
How to: Simplify decision tables using Rough

Sets. The rs package for R.

Alber Sanchez.
Institute für Geoinformatik.

Westfälische Wilhelms Universität Münster.
Weseler Strasse 253, 48151 Münster, Deutschland.

alber.sanchez@uni-muenster.de

December 8, 2013

Abstract

This document is a brief introductory guide to the use of the R package
”rs”. The package allows users to reduce knowledge by simplifying rules
in decision tables according to Rough Set theory. It is not a complete
implementation of Rough Set theory; it just has the minimum functions
to simplify decision tables.

Contents

1 Introduction

The ”rs” package pretends to be an R implementation of the section 6.3 ”Sim-
plification of Decision Tables” of the book written by [?]. In the context of
artificial intelligence, Rough Set theory is considered a solution alternative to
the classificatory problem, allowing to discard superfluous or irrelevant informa-
tion to focus in the most determinant conditions for taking a decision. Rough
Set theory is known for being able to deal with contradictory or even incomplete
information, making no assumptions about the internal structure of the data.
Rough Sets theory is unable to deal with continuous variables which is a clear
disadvantage. For more details about Rough Set theory consult [?].

Outline First, a revision of the classes of the package is made (sections 1 to
6) and at the end, examples of its use are given (section 7).

2 Rule

A rule is a set of conditions which imply a decision. An example rule goes like:

C1 ∧ C2 ∧ C3 ⇒ D

Where C1, C2, C3 are conditions and D is the decision taken if conditions are
met.

1

The following example is a free interpretation of two decision tables found in
[?], for that reason the conclusions derived from them probably would not make
sense but serve for the goal of showing the use of the package. Assume that the
decision of a student of going to class depends on the following conditions:

• Weather (condition 1).

1. Cold.

2. Foggy.

• Class time (condition 2).

1. Morning.

2. Noon.

• Class difficulty (condition 3).

1. Hard.

2. Too hard.

• Distance to school (condition 4).

1. Close.

2. Not so close.

• Decision.

1. Not go.

2. Go.

Assume also that the option ”Not sure” is represented by 0 for all conditions
and decision.

For the purpose of this package, a rule could be represented in R by a numeric
vector, where the last element is the decision taken and the remaining elements
are conditions values.

The rule if weather is cold ∧ I’m not sure when the class is ∧ the class is
too hard ∧ the class is not so close ⇒ I’m not sure of going to class Could be
represented in R using the vector:

> rule <- c(1,1,1,1,0)

> print(rule)

[1] 1 1 1 1 0

3 Decision table

A decision table is a set of rules with the same set of conditions. Imagine a
couple of expert students who were questioned about when to go or not to class,
according to the conditions defined above. The result is an expert system of
rules which can be coded as an R matrix where each row is a rule. This matrix
can be used for creating an object of the class Decision Table, like this:

2

> exampleMatrix1 <- matrix(c(1,0,2,2,0,

+ 0,1,1,1,2,

+ 2,0,0,1,1,

+ 1,1,0,2,2,

+ 1,0,2,0,1,

+ 2,2,0,1,1,

+ 2,1,1,1,2,

+ 0,1,1,0,1),ncol = 5,byrow=TRUE)

> # Decision table creation

> dt1 <- new(Class="DecisionTable",decisionTable = exampleMatrix1)

> # Decision table creation alterative

> dt1 <- decisionTable(exampleMatrix1)

Due to the intrinsic nature of information, a decision table probably contains
duplicated or even contradictory rules. A contradictory or inconsistent rule is
a rule in a decision table for which there is at least another rule in the same
decision table with exactly the same conditions and a different decision. If any
pair of rules have one single different condition they are consistent no matter
the decision and if a pair of rules in a decision table have the exactly the same
conditions and decision, in other words if they are a duplicated rule, they are
consistent.

The ”rs”package has some tools for identifying inconsistent rules; for example
if the last column of the example matrix 1 is removed, then some rules become
inconsistent:

> dt <- decisionTable(exampleMatrix1[,-5])

> print(dt)

*** Class DecisionTable, method Print ***

C1 C2 C3 D

R1 1 0 2 2

R2 0 1 1 1

R3 2 0 0 1

R4 1 1 0 2

R5 1 0 2 0

R6 2 2 0 1

R7 2 1 1 1

R8 0 1 1 0

******* End Print (DecisionTable) *******

> computeConsistencyMatrix(dt)

R1 R2 R3 R4 R5 R6 R7 R8

R1 FALSE NA NA NA NA NA NA NA

R2 TRUE FALSE NA NA NA NA NA NA

R3 TRUE TRUE TRUE NA NA NA NA NA

R4 TRUE TRUE TRUE TRUE NA NA NA NA

R5 FALSE TRUE TRUE TRUE TRUE NA NA NA

R6 TRUE TRUE TRUE TRUE TRUE TRUE NA NA

R7 TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA

R8 TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

3

Checking the consistency matrix by columns, it can be seen that rules R1
and R5 are inconsistent between them, just like R2 and R8. A summary of the
consistency matrix can be obtained by:

> checkConsistency(dt)

R1 R2 R3 R4 R5 R6 R7 R8

FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE

But now it is not possible to identify which rule subset is inconsistent.

4 Discernibility Matrix

A discernibility matrix identifies the differences in condition values for each pair
of rules in a decision table. The discernibility matrix of a Decision Table object
can be obtained this way:

> print(dt1)

*** Class DecisionTable, method Print ***

C1 C2 C3 C4 D

R1 1 0 2 2 0

R2 0 1 1 1 2

R3 2 0 0 1 1

R4 1 1 0 2 2

R5 1 0 2 0 1

R6 2 2 0 1 1

R7 2 1 1 1 2

R8 0 1 1 0 1

******* End Print (DecisionTable) *******

> computeDiscernibilityMatrix(dt1)

*** Class DiscernibilityMatrix, method Show ***

* DiscernibilityMatrix (limited to a matrix 10x10) =

R1 R2 R3 R4 R5 R6

R1 NA NA NA NA NA NA

R2 C1,C2,C3,C4 NA NA NA NA NA

R3 C1,C3,C4 C1,C2,C3 NA NA NA NA

R4 C2,C3 C1,C3,C4 C1,C2,C4 NA NA NA

R5 C4 C1,C2,C3,C4 C1,C3,C4 C2,C3,C4 NA NA

R6 C1,C2,C3,C4 C1,C2,C3 C2 C1,C2,C4 C1,C2,C3,C4 NA

R7 C1,C2,C3,C4 C1 C2,C3 C1,C3,C4 C1,C2,C3,C4 C2,C3

R8 C1,C2,C3,C4 C4 C1,C2,C3,C4 C1,C3,C4 C1,C2,C3 C1,C2,C3,C4

R7 R8

R1 NA NA

R2 NA NA

R3 NA NA

R4 NA NA

R5 NA NA

R6 NA NA

4

R7 NA NA

R8 C1,C4 NA

******* End Show (DiscernibilityMatrix) *******

Here it is evident that R1 and R2 have different values for conditions 1,
2, 3 and 4 but R1 and R5 only difference is at condition 4. Matrix elements
where there just a one condition difference allow identifying the condition core
of the decision table, in this example the core is made of C1, C2 and C4. The
importance of the core is that allows finding the condition reducts.

5 Condition Reduct

A condition reduct is a decision table where the superfluous conditions have been
removed. The ”superfluousness” of a condition is determined by comparing the
indiscernibility function of the decision table and the indiscernibility function of
the decision table without the superfluous condition. In [?] there is no reference
to such a thing as a ”condition” or ”value” reduct, these are just artifacts created
for the ”rs” package.

In a Decision Table object can exist simultaneously many different condi-
tion reducts but since the goal here is the reduction of knowledge, the smallest
condition reduct are the central target. By the smallest condition reduct is
understood the reduct with the minimum number of conditions but sometimes
there can be more than one condition reduct meeting this requirement; in that
case, the set of smallest condition reduct is called a family. The Decision Table
class has 3 methods to find condition reducts.

The first method just returns a Condition Reduct object of the first found
smallest condition reduct in a decision table. That condition reduct could belong
to a family or be the only one but it is not possible to know that using this
method:

> firstCR <- findFirstConditionReduct(dt1)

> print(firstCR)

*** Class ConditionReduct, method Print ***

C1 C2 C3 C4 D

R1 1 0 NA 2 0

R2 0 1 NA 1 2

R3 2 0 NA 1 1

R4 1 1 NA 2 2

R5 1 0 NA 0 1

R6 2 2 NA 1 1

R7 2 1 NA 1 2

R8 0 1 NA 0 1

******* End Print (ConditionReduct) *******

Here, it can be seen that C3 is superfluous for making the decision D. The
second method finds the smallest family of Condition Reduct objects which is
returned as a list:

> smallestFamilyCR <- findSmallestReductFamilyFromCore(dt1)

5

In this case the core is a condition reduct itself, in such situations the smallest
condition reduct family is composed of one condition reduct which is the core.
Finally, there is a method to find all the reducts:

> allCR <- findAllReductsFromCore(dt1)

Note that in this case, there are just 2 condition reducts, the core and the
original decision table itself.

6 Value Reduct

A value reduct is a condition reduct where the superfluous conditions of each rule
have been removed. A Value Reduct object can be obtained from a Condition
Reduct object like this:

> vr <- computeValueReduct(firstCR)

> print(vr)

*** Class ValueReduct, method Print ***

C1 C2 C3 C4 D

R1 NA 0 NA 2 0

R2 0 NA NA 1 2

R2 NA 1 NA 1 2

R3 2 0 NA NA 1

R3 NA 0 NA 1 1

R4 1 1 NA NA 2

R4 NA 1 NA 2 2

R5 NA NA NA 0 1

R6 NA 2 NA NA 1

R7 2 1 NA NA 2

R7 NA 1 NA 1 2

R8 NA NA NA 0 1

******* End Print (ValueReduct) *******

Note the additional NA values on each rule. They mean the value for that
condition is not needed for making a decision.

A Value Reduct object can calculate metrics of the rule:

> computeSupportConsistency(vr,dt1)

C1 C2 C3 C4 D consistentCount inconsistentCount support consistency

R1 NA 0 NA 2 0 1 0 0.125 1

R2 0 NA NA 1 2 1 0 0.125 1

R2 NA 1 NA 1 2 2 0 0.250 1

R3 2 0 NA NA 1 1 0 0.125 1

R3 NA 0 NA 1 1 1 0 0.125 1

R4 1 1 NA NA 2 1 0 0.125 1

R4 NA 1 NA 2 2 1 0 0.125 1

R5 NA NA NA 0 1 2 0 0.250 1

R6 NA 2 NA NA 1 1 0 0.125 1

R7 2 1 NA NA 2 1 0 0.125 1

6

R7 NA 1 NA 1 2 2 0 0.250 1

R8 NA NA NA 0 1 2 0 0.250 1

The ”consistentCount” and ”inconsistentCount” is the number of times the
rule is consistent in the Decision Table object, together they are the total number
of times the rule appears. Support is the ratio between total number of times
the rule appears and the total number of rules in the decision table. Consistency
is the ration between ”consistentCount” and the total number of times the rule
appears. In other words, support measures the classificatory capacity of the rule
in a decision table and consistency is a measure of roughness of the decision of
the rule, which is useful in case of presence of inconsistent rules.

The rules in a Value Reduct object could be used to classify a Decision Table
object returning a new Decision Table object with the decisions from the value
reduct. For example, the result of applying the Value Reduct object to the
Decision Table object from which it was originated is:

> classDT <- classifyDecisionTable(vr,dt1)

> print(classDT)

*** Class DecisionTable, method Print ***

C1 C2 C3 C4 D

R1 1 0 2 2 0

R2 0 1 1 1 2

R3 0 1 1 1 2

R4 2 1 1 1 2

R5 2 0 0 1 1

R6 2 0 0 1 1

R7 1 1 0 2 2

R8 1 1 0 2 2

R9 1 0 2 0 1

R10 0 1 1 0 1

R11 2 2 0 1 1

R12 2 1 1 1 2

R13 0 1 1 1 2

R14 2 1 1 1 2

R15 1 0 2 0 1

R16 0 1 1 0 1

******* End Print (DecisionTable) *******

Note that the classified Decision Table object has more rules than the orig-
inal.

7 Examples

7.1 Example 1

Assume there is a rule set which has been broken in two, one for training and the
other for classifying, named respectively ”exampleMatrix1” and ”exampleMa-
trix2”. In this example any solution is acceptable.

7

> exampleMatrix1 <- matrix(c(1,0,0,1,1,

+ 1,0,0,0,1,

+ 0,0,0,0,0,

+ 1,1,0,1,0,

+ 1,1,0,2,2,

+ 2,1,0,2,2,

+ 2,2,2,2,2),ncol = 5,byrow=TRUE)

> exampleMatrix2 <- matrix(c(1,0,2,2,0,

+ 0,1,1,1,2,

+ 2,0,0,1,1,

+ 1,1,0,2,2,

+ 1,0,2,0,1,

+ 2,2,0,1,1,

+ 2,1,1,1,2,

+ 0,1,1,0,1),ncol = 5,byrow=TRUE)

Next, two Decision Table objects are build, one for each rule set:

> dt1 <- decisionTable(exampleMatrix1)

> dt2 <- decisionTable(exampleMatrix2)

The object dt1 could be explored using the methods showed so far or even
the duplicated (using ”removeDuplicatedRulesDT”) rules can be removed to
improve the computation performance, but there are no duplicated rules in dt1.
The decisions of the rules in dt2 are not important since the classification process
will change their values.

Now, a condition and value reduct are obtained from the classificatory deci-
sion table:

> cr1 <- findFirstConditionReduct(dt1)

> vr1 <- computeValueReduct(cr1)

The condition core is calculated internally by ”findFirstConditionReduct”.
Again, the duplicated rules could be removed from the Condition Reduct objet
(using ”removeDuplicatedRulesCR”), but there is none in this example, but the
case of the Value Reduct object is different, so:

> vr1 <- removeDuplicatedRulesVR(vr1)

It is the turn of evaluating the rules obtained using the original Decision
Table including the duplicated rules if any. Note that this evaluation could be
carried using the other Decision Table object, dt2.

> computeSupportConsistency(vr1,dt1)

C1 C2 C3 C4 D consistentCount inconsistentCount support consistency

R1 1 0 NA NA 1 2 0 0.2857143 1

R1 NA 0 NA 1 1 1 0 0.1428571 1

R2 1 NA NA 0 1 1 0 0.1428571 1

R3 0 NA NA NA 0 1 0 0.1428571 1

R4 NA 1 NA 1 0 1 0 0.1428571 1

R5 NA NA NA 2 2 3 0 0.4285714 1

R6 2 NA NA NA 2 2 0 0.2857143 1

R7 NA 2 NA NA 2 1 0 0.1428571 1

8

At this point, some important conclusions about the rules in the Decision
Table object can be drawn. Taking as starting point what was stated above
(in section 2), it is possible to say the difficulty of the class is irrelevant for
students when deciding going to class because condition 3 is not part of this
reduct. Rule 3 states that if the student has no clue about the weather, no
matter the remaining conditions, he is not sure of going. Rules 5 and 8 states
that no matter what, if the classroom is far they go to class, this makes no sense
but remember the example data is a free interpretation of decision tables found
in [?].

Assuming the results are satisfactory, now it is time of classifying the other
part of the rules. Remember that the decisions of dt2 are overwritten with the
decision from vr1:

> dt3 <- classifyDecisionTable(vr1,dt2)

> print(dt3)

*** Class DecisionTable, method Print ***

C1 C2 C3 C4 D

R1 1 0 2 2 1

R2 1 0 2 0 1

R3 2 0 0 1 1

R4 1 0 2 0 1

R5 0 1 1 1 0

R6 0 1 1 0 0

R7 0 1 1 1 0

R8 2 1 1 1 0

R9 1 0 2 2 2

R10 1 1 0 2 2

R11 2 0 0 1 2

R12 2 2 0 1 2

R13 2 1 1 1 2

R14 2 2 0 1 2

******* End Print (DecisionTable) *******

It can be seen that more than one rule from vr1 applied to the rules in dt2
and for that reason dt3 has more rules than dt2.

7.2 Example 2

This example wants to reproduce the results of the example given in [?] in
section 6.3, page 72.

Decision Table object creation:

> dtMatrix <- matrix(c(1,0,0,1,1,

+ 1,0,0,0,1,

+ 0,0,0,0,0,

+ 1,1,0,1,0,

+ 1,1,0,2,2,

+ 2,1,0,2,2,

+ 2,2,2,2,2),ncol = 5,byrow=TRUE)

> dt <- decisionTable(dtMatrix)

9

Condition reduct:

> cr <- findFirstConditionReduct(dt)

> print(cr)

*** Class ConditionReduct, method Print ***

C1 C2 C3 C4 D

R1 1 0 NA 1 1

R2 1 0 NA 0 1

R3 0 0 NA 0 0

R4 1 1 NA 1 0

R5 1 1 NA 2 2

R6 2 1 NA 2 2

R7 2 2 NA 2 2

******* End Print (ConditionReduct) *******

Value reduct:

> vr <- computeValueReduct(cr)

> print(vr)

*** Class ValueReduct, method Print ***

C1 C2 C3 C4 D

R1 1 0 NA NA 1

R1 NA 0 NA 1 1

R2 1 0 NA NA 1

R2 1 NA NA 0 1

R3 0 NA NA NA 0

R4 NA 1 NA 1 0

R5 NA NA NA 2 2

R6 2 NA NA NA 2

R6 NA NA NA 2 2

R7 2 NA NA NA 2

R7 NA 2 NA NA 2

R7 NA NA NA 2 2

******* End Print (ValueReduct) *******

Notice how some rule ids are duplicated (on the left side), indicating the
origin rule of the Condition Reduct object for the rule in the Value Reduct
object. This Value Reduct has the same results showed in the table 7 of [?] at
page 75.

The rest of the example is about making combinations of rules (2 rules come
from R1, 2 from R2, 2 from R6, 3 from R7 and 1 from each of the rest, that is
24 combinations) in order to find the smallest possible value reduct. So far, the
”rs” package does not include a method for making all the possible combinations
and it must be taken into account that this criteria does not rely on metrics like
support and consistency, it just seeks the smallest value reduct.

Using a combination of R functions and the ”rs” package the example con-
tinues building 2 options of the value reduct:

> vrMat <- getValueReduct(vr)# Matrix representation of the value reduct

> vr1 <- valueReduct(cr,vrMat[c(1,4,5,6,7,9,10),])# Pick rules by matrix row index

> vr2 <- valueReduct(cr,vrMat[c(1,3,5,6,7,9,12),])

10

The object vr1 corresponds to table 8 and vr2 to table 9 on page 76 of [?].
Now duplicated rules from vr2 are removed:

> vr3 <- removeDuplicatedRulesVR(vr2)

Object vr3 corresponds to table 10 on page 77 of [?]. Finally, rules are
re-numbered

> vr3Mat <- getValueReduct(vr3)

> rownames(vr3Mat) <- paste("R",1:nrow(vr3Mat),sep="")

> vr4 <- valueReduct(cr,vr3Mat)

> print(vr4)

*** Class ValueReduct, method Print ***

C1 C2 C3 C4 D

R1 1 0 NA NA 1

R2 0 NA NA NA 0

R3 NA 1 NA 1 0

R4 NA NA NA 2 2

******* End Print (ValueReduct) *******

The Value reduct object vr4 corresponds to table 11 on page 77 of [?].
This example exposes the ability of the ”rs” package to reproduce the section

”6.3 Simplification of Decision Tables” of [?].

References

[Pawlak] Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning
About Data Dordrecht: Kluwer Academic Publishing.

11

