Skip to content
main
Switch branches/tags
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Oct 21, 2020
Oct 21, 2020
Nov 2, 2020
Nov 2, 2020
Nov 2, 2020

Phone Fortified Perceptual Loss for Speech Enhancement

This is the official implementation of our paper "Improving Perceptual Quality by Phone-Fortified Perceptual Loss for Speech" Enhancement"

Requirements

  • pytorch 1.6
  • torchcontrib 0.0.2
  • torchaudio 0.6.0
  • pesq 0.0.1
  • colorama 0.4.3
  • fairseq 0.9.0

Data preparation

Enhancement model parameters and the wav2vec pre-trained model

Please download the model weights from here, and put the weight file into the checkpoint folder. The wav2vec pre-trained model can be found in the official repo.

Voice Bank--Demand Dataset

The Voice Bank--Demand Dataset is not provided by this repository. Please download the dataset and build your own PyTorch dataloader from here. For each .wav file, you need to first convert it into 16kHz format by any audio converter (e.g., sox).

sox <48K.wav> -r 16000 -c 1 -b 16 <16k.wav>

Usage

Training

To train the model, please run the following script. The full training process apporximately consumes 19GB of GPU vram. Reduce the batch size if needed.

python main.py \
    --exp_dir <root/dir/of/experiment> \
    --exp_name <name_of_the_experiment> \
    --data_dir <root/dir/of/dataset> \
    --num_workers 16 \
    --cuda \
    --log_interval 100 \
    --batch_size 28 \
    --learning_rate 0.0001 \
    --num_epochs 100 \
    --clip_grad_norm_val 0 \
    --grad_accumulate_batches 1 \
    --n_fft 512 \
    --hop_length 128 \
    --model_type wav2vec \
    --log_grad_norm

Testing

To generate the enhanced sound files, please run:

python generate.py <path/to/your/checkpoint/ckpt> <path/to/output/dir>

License

This project is licensed under the MIT License - see the LICENSE file for details

Acknowledgments

About

Improving Perceptual Quality by Phone-Fortified Perceptual Loss for Speech Enhancement

Resources

License

Releases

No releases published

Packages

No packages published

Languages