipulation on
raw arrays or data frames, other than the very first step8 of instantiating a MultiSeries object with an
appropriately-formatted pair of pandas DataFrames. This empowers users who lack machine learning
programming experience to use this package.

It is also possible to take copies of data container instances, with or without modifying them, and
update the internal state of the instances, but it is strongly discouraged9 to access the internal state in
other ways. These methods are used by the internals of predictors and transformers for the purpose of
producing output predictions or transformed datasets; the typical end-user should not need to call them
unless they are implementing a new predictor themselves.

6.3.4. Defining prediction strategies through interfacing, wrapping & composition

In Table 3 specifically, and §3 more broadly, we saw 4 ways to wrap a classical prediction strategy in order
to transform it to a supervised forecasting prediction strategy.

Our package provides code implementations of these wrappers: SingleCurveSeriesPredictor,
MultiCurveTabularPredictor, SingleCurveTabularWindowedPredictor and
MultiCurveTabularWindowedPredictor. Their constructors expect to be instantiated with a
classical_estimator; i.e. some object that implements a classical supervised learning or classical
forecasting model. Taking advantage of Python’s duck typing OOP principle to enable compatibility with
popular Python packages10, they simply assume that any such classical estimators have appropriate fit
and predict methods of their own, and make use of those internally.

In this way, we have used the OOP principles of composition (between supervised forecasting predictors
and inner classical estimators) and interfaces (which we expect the inner classical estimators to conform
to) in order to implement first-order type wrapping of prediction strategies (as introduced in §3.3.1).

6.3.5. Tuning hyperparameters

The other first-order type wrapping in §3.3.1 is of one supervised forecasting predictor around another
supervised forecasting predictor. The clearest application of that is for hyperparameter tuning.

We wish to maintain predictors as the key building block of our data science workflow, without the
intermediation of other objects. It is thus natural to define predictors that can tune themselves when the
fit method is called. The procedure is to iterate through or sample some predefined hyperparameter
values, and – for each of those values – perform some sort of resampling scheme on the given data to
evaluate which set of hyperparameters minimises the prediction error on the data. Once that optimal set
has been found, retrain on the full given data with those settings in force.

When predict is called, therefore, predictions can be carried out just like for any other predictor.
More importantly, such self-tuning predictors can also be used as inputs to the performance evaluation
workflow.

All the required components of this tuning procedure should be supplied when the self-tuning predictor
is instantiated: the inner predictor to wrap around/tune, the feature & error metric to score for, some

8To circumvent even this initial step, the package provides convenience methods to download and format some of the datasets
described in this dissertation.

9Python’s OOP framework does not permit us to completely forbid this, unlike many other OOP languages.
10scikit-learn & statsmodels follow these conventions. Buitinck et al. [9] Section 3.4 discusses duck typing.

40

parameter iterator and some series iteration scheme. The latter two are used internally to perform the
iteration and resampling; they are expected to conform (via duck typing) to interfaces used by scikit-learn
in its model_selection module.

In code, the TuningOverallPredictor tunes a single wrapped/inner predictor and picks the
hyperparmeters that minimise the overall error across all prediction timestamps. The
TuningTimestampMultiplexerPredictor tunes multiple given predictors and memorises the
best combination of prediction strategy and parameter settings per timetstamp; whenever predict is
called later, the best such combination per prediction timestamp is used to predict for that particular
timestamp. The latter predictor is an example of a multiplexer.

6.3.6. Workflow to estimate generalisation error

We saw that the fit-predict-score workflow enables a user to train prediction strategies on training series
and make predictions for test series. The other major data science workflow of interest is for a user to
evaluate the performance of multiple prediction strategies on the same dataset. We studied this problem
in §5 and now have all the code we need to implement a workflow to solve it in our package.

The first two ingredients to this workflow are a dataset comprising full series (i.e. with observations
available at prediction times) and a set of prediction strategies to be evaluated (including self-tuning pre-
dictors wrapping around any predictors that require hyperparameters). The third ingredient is a collection
of Target objects: each is a set of input & output features and the scoring feature & metric to use in
evaluating particular prediction strategies. There is a many-to-many mapping between targets and predic-
tors. A target can be thought of as a descriptor of the fields that should be fed into a predictor, predicted
by it, and used to judge its performance against.

The GeneralisationPerformanceEvaluator implements this workflow: the method
add_to_targets defines and caches mappings of various target-predictor combinations, ready to be
evaluated, and the evaluate method performs the evaluation. The latter involves resampling the full
dataset that the object is initialised with (using 5-fold CV as a default scheme), iterating through every
target-predictor combination, evaluating the current predictor on each split of the resamples11, and storing
the results. Convenience methods are also provided to chart results and persist them to disk.

11We must ensure that the same splits are used for each target-predictor pair, even when resampling is random. This ensures a fair
evaluation.

41

Figure 6.1: Inheritance diagram for objects in the predictors module.

Figure 6.2: Inheritance diagram for objects in the transformers module.

42

6.4. Discussion

To design a software package’s internals and API is to balance various tradeoffs in support of one’s objec-
tives. Our design decisions have been guided by the following self-imposed principles, which led to certain
choices:

(P1) The user should not have to undertake messy and error-prone data manipulation: we have imple-
mented a data container to allow safe views and resampling.

(P2) Our package deals with prediction, so predictors should be the fundamental building block of any
wider workflows: we have provided functionality to perform hyperparameter tuning in the form as
wrapping self-tuning predictors.

(P3) Our package should be compatible with popular and well-designed machine learning & statistical
packages: we have used duck typing and assumed the widely-used fit-predict API in external
prediction models to enable compatibility with other packages.

(P4) Good OOP practice and design patterns12 should be adopted wherever practicable: we have made
extensive use of inheritance & composition, and have used the flyweight, template, prototype & bridge
patterns to design parts of the API.

In §1.3 we described some relevant contributions of the mlr R package to FDA-based prediction13.
In particular, mlr provides a “task transformation” that transforms functional data into features that can
be used by classical prediction models, albeit only using domain transformations. In principle, we could
implement similar transformers that act on a MultiSeries data container instance to transform a
dataset in a similar manner. We also benefit from various methods on a MultiSeries instance that can
extract matrix representations of the data: these representations (of tabular high-dimensional samples,
samples of windows, and so on) are compatible with classical predictors without necessitating a change
of domain. While the packages’ solutions may differ, the underlying philosophy of data transformation is
similar, and in principle each could be extended to incorporate the other’s transformations.

pandas data frames are too limiting to effectively represent the multi-series data that our supervised
forecasting task acts on, so our solution to representing the data has been to implement our own data
container. mlr is able to rely on R’s native data frames to represent functional data because their columns
can support a wider range of types. The recent xpandas14 general-purpose data container package may
render our specialised data container unnecessary if integrated together; the data extraction functionality
and predictors’ internals should then be refactored accordingly.

12Gamma et al. [17] is the standard reference for design patterns.
13We also reviewed the fda package, but its basis-focussed representation of functional data is not applicable to other situations

and is thus of little relevance.
14Available at https://alan-turing-institute.github.io/xpandas/index.html.

43

https://alan-turing-institute.github.io/xpandas/index.html

7. Experiments

We now have all the conceptual and practical tools we need to be able to conduct experiments. We hope
these will validate our approach to the supervised forecasting task. We intend to gain some insight into
the performance of various classes of prediction strategy compared to common baselines, and to formalise
this using statistical hypothesis testing. The results will also illustrate the relative performances of various
classes of prediction strategy, within the limits of our experimental setup.

We will maintain the exact same setup for each experiment, including the prediction strategies to be
tested, varying only the datasets and prediction times. We will describe this common methodology before
presenting the experimental results in the form of tables.

7.1. Methodology

7.1.1. Software packages

All experiments are conducted using the pysf package, in particular its infrastructure for wrapping & tuning
prediction strategies, and estimating their generalisation error. Predictive models from other packages are
used as building blocks: scikit-learn & keras for classical supervised learning models and statsmodels for
a classical forecasting model.

7.1.2. Estimating the generalisation error

The results for each experiment consist of a set of generalisation errors for each prediction strategy, which
have been estimated using cross validation according to the methodology of §5. They are measured using
the Root Mean Squared Error (RMSE) metric of Appendix C.

Most experiments utilise 5-fold CV, where the training/test split in each fold is 80/20% of available
series. The exceptions to this are the 3 experiments conducted on power data: these utilise reverse 5-fold
CV (training/test split of 20/80%) in order to obtain narrower estimates of bvCV & bv(t)CV

7.1.3. Prediction strategies being evaluated

Table 5 details all of the non-baseline predictors that we have evaluated. The first column of that table
maps each non-baseline predictor to one of the 4 supervised forecasting prediction strategies of Table 3.

The kernel predictor (described in ??) is the only predictor that is native to our supervised forecasting
setting. All others are built by wrapping around an inner predictive model; these are drawn from each
major class of predictive strategy, as reviewed in §1.3. Of note:

• The ARIMA-based strategy defaults to predicting the series means if its fitting process (which assumes
stationarity) proves unstable for a specific set of hyperparameters.

• The LSTM-based strategies’ samples consist of windows pooled from all training series.

• Principal Components Regression (PCR) & Partial Least Squares (PLS) can be considered FDA-based
approaches to supervised prediction. Together with the Principal Components Analysis (PCA) algo-
rithm, the approaches are described extensively in Hastie et al. [19] Chapters 14.5 & 18.6, and by
Ramsay and Silverman [35]. The inner prediction model for any PCR-based strategy is a pipeline,
consisting of a transformer that applies the PCA algorithm to reduce the input samples into a num-
ber of principal components, followed by a linear regression model whose covariates are the data’s
projections onto those principal components.

• Smoothing-based strategies are built out of a pipeline whose first component is a transformer that
smooths the input series, before passing them downstream to a non-smoothing predictor. B-splines,
the basis system used to carry out the smoothing, are described by Hastie et al. [19] Chapter 5 and
Ramsay and Silverman [35] Chapter 3.

44

• Most strategies require data to be standardised; i.e. transformed so that the training samples have
zero mean and unit variance. This is applied in code by means of pipeline strategies where necessary,
but is not detailed explicitly for brevity.

All hyperparameters listed in Table 5 are tuned for the prediction feature’s overall predictive RMSE
using nested 5-fold cross validation, unless they are listed as being fixed15. For legibility we have split
each predictor’s hyperparameters into common and specific sets, but all hyperparameters are nevertheless
tuned jointly, including hyperparameters that are specific to each component in a pipeline of predictors.
The tuning is implemented by wrapping the predictor (once more) in a self-tuning predictor and specifying
ranges from which it may sample hyperparameter values.

15Only the (resource-intensive) LSTM-based predictors have some exposed hyperparameters that are fixed to constant values, with
other hyperparameters allowed to vary. This is because nested cross validation is computationally intensive even for simple predictors
– and more so for the LSTM-based ones.

45

Class
Class

Hyperparams
Strategy
Name

Strategy
Hyperparams

Single-series n/a

Linear n/a

ElasticNet regularization parameters alpha, l1_ratio

ARIMA autoregressive order p, differencing degree d, moving-
average order q

Single-series
Tabular

Windowed

input width, output
width

Linear Win-
dowed

n/a

ElasticNet
Windowed

regularization parameters alpha, l1_ratio

Multi-series
Tabular

n/a

Linear n/a

ElasticNet regularization parameters alpha, l1_ratio

Kernel
λKRR , λprediction, names of the within-series and
between-series kernels, dynamic hyperparams for each
of those 2 kernels (as per Table ??)

Random For-
est

trees, maximum tree depth, proportion of candidate
features to consider

PCR # components to use for the PCA step

PLS # components to use

Smoothing
Random
Forest Same as the non-smoothing versions above, with the

addition of 2 smoothing params: spline degree,
smoothing factorSmoothing

PCR

Smoothing
PLS

Multi-series
Tabular

Windowed

input width, output
width, train over
prediction times

Linear Win-
dowed

n/a

ElasticNet
Windowed

regularization parameters alpha, l1_ratio

LSTM Win-
dowed Values are fixed for our experiments: # hidden units

per layer (64 per layer, with 2 such layers for the Deep
LSTM), # training epochs (100), input dropout rate
(50%), recurrent dropout rate (0%)

Deep LSTM
Windowed

Table 5: Non-baseline prediction strategies that we have evaluated in the experiments.

7.1.4. Baselines being evaluated

For comparison, we will also evaluate the 4 baseline predictors described in §3.6.

46

7.1.5. Datasets

The same experiment is run on the 7 datasets that are described in Table 6. The table also shows the splits
between training and prediction timestamps, which are fixed for each dataset. Figures 7.1, 7.2, 7.3, 7.4 &
7.5 are series plots of these datasets.

As structured, all datasets consist of a single (non-time) input feature and a single prediction feature,
with the notable exceptions of the Berkeley growth data (3 input features, 2 of which are one-hot encodings
of the gender series label) and Canadian weather data (2 output features).

Estimates of the generalisation error are reported separately for each of the 2 individual features of the
Canadian weather data. This mirrors the way the predictors are tuned – optimising separately for each
(single) output feature, rather than some aggregated value.

47

Features Timestamps

Dataset Name Description X i Zi
Series
Count

Count
Train/
Predict

Source

Berkeley growth

Quarterly & semi-annual height read-
ings over 18 years

height (cm) boy
(boolean) &

girl
(boolean)

93
children

31
ages

22/9 Tuddenham and
Snyder [43]

Canadian weather

Year-long daily averages of readings
per weather station

temperature
(◦C) &

precipitation
(mm)

n/a 35
stations

365
days

300/65 Ramsay and Sil-
verman [35]

ECG
One patient’s cardiac activity, includ-
ing both healthy & pathological car-
diac cycles

potential
difference

(mV)

n/a 200
heartbeats

96
timestamps

48/48 Olszewski [32]

Power

multiple sites
& multiple days

Day-long series of half-hourly energy
consumption by SMEs

consumption
(kWh)

n/a 300
combinations

48
half-hours

24/24

Sampled from
Sidebotham
[42] dataset
“TC1b”

multiple sites
for a single day

Day-long series of half-hourly energy
consumption by SMEs

consumption
(kWh)

n/a 300
sites

48
half-hours

24/24

multiple days for
a single site

Day-long series of half-hourly energy
consumption by SMEs

consumption
(kWh)

n/a 300
days

48
half-hours

24/24

Starlight

Aligned photometric readings of the
brightness of periodic stars (i.e. light-
curves)

aligned
magnitude

(log-brightness)

n/a 100
stars

1000
aligned

timestamps

500/500 Sampled from
Rebbapragada
et al. [38]

Table 6: Side-by-side comparison of the 7 datasets upon which we have conducted experiments.

48

2 4 6 8 10 12 14 16 18

Age (yr)

60

80

100

120

140

160

180

200
H

ei
gh

t
(c

m
)

Growth data, by boy

2 4 6 8 10 12 14 16 18

Age (yr)

60

80

100

120

140

160

180

200

H
ei

gh
t

(c
m

)

Growth data, by girl

Figure 7.1: Series plots of the Berkeley growth data. Each series is labelled as a boy or girl, so the data
has been divided into 2 corresponding plots. Height is the only time-indexed feature.

50 100 150 200 250 300 350

Day of year

−30

−20

−10

0

10

20

◦ C

Average daily temperature,
by weather station

50 100 150 200 250 300 350

Day of year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N
ea

re
st

0.
1

m
m

Average daily precipitation,
by weather station

Figure 7.2: Series plots of the Canadian weather data, with each of the 2 features (average temperature &
average precipitation) plotted separately.

0 20 40 60 80

timestamp

−3

−2

−1

0

1

2

3

4

p
ot

en
ti

a
l

d
iff

er
en

ce
(m

V
)

ECG

Figure 7.3: Series plot of the ECG dataset.

0 200 400 600 800 1000

aligned timestamp

−2

−1

0

1

2

3

4

a
li

g
n

ed
m

a
g
n

it
u

d
e

(l
o
g-

b
ri

g
h
tn

es
s)

Starlight

Figure 7.4: Series plot of the Starlight dataset.

49

10 20 30 40

half-hour

0

5

10

15

20
co

n
su

m
p

ti
o
n

(k
W

h
)

Power: multiple sites & multiple days

10 20 30 40

half-hour

0

5

10

15

20

25

co
n

su
m

p
ti

on
(k

W
h

)

Power: multiple sites for a single day

10 20 30 40

half-hour

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

co
n

su
m

p
ti

on
(k

W
h

)

Power: multiple days for a single site

Figure 7.5: Series plots of all 3 Power datasets.

50

7.1.6. Significance testing

Although we cannot soundly test whether single- or multi-series predictors in general perform best16, we
do have the data to test whether a particular individual predictor is better than the best baseline for a
particular dataset. The p-values produced by this hypothesis testing procedure are presented in Table 9,
with associated significance levels in Table 10.

We conduct the significance testing by selecting the best baseline for each experiment and comparing
it to each of the non-baseline predictors using one-tailed two-sample t-tests. Our t-statistic

t =
bε

predictor
CV − bε best baseline

CV
Ç

(bv predictor
CV)2 + (bv best baseline

CV)2
(7.1)

assumes unequal population variances, with S.E. estimates given by bv predictor
CV & bv best baseline

CV . The one-tailed
null & alternative hypotheses

H0 : bε
predictor

CV − bε best baseline
CV ≥ 0

H1 : bε
predictor

CV < bε best baseline
CV

should give us greater power to detect H1 than a two-tailed test would have provided.
The degrees of freedom parameter of the null t-distribution is the number of series in the full dataset

that we use to calculate our generalisation error estimates from. For the majority of our datasets we
calculate these using 5-fold CV, so the d.f. is 1/5 the total number of series of the relevant dataset. The
exceptions are the 3 Power datasets, to which we apply reverse 5-fold CV, resulting in a d.f. parameter of
4/5 the total number of Power series.

As a precedent, Nadeau and Bengio [31] studied the performance of t-tests on differences of generali-
sation errors (much like the numerator in our t-statistic), albeit in the differing situation of varying training
set sizes. An alternative approach would have been to conduct a Wilcoxon signed rank test; this would
not have imposed any parametric assumptions on the data but would also not have taken advantage of the
variance estimates that we have available.

16To do so, we would need to rerun the experiments with all strategies of the appropriate class wrapped in a multiplexing predictor
– i.e. one that uses the best-performing sub-strategy on a training set to predict on a test set – within the outer CV iteration, and
then compare the estimated generalisation errors of the single-series multiplexing predictor against the multi-series multiplexing
predictor.

51

7.2. Results

As well as the statistical testing tables already mentioned, Table 7 presents the estimated overall general-
isation errors and Table 8 ranks them for convenience. Appendix D presents the same results in the form
of charts, together with additional per-timestamp results.

Some results are not available and are denoted by . . . in the tables. These fall into 2 categories:

• Failure to complete: on the Starlight dataset, generalisation error estimation for the LSTM-based
prediction strategies failed to complete even after being run for several weeks on a desktop PC.
This is directly due to the resource-hungriness of LSTM-based predictors, and is most apparent on
the Starlight dataset because this dataset has the most timestamps and hence longest sequential
samples. The use of nested CV only adds to this demand for computational resources.

• Failure to converge: on the 3 Power datasets, a number of strategies failed to converge on at least 1
CV fold during generalisation error estimation. Recall that we applied reverse 5-fold CV to these 3
datasets alone, in order to reduce the variance of the estimates. It is possible that by reducing the
number of training samples in each fold (by a factor of 4 compared to regular 5-fold CV), we starved
certain prediction strategies of training data that would have allowed them to generalise better on
the test series.

Recall that the Berkeley growth & Canadian weather datasets each possess multiple input or output
features. We call a specific configuration of input & output features a target. Where multiple targets are
possible for a given dataset, we evaluate them all and report the best results. Target details are listed in
the charts in Appendix D but omitted from the tables in this section, for conciseness.

Estimated generalisation errors for the 4 baselines are included at the bottom of Table 7.

52

Predictor Canadian weather Power

Series Description
Berkeley
growth

precipitation
feature

temperature
feature

ECG
many days,
single site

many sites
and days

many sites,
single day

Starlight

Multi Deep LSTM WD 31.35 ± 0.9 2.26 ± 0.73 16.44 ± 2.45 0.76 ± 0.04 0.56 ± 0.02 1.93 ± 0.19 2.46 ± 0.27 —

Multi ElasticNet 2.43 ± 0.43 1.08 ± 0.26 1.38 ± 0.22 0.29 ± 0.03 0.33 ± 0.01 1.37 ± 0.13 1.58 ± 0.19 0.26 ± 0.06

Multi ElasticNet WD 4.57 ± 0.44 0.99 ± 0.25 4.32 ± 0.34 0.45 ± 0.03 0.51 ± 0.02 1.69 ± 0.18 2.03 ± 0.25 0.69 ± 0.04

Multi Kernel 5.44 ± 0.68 1.09 ± 0.27 1.91 ± 0.36 0.29 ± 0.03 0.33 ± 0.01 1.62 ± 0.19 1.62 ± 0.18 0.26 ± 0.06

Multi Linear 2.43 ± 0.36 1.04 ± 0.25 1.08 ± 0.2 0.33 ± 0.03 1.43 ± 0.31 3.48 ± 0.72 4.78 ± 1.06 0.57 ± 0.08

Multi Linear WD 1.66 ± 0.19 0.99 ± 0.21 2.74 ± 0.4 0.6 ± 0.07 0.47 ± 0.01 1.66 ± 0.18 2.08 ± 0.27 2.65 ± 0.31

Multi LSTM WD 30.39 ± 0.86 2.13 ± 0.58 14.77 ± 2.47 0.74 ± 0.04 0.58 ± 0.02 1.98 ± 0.2 2.39 ± 0.3 —

Multi PCR 2.74 ± 0.42 1.29 ± 0.32 1.77 ± 0.32 0.29 ± 0.03 0.35 ± 0.01 1.45 ± 0.16 1.72 ± 0.21 0.27 ± 0.06

Multi PLS 7.25 ± 0.78 1.53 ± 0.36 5.52 ± 0.94 0.41 ± 0.04 — 1.92 ± 0.19 2.18 ± 0.23 0.61 ± 0.1

Multi RF 3.27 ± 0.48 1.31 ± 0.51 3.43 ± 0.7 0.28 ± 0.03 0.33 ± 0.01 1.42 ± 0.14 1.76 ± 0.21 0.29 ± 0.06

Multi SM PCR 1 ± 0.25 1.16 ± 0.29 1.86 ± 0.32 0.3 ± 0.03 0.23 ± 0.01 — — 1.2 ± 0.92

Multi SM PLS 7.62 ± 0.79 1.49 ± 0.34 5.51 ± 1.01 0.48 ± 0.04 1.24 ± 0.04 1.82 ± 0.17 2.11 ± 0.22 0.6 ± 0.06

Multi SM RF 3.4 ± 0.5 1.3 ± 0.5 3.66 ± 0.71 0.28 ± 0.03 0.29 ± 0.01 1.37 ± 0.13 1.72 ± 0.21 0.31 ± 0.06

Single ARIMA 13.77 ± 1.87 1.28 ± 0.36 6.05 ± 1.88 0.95 ± 0.07 1.4 ± 0.64 — 4.26 ± 2.05 1.09 ± 0.1

Single ElasticNet 10.29 ± 0.82 1.38 ± 0.41 12.07 ± 1.16 0.94 ± 0.05 0.55 ± 0.03 1.73 ± 0.33 2.11 ± 0.51 1.09 ± 0.1

Single ElasticNet WD 6.84 ± 0.56 1.33 ± 0.32 5.81 ± 0.57 1.16 ± 0.07 0.57 ± 0.03 2.63 ± 1.32 2.1 ± 0.51 1.28 ± 0.19

Single Linear 14.88 ± 1.04 1.85 ± 0.41 30.38 ± 2.56 2.56 ± 0.23 2.22 ± 0.13 4.64 ± 1.24 5.29 ± 1.44 2.59 ± 0.25

Single Linear WD 7.41 ± 0.44 2.8 ± 1.3 12.83 ± 2.35 1.73 ± 0.14 — 4.56 ± 2.05 — 1.49 ± 0.13

Multi BL TS means 9.59 ± 1.38 2.28 ± 0.56 8.61 ± 1.34 0.43 ± 0.03 0.45 ± 0.01 2.3 ± 0.2 2.78 ± 0.29 0.59 ± 0.06

Single BL 0 values 169.78 ± 1.58 3.15 ± 0.96 10.72 ± 1.91 0.59 ± 0.03 0.69 ± 0.02 2.76 ± 0.23 3.38 ± 0.32 0.78 ± 0.04

Single BL LIP 8.07 ± 0.74 1.35 ± 0.34 9.97 ± 1.04 0.87 ± 0.08 0.94 ± 0.03 2.31 ± 0.32 2.67 ± 0.36 1.14 ± 0.07

Single BL means 46.45 ± 0.83 1.38 ± 0.41 12.07 ± 1.16 0.94 ± 0.05 0.55 ± 0.01 1.75 ± 0.17 2.06 ± 0.22 1.09 ± 0.1

Table 7: Estimated overall generalisation RMSE with 1 s.e. (i.e. bεCV ± bvCV), aggregated over time by an unweighted mean. This table shows
the 4 baselines’ results at the bottom. New abbreviations: “WD”=“Windowed”, “RF”=“Random Forest”, “SM”=“Smoothing”, “BL”=“Baseline”,
“TS”=“Timestamp”, “LIP”=“Linear Interpolator”. Units are listed in the third column of Table 6.

53

Predictor Canadian weather Power

Series Description
Berkeley
growth

precipitation
feature

temperature
feature

ECG
many days,
single site

many sites
and days

many sites,
single day

Starlight

Multi Deep LSTM Windowed 18 17 17 13 10 11 13 —

Multi ElasticNet 3 4 2 5 4 2 1 2

Multi ElasticNet Windowed 8 2 9 9 8 7 6 9

Multi Kernel 9 5 5 4 5 5 2 1

Multi Linear 4 3 1 7 15 14 15 6

Multi Linear Windowed 2 1 6 11 7 6 7 16

Multi LSTM Windowed 17 16 16 12 12 12 12 —

Multi PCR 5 8 3 3 6 4 4 3

Multi PLS 11 14 11 8 — 10 11 8

Multi Random Forest 6 10 7 1 3 3 5 4

Multi Smoothing PCR 1 6 4 6 1 — — 12

Multi Smoothing PLS 13 13 10 10 13 9 10 7

Multi Smoothing Random Forest 7 9 8 2 2 1 3 5

Single ARIMA 15 7 13 15 14 — 14 11

Single ElasticNet 14 12 14 14 9 8 9 10

Single ElasticNet Windowed 10 11 12 16 11 13 8 13

Single Linear 16 15 18 18 16 16 16 15

Single Linear Windowed 12 18 15 17 — 15 — 14

Table 8: Relative ranking of the non-baseline predictors in Table 7 by RMSE value. 1=best.

54

Predictor Canadian weather Power

Series Description
Berkeley
growth

precipitation
feature

temperature
feature

ECG
many days,
single site

many sites
and days

many sites,
single day

Starlight

Multi Deep LSTM Windowed 1.00 0.85 0.99 1.00 1.00 0.76 0.87 —

Multi ElasticNet 0.00 0.28 0.00 0.00 0.00 0.04 0.05 0.00

Multi ElasticNet Windowed 0.00 0.22 0.01 0.65 1.00 0.42 0.46 0.91

Multi Kernel 0.01 0.29 0.00 0.00 0.00 0.31 0.06 0.00

Multi Linear 0.00 0.24 0.00 0.01 1.00 0.99 0.99 0.44

Multi Linear Windowed 0.00 0.20 0.00 0.98 0.90 0.37 0.52 1.00

Multi LSTM Windowed 1.00 0.86 0.97 1.00 1.00 0.81 0.81 —

Multi PCR 0.00 0.46 0.00 0.00 0.00 0.10 0.14 0.00

Multi PLS 0.23 0.64 0.05 0.39 — 0.75 0.65 0.56

Multi Random Forest 0.00 0.47 0.01 0.00 0.00 0.07 0.17 0.00

Multi Smoothing PCR 0.00 0.35 0.00 0.00 0.00 — — 0.74

Multi Smoothing PLS 0.34 0.61 0.05 0.84 1.00 0.63 0.57 0.57

Multi Smoothing Random Forest 0.00 0.47 0.01 0.00 0.00 0.04 0.14 0.00

Single ARIMA 0.99 0.45 0.15 1.00 0.93 — 0.86 1.00

Single ElasticNet 0.97 0.52 0.95 1.00 1.00 0.49 0.54 1.00

Single ElasticNet Windowed 0.10 0.48 0.05 1.00 1.00 0.75 0.53 1.00

Single Linear 1.00 0.81 1.00 1.00 1.00 0.99 0.99 1.00

Single Linear Windowed 0.23 0.84 0.92 1.00 — 0.91 — 1.00

Table 9: p-values for the one-tailed two-sample t-tests detailed in §7.1.6.

55

Predictor Canadian weather Power

Series Description
Berkeley
growth

precipitation
feature

temperature
feature

ECG
many days,
single site

many sites
and days

many sites,
single day

Starlight

Multi Deep LSTM Windowed —

Multi ElasticNet *** *** *** *** ** * ***

Multi ElasticNet Windowed *** ***

Multi Kernel *** *** *** *** * ***

Multi Linear *** *** **

Multi Linear Windowed *** ***

Multi LSTM Windowed —

Multi PCR *** *** *** *** ***

Multi PLS * —

Multi Random Forest *** *** *** *** * ***

Multi Smoothing PCR *** *** *** *** — —

Multi Smoothing PLS *

Multi Smoothing Random Forest *** *** *** *** ** ***

Single ARIMA —

Single ElasticNet

Single ElasticNet Windowed **

Single Linear

Single Linear Windowed — —

Table 10: Results of testing the hypotheses detailed in §7.1.6. Stars indicate the null hypothesis was rejected with a given level of confidence:
***=99%, **=95%, *=90%.

56

7.3. Discussion

When considering the relative rankings of the predictors’ performance across all 7 datasets (Table 8), one
obvious interpretation might be that multi-series methods seem to outperform single-series ones, although
we should take care in making that statement17. We are on safer ground when we state that single-series
methods almost always underperform the best baseline, leading us to conclude that there is very little
evidence for single-series predictors performing well18 for our supervised forecasting task and that – by
contrast – we have widespread evidence for multi-series predictors performing well, in all but one19 of our
experiments..

These results provide an ex post justification to studying the problem of supervised forecasting, at the
very heart of which is to take advantage of the presence of multiple series for prediction. Indeed, these
results indicate that both approaches we took to solving the task (interface-based and native kernel-based)
are justified, and any differences in performance between the two seem immaterial.

When considering individual strategies, PLS-based methods tend to rank poorly in the multi-series
case, while LSTM-based methods are the only multi-series methods to consistently underperform the best
baselines, often to a large extent. The excitement around sequential neural networks notwithstanding,
LSTM-based techniques are very resource-intensive and have performed poorly in our experiments. While
it could be argued that we did not sufficiently explore the parameter space due to resource constraints, it
is worth pointing out that a literature review did not find many instances of nested CV being performed
on LSTM models, which suggests others may also have found their resource-intensiveness a barrier to
successful study.

Recall that the 3 Power datasets have been sampled from a single large panel; this allows us a potential
insight into the effectiveness of different data gathering procedures for forecasting purposes. By counting
the number of predictors that perform well on each sampled dataset, we hypothesise that restricting the
number of sites (i.e. subjects in the wider population panel) improves predictability, while mixing sites but
fixing the day degrades predictability. That would have interesting practical implications for forecasting
commercial electricity demand, by suggesting that historical data for a given site is of more use in making
forecasts than data for the current day drawn from other sites is.

A final element of interest is whether the inclusion of series labels Zi as covariates improves predictive
performance for multi-series predictors20. Figure D.1 in the Appendix shows generalisation error estimates
and target details for the individual Berkeley growth experiment, our only dataset where series labels are
available. For almost all predictors where the additional gender (series) labels are available, including most
autoregressive linear-like ones, the presence of these additional inputs does indeed improve the predictive
accuracy, compared to predicting from height (time labels) alone.

17We should re-emphasise that we cannot state that multi-series methods outperform single-series ones in a statistically sound
manner. This is because our hypothesis testing was not set up to make a direct comparison between the 2 classes. See an earlier
footnote on page 51.

18We interpret a predictor outperforming its best baseline as “performing well”.
19That one exception is the precipitation feature of the Canadian weather data. Figure 7.6 indicates that this feature is relatively

noisy and difficult to decompose into principal components, both compared to the temperature feature of the same dataset and to the
features of another dataset. This noisiness appears to have made the temperature feature less predictable. In fact, many predictors
do have lower generalisation error estimates than the best baseline, but the variances of those estimates are not low enough in order
for the differences to be statistically significant.

20Such series labels are not relevant to single-series prediction strategies.

57

0 5 10 15 20 25 30

Number of principal components

60

70

80

90

100
%

ge
o
f

ex
p

la
in

ed
va

ri
a
n

ce
Growth data: contributions of principal components

Features:

height, boy, girl

height

0 5 10 15 20 25 30 35

Number of principal components

60

70

80

90

100

%
ge

o
f

ex
p

la
in

ed
va

ri
a
n

ce

Canadian weather data: contributions of principal components

Features:

temperature, precipitation

temperature

precipitation

Figure 7.6: Scree plots: percentage of variance explained by the first given principal components de-
rived from a tabular representation of the univariate Berkeley growth data and the multivariate Canadian
weather data. Note the noisiness of the precipitation feature (green, on the right).

58

8. Conclusion

8.1. Contributions & findings

Our aim in writing this dissertation has been to investigate whether we can make better forecasts by taking
advantage of the presence of additional series, when they are available.

Our approach has been to frame this question as a predictive task to be solved by an appropriate pre-
diction strategy. In designing such strategies, we took two parallel approaches: wrapping around existing
models (to be drawn from a variety of classes) and a native solution based around a kernel that we derived
for this purpose. Furthermore, in order to test whether multi-series prediction strategies outperform base-
lines, we developed a statistically-sound framework for model evaluation, through an empirical estimation
of the generalisation error. These contributions form the theoretical deliverable of our research project.

In addition, the open-source pysf Python package is our project’s practical, code deliverable. By re-
leasing it publicly, we hope not only to give life to our theoretical contributions, but also to contribute to
the emergent ecosystem of machine learning software packages. In §6.4 we discussed the design choices
we made, articulated some principles and related our package to the wider ecosystem; we hope this might
inform further developments in related areas.

With the 2 core deliverables in place, we turned to the question of empirically validating our approach.
We collected 7 panel datasets and built prediction strategies based on the major classes of machine learning
regression-type models, FDA-based & stochastic statistical models, and our native kernel-based strategy.
In the hope of answering our initial question, these included both single- and multi-series strategies.

We discussed the experimental results in detail in §7.3; in short, we are satisfied that many multi-series
predictors outperform their baselines while almost no single-series predictors manage to achieve that. We
believe the results validate our initial research question, while providing some initial data on which classes
of model work best. Gratifyingly, both our native kernel-based predictor and various composite interface-
based predictors perform well on a range of datasets.

8.2. Future work

We hope that the encouraging results might stimulate some additional work on the task of supervised
forecasting. We suggest the following avenues of theoretical research:

• What new interface-based and native strategies could be designed? These could be evaluated against
our results.

• What prediction strategies might continue to perform well if our assumption of i.i.d. series is re-
laxed? We suggest our kernel-based strategy would be able to model such dependencies between
series. How would we adapt the generalisation error estimators? Perhaps they would necessitate
the imposition of some parametric model?

• When observations are missing, and somehow interpolated, how might we adapt the generalisation
error estimates? Perhaps weighting or imputation schemes might be used, as in Little and Rubin
[26]?

• How might we better conduct significance testing of the difference between predictors’ performances?
Perhaps a nonparametric model is more efficient for this task?

We also hope that our release of the open-source pysf package might encourage suggestions and con-
tributions to the package:

• One fruitful area is likely to be the implementation of more data transformers: these might include
domain transformations (like mlr’s), transformations to make large data sets more tractable, or
transformations to enable prediction on sparse data. For the latter, experimenting on sparse data
using the pre-existing smoothing transformer is likely to be a useful starting point.

59

• As discussed in §6.4, another contribution might be to integrate pysf with a more general-purpose
data container, such as the one provided by the xpandas pacakge. Indeed, this could be an interme-
diate step towards a higher goal of integrating pysf into some wider data science workflow.

• Other contributions might be software-focussed in nature, such as parallelising iterations where pos-
sible.

Finally, we can suggest some further experiments and empirical research questions to tackle:

• Which predictors perform best with a smaller/larger number of training series? Which predictors
perform best on a smaller/larger number of prediction time points? Generalisation error estimates
could be computed for a range of scenarios to answer these questions.

• Would LSTM-based strategies benefit from additional searching of the hyperparameter space? Re-
searchers with access to sufficient computational resources might simply rerun existing experiments
on a wider search space.

• Can we directly say that multi-series predictors perform better than single-series predictors? As
discussed in §7.1.6, building multiplexing predictors for each major class and rerunning experiments
using those wrappers would help to answer this.

• Similar multiplexing predictors could be used to compare any class of predictors to any other; for
example, do smoothing strategies perform better than non-smoothing ones?

• As discussed in §7.3, what sampling schemes from larger datasets might be best to apply supervised
forecasting predictors to? This might have particular relevance to electricity demand forecasting.

60

References

[1] A Aizerman, EM Braverman, and LI Rozoner. Theoretical foundations of the potential function
method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.

[2] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selection. Statis-
tics Surveys, 4:40–79, 2010. doi: 10.1214/09-SS054. URL http://dx.doi.org/10.1214/
09-SS054.

[3] Badi Baltagi. Econometric Analysis of Panel data. Wiley, 3 edition, 2008.

[4] P. Billingsley. Probability and Measure. Wiley, 3 edition, 1995. ISBN 9780471007104.

[5] Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe
Casalicchio, and Zachary M. Jones. mlr: Machine learning in r. Journal of Machine Learning Research,
17(170):1–5, 2016. URL http://jmlr.org/papers/v17/15-066.html.

[6] Christopher M Bishop et al. Pattern recognition and machine learning, volume 4. springer New York,
2006.

[7] Edwin V Bonilla, Kian M Chai, and Christopher Williams. Multi-task gaussian process prediction. In
Advances in neural information processing systems, pages 153–160, 2008.

[8] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series Analysis, Forecasting, and
Control. Francisco Holden-Day, 1970.

[9] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Vander-
Plas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software: ex-
periences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pages 108–122, 2013.

[10] George Casella and Roger L Berger. Statistical Inference. Duxbury, 2 edition, 2002.

[11] Gavin C. Cawley and Nicola L.C. Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. Journal of Machine Learning Research, 11:2079–2107, 2010. ISSN
1532-4435. URL http://jmlr.csail.mit.edu/papers/volume11/cawley10a/
cawley10a.pdf.

[12] Marco Cuturi, Jean-Philippe Vert, Oystein Birkenes, and Tomoko Matsui. A kernel for time series
based on global alignments. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on, volume 2, pages II–413. IEEE, 2007.

[13] Vitaly Davydov and Franz J Király. xpandas-python data containers for structured types and struc-
tured machine learning tasks. 2018.

[14] Thomas G. Dietterich. Machine learning for sequential data: A review. In Terry Caelli, Adnan Amin,
Robert P. W. Duin, Dick de Ridder, and Mohamed Kamel, editors, Structural, Syntactic, and Statistical
Pattern Recognition: Joint IAPR International Workshops SSPR 2002 and SPR 2002 Windsor, Ontario,
Canada, August 6–9, 2002 Proceedings, pages 15–30. Springer, 2002. ISBN 978-3-540-70659-5. doi:
10.1007/3-540-70659-3_2. URL https://doi.org/10.1007/3-540-70659-3_2.

[15] Peter Diggle, Peter J Diggle, Patrick Heagerty, Patrick J Heagerty, Kung-Yee Liang, Scott Zeger, et al.
Analysis of Longitudinal Data. Oxford University Press, 2 edition, 2013.

http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1214/09-SS054
http://jmlr.org/papers/v17/15-066.html
http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf
http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf
https://doi.org/10.1007/3-540-70659-3_2

[16] Bradley Efron and Trevor Hastie. Computer Age Statistical Inference: Algorithms, Evidence, and Data
Science. Institute of Mathematical Statistics Monographs. Cambridge University Press, 2016. doi:
10.1017/CBO9781316576533.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1994.

[18] Jan G. De Gooijer and Rob J. Hyndman. 25 years of time series forecasting. International Jour-
nal of Forecasting, 22(3):443 – 473, 2006. ISSN 0169-2070. doi: https://doi.org/10.1016/j.
ijforecast.2006.01.001. URL http://www.sciencedirect.com/science/article/
pii/S0169207006000021.

[19] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, 2 edition, 2009. URL http://www-stat.
stanford.edu/~tibs/ElemStatLearn/.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.doi.
org/10.1162/neco.1997.9.8.1735.

[21] Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets in python. Journal of Open
Research Software, 5(1), 2017.

[22] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis. Pearson, 6 edition,
2007. ISBN 0131877151.

[23] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE International Conference on Data Science and Advanced Analytics,
DSAA 2015, Paris, France, October 19-21, 2015, pages 1–10. IEEE, 2015.

[24] Joel Kariel. Prediction in functional data analysis: a new kernel approach and an application in
quantifying human strength. MRes dissertation, 2016.

[25] John Langford, Roberto Oliveira, and Bianca Zadrozny. Predicting conditional quantiles via reduction
to classification. In Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-06), pages 257–264, Arlington, Virginia, 2006. AUAI Press.

[26] Roderick JA Little and Donald B Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, 2
edition, 2014.

[27] Wes McKinney. Data structures for statistical computing in python. In Stéfan van der Walt and Jarrod
Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56, 2010.

[28] Paul Meier. Variance of a weighted mean. Biometrics, 9(1):59–73, 1953. ISSN 0006341X, 15410420.
URL http://www.jstor.org/stable/3001633.

[29] Charles A Micchelli and Massimiliano Pontil. Kernels for multi–task learning. In Advances in neural
information processing systems, pages 921–928, 2005.

[30] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012. ISBN 0262018020,
9780262018029.

[31] Claude Nadeau and Yoshua Bengio. Inference for the generalization error. Machine Learning, 52(3):
239–281, 2003. ISSN 1573-0565. doi: 10.1023/A:1024068626366. URL https://doi.org/
10.1023/A:1024068626366.

[32] Robert Thomas Olszewski. Generalized Feature Extraction for Structural Pattern Recognition in Time-
series Data. PhD thesis, 2001.

http://www.sciencedirect.com/science/article/pii/S0169207006000021
http://www.sciencedirect.com/science/article/pii/S0169207006000021
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.jstor.org/stable/3001633
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1024068626366

[33] E Omey and S Van Gulck. Central Limit Theorems for variances and correlation coefficients, 2008.

[34] J. Ramsay. When the data are functions. Psychometrika, 47(4):379–396, 1982. ISSN 1860-0980.
doi: 10.1007/BF02293704. URL http://dx.doi.org/10.1007/BF02293704.

[35] J. Ramsay and B. Silverman. Functional Data Analysis. Springer, 2 edition, 2005.

[36] C. Radhakrishna Rao. Some statistical methods for comparison of growth curves. Biometrics, 14(1):1–
17, 1958. ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/2527726.

[37] CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine Learning. Adaptive Computation
and Machine Learning. MIT Press, 2006.

[38] Umaa Rebbapragada, Pavlos Protopapas, Carla E. Brodley, and Charles Alcock. Finding anomalous
periodic time series. Machine Learning, 74(3):281–313, Mar 2009. ISSN 1573-0565. doi: 10.1007/
s10994-008-5093-3. URL https://doi.org/10.1007/s10994-008-5093-3.

[39] Philip T Reiss and R. Todd Ogden. Functional principal component regression and functional partial
least squares. Journal of the American Statistical Association, 102(479):984–996, 2007. doi: 10.
1198/016214507000000527.

[40] Bernhard Schölkopf and Alexander J Smola. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, 2001.

[41] Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai, and Shigeki Sagayama. Dynamic time-alignment
kernel in support vector machine. In Advances in neural information processing systems, pages 921–
928, 2002.

[42] Liz Sidebotham. Customer-led network revolution project closedown report. Technical report,
Northern Powergrid (Northeast) Ltd, 2015. URL https://www.ofgem.gov.uk/sites/
default/files/docs/2015/05/clnr-g026_project_closedown_report_
final_v2.pdf.

[43] Read D Tuddenham and Margaret M Snyder. Physical growth of california boys and girls from birth to
eighteen years. Publications in child development. University of California, Berkeley, 1(2):183, 1954.

[44] Sudhir Varma and Richard Simon. Bias in error estimation when using cross-validation for model
selection. BMC Bioinformatics, 7(1):91, 2006.

[45] Ronald J. Williams and David Zipser. Backpropagation. In Yves Chauvin and David E. Rumelhart,
editors, Gradient-based Learning Algorithms for Recurrent Networks and Their Computational Complex-
ity, pages 433–486. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1995. ISBN 0-8058-1259-8. URL
http://dl.acm.org/citation.cfm?id=201784.201801.

http://dx.doi.org/10.1007/BF02293704
http://www.jstor.org/stable/2527726
https://doi.org/10.1007/s10994-008-5093-3
https://www.ofgem.gov.uk/sites/default/files/docs/2015/05/clnr-g026_project_closedown_report_final_v2.pdf
https://www.ofgem.gov.uk/sites/default/files/docs/2015/05/clnr-g026_project_closedown_report_final_v2.pdf
https://www.ofgem.gov.uk/sites/default/files/docs/2015/05/clnr-g026_project_closedown_report_final_v2.pdf
http://dl.acm.org/citation.cfm?id=201784.201801

A. Walkthrough of the pysf package

This appendix aims to introduce the reader to the pysf package in an accessible manner by means of a
walkthrough of a typical data science workflow.

Our goal is to estimate the generalisation error of a multi-series multivariate tabular Smoothing PCR
predictor (one of a class of FDA-related methods) in relation to some baselines, on the last 65 days of the
annual weather data.

We begin by loading and visualising the data. The results of this snippet are displayed in Fig. A.1:

1 from pysf.data import download_ramsay_weather_data_dfs, MultiSeries
2
3 (weather_vs_times_df, weather_vs_series_df) = download_ramsay_weather_data_dfs()
4 data_weather = MultiSeries(data_vs_times_df=weather_vs_times_df,

data_vs_series_df=weather_vs_series_df, time_colname=’day_of_year’,
series_id_colnames=’weather_station’)

5
6 data_weather.visualise()
7 data_weather.visualise_moments()

50 100 150 200 250 300 350
day_of_year

30

20

10

0

10

20

te
m

pa
v

50 100 150 200 250 300 350
day_of_year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

pr
ec

av

50 100 150 200 250 300 350
day_of_year

20

10

0

10

20

M
ea

n
of

 te
m

pa
v

+/
- 1

 S
.D

.

50 100 150 200 250 300 350
day_of_year

0

1

2

3

4

5

6

M
ea

n
of

 p
re

ca
v

+/
- 1

 S
.D

.

Figure A.1: Results of visualising the weather data using methods on the MultiSeries instance. The
top 2 images are output by visualise() and the bottom 2 by visualise_moments().

Before proceeding to the topics of tuning and generalisation evaluation, we will first show a simple
fit-predict-score workflow.

In order to do so, we split the multi-series data into training and validation sets and visualise the
results. In this case, it is a randomised 70%/30% split. Note that the splits are by series instance and not
time/sequential index. The results of this snippet are displayed in Fig. A.2:

1 from sklearn.model_selection import ShuffleSplit
2
3 splits = list(data_weather.generate_series_folds(series_splitter=ShuffleSplit(

test_size=0.30, n_splits=1)))
4 (training_set, validation_set) = splits[0]
5
6 training_set.visualise(title=’Training set: Y_true’)
7 validation_set.visualise(title=’Validation set: Y_true’)

50 100 150 200 250 300 350
day_of_year

30

20

10

0

10

20

te
m

pa
v

Training set

50 100 150 200 250 300 350
day_of_year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

pr
ec

av

Training set

50 100 150 200 250 300 350
day_of_year

20

10

0

10

20

te
m

pa
v

Validation set

50 100 150 200 250 300 350
day_of_year

0

2

4

6

8

pr
ec

av

Validation set

Figure A.2: Results of visualising the weather data using methods on the MultiSeries instance. The
top 2 images represent the bivariate features of the training set, and the bottom 2 represent the validation
set.

We now define our prediction strategy, resulting in a composite pipelined predictor that takes 3 hyper-
parameters, each of which we fix for now. Note that there are 2 levels of pipelining in our strategy, all of
which can be composed together because our predictors hew to a fit-predict interface:

• The pysf pipeline is a smoothing transformation followed by a multi-series tabular predictor, wrapped
around an inner scikit-learn estimator.

• The inner scikit-learn estimator is itself a pipeline of a standardisation transformation, followed by
a PCA decomposition and finally a linear regression.

1 from pysf.predictors.framework import PipelinePredictor,
MultiCurveTabularPredictor

2 from pysf.transformers.smoothing import SmoothingSplineTransformer
3 from sklearn.pipeline import Pipeline
4 from sklearn.preprocessing import StandardScaler
5 from sklearn.decomposition import PCA
6 from sklearn.linear_model import LinearRegression

7
8 sklearn_estimator_pipeline = Pipeline(steps=[(’scale’, StandardScaler()), (’pca’,

PCA()), (’ols’, LinearRegression())])
9 multiseries_smoothing_pcr_predictor = PipelinePredictor(chain = [

SmoothingSplineTransformer() , MultiCurveTabularPredictor(classic_estimator=
sklearn_estimator_pipeline)])

10 multiseries_smoothing_pcr_predictor.set_parameters({ ’pca__n_components’ : 3 , ’
spline_degree’ : 5 , ’smoothing_factor’ : ’default’ })

We now fit our composite prediction strategy on the training set, predict out-of-sample on the validation
set, and then calculate prediction residuals εi(T ∗) and various prediction metrics bε(T ∗), with standard error
bars derived from bv(T ∗). The results of this snippet are displayed in Fig. A.3:

1 from pysf.errors import ErrorCurve
2 import numpy as np
3
4 common_prediction_times = np.arange(301, 366)
5 common_input_time_feature = False
6 common_input_non_time_features = [’tempav’, ’precav’]
7 common_prediction_features = [’tempav’, ’precav’]
8
9 multiseries_smoothing_pcr_predictor.fit(X=training_set, prediction_times=

common_prediction_times, input_time_feature=common_input_time_feature,
input_non_time_features=common_input_non_time_features, prediction_features=
common_prediction_features)

10
11 Y_hat = multiseries_smoothing_pcr_predictor.predict(X=validation_set,

prediction_times=common_prediction_times, input_time_feature=
common_input_time_feature, input_non_time_features=
common_input_non_time_features, prediction_features=
common_prediction_features)

12 Y_hat.visualise(title=’Validation set: Y_hat’)
13
14 Y_true = validation_set.subset_by_times(common_prediction_times)
15 Y_true.visualise(title=’Validation set: Y_true’)
16
17 for prediction_feature in common_prediction_features:
18 residuals = Y_true.get_raw_residuals(Y_hat=Y_hat,

value_colnames_vs_times_filter=prediction_feature)
19 residuals.visualise()
20 err = ErrorCurve.init_from_raw_residuals(raw_residuals_obj=residuals)
21 err.visualise_per_timestamp(title=prediction_feature)

310 320 330 340 350 360
day_of_year

20

15

10

5

0

5

te
m

pa
v

Validation set: Y_true

310 320 330 340 350 360
day_of_year

0

2

4

6

8

pr
ec

av

Validation set: Y_true

310 320 330 340 350 360
day_of_year

20

15

10

5

0

5

te
m

pa
v

Validation set: Y_hat

310 320 330 340 350 360
day_of_year

0

1

2

3

4

5

6

pr
ec

av

Validation set: Y_hat

310 320 330 340 350 360
timestamp

4

2

0

2

4

6

Raw residuals aggregated over
tempav

310 320 330 340 350 360
timestamp

3

2

1

0

1

2

3

4

Raw residuals aggregated over
precav

310 320 330 340 350 360
timestamp

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tempav
Errors per timestamp, with bars representing +/- 1 S.E.

mae
rmse

310 320 330 340 350 360
timestamp

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

precav
Errors per timestamp, with bars representing +/- 1 S.E.

mae
rmse

Figure A.3: Results of predicting & scoring on the validation set for the Smoothing PCR predictor with fixed
hyperparameters. Each column represents a feature. Row 1 represents actual/true observations XV(T ∗).
Row 2 represents predicted values bXV(T ∗). Row 3 represents the raw residuals εi(T ∗). Row 4 represents
the per-timestamp errors bε(T ∗) for the RMSE & MAE metrics, with error bars derived from bv(T ∗).

The above predictor had a fixed set of non-optimal hyperparameters. We will now define another
predictor that wraps around it and tunes for an (estimated) optimal set of hyperparameters on the training
set. According to our definition,

• it will sample 5 parameter sets at random from the parameter space that we have defined,

• the fitting step will perform 5-fold cross-validation (the default), and

• it will tune for the overall RMSE on the average temperature feature (even though we may choose
to predict for both features concurrently).

1 from pysf.predictors.tuning import TuningOverallPredictor
2 from sklearn.model_selection import ParameterSampler
3
4 tuning_overall_multiseries_smoothing_pcr_predictor = TuningOverallPredictor(

predictor_template=multiseries_smoothing_pcr_predictor, scoring_metric=’rmse’
, scoring_feature_name=’tempav’

5 , parameter_iterator=ParameterSampler(n_iter=5, param_distributions={ ’
pca__n_components’ : [3, 5, 7, 9]

6 , ’spline_degree’ : [3, 5]
7 , ’smoothing_factor’ : [’default’, ’0’, ’50’, ’100’, ’150’, ’200’]
8 }))

Now that we have defined our self-tuning predictor, we repeat our experiment on the same 70%/30%
training/validation set split as before. We can see that the prediction accuracy has improved, indicating
we have reached a local optimum. The results of this snippet are displayed in Fig. A.4:

1 import random
2 random.seed(777) # for reproducibility
3
4 tuning_overall_multiseries_smoothing_pcr_predictor.fit(X=training_set,

prediction_times=common_prediction_times, input_time_feature=
common_input_time_feature, input_non_time_features=
common_input_non_time_features, prediction_features=
common_prediction_features)

5
6 Y_hat = tuning_overall_multiseries_smoothing_pcr_predictor.predict(X=

validation_set, prediction_times=common_prediction_times, input_time_feature=
common_input_time_feature, input_non_time_features=
common_input_non_time_features, prediction_features=
common_prediction_features)

7 Y_hat.visualise(title=’Validation set: Y_hat’)
8
9 for prediction_feature in common_prediction_features:

10 residuals = Y_true.get_raw_residuals(Y_hat=Y_hat,
value_colnames_vs_times_filter=prediction_feature)

11 residuals.visualise()
12 err = ErrorCurve.init_from_raw_residuals(raw_residuals_obj=residuals)
13 err.visualise_per_timestamp(title=prediction_feature)

310 320 330 340 350 360
day_of_year

20

15

10

5

0

5

te
m

pa
v

Validation set: Y_true

310 320 330 340 350 360
day_of_year

0

2

4

6

8

pr
ec

av

Validation set: Y_true

310 320 330 340 350 360
day_of_year

20

15

10

5

0

5

te
m

pa
v

Validation set: Y_hat

310 320 330 340 350 360
day_of_year

0

2

4

6

8

pr
ec

av

Validation set: Y_hat

310 320 330 340 350 360
timestamp

4

2

0

2

4

6

Raw residuals aggregated over
tempav

310 320 330 340 350 360
timestamp

2

1

0

1

2

3

4

Raw residuals aggregated over
precav

310 320 330 340 350 360
timestamp

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tempav
Errors per timestamp, with bars representing +/- 1 S.E.

mae
rmse

310 320 330 340 350 360
timestamp

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

precav
Errors per timestamp, with bars representing +/- 1 S.E.

mae
rmse

Figure A.4: Results of predicting & scoring on the validation set for the Smoothing PCR predictor wrapped
in a tuning predictor, as described in the text. Chart descriptions are identical to those of Fig. A.3 .

Now that we have demonstrated the essential building blocks of our workflow, we will discard the

70%/30% training/validation set split and estimate the generalisation error of our self-tuning prediction
strategy using nested cross-validation on the full data set. We will also compare our predictor against a
set of baselines. The evaluator object will prepare identical CV folds and then iterate over various targets.
Each target is defined by a predictor and the particular input and output fields to use. The results of this
snippet are shown in Fig. A.5:

1 from pysf.generalisation import GeneralisationPerformanceEvaluator
2 from pysf.predictors.baselines import SeriesMeansPredictor, ZeroPredictor,

TimestampMeansPredictor, SeriesLinearInterpolator
3
4 evaluator_weather = GeneralisationPerformanceEvaluator(data=data_weather,

prediction_times=common_prediction_times)
5
6 evaluator_weather.add_to_targets(combos_of_input_time_column=[True],

combos_of_input_value_colnames=[None], combos_of_output_value_colnames=[
common_prediction_features]

7 , predictor_templates={ ’Baseline single-series series means’ :
SeriesMeansPredictor()

8 , ’Baseline 0 values’ : ZeroPredictor()
9 , ’Baseline multi-series timestamp means’ : TimestampMeansPredictor()

10 , ’Baseline single-series series linear interpolator’ : SeriesLinearInterpolator
()

11 })
12
13 evaluator_weather.add_to_targets(combos_of_input_time_column=[False],

combos_of_input_value_colnames=[common_prediction_features],
combos_of_output_value_colnames=[common_prediction_features]

14 , predictor_templates={ ’Multi-series self-tuning Smoothing PCR’ :
tuning_overall_multiseries_smoothing_pcr_predictor })

15
16 random.seed(777) # for reproducibility
17 results_df = evaluator_weather.evaluate()
18
19 evaluator_weather.chart_overall_performance(feature_name=’tempav’, metric=’rmse’)
20 evaluator_weather.chart_per_timestamp_performance(feature_name=’tempav’, metric=’

rmse’)
21
22 evaluator_weather.chart_overall_performance(feature_name=’precav’, metric=’rmse’)
23 evaluator_weather.chart_per_timestamp_performance(feature_name=’precav’, metric=’

rmse’)

2.5 5.0 7.5 10.0 12.5
rmse +/- 1 S.E

Multi-series self-tuning Smoothing PCR
(tempav, precav -> tempav, precav)

Baseline multi-series timestamp means
(time -> tempav, precav)

Baseline single-series series linear interpolator
(time -> tempav, precav)

Baseline 0 values
(time -> tempav, precav)

Baseline single-series series means
(time -> tempav, precav)

Generalisation performance for
feature tempav / metric rmse

Showing all results

1 2 3 4
rmse +/- 1 S.E

Multi-series self-tuning Smoothing PCR
(tempav, precav -> tempav, precav)

Baseline single-series series linear interpolator
(time -> tempav, precav)

Baseline single-series series means
(time -> tempav, precav)

Baseline multi-series timestamp means
(time -> tempav, precav)

Baseline 0 values
(time -> tempav, precav)

Generalisation performance for
feature precav / metric rmse

Showing all results

310 320 330 340 350 360
timestamp

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature tempav / metric rmse

Showing all results
1. Multi-series self-tuning Smoothing PCR
(tempav, precav -> tempav, precav)
2. Baseline multi-series timestamp means
(time -> tempav, precav)
3. Baseline single-series series linear interpolator
(time -> tempav, precav)
4. Baseline 0 values
(time -> tempav, precav)
5. Baseline single-series series means
(time -> tempav, precav)

310 320 330 340 350 360
timestamp

1

2

3

4

5

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature precav / metric rmse

Showing all results
1. Multi-series self-tuning Smoothing PCR
(tempav, precav -> tempav, precav)
2. Baseline single-series series linear interpolator
(time -> tempav, precav)
3. Baseline single-series series means
(time -> tempav, precav)
4. Baseline multi-series timestamp means
(time -> tempav, precav)
5. Baseline 0 values
(time -> tempav, precav)

Figure A.5: Results of estimating the generalisation error of the self-tuning Smoothing PCR predictor
against a set of baseline predictors, for both features. Each column represents a feature being studied.
Row 1 shows cross-validated overall errors bεCV. Row 2 shows cross-validated per-timestamp errors bεCV(t).
Each uses the RMSE metric and draws error bars using the respective estimators of variance bvCV and bvCV(t).

B. Example Gram matrices of series kernels

Figures B.2 & B.3 show plots of Gram matrices for multiple example series kernels, over all series within
the Berkeley growth & Canadian weather datasets, respectively. The Gram matrices are generally similar
in appearance within each dataset.

Interpreting the series kernel as a measure of similarity, the Gram matrices show that series are clustered
into groups of similar series according to the individual series kernel values. There is one highly-dissimilar
series in the weather dataset that can be interpreted as an outlier and Figure B.1 highlights that particular
series in relation to the others, with the precipitation series in particular being an obvious outlier.

50 100 150 200 250 300 350

Day of year

−30

−20

−10

0

10

20

◦ C

Average daily temperature by weather station
with the dissimilar series highlighted

50 100 150 200 250 300 350

Day of year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N
ea

re
st

0
.1

m
m

Average daily precipitation by weather station
with the dissimilar series highlighted

Figure B.1: Series plots of the multivariate Canadian weather data, with the dissimilar series highlighted
in each feature plot.

0 20 40 60 80

0

20

40

60

80

Berkeley growth data
Linear within, RBF between

28

30

32

34

36

38

40

42

44

0 20 40 60 80

0

20

40

60

80

Berkeley growth data
RBF within, Laplacian between

4

5

6

7

8

0 20 40 60 80

0

20

40

60

80

Berkeley growth data
RBF within, Polynomial between

0.5

1.0

1.5

2.0

2.5

×108

0 20 40 60 80

0

20

40

60

80

Berkeley growth data
RBF within, RBF between

4

5

6

7

8

Figure B.2: Example series kernels for the univariate Berkeley growth dataset.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Canadian weather data
Linear within, RBF between

−20000

−10000

0

10000

20000

30000

40000

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Canadian weather data
RBF within, Laplacian between

−750

−500

−250

0

250

500

750

1000

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Canadian weather data
RBF within, Polynomial between

−1

0

1

2

3
×1019

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Canadian weather data
RBF within, RBF between

−600

−400

−200

0

200

400

600

800

1000

Figure B.3: Example series kernels encoding both the temperature & precipitation features for the Canadian
weather dataset.

C. Prediction error metrics

In §5 we derived a number of estimators for the generalisation error (and estimators for their variances)
without assuming a particular form of loss function L. This allows us leeway in our choice of loss function L.
In this section, we provide 3 such choices of L that we have found informative when evaluating supervised
forecasting prediction strategies. For each, we work backwards from a particular well-known error metric.

We found metrics on the same scale as the input data (RMSE & MAE) to be particularly useful. No mat-
ter the choice of metric, though, it is important to report the variance of the estimates in order to quantify
the degree of uncertainty in obtaining them. At the very least, these standard errors (or approximations
thereof) can be used to draw error bars on charts. We have also used them in significance testing.

C.1. Mean Squared Error

Definition C.1. The Mean Squared Error (MSE) of predictions at a time point t∗ is the mean of loss observa-
tions

MSE(t∗) =
1
N

N
∑

i=1

[Li(t∗)]
2 (C.1)

for the squared error loss function

L
�

bX∗(t∗), X∗(t∗)
�

=
�

bX∗(t∗)− X∗(t∗)
�2

. (C.2)

Since the MSE is a sample mean, its variance is the standard error of the loss values.

C.2. Mean Absolute Error

Definition C.2. The Mean Absolute Error (MAE) of predictions at a time point t∗ is the mean of loss observa-
tions

MAE(t∗) =
1
N

N
∑

i=1

[Li(t∗)]
2 (C.3)

for the absolute error loss function

L
�

bX∗(t∗), X∗(t∗)
�

=
�

�

�

bX∗(t∗)− X∗(t∗)
�

�

�. (C.4)

Since the MAE is a sample mean, its variance is the standard error of the loss values.

C.3. Root Mean Squared Error

Definition C.3. The Root Mean Squared Error (RMSE) of predictions at a time point t∗ is simply the square
root of the MSE:

RMSE(t∗) =
Æ

MSE(t∗) (C.5)

We can see that, although the RMSE is on the same scale as the MAE, it is more affected by the presence
of outliers as it is a function of the MSE.

However – because it is a function – calculating its variance and standard error is no longer straight-
forward. We could use the Delta Method, the jackknife or the bootstrap to approximate it, and choose the
Delta Method because it results in a closed-form expression.

Theorem 2. Delta Method: Let Yn be a sequence of random variables that satisfies

p
n(Yn − θ)

D
−→N(0,σ2). (C.6)

For a given function g and a specific value of θ , if the first derivative g ′(θ) exists and is not 0, then

p
n
�

g(Yn)− g(θ)
� D
−→N

�

0,σ2[g ′(θ)]2
�

(C.7)

Proof. See Casella and Berger [10] pp. 243.

Proposition C.4. The standard error (s.e.) of the RMSE can be approximated as

s.e.
�

RMSE(t∗)
�

≈
s.e.
�

MSE(t∗)
�

2 RMSE(t∗)
(C.8)

Proof. Applying Theorem 2 to our situation, we can approximate the true/population variance as follows:

Var[g(θ)]≈ [g ′(θ)]2 Var[θ] (C.9)

where g(θ) =
p
θ ⇒ g ′(θ) = 1/2

p
θ in our situation.

Applying the above to the population variances and thence to the sample variance,

Var
�

RMSE(t∗)
�

= Var
�
Æ

MSE(t∗)
�

(C.10)

⇒ s.e.
�

RMSE(t∗)
�

≈
1

2
p

MSE(t∗)
s.e.
�

MSE(t∗)
�

(C.11)

=
s.e.
�

MSE(t∗)
�

2 RMSE(t∗)
(C.12)

D. Individual experimental results

This appendix presents the results of §7 in the form of charts, broken down by individual dataset. The charts
show either overall estimated generalisation errors

�

bεCV ± bvCV

�

or per-timestamp ones
�

bε(t)CV ± bv(t)CV

�

.

D.1. On Berkeley growth data

0 10 20 30 40
rmse +/- 1 S.E

Multi-series self-tuning Smoothing PCR
(height, boy, girl -> height)

Multi-series self-tuning Linear Windowed predictor
(height, boy, girl -> height)

Multi-series self-tuning ElasticNet
(height, boy, girl -> height)

Multi-series Linear
(height, boy, girl -> height)
Multi-series self-tuning PCR
(height, boy, girl -> height)

Multi-series self-tuning Random Forest predictor
(height, boy, girl -> height)

Multi-series self-tuning Smoothing Random Forest predictor
(height, boy, girl -> height)

Multi-series self-tuning ElasticNet Windowed predictor
(height)

Multi-series self-tuning Kernel predictor
(height)

Single-series self-tuning ElasticNet Windowed predictor
(height, boy, girl -> height)
Multi-series self-tuning PLS
(height, boy, girl -> height)

Single-series self-tuning Linear Windowed predictor
(height, boy, girl -> height)

Multi-series self-tuning Smoothing PLS
(height, boy, girl -> height)

Baseline single-series series linear interpolator
(time -> height)

Baseline multi-series timestamp means
(time -> height)

Single-series self-tuning ElasticNet
(time -> height)

Single-series self-tuning ARIMA
(height -> height)

Single-series Linear
(time -> height)

Multi-series self-tuning windowed LSTM predictor
(height)

Multi-series self-tuning windowed Deep LSTM predictor
(height)

Baseline single-series series means
(time -> height)

Generalisation performance for
feature height / metric rmse
Showing the best 21 results

Figure D.1: Overall estimated generalisation errors for various prediction strategies on the Berkeley growth
dataset.

14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0
timestamp

0

2

4

6

8

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature height / metric rmse

Showing the best 10 overall results
01. Multi-series self-tuning Smoothing PCR
(height, boy, girl -> height)
02. Multi-series self-tuning Linear Windowed predictor
(height, boy, girl -> height)
03. Multi-series self-tuning ElasticNet
(height, boy, girl -> height)
04. Multi-series Linear
(height, boy, girl -> height)
05. Multi-series self-tuning PCR
(height, boy, girl -> height)
06. Multi-series self-tuning Random Forest predictor
(height, boy, girl -> height)
07. Multi-series self-tuning Smoothing Random Forest predictor
(height, boy, girl -> height)
08. Multi-series self-tuning ElasticNet Windowed predictor
(height)
09. Multi-series self-tuning Kernel predictor
(height)
10. Single-series self-tuning ElasticNet Windowed predictor
(height, boy, girl -> height)

Figure D.2: Per-timestamp estimated generalisation errors for various prediction strategies on the Berkeley
growth dataset.

D.2. On Canadian weather data

0 5 10 15 20 25 30
rmse +/- 1 S.E

Multi-series Linear
(tempav)

Multi-series self-tuning ElasticNet, tuning for tempav
(tempav)

Multi-series self-tuning PCR, tuning for tempav
(tempav)

Multi-series self-tuning Smoothing PCR, tuning for tempav
(tempav)

Multi-series self-tuning Kernel predictor, tuning for tempav
(tempav)

Multi-series self-tuning Linear Windowed predictor, tuning for tempav
(tempav)

Multi-series self-tuning Random Forest predictor, tuning for tempav
(tempav)

Multi-series self-tuning Smoothing Random Forest predictor, tuning for tempav
(tempav)

Multi-series self-tuning ElasticNet Windowed predictor, tuning for tempav
(tempav)

Multi-series self-tuning Smoothing PLS, tuning for tempav
(tempav, precav)

Multi-series self-tuning PLS, tuning for tempav
(tempav, precav)

Single-series self-tuning ElasticNet Windowed predictor, tuning for tempav
(tempav)

Single-series self-tuning ARIMA, tuning for tempav
(tempav -> tempav)

Baseline multi-series timestamp means
(time -> tempav, precav)

Baseline single-series series linear interpolator
(time -> tempav, precav)

Baseline 0 values
(time -> tempav, precav)

Single-series self-tuning ElasticNet, tuning for tempav
(time -> tempav)

Baseline single-series series means
(time -> tempav, precav)

Single-series self-tuning Linear Windowed predictor, tuning for tempav
(tempav)

Multi-series self-tuning windowed LSTM predictor, tuning for tempav
(tempav)

Multi-series self-tuning windowed Deep LSTM predictor, tuning for tempav
(tempav)

Single-series Linear
(time -> tempav)

Generalisation performance for
feature tempav / metric rmse

Showing all results

Figure D.3: Overall estimated generalisation errors for various prediction strategies on the Canadian
weather dataset, specifically for the average temperature feature.

310 320 330 340 350 360
timestamp

0.5

1.0

1.5

2.0

2.5

3.0

3.5

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature tempav / metric rmse

Showing the best 5 overall results

1. Multi-series Linear
(tempav)
2. Multi-series self-tuning ElasticNet, tuning for tempav
(tempav)
3. Multi-series self-tuning PCR, tuning for tempav
(tempav)
4. Multi-series self-tuning Smoothing PCR, tuning for tempav
(tempav)
5. Multi-series self-tuning Kernel predictor, tuning for tempav
(tempav)

Figure D.4: Per-timestamp estimated generalisation errors for various prediction strategies on the Canadian
weather dataset, specifically for the average temperature feature.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
rmse +/- 1 S.E

Multi-series self-tuning Linear Windowed predictor, tuning for precav
(tempav, precav)

Multi-series self-tuning ElasticNet Windowed predictor, tuning for precav
(tempav, precav)

Multi-series Linear
(precav)

Multi-series self-tuning ElasticNet, tuning for precav
(precav)

Multi-series self-tuning Kernel predictor, tuning for precav
(precav)

Multi-series self-tuning Smoothing PCR, tuning for precav
(precav)

Single-series self-tuning ARIMA, tuning for precav
(precav -> precav)

Multi-series self-tuning PCR, tuning for precav
(precav)

Multi-series self-tuning Smoothing Random Forest predictor, tuning for precav
(precav)

Multi-series self-tuning Random Forest predictor, tuning for precav
(precav)

Single-series self-tuning ElasticNet Windowed predictor, tuning for precav
(precav)

Baseline single-series series linear interpolator
(time -> tempav, precav)

Single-series self-tuning ElasticNet, tuning for precav
(time -> precav)

Baseline single-series series means
(time -> tempav, precav)

Multi-series self-tuning Smoothing PLS, tuning for precav
(tempav, precav)

Multi-series self-tuning PLS, tuning for precav
(tempav, precav)

Single-series Linear
(time -> precav)

Multi-series self-tuning windowed LSTM predictor, tuning for precav
(precav)

Multi-series self-tuning windowed Deep LSTM predictor, tuning for precav
(precav)

Baseline multi-series timestamp means
(time -> tempav, precav)

Single-series self-tuning Linear Windowed predictor, tuning for precav
(precav)

Baseline 0 values
(time -> tempav, precav)

Generalisation performance for
feature precav / metric rmse

Showing all results

Figure D.5: Overall estimated generalisation errors for various prediction strategies on the Canadian
weather dataset, specifically for the average precipitation feature.

310 320 330 340 350 360
timestamp

0.5

1.0

1.5

2.0

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature precav / metric rmse

Showing the best 5 overall results

1. Multi-series self-tuning Linear Windowed predictor, tuning for precav
(tempav, precav)
2. Multi-series self-tuning ElasticNet Windowed predictor, tuning for precav
(tempav, precav)
3. Multi-series Linear
(precav)
4. Multi-series self-tuning ElasticNet, tuning for precav
(precav)
5. Multi-series self-tuning Kernel predictor, tuning for precav
(precav)

Figure D.6: Per-timestamp estimated generalisation errors for various prediction strategies on the Canadian
weather dataset, specifically for the average precipitation feature.

D.3. On ECG data

0.5 1.0 1.5 2.0 2.5
rmse +/- 1 S.E

Multi-series self-tuning Random Forest predictor
(potential_difference -> potential_difference)

Multi-series self-tuning Smoothing Random Forest predictor
(potential_difference -> potential_difference)

Multi-series self-tuning PCR
(potential_difference -> potential_difference)

Multi-series self-tuning Kernel predictor
(potential_difference -> potential_difference)

Multi-series self-tuning ElasticNet
(potential_difference -> potential_difference)

Multi-series self-tuning Smoothing PCR
(potential_difference -> potential_difference)

Multi-series Linear
(potential_difference -> potential_difference)

Multi-series self-tuning PLS
(potential_difference -> potential_difference)

Baseline multi-series timestamp means
(time -> potential_difference)

Multi-series self-tuning ElasticNet Windowed predictor
(potential_difference -> potential_difference)

Multi-series self-tuning Smoothing PLS
(potential_difference -> potential_difference)

Baseline 0 values
(time -> potential_difference)

Multi-series self-tuning Linear Windowed predictor
(potential_difference -> potential_difference)

Multi-series self-tuning windowed LSTM predictor
(potential_difference -> potential_difference)

Multi-series self-tuning windowed Deep LSTM predictor
(potential_difference -> potential_difference)

Baseline single-series series linear interpolator
(time -> potential_difference)

Baseline single-series series means
(time -> potential_difference)

Single-series self-tuning ElasticNet
(time -> potential_difference)

Single-series self-tuning ARIMA
(potential_difference -> potential_difference)

Single-series self-tuning ElasticNet Windowed predictor
(potential_difference -> potential_difference)

Single-series self-tuning Linear Windowed predictor
(potential_difference -> potential_difference)

Single-series Linear
(time -> potential_difference)

Generalisation performance for
feature potential_difference / metric rmse

Showing all results

Figure D.7: Overall estimated generalisation errors for various prediction strategies on the ECG dataset.

50 60 70 80 90
timestamp

0.2

0.4

0.6

0.8

1.0

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature potential_difference / metric rmse

Showing the best 10 overall results
01. Multi-series self-tuning Random Forest predictor
(potential_difference -> potential_difference)
02. Multi-series self-tuning Smoothing Random Forest predictor
(potential_difference -> potential_difference)
03. Multi-series self-tuning PCR
(potential_difference -> potential_difference)
04. Multi-series self-tuning Kernel predictor
(potential_difference -> potential_difference)
05. Multi-series self-tuning ElasticNet
(potential_difference -> potential_difference)
06. Multi-series self-tuning Smoothing PCR
(potential_difference -> potential_difference)
07. Multi-series Linear
(potential_difference -> potential_difference)
08. Multi-series self-tuning PLS
(potential_difference -> potential_difference)
09. Baseline multi-series timestamp means
(time -> potential_difference)
10. Multi-series self-tuning ElasticNet Windowed predictor
(potential_difference -> potential_difference)

Figure D.8: Per-timestamp estimated generalisation errors for various prediction strategies on the ECG
dataset.

D.4. On Power data: multiple days for a single site

0.5 1.0 1.5 2.0
rmse +/- 1 S.E

Multi-series self-tuning Smoothing PCR
(reading -> reading)

Multi-series self-tuning Smoothing Random Forest predictor
(reading -> reading)

Multi-series self-tuning Random Forest predictor
(reading -> reading)

Multi-series self-tuning ElasticNet
(reading -> reading)

Multi-series self-tuning Kernel predictor
(reading -> reading)

Multi-series self-tuning PCR
(reading -> reading)

Baseline multi-series timestamp means
(time -> reading)

Multi-series self-tuning Linear Windowed predictor
(reading -> reading)

Multi-series self-tuning ElasticNet Windowed predictor
(reading -> reading)

Single-series self-tuning ElasticNet
(time -> reading)

Baseline single-series series means
(time -> reading)

Multi-series self-tuning windowed Deep LSTM predictor
(reading -> reading)

Single-series self-tuning ElasticNet Windowed predictor
(reading -> reading)

Multi-series self-tuning windowed LSTM predictor
(reading -> reading)

Baseline 0 values
(time -> reading)

Baseline single-series series linear interpolator
(time -> reading)

Multi-series self-tuning Smoothing PLS
(reading -> reading)

Single-series self-tuning ARIMA
(reading -> reading)

Multi-series Linear
(reading -> reading)
Single-series Linear

(time -> reading)

Generalisation performance for
feature reading / metric rmse

Showing all results

Figure D.9: Overall estimated generalisation errors for various prediction strategies on the Power dataset
that combines multiple days for a single site.

25 30 35 40 45
timestamp

0.0

0.2

0.4

0.6

0.8

1.0

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature reading / metric rmse

Showing the best 10 overall results
01. Multi-series self-tuning Smoothing PCR
(reading -> reading)
02. Multi-series self-tuning Smoothing Random Forest predictor
(reading -> reading)
03. Multi-series self-tuning Random Forest predictor
(reading -> reading)
04. Multi-series self-tuning ElasticNet
(reading -> reading)
05. Multi-series self-tuning Kernel predictor
(reading -> reading)
06. Multi-series self-tuning PCR
(reading -> reading)
07. Baseline multi-series timestamp means
(time -> reading)
08. Multi-series self-tuning Linear Windowed predictor
(reading -> reading)
09. Multi-series self-tuning ElasticNet Windowed predictor
(reading -> reading)
10. Single-series self-tuning ElasticNet
(time -> reading)

Figure D.10: Per-timestamp estimated generalisation errors for various prediction strategies on the Power
dataset that combines multiple days for a single site.

D.5. On Power data: multiple sites & multiple days

1 2 3 4 5 6
rmse +/- 1 S.E

Multi-series self-tuning Smoothing Random Forest predictor
(reading -> reading)

Multi-series self-tuning ElasticNet
(reading -> reading)

Multi-series self-tuning Random Forest predictor
(reading -> reading)

Multi-series self-tuning PCR
(reading -> reading)

Multi-series self-tuning Kernel predictor
(reading -> reading)

Multi-series self-tuning Linear Windowed predictor
(reading -> reading)

Multi-series self-tuning ElasticNet Windowed predictor
(reading -> reading)

Single-series self-tuning ElasticNet
(time -> reading)

Baseline single-series series means
(time -> reading)

Multi-series self-tuning Smoothing PLS
(reading -> reading)

Multi-series self-tuning PLS
(reading -> reading)

Multi-series self-tuning windowed Deep LSTM predictor
(reading -> reading)

Multi-series self-tuning windowed LSTM predictor
(reading -> reading)

Baseline multi-series timestamp means
(time -> reading)

Baseline single-series series linear interpolator
(time -> reading)

Single-series self-tuning ElasticNet Windowed predictor
(reading -> reading)

Baseline 0 values
(time -> reading)

Multi-series Linear
(reading -> reading)

Single-series self-tuning Linear Windowed predictor
(reading -> reading)
Single-series Linear

(time -> reading)

Generalisation performance for
feature reading / metric rmse

Showing all results

Figure D.11: Overall estimated generalisation errors for various prediction strategies on the Power dataset
that combines multiple sites & multiple days.

25 30 35 40 45
timestamp

0.5

1.0

1.5

2.0

2.5

3.0

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature reading / metric rmse

Showing the best 10 overall results
01. Multi-series self-tuning Smoothing Random Forest predictor
(reading -> reading)
02. Multi-series self-tuning ElasticNet
(reading -> reading)
03. Multi-series self-tuning Random Forest predictor
(reading -> reading)
04. Multi-series self-tuning PCR
(reading -> reading)
05. Multi-series self-tuning Kernel predictor
(reading -> reading)
06. Multi-series self-tuning Linear Windowed predictor
(reading -> reading)
07. Multi-series self-tuning ElasticNet Windowed predictor
(reading -> reading)
08. Single-series self-tuning ElasticNet
(time -> reading)
09. Baseline single-series series means
(time -> reading)
10. Multi-series self-tuning Smoothing PLS
(reading -> reading)

Figure D.12: Per-timestamp estimated generalisation errors for various prediction strategies on the Power
dataset that combines multiple sites & multiple days.

D.6. On Power data: multiple sites for a single day

2 3 4 5 6
rmse +/- 1 S.E

Multi-series self-tuning ElasticNet
(reading -> reading)

Multi-series self-tuning Kernel predictor
(reading -> reading)

Multi-series self-tuning Smoothing Random Forest predictor
(reading -> reading)

Multi-series self-tuning PCR
(reading -> reading)

Multi-series self-tuning Random Forest predictor
(reading -> reading)

Multi-series self-tuning ElasticNet Windowed predictor
(reading -> reading)

Baseline single-series series means
(time -> reading)

Multi-series self-tuning Linear Windowed predictor
(reading -> reading)

Single-series self-tuning ElasticNet Windowed predictor
(reading -> reading)

Single-series self-tuning ElasticNet
(time -> reading)

Multi-series self-tuning Smoothing PLS
(reading -> reading)

Multi-series self-tuning PLS
(reading -> reading)

Multi-series self-tuning windowed LSTM predictor
(reading -> reading)

Multi-series self-tuning windowed Deep LSTM predictor
(reading -> reading)

Baseline single-series series linear interpolator
(time -> reading)

Baseline multi-series timestamp means
(time -> reading)
Baseline 0 values
(time -> reading)

Single-series self-tuning ARIMA
(reading -> reading)

Multi-series Linear
(reading -> reading)
Single-series Linear

(time -> reading)

Generalisation performance for
feature reading / metric rmse

Showing all results

Figure D.13: Overall estimated generalisation errors for various prediction strategies on the Power dataset
that combines multiple sites for a single day.

25 30 35 40 45
timestamp

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature reading / metric rmse

Showing the best 10 overall results
01. Multi-series self-tuning ElasticNet
(reading -> reading)
02. Multi-series self-tuning Kernel predictor
(reading -> reading)
03. Multi-series self-tuning Smoothing Random Forest predictor
(reading -> reading)
04. Multi-series self-tuning PCR
(reading -> reading)
05. Multi-series self-tuning Random Forest predictor
(reading -> reading)
06. Multi-series self-tuning ElasticNet Windowed predictor
(reading -> reading)
07. Baseline single-series series means
(time -> reading)
08. Multi-series self-tuning Linear Windowed predictor
(reading -> reading)
09. Single-series self-tuning ElasticNet Windowed predictor
(reading -> reading)
10. Single-series self-tuning ElasticNet
(time -> reading)

Figure D.14: Per-timestamp estimated generalisation errors for various prediction strategies on the Power
dataset that combines multiple sites for a single day.

D.7. On Starlight data

0.5 1.0 1.5 2.0 2.5 3.0
rmse +/- 1 S.E

Multi-series self-tuning Kernel predictor
(magnitude)

Multi-series self-tuning ElasticNet
(magnitude -> magnitude)
Multi-series self-tuning PCR
(magnitude -> magnitude)

Multi-series self-tuning Random Forest predictor
(magnitude -> magnitude)

Multi-series self-tuning Smoothing Random Forest predictor
(magnitude -> magnitude)

Multi-series Linear
(magnitude -> magnitude)

Baseline multi-series timestamp means
(time -> magnitude)

Multi-series self-tuning Smoothing PLS
(magnitude -> magnitude)
Multi-series self-tuning PLS
(magnitude -> magnitude)

Multi-series self-tuning ElasticNet Windowed predictor
(magnitude -> magnitude)

Baseline 0 values
(time -> magnitude)

Single-series self-tuning ElasticNet
(time -> magnitude)

Baseline single-series series means
(time -> magnitude)

Single-series self-tuning ARIMA
(magnitude -> magnitude)

Baseline single-series series linear interpolator
(time -> magnitude)

Multi-series self-tuning Smoothing PCR
(magnitude -> magnitude)

Single-series self-tuning ElasticNet Windowed predictor
(magnitude -> magnitude)

Single-series self-tuning Linear Windowed predictor
(magnitude -> magnitude)

Single-series Linear
(time -> magnitude)

Multi-series self-tuning Linear Windowed predictor
(magnitude -> magnitude)

Generalisation performance for
feature magnitude / metric rmse

Showing all results

Figure D.15: Overall estimated generalisation errors for various prediction strategies on the Starlight
dataset.

500 600 700 800 900 1000
timestamp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

rm
se

 +
/-

1
S.

E

Generalisation performance for
feature magnitude / metric rmse

Showing the best 5 overall results

1. Multi-series self-tuning Kernel predictor
(magnitude)
2. Multi-series self-tuning ElasticNet
(magnitude -> magnitude)
3. Multi-series self-tuning PCR
(magnitude -> magnitude)
4. Multi-series self-tuning Random Forest predictor
(magnitude -> magnitude)
5. Multi-series self-tuning Smoothing Random Forest predictor
(magnitude -> magnitude)

Figure D.16: Per-timestamp estimated generalisation errors for various prediction strategies on the
Starlight dataset. Error bars are sampled for legibility.

	An Introduction to Supervised Forecasting
	Illustrating Examples
	Main contributions
	Related prior art
	Supervised forecasting from the framework perspective
	Supervised forecasting methodology - tasks vs algorithms
	Supervised forecasting methodology - statistics and econometrics
	Supervised forecasting methodology - machine learning
	Reduction-based approaches to supervised forecasting
	Toolboxes and API designs for supervised forecasting

	Outline of the manuscript

	The supervised forecasting task
	Introducing the supervised forecasting task
	Notational and mathematical conventions
	The generative setting: panel data
	Formulating the supervised forecasting task
	Setting: supervised forecasting
	Functionals and learning strategies
	The supervised forecasting task

	Performance quantification: generalization error
	Comparison to closely related learning tasks
	Comparison to functional regression

	Comparison with the classical forecasting task
	Comparison to the classical supervised learning task
	Variants not discussed in this manuscript

	Interface-based framework for supervised forecasting
	Interface notation and convention for specifying abstract class interfaces
	Defining interfaces for prediction strategies
	Interface for classical supervised learning
	Interface for classical forecasting
	Interface for supervised forecasting

	A framework for defining predictors as wrappers
	First-order methods for interface transformation
	Overview of the composite prediction strategy

	Relationship to reduction
	Implementing predictors as wrappers around classical models
	Baseline predictors for comparison

	Supervised forecasting in the literature
	Generalisation error estimation for strategy evaluation
	Preliminaries
	Estimators for a single training-test split
	Estimators of the generalisation error
	Estimators of the variances of the estimators
	Central Limit Theorems
	Consistency

	Cross-validated estimation across multiple splits
	Approach
	Estimators in the CV case
	The need for nested CV

	The pysf package
	Use cases
	Requirements
	Software features
	Predictors & their fit-predict-score workflow
	Transformers & pipelining
	Data container
	Defining prediction strategies through interfacing, wrapping & composition
	Tuning hyperparameters
	Workflow to estimate generalisation error

	Discussion

	Experiments
	Methodology
	Software packages
	Estimating the generalisation error
	Prediction strategies being evaluated
	Baselines being evaluated
	Datasets
	Significance testing

	Results
	Discussion

	Conclusion
	Contributions & findings
	Future work

	References
	Walkthrough of the pysf package
	Example Gram matrices of series kernels
	Prediction error metrics
	Mean Squared Error
	Mean Absolute Error
	Root Mean Squared Error

	Individual experimental results
	On Berkeley growth data
	On Canadian weather data
	On ECG data
	On Power data: multiple days for a single site
	On Power data: multiple sites & multiple days
	On Power data: multiple sites for a single day
	On Starlight data

