Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

README.md

Implementation of Matrix Factorization in Python

The source code mf.py is an implementation of the matrix factorization algorithm in Python, using stochastic gradient descent. An article with detailed explanation of the algorithm can be found at http://albertauyeung.com/2017/04/23/python-matrix-factorization.html.

Below is an example of using the algorithm:

import numpy as np
from mf import MF

# A rating matrix with ratings from 5 users on 4 items
# zero entries are unknown values
R = np.array([
    [5, 3, 0, 1],
    [4, 0, 0, 1],
    [1, 1, 0, 5],
    [1, 0, 0, 4],
    [0, 1, 5, 4],
])

# Perform training and obtain the user and item matrices 
mf = MF(R, K=2, alpha=0.1, beta=0.01, iterations=20)
training_process = mf.train()
print(mf.P)
print(mf.Q)
print(mf.full_matrix())

# Prints the following:
'''
[[ 1.45345236  0.06946249]
 [ 1.12922538  0.2319001 ]
 [-1.21051208  0.94619099]
 [-0.93607816  0.43182699]
 [-0.6919936  -0.93611985]]

[[ 1.42787151 -0.20548935]
 [ 0.84792614  0.29530697]
 [ 0.18071811 -1.2672859 ]
 [-1.4211893   0.20465575]]
 
[[ 4.98407556  2.99856476  3.96309763  1.01351377]
 [ 3.99274702  2.27661831  3.20365416  1.0125506 ]
 [ 1.0064803   1.00498576  2.37696737  4.98530109]
 [ 1.00999456  0.59175173  2.58437035  3.99597255]
 [ 2.26471556  1.01985428  4.9871617   3.9942251 ]]
'''

About

No description, website, or topics provided.

Resources

Releases

No releases published
You can’t perform that action at this time.