
Machine Learning: The Basics
!! ROUGH DRAFT !!

Alexander Jung

March 1, 2021

observations

data

hypothesis

make predictionvalidate/adapt

loss
inference

model

Figure 1: Machine learning combines three main components: data, model and loss.
Machine learning methods implement the scientific principle of “trial and error”. These
methods continuously validate and refine a model based on the loss incurred by its predictions
about a phenomenon that generates data.

1

Preface

Machine learning (ML) has become a commodity in our every-day lives. We routinely ask ML

empowered smartphones to suggest lovely food places or to guide us through a strange place.

ML methods have also become standard tools in many fields of science and engineering. A

plethora of ML applications transform human lives at unprecedented pace and scale.

This book portrays ML as the combination of three basic components: data, model

and loss. ML methods combine these three components within computationally efficient

implementations of the basic scientific principle “trial and error”. This principle consists of

the continuous adaptation of a hypothesis about a phenomenon that generates data.

ML methods use a hypothesis to compute predictions for future events. ML methods

choose or learn a hypothesis from a (typically very) large set of candidate hypotheses. We

refer to this set as the model or hypothesis space underlying a ML method.

The adaptation or improvement of the hypothesis is based on the discrepancy between

predictions and observed data. ML methods use a loss function to quantify this discrepancy.

A plethora of different ML methods is obtained by combining different design choices

for the data representation, model and loss. ML methods also differ vastly in their actual

implementations which might obscure their unifying basic principles.

Deep learning methods use cloud computing frameworks to train large models on huge

datasets. Operating on a much finer granularity for data and computation, linear least

squares regression can be implemented on small embedded systems. Nevertheless, deep

learning methods and linear regression use the same principle of iteratively updating a model

based on the discrepancy between model predictions and actual observed data.

Our three-component picture of ML allows a unified treatment of a wide range of concepts

and techniques which seem quite unrelated at first sight. We can understand the regularization

effect of early stopping iterative methods as changing the effective size of the model. We can

also interpret privacy-preserving and explainable ML methods as particular design choices

for the three components: model, data and loss.

2

To make good use of ML tools it is instrumental to understand its underlying principles

at different levels of detail. On a lower-level, this tutorial helps ML engineers to choose

suitable methods for the application at hand. The book also offers a higher-level view on

the implementation of ML methods which is typically required to manage a team of ML

engineers and data scientists. We believe that thinking about ML as combinations of data,

model and loss helps to navigate the steadily growing offer for ready-to-use ML methods.

Acknowledgement

This tutorial is based on lecture notes prepared for the courses CS-E3210 “Machine Learning:

Basic Principles”, CS-E4800 “Artificial Intelligence”, CS-EJ3211 “Machine Learning with

Python”, CS-EJ3311 “Deep Learning with Python” and CS-C3240 “Machine Learning”

offered at Aalto University and within the Finnish university network fitech.io. This

tutorial is accompanied by practical implementations of ML methods in MATLAB and

Python https://github.com/alexjungaalto/.

This text benefited from the numerous feedback of the students within the courses that

have been (co-)taught by the author. The author is indebted to Shamsiiat Abdurakhmanova,

Tomi Janhunen, Yu Tian, Natalia Vesselinova, Ekaterina Voskoboinik, Buse Atli, Stefan

Mojsilovic for carefully reviewing early drafts of this tutorial. Some of the figures have been

generated with the help of Eric Bach. The author is grateful for the feedback received from

Jukka Suomela, Väinö Mehtola, Oleg Vlasovetc, Anni Niskanen, Georgios Karakasidis, Joni

Pääkkö, Harri Wallenius and Satu Korhonen.

3

Contents

1 Introduction 9

1.1 Relation to Other Fields . 13

1.1.1 Linear Algebra . 13

1.1.2 Optimization . 14

1.1.3 Theoretical Computer Science . 14

1.1.4 Communication . 15

1.1.5 Statistics . 15

1.1.6 Artificial Intelligence . 16

1.2 Flavours of Machine Learning . 18

1.3 Organization of this Book . 20

2 Three Components of ML: Data, Model and Loss 22

2.1 The Data . 23

2.1.1 Features . 25

2.1.2 Labels . 28

2.1.3 Scatterplot . 30

2.1.4 Probabilistic Models for Data . 30

2.2 The Model . 31

2.3 The Loss . 39

2.4 Putting Together the Pieces . 45

2.5 Exercises . 48

2.5.1 How Many Features? . 48

2.5.2 Multilabel Prediction . 48

2.5.3 Average Squared Error Loss as Quadratic Form 49

2.5.4 Find Labeled Data for Given Empirical Risk 49

2.5.5 Dummy Feature Instead of Intercept 49

4

2.5.6 Approximate Non-Linear Maps Using Indicator Functions for Feature

Maps . 49

2.5.7 Python Hypothesis Space . 50

2.5.8 A Lot of Features . 50

2.5.9 Over-Parameterization . 50

2.5.10 Squared Error Loss . 51

2.5.11 Classification Loss . 51

2.5.12 Intercept Term . 51

2.5.13 Picture Classification . 51

2.5.14 Maximum Hypothesis Space . 51

2.5.15 A Large but Finite Hypothesis Space 51

2.5.16 Size of Linear Hypothesis Space . 52

3 Some Examples 53

3.1 Linear Regression . 53

3.2 Polynomial Regression . 55

3.3 Least Absolute Deviation Regression . 56

3.4 The Lasso . 57

3.5 Gaussian Basis Regression . 58

3.6 Logistic Regression . 59

3.7 Support Vector Machines . 62

3.8 Bayes’ Classifier . 63

3.9 Kernel Methods . 64

3.10 Decision Trees . 65

3.11 Artificial Neural Networks – Deep Learning 68

3.12 Maximum Likelihood Methods . 71

3.13 Nearest Neighbour Methods . 72

3.14 Dimensionality Reduction . 72

3.15 Clustering Methods . 72

3.16 Deep Reinforcement Learning . 73

3.17 LinUCB . 73

3.18 Exercises . 74

3.18.1 How Many Neurons? . 74

3.18.2 Linear Classifiers . 74

3.18.3 Data Dependent Hypothesis Space 74

5

4 Empirical Risk Minimization 75

4.1 Why Empirical Risk Minimization? . 77

4.2 Computational and Statistical Aspects of ERM 78

4.3 ERM for Linear Regression . 79

4.4 ERM for Decision Trees . 83

4.5 ERM for Bayes’ Classifiers . 85

4.6 Training and Inference Periods . 88

4.7 Online Learning . 88

4.8 Exercise . 89

4.8.1 Uniqueness in Linear Regression . 89

4.8.2 A Simple Linear Regression Method 89

4.8.3 A Simple Least Absolute Deviation Method 89

4.8.4 Polynomial Regression . 90

4.8.5 Empirical Risk Approximates Expected Loss 90

5 Gradient-Based Learning 91

5.1 The Basic GD Step . 93

5.2 Choosing Step Size . 94

5.3 When To Stop . 95

5.4 GD for Linear Regression . 95

5.5 GD for Logistic Regression . 97

5.6 Data Normalization . 99

5.7 Stochastic GD . 100

5.8 Exercises . 102

5.8.1 Use Knowledge About Problem Class 102

5.8.2 SGD Learning Rate Schedule . 103

5.8.3 Apple or No Apple? . 103

6 Model Validation and Selection 104

6.1 Overfitting . 106

6.2 Validation . 108

6.2.1 The Size of the Validation Set . 111

6.2.2 k-Fold Cross Validation . 112

6.2.3 Imbalanced Data . 114

6.3 Model Selection . 114

6

6.4 A Probabilistic Analysis of Generalization 118

6.5 The Bootstrap . 124

6.6 Diagnosing ML . 125

6.7 Exercises . 126

6.7.1 Validation Set Size . 126

6.7.2 Validation Error Smaller Than Training Error? 126

7 Regularization 127

7.1 Structural Risk Minimization . 129

7.2 Robustness . 131

7.3 Data Augmentation . 132

7.4 A Probabilistic Analysis of Regularization 136

7.5 Semi-Supervised Learning . 140

7.6 Multitask Learning . 140

7.7 Transfer Learning . 141

7.8 Exercises . 141

7.8.1 Ridge Regression as Quadratic Form 141

7.8.2 Regularization or Model Selection . 142

8 Clustering 143

8.1 Hard Clustering with K-Means . 145

8.2 Soft Clustering with Gaussian Mixture Models 150

8.3 Density-Based Clustering with DBSCAN . 154

8.4 Exercises . 155

8.4.1 Image Compression with k-means . 155

8.4.2 Compression with k-means . 155

9 Feature Learning 156

9.1 Dimensionality Reduction . 157

9.2 Principal Component Analysis . 158

9.2.1 Combining PCA with Linear Regression 160

9.2.2 How To Choose Number of PC? . 161

9.2.3 Data Visualisation . 161

9.2.4 Extensions of PCA . 161

9.3 Linear Discriminant Analysis . 162

7

9.4 Random Projections . 162

9.5 Information Bottleneck . 163

9.6 Dimensionality Increase . 163

10 Privacy-Preserving ML 164

10.1 Privacy-Preserving Feature Learning (Operating on level of individual datapoints)165

10.1.1 Privacy-Preserving Information Bottleneck 165

10.1.2 Privacy-Preserving Feature Selection 165

10.1.3 Privacy-Preserving Random Projections 165

10.2 Exercises . 165

10.2.1 Where are you? . 165

10.3 Federated Learning (Operates on level of local datasets) 166

11 Explainable ML 167

11.1 A Model Agnostic Method . 167

11.2 Explainable Empirical Risk Minimization . 168

12 Lists of Symbols 169

12.1 Sets . 169

12.2 Matrices and Vectors . 169

12.3 Machine Learning . 170

13 Glossary 171

8

Chapter 1

Introduction

Consider waking up one morning during winter in Finland and looking outside the window

(see Figure 1.1). It seems to become a nice sunny day which is ideal for a ski trip. To

choose the right gear (clothing, wax) it is vital to have some idea for the maximum daytime

temperature which is typically reached around early afternoon. If we expect a maximum

daytime temperature of around plus 10 degrees, we might not put on the extra warm jacket

but rather take only some extra shirt for change.

Figure 1.1: Looking outside the window during the morning of a winter day in Finland.

How can we predict the maximum daytime temperature for the specific day depicted in

Figure 1.1? Let us now show how this can be done via ML. In a nutshell, ML methods are

computational implementations of a simple (scientific) principle.

Find a good hypothesis based on a model for the phenomenon of interest by

using observed data in order to minimize a loss function.

This principle contains three components: data, a model and a loss function. Any ML

9

method, including linear regression and deep reinforcement learning, combines these three

components.

We illustrate the (rather abstract) concepts behind the main components of ML with the

above problem of predicting the maximum daytime temperature during some day in Finland

(see Figure 1.1). The prediction shall be based solely on the minimum daytime temperature

observed in the morning of that day.

The Finnish Meteorological Institute (FMI) offers data on historic weather observations.

We can download historic recordings of minimum and maximum daytime temperature recorded

by some FMI weather station. Let us denote the resulting dataset by

z(1), . . . , z(m). (1.1)

Each datapoint z(i) =
�
x(i), y(i)

�
, for i = 1, . . . ,m, represents some previous day for which

the minimum and maximum daytime temperature x(i) and y(i) has been recorded at some

FMI station.

We depict the data (1.1) in Figure 1.2. Each dot in Figure 1.2 represents a particular day

which is characterized by the minimum daytime temperature x and the maximum daytime

temperature y.

x

y

Figure 1.2: Each dot represents a day that is characterized by its minimum daytime
temperature x and its maximum daytime temperature y measured at some weather station
in Finland.

ML methods allow to learn a predictor map h(x), reading in the minimum temperature

10

x and delivering a prediction (forecast or approximation) ŷ = h(x) for the actual maximum

daytime temperature y. We base this prediction on a simple hypothesis for how the minimum

and maximum daytime temperature during some day are related. We assume that they are

related approximately by

y ≈ w1x+ w0 with w1 ≥ 0. (1.2)

This hypothesis reflects the intuition that the maximum daytime temperature y should be

higher for days with a higher minimum daytime temperature x.

Given our initial hypothesis (1.2), it seems reasonable to restrict the ML method to only

consider linear maps1

h(x) = w1x+ w0 with some weights w1 ∈ R+, w0 ∈ R. (1.3)

The map (1.3) is monotonically increasing since w1≥0.

Note that (1.3) defines a whole ensemble of hypothesis maps, each individual map

corresponding to a particular choice for w1 ≥ 0 and w0. We refer to such an ensemble

of potential predictor maps as the model or hypothesis space of a ML method.

We say that the map (1.3) is parameterized by the weight vector w =
�
w1, w0

�
and

indicate this by writing h(w). For a given weight vector w =
�
w1, w0

�
, we obtain the map

h(w)(x) = w1x+ w0. Figure 1.3 depicts three maps h(w) obtained for three different choices

for the weights w.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

feature x

h(w)(x)

Figure 1.3: Three hypothesis maps of the form (1.3).

1We describe our notation in Chapter 12.

11

ML would be trivial if there is only one single hypothesis. Having only a single hypothesis

means that there is no need to try out different hypotheses to find the best one. To enable

ML, we need to choose between a whole space of different hypotheses. ML methods are

computationally efficient methods to choose (learn) a good hypothesis out of (typically very

large) hypothesis spaces. The hypothesis space constituted by the maps (1.3) for different

weights is uncountably infinite.

To find, or learn, a good hypothesis out of the infinite set (1.3), we need to somehow

assess the quality of a particular hypothesis map. ML methods use data and a loss function

for this purpose.

A loss function is a measure for the difference between the actual data and the predictions

obtained from a hypothesis map (see Figure 1.4). One widely-used example of a loss function

is the squared error loss (y−h(x))2. Using this loss function, ML methods learn a hypothesis

map out of the model (1.3) by tuning w1, w0 to minimize the average loss

(1/m)
m�

i=1

�
y(i) − h

�
x(i)
��2

.

x

y

Figure 1.4: Dots represent days characterized by its minimum daytime temperature x and
its maximum daytime temperature y. We also depict a straight line representing a linear
predictor map. ML methods learn a predictor map with minimum discrepancy between
predictor map and datapoints.

The above weather prediction is prototypical for many other ML applications. Figure

1 illustrates the typical workflow of a ML method. Starting from some initial guess, ML

12

methods repeatedly improve their current hypothesis based on (new) observed data.

Using the current hypothesis, ML methods make predictions or forecasts about future

observations. The discrepancy between the predictions and the actual observations, as

measured using some loss function, is used to improve the hypothesis. Learning happens

during improving the current hypothesis based on the discrepancy between its predictions

and the actual observations.

ML methods must start with some initial guess or choice for a good hypothesis. This

initial guess can be based on some prior knowledge or domain expertise [42]. While the

initial guess for a hypothesis might not be made explicit in some ML methods, each method

must use such an initial guess. In our weather prediction application discussed above, we

used the approximate linear model (1.2) as the initial hypothesis.

1.1 Relation to Other Fields

ML builds on concepts from several other scientific fields.

1.1.1 Linear Algebra

Modern ML methods are computationally efficient methods to fit high-dimensional models

to large amounts of data. The models underlying state-of-the-art ML methods can contain

billions of tunable or learnable parameters. To make ML methods computationally efficient

we need to use suitable representations for data and models.

Maybe the most widely used mathematical structure to represent data is the Euclidean

space Rn with some dimension n. The rich algebraic and geometric structure of Rn allows to

design of ML algorithms that can process vast amounts of data to quickly update a model

(parameters).

The scatter plot in Figure 1.2 depicts datapoints (individual days) using vectors z ∈ R2.

We obtain a vector representation z = (x, y)T of a particular day by stacking the minimum

daytime temperature x and the maximum daytime temperature y into a vector z of length

two.

We can use the Euclidean space Rn not only to represent datapoints but also to represent

models for the data. One such class of models is obtained by linear subsets of Rn, such as

those depicted in Figure 1.3. We can then use the geometric structure of Rn, defined by the

Euclidean norm, to search for the best model. As an example, we could search for the linear

13

model, represented by a straight line, such that the average distance to the data points in

Figure 1.2 is as small as possible (see Figure 1.4).

The properties of linear structures, such as straight lines, are studied within linear algebra

[57]. The basic principles behind important ML methods, such as linear regression or

principal component analysis, are deeply rooted in the theory of linear algebra (see Sections

3.1 and 9.2).

1.1.2 Optimization

A main design principle for ML methods is to formulate learning tasks as optimization

problems [55]. The weather prediction problem above can be formulated as the problem of

optimizing (minimizing) the prediction error for the maximum daytime temperature. ML

methods are then obtained by applying optimization methods to these learning problems.

The statistical and computational properties of such ML methods can be studied using

tools from the theory of optimization. What sets the optimization problems arising in

ML apart from “standard” optimization problems is that we do not have full access to

the objective function to be minimized. Section 4 discusses methods that are based on

estimating the correct objective function by empirical averages that are computed over

subsets of datapoints (the training set).

1.1.3 Theoretical Computer Science

On a high level, ML methods take data as input and compute predictions as their output. The

predictions are computed using algorithms such as linear solvers or optimization methods.

These algorithms are implemented using some finite computational infrastructure.

One example for such a computational infrastructure is a single desktop computer.

Another example for a computational infrastructure is an interconnected collection of computing

nodes. ML methods must implement their computations within the available finite computational

resources such as time, memory or communication bandwidth.

Therefore, engineering efficient ML methods requires a good understanding of algorithm

design and their implementation on physical hardware. A huge algorithmic toolbox is

provided by numerical linear algebra [57, 56].

The recent success of ML methods in several application domains might be attributed

to their use of vectors and matrices to represent data and models. Using this representation

allows to implement the resulting ML methods using highly efficient hard- and software

14

implementations for numerical linear algebra.

1.1.4 Communication

We can interpret ML as a particular form of data processing. A ML algorithm is fed with

observed data in order to adjust some model and, in turn, compute a prediction of some

future event. Thus, ML involves transferring or communicating data to some computer

which executes a ML algorithm.

The design of efficient ML systems also involves the design of efficient communication

between data source and ML algorithm. The learning progress of an ML method will be

slowed down if it cannot be fed with data at sufficiently large rate. Given limited memory or

storage capacity, being too slow to process data at their rate of arrival (in real-time) means

that we need to “throw away” data. The lost data might have carried relevant information

for the ML task at hand.

1.1.5 Statistics

Consider the datapoints depicted in Figure 1.2. Each datapoint represents some previous day.

Each datapoint (day) is characterized by the minimum and maximum daytime temperature

as measured by some weather observation station. It might be useful to interpret these

datapoints as independent and identically distributed (i.i.d.) realizations of a random vector

z =
�
x, y
�T

. The random vector z is distributed according to some fixed but typically

unknown probability distribution p(z). Figure 1.5 extends the scatter plot of Figure 1.2 by

adding a contour line that indicates the probability distribution p(z).

Probability theory offers a great selection on methods for estimating the probability

distribution from observed data (see Section 3.12). Given (an estimate of) the probability

distribution p(z), we can compute estimates for the label of a datapoint based on its features.

Having a probability distribution p(z) for a randomly drawn datapoint z = (x, y), allows

us to not only compute a single prediction (point estimate) ŷ of the label y but rather an

entire probability distribution q(ŷ) over all possible prediction values ŷ.

The distribution q(ŷ) represents, for each value ŷ, the probability or how likely it is that

this is the true label value of the datapoint. By its very definition, this distribution q(ŷ) is

precisely the conditional probability distribution p(y|x) of the label value y, given the feature

value x of a randomly drawn datapoint z = (x, y) ∼ p(z).

Having an (estimate of) probability distribution p(z) for the observed datapoints not

15

only allows us to compute predictions but also to generate new datapoints. Indeed, we

can artificially augment the available data by randomly drawing new datapoints according

to the probability distribution p(z) (see Section 7.3). A recently popularized class of ML

methods that use probabilistic models to generate synthetic data is known as generative

adversarial networks [23].

x

y

p(z)

Figure 1.5: A scatterplot where each dot represents some day that is characterized by its
minimum daytime temperature x and its maximum daytime temperature y.

1.1.6 Artificial Intelligence

ML is instrumental for the design and analysis of artificial intelligence (AI). AI systems (hard

and software) interacts with their environment by taking certain actions. These actions

influence the environment as well as the state of the AI system. The behaviour of an AI

system is determined by how the perceptions made about the environment are used to form

the next action.

From an engineering point of view, AI aims at optimizing behaviour to maximize a long-

term return. The optimization of behaviour is based solely on the perceptions made by the

agent. Let us consider some application domains where AI systems can be used:

• a forest fire management system: perceptions given by satellite images and local

observations using sensors or “crowd sensing” via some mobile application which allows

humans to notify about relevant events; actions amount to issuing warnings and bans

of open fire; return is the reduction of number of forest fires.

16

• a control unit for combustion engines: perceptions given by various measurements

such as temperature, fuel consistency; actions amount to varying fuel feed and timing

and the amount of recycled exhaust gas; return is measured in reduction of emissions.

• a severe weather warning service: perceptions given by weather radar; actions are

preventive measures taken by farmers or power grid operators; return is measured by

savings in damage costs (see https://www.munichre.com/)

• an automated benefit application system for a social insurance institute (like “Kela”

in Finland): perceptions given by information about application and applicant; actions

are either to accept or to reject the application along with a justification for the

decision; return is measured in reduction of processing time (applicants tend to prefer

getting decisions quickly)

• a personal diet assistant: perceived environment is the food preferences of the app

user and their health condition; actions amount to personalized suggestions for healthy

and tasty food; return is the increase in well-being or the reduction in public spending

for health-care.

• the cleaning robot Rumba (see Figure 1.6) perceives its environment using different

sensors (distance sensors, on-board camera); actions amount to choosing different

moving directions (“north”, “south”, “east”, “west”); return might be the amount

of cleaned floor area within a particular time period.

• personal health assistant: perceptions given by current health condition (blood

values, weight,. . .), lifestyle (preferred food, exercise plan); actions amount to personalized

suggestions for changing lifestyle habits (less meat, more jogging,. . .); return is measured

via the level of well-being (or the reduction in public spending for health-care).

• government-system for a community: perceived environment is constituted by current

economic and demographic indicators such as unemployment rate, budget deficit,

age distribution,. . . ; actions involve the design of tax and employment laws, public

investment in infrastructure, organization of health-care system; return might be determined

by the gross domestic product, the budget deficit or the gross national happiness (cf.

https://en.wikipedia.org/wiki/Gross_National_Happiness).

ML methods are used on different levels within AI systems. On a low-level, ML methods

help to extract the relevant information from raw data. AI systems use ML methods to

17

Figure 1.6: A cleaning robot chooses actions (moving directions) to maximize a long-term
reward measured by the amount of cleaned floor area per day.

classify images into different categories. The AI system subsequently only needs to process

the category of the image instead of its raw digital form.

ML methods are also used for higher-level tasks of an AI system. To behave optimally,

an AI system or agent is required to learn a good hypothesis about how its behaviour affects

its environment. We can think of optimal behaviour as a consequent choice of actions that

are predicted as optimal according to a hypothesis which could be obtained by ML methods.

What sets AI methods apart from other ML methods is that they must compute predictions

in real-time while collecting data and choosing the next action. Consider an AI system

that steers a toy car. In any given state (point of time) the resulting prediction influences

immediately the features of the following datapoints.

Consider datapoints that represent different states of a toy car. For such datapoints we

could define their labels as the optimal steering angle for these states. However, it might

be very challenging to obtain accurate label values for any of these datapoints. Instead, we

could evaluate the usefulness of a particular steering angle only in an indirect fashion by

using a reward signal. For the toy car example, we might obtain a reward from a distance

sensor that indicates if the car reduces the distance to some goal or target location.

1.2 Flavours of Machine Learning

The main focus of this tutorial is on supervised ML methods. Supervised ML assigns

labels to each datapoint. The label of a data point is a quantity of interest or higher-

level fact. Roughly speaking, labels are properties of a datapoint that cannot be measured

or computed easily. This is in contrast to features which are properties of datapoints that

can be measured or computed easily (see Chapter 2.1).

18

Supervised Learning. Supervised learning methods learn a (predictor or classifier)

map that reads in features of a datapoint and outputs a prediction for its label (quantity

of interest). The prediction should be an accurate approximation to the true label (see

Chapter 2). To find such a map, supervised ML methods use labeled (training) data to try

out different choices for the map.

The basic idea of supervised ML methods, as illustrated in Figure 1.7, is to fit a curve

(representing the predictor map) to datapoints obtained from historic data (see Chapter 4).

While this sounds like a simple task, the challenge of modern ML applications is the sheer

amount of datapoints.

ML methods must process billions of datapoints with each single datapoint characterized

by a potentially vast number of features. Consider datapoints representing social network

users, whose features include all media that has been posted (videos, images, text).

Besides the sheer size of datasets, another challenge in modern ML methods is that

they must be able to fit highly non-linear predictor maps. Deep learning methods address

this challenge by using a computationally convenient representation of non-linear maps via

artificial neural networks [22].

(x(2), y(2))

(x(1), y(1))

feature x

predictor h(x)

label y

Figure 1.7: Supervised ML methods fit a curve to (a huge number of) datapoints.

Unsupervised Learning. Some ML applications do not need the concept of labels

but require only to understand the intrinsic structure of data points. We refer to such

applications as unsupervised ML. One important example for an intrinsic structure of a

dataset is when its datapoints can be grouped into a few coherent subsets of cluster (see

Chapter 8). Another example for such an intrinsic structure is when the datapoints are

localized around a low-dimensional subspace (see Chapter 9). Unsupervised ML methods

allow to determine such an intrinsic structure.

19

Reinforcement Learning. Another main flavour of ML considers datapoints that are

characterized by labels but which cannot be determined easily beforehand. Reinforcement

learning studies applications where the label values can only be determined in an indirect

fashion. Consider the problem of predicting the next optimal moving direction for a toy car

given its current state. datapoints represent a particular state of the car, its label is the

optimum steering direction.

It is typically impossible to get labeled datapoints here since there are so many different

driving scenarios that each have a different optimal steering direction. Instead, RL methods

must try out some predictor of the optimal steering direction and then evaluate the quality

of this prediction by some feedback signal. Such a feedback signal might be obtained from

GPS sensors that allow to determine if the car stays in the lane.

1.3 Organization of this Book

Chapter 2 introduces the concepts of data, model and loss function as main components

of ML. We also highlight that each component involves design choices that must take into

account computational and statistical aspects.

Chapter 3 shows how well-known ML methods are obtained by specific design choices

for the data, model and loss function. The aim of this chapter is to organize ML methods

according to three dimensions representing data, model and loss.

Chapter 4 explains how a simple probabilistic model for data lends to the principle of

empirical risk minimization (ERM). This principle translates the problem of learning

into an optimization problem. ML methods based on the ERM are therefore a special class

of optimization methods. The ERM principle can be interpreted as a precise mathematical

formulation of the “learning by trial and error” paradigm.

Chapter 5 discusses a powerful principle for learning predictors with a good performance.

This principle uses the concept of gradients to locally approximate an objective function used

to score predictors. A basic implementation of gradient-based optimization is the gradient

descent (GD) algorithm. Variations of GD are currently the de-facto standard method for

training deep neural networks [22].

Chapter 6 discusses one of the most important ideas in applied ML. This idea is to

validate a predictor by trying it out on validation or test data which is different from the

training data that has been used to fit a model to data. As detailed in Chapter 7, a main

reason for doing validation is to detect and avoid overfitting which is a main reason for ML

20

methods to fail.

Chapter 8 presents some basic methods for clustering data. These methods group or

partition datapoints into coherent groups which are referred to as clusters.

The efficiency of ML methods often depends crucially on the choice of data representation.

Ideally we would like to have a small number of highly relevant features to characterize

datapoints. If we use too many features we risk to waste computations on exploring irrelevant

features. If we use too few features we might not have enough information to predict the

label of a datapoint. Chapter 9 discusses feature learning methods that automatically

determine the most relevant features from the “raw features” of a datapoint.

Two main challenges for the widespread use of ML techniques in critical application

domains is privacy-preservation and explainability. Chapters 10 and 11 will discuss recent

approaches to solve these challenges. We will see that the concepts developed in Chapter 9

for feature learning will be perfect tools for privacy-preserving and explainable ML.

Prerequisites. We assume some familiarity with basic concepts of linear algebra, real

analysis, and probability theory. For a review of those concepts, we recommend [22, Chapter

2-4] and the references therein.

Notation. We mainly follow the notational conventions used in [22]. Boldface upper

case letters such as A,X, . . . denote matrices. Boldface lower case letters such as y,x, . . .)

denote vectors. The generalized identity matrix In×r ∈ {0, 1}n×r is a diagonal matrix with

ones on the main diagonal. The Euclidean norm of a vector x = (x1, . . . , xn)
T is denoted

�x� =
��n

r=1 x
2
r.

21

Chapter 2

Three Components of ML: Data,

Model and Loss

model

lossdata

Figure 2.1: ML methods fit a model to data via minimizing a loss function.

This book portrays ML as combinations of three components:

• data as collections of datapoints characterized by features (see Section 2.1.1) and

labels (see Section 2.1.2)

• a model or hypothesis space (see Section 2.2) of computationally feasible maps

(called “predictors” or “classifiers”) from feature to label space

• a loss function (see Section 2.3) to measure the quality of a predictor (or classifier).

We formalize a ML problem or application by identifying these three components for a given

application. A formal ML problem is obtained by specific design choices for how to represent

22

data, which hypothesis space or model to use and with which loss function to measure the

quality of a hypothesis. Once the ML problem is formally defined, we can readily apply

off-the-shelf ML methods to solve them.

Similar to ML problems (or applications) we also think of ML methods as specific

combinations of the three above components. We detail in Chapter 3 how some of the most

popular ML methods, such as linear regression and deep learning methods, are obtained by

specific design choices for the three components.

Linear regression is a ML method which uses linear maps for the hypothesis space and the

squared error loss function. Deep learning methods are characterized by using artificial neural

networks to represent hypothesis spaces constituted by highly non-linear predictor maps. The

remainder of this chapter discusses in some depth each of the three main components of ML.

2.1 The Data

Data as Collections of datapoints. Maybe the most important component of any ML

problem (and method) is data. We consider data as collections of individual datapoints

which are atomic units of “information containers”.

Datapoints can represent text documents, signal samples of time series generated by

sensors, entire time series generated by collections of sensors, frames within a single video,

random variables, videos within a movie database, cows within a herd, trees within a forest,

forests within a collection of forests. Consider the problem of predicting the duration of a

mountain hike (see Figure 2.2). Here, datapoints could represent different hiking tours.

Figure 2.2: Snapshot taken at the beginning of a mountain hike.

We use the concept of datapoints in a highly abstract and therefore very flexible manner.

23

datapoints can represent very different types of objects. For an image processing application

it might be useful to define datapoints as images.

A recommendation system might use datapoints to represent customers. datapoints

might represent time periods, animals, mountain hikes, proteins or humans. The meaning

or definition of what datapoints represent is nothing but a design choice.

One practical requirement for a useful definition of datapoints is that we should have

access to many of them. ML methods typically rely on constructing estimates for quantities

of interest by averaging over datapoints. These estimates are often more accurate the more

datapoints are used for the averaging.

A key parameter of a dataset is the number m of individual datapoints it contains. The

number of datapoints within a dataset is also referred to as the sample size. Statistically, the

larger the sample size m the better. However, there might be restrictions on computational

resources that limit the maximum sample size m that can be processed.

Figure 2.3 illustrates two key parameters of a dataset. Beside the sample size m, a

second key parameter of a dataset is the number of features used to characterize individual

datapoints.

Figure 2.3: Two main parameters of a dataset are the number m of datapoints it contains
and the number n of features used to characterize individual datapoints. A very important
characteristic of a dataset is the ratio m/n.

For most applications, it is impossible to have full access to every single microscopic

property of a datapoint. Consider a datapoint that represents a vaccine. A full characterization

of such a datapoint would require to specify its chemical composition down to level of

molecules and atoms. Moreover, there are properties of a vaccine that depend on the patient

who received the vaccine.

It is useful to distinguish between two different groups of properties of a datapoint. The

first group of properties is referred to as features and the second group of properties is

24

referred to as a label. Depending on the application domain, we might refer to labels also

as a target or the output variable. The features of a datapoint might also be referred to

as input variables.

The distinction between features and labels is somewhat blurry. The same property of a

datapoint might be used as a feature in one application, while it might be used as a label in

another application.

As an example, consider feature learning for datapoints representing images. One approach

to learn representative features of an image is to use some of the image pixels as the label

or target pixels. We can then learn new features by learning a feature map that allows to

predict the target pixels.

2.1.1 Features

Similar to the definition of datapoints, also the choice of which properties to be used as

features of a datapoint is a design choice. As a rule of thumb, features are properties or

quantities that can be computed or measured easily. Note that this is a highly informal

characterization since there is no widely-applicable criterion for the difficulty of computing

of measuring a property of datapoints.

Modern information-technology, including smartphones or wearables, allows to measure

a huge number of properties about datapoints in many application domains. Consider a

datapoint representing the book author “Alex Jung”. Alex uses a smartphone to take

snapshots. Let us assume that Alex takes five snapshots per day on average (sometimes

more, e.g., during a mountain hike).

We conclude that Alex takes more than 1000 snapshots per year. Each snapshot contains

around 106 pixels. Let us use each greyscale level of an individual pixel in those snapshots

as features. This results in more than 109 features (per year!). If we stack all those features

into a single feature vector x, its length n would be of the order of 109.

Many important ML applications involve datapoints represented by very long feature

vectors. To process such high-dimensional data, modern ML methods rely on concepts from

high-dimensional statistics [10, 62]. One such concept from high-dimensional statistics is

the notion of sparsity. Sparsity based methods, which we discuss in Section 3.4, exploits the

tendency of high-dimensional datapoints to be aligned along some low-dimensional subspace.

At first sight it might seem that “the more features the better” since using more features

might convey more relevant information to achieve the overall goal. However, as we discuss

in Chapter 7, it can actually be detrimental to the performance of ML methods to use an

25

excessive amount of (irrelevant) features.

Using too many irrelevant features might overwhelm or jam ML algorithms, which should

invest their computational resources mainly in the processing of the most relevant features.

It is difficult to give a precise characterization on the maximum number of features that

should be used to characterize the datapoints arising in a given application. As a rule of

thumb, the number m of (labeled) datapoints provided to a ML method should be much

larger than the number n of numeric features.

The informal condition m/n � 1 can be ensured by either collecting a sufficiently large

number m of datapoints or by using a sufficiently small number n of features. We next

briefly discuss how each of these two complementary approaches can be implemented.

The acquisition of (labeled) datapoints might be costly, requiring human experts labour.

Instead of collecting more raw data, it might be possible to generate synthetic data. Section

7.3 discusses how intrinsic symmetries of datasets can be used to augment the raw data with

synthetic data.

As an example for an intrinsic symmetry of data, consider datapoints representing an

image. We assign each image the label y = 1 if it shows a cat and y = −1 otherwise. For

each image with known label we can generate several other images with the same label. This

other images are simply obtained by image transformation such as rotations or re-scaling

(zoom-in or zoom-out) that do not change the depicted objects. We will see in Chapter 7

that regularization techniques can be interpreted as an implicit data augmentation.

Instead of collecting more datapoints to ensure the condition m/n, we can use try to

reduce the number n of features used to characterize datapoints. In some applications,

we might use some domain knowledge to choose the most relevant features. For other

applications, it might be difficult to tell which quantities are the best choice for features.

Chapter 9 will discuss some data-driven methods for extracting a small number of relevant

features of datapoints.

A datapoint is typically characterized by several individual features x1, . . . , xn. It is

convenient to stack the individual features into a single feature vector

x =
�
x1, . . . , xn

�T ∈ Rn.

Each datapoint is then characterized by such a feature vector x. Note that stacking the

features of a datapoint into a column vector x is pure convention. We could also arrange the

features as a row vector or even as a matrix, which might be even more natural for features

obtained by the pixels of an image (see Figure 2.4).

26

We refer to the set of possible feature vectors of datapoints arising in some ML application

as the feature space and denote it as X . The feature space is a design choice as it depends

on what properties of a datapoint we use as its features. This design choice should take

into account the statistical properties of the data as well as the available computational

infrastructure. If the computational infrastructure allows for efficient numerical linear algebra,

then using X = Rn might be a good choice. For a computational infrastructure that allows

to efficiently process networks or graphs, we could use the nodes of a graph as the feature

space (see Section ??).

The Euclidean space Rn is an example of a feature space with a rich geometric and

algebraic structure [51]. The algebraic structure of Rn is defined by vector addition and

multiplication of vectors with scalars.

The geometric structure of Rn is obtained by the Euclidean norm as a measure for the

distance between two elements of Rn.

The algebraic and geometric structure of Rn often enables an efficient search over Rn

to find elements with desired properties. Chapter 4.3 discusses examples of such search

problems in the context of learning an optimal hypothesis.

Beside the computational infrastructure, also the statistical properties of the data should

be taken into account for the choice of feature space. The linear algebraic structure of Rn

allows to efficiently represent and approximate datasets that are well aligned along linear

subspaces. Section 9.2 discusses methods that learn such approximations. The geometric

structure of Rn is used in Chapter 8 to organize data sets into few coherent groups or cluster.

Throughout this book we will mainly use the feature space Rn with dimension n being

the number of features of a datapoint. This feature space has proven useful in many ML

applications due to availability of efficient soft- and hardware for numerical linear algebra.

Moreover, the algebraic and geometric structure of Rn seems to reflect the intrinsic structure

of the data generated in many important application domains.1

Consider datapoints representing images with 512 by 512 pixels. A natural construction

for the feature vector of such datapoints is to stack the red, green and blue intensities for all

image pixels (see Figure 2.4). We end up with a feature vector belonging to the feature space

X = Rn of (rather large) dimension n = 3 · 5122. Indeed, for each of the 512 × 512 pixels

we obtain 3 numbers which encode the red, green and blue colour intensity of the respective

pixel (see Figure 2.4).

1This should not be too surprising as the Euclidean space has evolved as a mathematical abstraction of
physical phenomena.

27

In some applications, it is less obvious how to represent datapoints by a numeric feature

vector in Rn. The subfield of feature learning studies methods that map non-numeric data

to numeric feature vectors in Rn. These methods aim to structures in datasets that resemble

the algebraic and geometric structure of Rn. A quite impressive example for such methods

have been developed for textual data [41].

Figure 2.4: If the snapshot z(i) is stored as a 512×512 RGB bitmap, we could use as features
x(i) ∈ Rn the red-, green- and blue component of each pixel in the snapshot. The length of
the feature vector would then be n = 3 · 512 · 512 ≈ 786000.

2.1.2 Labels

Besides the features of a datapoint, there are other properties of a datapoint that represent

some higher-level information or “quantity of interest” associated with the datapoint. We

refer to the higher level information, or quantity of interest, associated with a datapoint as

its label (or “output” or “target”). In contrast to features, determining the value of labels

is more difficult to automate. Many ML methods revolve around finding efficient ways to

determine the label of a datapoint given its features.

As already mentioned above, the distinction of datapoint properties into labels and those

that are features is blurry. Roughly speaking, labels are properties of datapoints that might

only be determined with the help of human experts. For datapoints representing humans we

could define its label y as an indicator if the person has flu (y = 1) or not (y = 0). This label

value can typically only be determined by a physician. However, in another application we

might have enough resources to determine the flu status of any person of interest and could

use it as a feature that characterizes a person.

Consider a datapoint that represents some hike, at the start of which the snapshot in

Figure 2.2 has been taken. The features of this datapoint could be the red, green and blue

28

(RGB) intensities of each pixel in the snapshot in Figure 2.2. We stack these RGB values

into a vector x ∈ Rn whose length n is three times the number of pixels in the image.

The label y associated with a datapoint (which represents a hike) could be the expected

hiking time to reach the mountain in the snapshot. Alternatively, we could define the label

y as the water temperature of the lake visible in the snapshot.

The label space Y of an ML problem contains all possible label values of datapoints. We

refer to ML problems involving the Y = R as a regression problem. It is also common

to refer to ML problems involving a discrete (finite or countably infinite) label space as

classification problems.

ML problems with only two different label values are referred to as binary classification

problems. Examples of classification problems are: detecting the presence of a tumour

in a tissue, classifying persons according to their age group or detecting the current floor

conditions (“grass”, “tiles” or “soil”) for a mower robot.

The distinction between regression and classification problems is somewhat blurry. Consider

a binary classification problem based on datapoints whose label y takes on values −1 or 1.

We could turn this into a regression problem by using a new label y� which is defined as the

confidence in the label y being equal to 1. Given y� we can obtain y by thresholding, y = 1

if y� ≥ 0 whereas y = −1 if y� < 0.

A datapoint is called labeled if, besides its features x, the value of its label y is known.The

acquisition of labeled data points typically involves human labour, such as handling a water

thermometer at certain locations in a lake. In other applications, acquiring labels might

require sending out a team of marine biologists to the Baltic sea [54], running a particle

physics experiment at the European organization for nuclear research (CERN) [11], running

animal testing in pharmacology [19].

There are also online market places for human labelling workforce [43]. In these market

places, one can upload datapoints, such as images, and then pay some money to humans

that label the datapoints, such as marking images that show a cat.

Many applications involve datapoints whose features can be determined easily, but whose

labels are known for few datapoints only. Labeled data is a scarce resource. Some of the most

successful ML methods have been devised in application domains where label information

can be acquired easily [25]. ML methods for speech recognition and machine translation can

make use of massive labeled datasets that are freely available [35].

In the extreme case, we do not know the label of any single datapoint. Even in the

absence of any labeled data, ML methods can be useful for extracting relevant information

29

from features only. We refer to ML methods which do not require any labeled datapoints as

unsupervised ML methods. We discuss some of the most important unsupervised ML

methods in Chapter 8 and Chapter 9).

As discussed next, many ML methods aim at constructing (or finding) a “good” predictor

h : X → Y which takes the features x ∈ X of a datapoint as its input and outputs a predicted

label (or output, or target) ŷ = h(x) ∈ Y . A good predictor should be such that ŷ ≈ y, i.e.,

the predicted label ŷ is close (with small error ŷ − y) to the true underlying label y.

2.1.3 Scatterplot

Consider datapoints characterized by a single numeric feature x and label y. To gain more

insight into the relation between the features and label of a datapoint, it can be instructive

to generate a scatter plot as shown in Figure 1.2. A scatter plot depicts the datapoints

z(i) = (x(i), y(i)) in a two-dimensional plane with the axes representing the values of feature

x and label y.

A visual inspection of a scatterplot might suggest potential relationships between feature

x and label y. From Figure 1.2, it seems that there might be a relation between feature x and

label y since datapoints with larger x tend to have larger y. This makes sense since having

a larger minimum daytime temperature typically implies also a larger maximum daytime

temperature.

We can obtain scatter plots for datapoints with more than two features using feature

learning methods (see Chapter 9). These methods transform high-dimensional datapoints,

having billions of raw features, to three or two new features. These new features can then

be used as the coordinates of the datapoints in a scatter plot.

2.1.4 Probabilistic Models for Data

A powerful idea in ML is to interpret datapoints as realizations of random variables. For

ease of exposition let us consider datapoints that are characterized by a single feature x. The

following concepts can be extended easily to datapoints characterized by a feature vector x

and a label y.

One of the most basic examples of a probabilistic model for datapoints in ML is the

“independent and identically distributed” (i.i.d.) assumption. This assumption

interprets datapoints x(1), . . . , x(m) as realizations of statistically independent random variables

30

(RV) that have the same probability distribution p(x).2

It might seem somewhat awkward to interpret datapoints as realizations of random

variables with some probability distribution p(x). However, this interpretation allows us

to use the properties of the probability distribution to characterize the statistical properties

of collections of datapoints.

The probability distribution p(x) is either assumed to be known or estimated from data.

It is often enough to estimate only some parameters of the distribution p(x) such as the

mean and the variance. Section 3.12 discusses one particular approach to estimating the

parameters of a probability distribution from datapoints.

Some of the most basic and widely used parameters of a probability distribution p(x) are

the expected value or mean

µx = E{x} :=

�

x

xp(x)dx

and the variance

σ2
x := E

��
x− E{x}

�2�
.

These parameters can be estimated using the sample mean (average) and sample variance,

µ̂x := (1/m)
m�

i=1

x(i) , and �σ2
x := (1/m)

m�

i=1

�
x(i) − µ̂x

�2
. (2.1)

The sample mean and variance (2.1) can be shown to be maximum likelihood estimators of

the mean and variance of a normal (Gaussian) distribution p(x) (see [7, Chapter 2.3.4].

2.2 The Model

Consider a ML application generating datapoints, each characterized by features x ∈ X and

label y ∈ Y . The goal of ML is to learn a map h(x) such that

y ≈ h(x)����
ŷ

for any datapoint. (2.2)

The informal goal (2.2) needs to be made precise in two aspects. First, we need to quantify

the approximation error (2.2) incurred by a given hypothesis map h. Second, we need to

make precise what we actually mean by requiring (2.2) to hold for “any datapoint”. We

2We assume the reader is familiar with the concepts of a probability distribution which reduces to the
concept of a probability mass function for discrete RVs [3].

31

solve the first issue by the concept of a loss function in Section 2.3. The second issue is then

solved in Chapter 4 by using a simple probabilistic model for data.

The main goal of ML is to learn a good hypothesis h from some training data. Given a

good hypothesis map h, such that (2.2) is satisfied, ML methods use it to predict the label

of any datapoint. The prediction ŷ = h(x) is obtained by evaluating the hypothesis for the

features x of a datapoint. We will use the term predictor map for the hypothesis map to

highlight its use for computing predictions.

If the label space Y is finite, such as Y = {−1, 1}, we refer to a hypothesis also as

a classifier. For a finite label space Y and feature space X = Rn, we can characterize

a particular classifier map h using its decision boundary. The decision boundary of a

classifier h is the set of boundary points between the different decision regions

Ra := {x : ŷ = a} ⊆ X . (2.3)

Each label value a ∈ Y is associated with a decision region Ra. For a given label value

a ∈ Y , the decision region Ra contains all feature vectors x ∈ X which are mapped to this

label value, ŷ = a ∈ Y .

Figure 2.5: A predictor (hypothesis) h maps features x∈X , of an on-board camera snapshot,
to the prediction ŷ=h(x)∈Y for the coordinate of the current location of a cleaning robot.
ML methods use data to learn predictors h such that ŷ≈y (with true label y).

In principle, ML methods could use any possible map h : X → Y to predict the label

y ∈ Y via computing ŷ = h(x). However, any ML method has only limited computational

resources and therefore can only make use of a subset of all possible predictor maps.

This subset of computationally feasible (“affordable”) predictor maps is referred to as the

hypothesis space or model underlying a ML method.

The largest possible hypothesis space H is the set YX constituted by all maps from the

32

feature space X to the label space Y . The notation YX has to be understood a symbolic

shorthand denoting the set of all maps from X to Y . The set YX does in general not behave

like powers of numbers such as 45.

The hypothesis space H = YX is rarely used in practice since it is simply too large to

work within a reasonable amount of computational resources. As depicted in Figure 2.9, ML

methods typically use a hypothesis space H that is a tiny subset of YX .

The preference for a particular hypothesis space often depends on the available computational

infrastructure available to a ML method. Different computational infrastructures favour

different hypothesis spaces. ML methods implemented in a small embedded system, might

prefer a linear hypothesis space which results in algorithms that require a small number of

arithmetic operations. Deep learning methods implemented in a cloud computing environment

typically use much larger hypothesis spaces obtained from deep neural networks.

For the computational infrastructure provided by a spreadsheet software, we might

use a hypothesis space constituted by maps h : X → Y which can be implemented easily

by a spreadsheet (see Table 2.1). If we instead use the programming language Python to

implement a ML method, we can obtain a hypothesis class by collecting all possible Python

subroutines with one input (scalar feature x), one output argument (predicted label ŷ) and

consisting of less than 100 lines of code.

If the computational infrastructure allows for efficient numerical linear algebra and the

feature space is the Euclidean space Rn, a popular choice of the hypothesis space is

H(n) :={h(w) :Rn→R :h(w)(x)=xTw with some weight vector w∈Rn}. (2.4)

The hypothesis space (2.4) is constituted by the linear maps (functions) h(w) : Rn →
R. The function h(w) maps the feature vector x ∈ Rn to the predicted label (or output)

h(w)(x) = xTw ∈ R. For n=1 the feature vector reduces a single feature x and the hypothesis

space (2.4) consists of all maps h(w)(x) = wx with some weight w ∈ R (see Figure 2.7).

The elements of the hypothesis space H in (2.4) are parameterized by the weight vector

w ∈ Rn. Each map h(w) ∈ H is fully specified by the weight vector w. Instead of searching

over the function space H (its elements are functions!), we can equivalently search over all

possible weight vectors w ∈ Rn.

The search space Rn is still (unaccountably) infinite but it has a rich geometric and

algebraic structure that allows to efficiently search over this space. Chapter 5 discusses

methods that use the concept of gradients to implement an efficient search for good weights

w ∈ Rn.

33

Figure 2.6: A predictor (hypothesis) h : X → Y takes the feature vector x(t) ∈ X (e.g.,
representing the snapshot taken by Rumba at time t) as input and outputs a predicted label
ŷt = h(x(t)) (e.g., the predicted y-coordinate of Rumba at time t). A key problem studied
within ML is how to automatically learn a good (accurate) predictor h such that yt ≈ h(x(t)).

1

1 h(1)(x)=x

h(0.2)(x)=0.2x

h(0.7)(x)=0.7x

feature x

h(w)(x)

Figure 2.7: Three particular members of the hypothesis space H = {h(w) : R → R, h(w)(x) =
w · x} which consists of all linear functions of the scalar feature x. We can parametrize this
hypothesis space conveniently using the weight w ∈ R as h(w)(x) = w · x.

34

adf

h(x) < 0, ŷ = −1

decision boundary

h(x) ≥ 0, ŷ = 1

w

Figure 2.8: A hypothesis h : X → Y for a binary classification problem, with label space
Y = {−1, 1} and feature space X = R2, can be represented conveniently via the decision
boundary (dashed line) which separates all feature vectors x with h(x) ≥ 0 from the region
of feature vectors with h(x) < 0. If the decision boundary is a hyperplane {x : wTx = b}
(with normal vector w ∈ Rn), we refer to the map h as a linear classifier.

The hypothesis space (2.4) is also appealing because of the broad availability of computing

hardware such as graphic processing units. Another factor boosting the widespread use of

(2.4) might be the offer for optimized software libraries for numerical linear algebra.

The hypothesis space (2.4) can also be used for classification problems, e.g., with label

space Y = {−1, 1}. Indeed, given a linear predictor map h(w) we can classify data points

according to ŷ = 1 for h(w)(x) ≥ 0 and ŷ = −1 otherwise. The resulting classifier is an

example of a linear classifier.

The defining property of a linear classifier, which maps data points with features x to a

predicted label ŷ, is that its decision regions (2.3) are half-spaces. As illustrated in Figure

2.8, the decision boundary of a linear classifier is a hyperplane {x : wTx = b}.
ML methods that use linear classifiers include logistic regression (see Section 3.6), the

SVM (see Section 3.7) and naive Bayes’ classifiers (see Section 3.8).

Despite all the above mentioned benefits of the hypothesis space (2.4) it might seem too

restrictive to consider only hypotheses that are linear functions of the features. Indeed, in

most applications the relation between features x and label y of a datapoint is highly non-

linear. We can then upgrade the linear hypothesis space by replacing the original features

x of a data point with some new features z = Φ(x). The new features z are obtained by

applying some feature map φ. If we apply a linear hypothesis to the new features z, we

35

obtain a non-linear map from the original features x to the predicted label ŷ,

ŷ = wTz = wTΦ(x). (2.5)

Section 3.9 discusses the family of kernel methods which are based on the concatenation

(2.5) of (high-dimensional) feature maps Φ(·) with a linear hypothesis map.

The hypothesis space (2.4) can only be used for datapoints whose features are numeric

vectors x = (x1, . . . , xn)
T ∈ Rn. In some application domains, such as natural language

processing, there is no obvious natural choice for numeric features. However, since ML

methods based on the hypothesis space (2.4) are well developed (using numerical linear

algebra), it might be useful to construct numerical features even for non-numeric data (such

as text). For text data, there has been significant progress recently on methods that map a

human-generated text into sequences of vectors (see [22, Chap. 12] for more details).

The hypothesis space H used by a ML method is a design choice. Some choices have

proven useful for a wide range of applications (see Chapter 3). In general, choosing a suitable

hypothesis space requires a good understanding (“domain expertise”) of statistical properties

of the data and the limitations of the available computational infrastructure.

The design choice of the hypothesis space H has to balance between two conflicting

requirements.

• It has to be sufficiently large such that it contains at least one accurate predictor

map ĥ ∈ H. A hypothesis space H that is too small might fail to include a predictor

map required to reproduce the (potentially highly non-linear) relation between features

and label.

Consider the task of grouping or classifying images into “cat” images and “no cat

image”. The classification of each image is based solely on the feature vector obtained

from the pixel colour intensities.

The relation between features and label (y ∈ {cat, no cat}) is highly non-linear. Any

ML method that uses a hypothesis space consisting only of linear maps will most likely

fail to learn a good predictor (classifier). We say that a ML method underfits the

data if it uses a too small hypothesis space.

• It has to be sufficiently small such that its processing fits the available computational

resources (memory, bandwidth, processing time). We must be able to efficiently search

over the hypothesis space to find good predictors (see Section 2.3 and Chapter 4).

36

This requirement implies also that the maps h(x) contained in H can be evaluated

(computed) efficiently [2]. Another important reason for using a hypothesis space H
not too large is to avoid overfitting (see Chapter 7). If the hypothesis space H is too

large, then just by luck we might find a predictor which fits the training dataset well.

Such a predictor might perform poorly on data which is different from the training

data (it will not generalize well).

The notion of a hypothesis space being too small or being too large can be made precise

in different ways. The size of a finite hypothesis space H can be defined as its cardinality

|H| which is simply the number of its elements.

Example. Consider datapoints represented by 100 × 10 = 1000 black-and-white pixels

(see Figure 2.4) and characterized by a binary label y ∈ {0, 1}. We can model such datapoints

using the feature space X = {0, 1}1000 and label space Y = {0, 1}. The largest possible

hypothesis space H = YX consists of all maps from X to Y . The size or cardinality of this

space is |H| = 22
1000

.

Many ML methods use a hypothesis space which contains infinitely many different

predictor maps (see, e.g., (2.4)). For an infinite hypothesis space, we cannot simply use

the number of its elements as a measure for its size (since this number is not well-defined).

Different concepts have been studied for measuring the size of infinite hypothesis spaces with

the Vapnik–Chervonenkis (VC) dimension being maybe the most famous one [60].

We will use a simplified variant of the VC dimension and define the effective dimension

of a hypothesis space H as the maximum number D of datapoints, drawn from a continues

probability distribution, that can be perfectly fit (with probability one). For any set of D

datapoints with different features, we can always find a hypothesis h ∈ H such that y = h(x)

for all datapoints (x, y) ∈ D.

Let us illustrate our concept for the size of a hypothesis space with two examples: linear

regression and polynomial regression. Linear regression uses the hypothesis space

H(n) = {h : Rn → R : h(x) = wTx with some vector w ∈ Rn}.

Consider a dataset D =
��
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

��
consisting of m datapoints. Each

datapoint is characterized by a feature vector x(i) ∈ Rn and a numeric label y(i) ∈ R.
Let us assume that datapoints are realizations of i.i.d. continuous random variables with

the same probability density function. Under this assumption, the matrix

X =
�
x(1), . . . ,x(m)

�
∈ Rn×m,

37

which is obtained by stacking (column-wise) the feature vectors x(i) (for i = 1, . . . ,m), is full

rank with probability one. Basic linear algebra allows to show that the datapoints in D can

be perfectly fit by a linear map h ∈ H(n) as long as m ≤ n. In other words, for m ≤ n, we

can find (with probability one) a weight vector �w such that y(i) = �wTx(i) for all i = 1, . . . ,m.

The effective dimension of the linear hypothesis space H(n) is therefore D = n.

As a second example, consider the hypothesis space H(n)
poly which is constituted by the

set of polynomials with maximum degree n. The fundamental theorem of algebra tells us

that any set of m datapoints with different features can be perfectly fit by a polynomial of

degree n as long as n ≥ m. Therefore, the effective dimension of the hypothesis space H(n)
poly

is D = n. Section 3.2 discusses polynomial regression in more detail.

YX

H

Figure 2.9: The hypothesis space H is a (typically very small) subset of the (typically very
large) set YX of all possible maps from feature space X into the label space Y .

38

feature x prediction h(x)
0 0

1/10 10
2/10 3
...

...
1 22.3

Table 2.1: A spreadsheet representing a hypothesis map h in the form of a look-up table.
The value h(x) is given by the entry in the second column of the row whose first column
entry is x.

2.3 The Loss

Every practical ML method uses some hypothesis spaceH which consists of all computationally

feasible predictor maps h. Which predictor map h out of all the maps in the hypothesis

space H is the best for the ML problem at hand? We answer this question by using the

concept of a loss. The loss is a measure for the error incurred by the prediction h(x) when

the true label is y.

We formally define a loss function L : X×Y×H → R which measures the loss L((x, y), h)
incurred by predicting the label y of a datapoint using the prediction h(x)(=: ŷ). The concept

of loss functions is best understood by considering some examples.

Regression Loss. For ML problems involving numeric labels y ∈ R, a good first choice

for the loss function can be the squared error loss (see Figure 2.10)

L((x, y), h) :=
�
y − h(x)����

=ŷ

�2
. (2.6)

The squared error loss (2.6) depends on the features x only via the predicted label value

ŷ = h(x). We can evaluate the squared error loss solely using the prediction h(x) and the

true label value y. Besides the prediction h(x), no other properties of the datapoint’s features

x are required to determine the squared error loss. We will use the shorthand L(y, ŷ) for

any loss function that depends on the features only via the prediction ŷ = h(x).

The squared error loss (2.6) has appealing computational and statistical properties. For

linear predictor maps h(x) = wTx, the squared error loss is a convex and differentiable

function of the weight vector w. This allows, in turn, to efficiently search for the optimal

linear predictor using efficient iterative optimization methods (see Chapter 5).

The squared error loss also has a useful interpretation in terms of a probabilistic model

39

−2 −1 1 2

1

2

prediction error y − h(x)

squared error loss L

Figure 2.10: A widely used choice for the loss function in regression problems (with label
space Y = R) is the squared error loss L((x, y), h) := (y − h(x))2. To evaluate the loss
function for a given hypothesis h we need to know the feature x and the label y of the
datapoint.

for the features and labels. Minimizing the squared error loss is equivalent to maximum

likelihood estimation within a linear Gaussian model [26, Sec. 2.6.3].

Another loss function used in regression problems is the absolute error loss |ŷ−y|. Using
this loss function to learn a good predictor results in methods that are robust against few

outliers in the training set (see Section 3.3).

Classification Loss. In classification problems with a discrete label space Y , such as

in binary classification where Y = {−1, 1}, the squared error (y − h(x))2 is not a useful

measure for the quality of a classifier h(x). We would like the loss function to punish wrong

classifications, e.g., when the true label is y = −1 but the classifier produces a large positive

number, e.g., h(x) = 1000. On the other hand, for a true label y = −1, we do not want to

punish a classifier h which yields a large negative number, e.g., h(x) = −1000. But exactly

this unwanted result would happen for the squared error loss.

Figure 2.11 depicts a dataset consisting of 4 datapoints with binary labels. datapoints

with label y = 1 are depicted by squares, while those with label y = −1 are depicted by

circles. We could use these four datapoints to learn a linear hypothesis h(x) = w1x+ w0 to

classify datapoints according to ŷ = 1 for h(x) ≥ 0 and ŷ = −1 for h(x) < 0.

Figure 2.11 depicts two examples, denoted h(1)(x) and h(2)(x), of such a linear hypothesis.

The classifications ŷ obtained by thresholding h(2)(x) would perfectly match the labels of the

four training datapoints. In contrast, the classifications ŷ obtained by thresholding h(1)(x)

40

disagree with the true labels for the datapoints with y = −1.

Based on the training data, we should prefer using h(2)(x) over h(1) to classify datapoints.

However, the squared error loss incurred by the (reasonable) classifier h(1) is much larger

than the squared error loss incurred by the (poor) classifier h(2). The squared error loss is

typically a bad choice for assessing the quality of a hypothesis map that is used for classifying

datapoints into different categories.

(1,−1)
(2,−1)

(5, 1) (x=7, y=1)

feature x

predictor h(2)(x) = 2(x−3)

predictor h(1)(x) = 1

label y

Figure 2.11: Minimizing the squared error loss would prefer the (poor) classifier h(1) over
the (reasonable) classifier h(2).

We now discuss some loss functions which are suitable for assessing the quality of a

hypothesis map that is used to classify datapoints according to their binary labels. It will be

convenient to encode the two label values by the real numbers −1 and 1. The formulas for

the loss functions we present only apply to this encoding. The modification of these formulas

to a different encoding, such as label values 0 and 1, is not difficult.

Consider the problem of detecting forest fires as early as possible using webcam snapshots

such as the one depicted in Figure 2.12. A particular snapshot is characterized by the features

x and the label y ∈ Y = {−1, 1} with y = 1 if the snapshot shows a forest fire and y = −1 if

there is no forest fire. We would like to find or learn a classifier h(x) which takes the features

x as input and provides a classification according to

ŷ =




1 if h(x) ≥ 0

−1 if h(x) ≤ 0.
(2.7)

41

Figure 2.12: A webcam snapshot taken near a ski resort in Lapland.

Ideally we would like to have ŷ = y for any datapoint. This suggests to learn a hypothesis

h(x) by minimizing the 0/1 loss

L((x, y), h) :=




1 if y �= ŷ

0 else,
with ŷ = 1 for h(x) ≥ 0, and ŷ = −1 for h(x) < 0. (2.8)

Figure 2.13 illustrates the 0/1 loss (2.8) for a datapoint with features x and label y = 1 as

a function of the hypothesis h. For a given datapoint (x, y) and hypothesis h, the 0/1 loss

is equal to zero if ŷ = y (see (2.7)) and equal to one otherwise.

The 0/1 loss (2.8) is conceptually appealing when datapoints are interpreted as realizations

of i.i.d. random variables with the same probability distribution p(x, y). Givenm realizations

(x(i), y(i))
�m
i=1

of such i.i.d. random variables,

(1/m)
m�

i=1

L((x(i), y(i)), h) ≈ P(y �= ŷ) (2.9)

with high probability for sufficiently large sample size m. The precise formulation of the

approximation (2.9) is known as the “law of large numbers” [5, Section 1]. We can apply the

law of large numbers since the loss values L((x(i), y(i)), h) are realizations of i.i.d. random

variables. The average 0/1 loss on the left-hand side of (2.9) is referred to as the accuracy

of the hypothesis h.

In view of (2.9), the 0/1 loss seems a very natural choice for assessing the quality of a

classifier if our goal is to enforce correct classification (ŷ = y). This appealing statistical

property of the 0/1 loss comes at the cost of high computational complexity. Indeed, for a

given datapoint (x, y), the 0/1 loss (2.8) is neither convex nor differentiable when viewed

42

as a function of the classifier h. Thus, using the 0/1 loss for binary classification problems

typically involves advanced optimization methods for solving the resulting learning problem

(see Section 3.8).

In order to “cure” the non-convexity of the 0/1 loss we approximate it by a convex loss

function. This convex approximation results in the hinge loss

L((x, y), h) := max{0, 1− y · h(x)}. (2.10)

Figure 2.13 depicts the hinge loss (2.10) as a function of the hypothesis h(x). While the

hinge loss avoids the non-convexity of the 0/1 loss it still is a non-differentiable function of

the classifier h.

Section 3.6 discusses the logistic loss which is a differentiable loss function that is useful

for classification problems. The logistic loss

L((x, y), h) := log(1 + exp(−yh(x))), (2.11)

is used within logistic regression to measure the usefulness of a linear hypothesis h(x) = wTx.

For a fixed feature vector x and label y, both the hinge and the logistic loss function are

convex functions of the hypothesis h. The logistic loss (2.11) depends smoothly on h

such that we could define a derivative of the loss with respect to h. In contrast, the hinge

loss (2.10) is non-smooth which makes it more difficult to minimize.

ML methods that use the convex and differentiable logistic loss function, such as logistic

regression in Section 3.6, can apply simple gradient based methods such as GD (see

Chapter 5) to minimize the average loss. In contrast, we cannot use gradient based methods

to minimize the hinge loss since it is not differentiable. However, we can apply a generalization

of GD which is known as subgradient descent [9]. Loosely speaking, subgradient descent is

obtained from GD by replacing the concept of a gradient with the concept of a subgradient.

Let us emphasize that, very much like the choice of features and hypothesis space,

the question of which particular loss function to use within an ML method is a design

choice. The choice for the loss function should take into account the available computational

resources and the statistical properties of the data (see Section 4.2). If we do not have access

to any labeled datapoint, we might not use the squared error loss for measuring the quality

of a hypothesis.

43

−2 −1 1 2

1

2

predictor h(x)

loss L

very confident in ŷ=1 ⇒

logistic loss (for y=1)

squared error (for y=1)

hinge loss (for y=1)

0/1 loss (for y=1)

⇐ very confident in ŷ=−1

Figure 2.13: Three loss functions for assessing the quality of a hypothesis h which is used to
classify a datapoint with true label y = 1 according to (2.7). The more confident we are in
a correct classification (ŷ = 1), i.e, the more positive h(x), the smaller the loss. Each of the
three loss functions tends monotonically to 0 for increasing h(x).

An important aspect guiding the choice of the loss function is the computational complexity

of the resulting ML method. The basic idea behind ML methods is quite simple: learn (find)

the particular hypothesis out of a given hypothesis space which yields the smallest (average)

loss. Section 4.2 will discuss how the choice for the loss function influences the computational

complexity of the resulting ML method. Some loss functions can be minimized using efficient

iterative methods that will be discussed in Chapter 5.

Empirical and Generalization Risk. Many ML methods are based on a simple

probabilistic model for the observed datapoints (i.i.d.). Using this assumption, we can

define the average or generalization risk as the expectation of the loss. Many ML methods

approximate the expected value of the loss incurred by a given hypothesis by an empirical

(sample) average over a finite set of labeled datapoints D =
�
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

�
.

We define the empirical risk of a hypothesis h ∈ H for a dataset D as

E(h|D) = (1/m)
m�

i=1

L((x(i), y(i)), h). (2.12)

The empirical risk of h ∈ H is the average loss on the datapoints in D. To ease notational

burden and if the dataset D is clear from the context, we use E(h) as a shorthand for E(h|D).

Note that in general the empirical risk depends on both, the hypothesis h and the properties

of the dataset D.

Regret. In some ML applications, we might have access to the predictions obtained from

44

some reference methods or experts. The quality of a hypothesis h can then be measured

via the difference between the loss incurred by its predictions h(x) and the loss incurred by

the predictions of the experts [27]. This difference is referred to as the regret. This different

measures how much we regret to have used the prediction h(x) instead of having followed

the prediction of the expert. The goal of regret minimization is to learn a hypothesis with a

small regret compared to all considered experts.

The concept of regret minimization is useful when we do not make any probabilistic

assumptions (see Section 2.1.4) about the data. Without a probabilistic model we cannot

use the Bayes risk, which is the risk of the Bayes optimal estimator, as a benchmark.

Regret minimization techniques can be designed and analyzed without any such probabilistic

model for the data [12]. This approach replaces the Bayes risk with the regret relative to

given reference predictors (experts) as the benchmark.

Partial Feedback, “Reward”. Some applications involve datapoints whose labels are

so difficult or costly to determine that we cannot assume to have any labeled data available.

Without any labeled data, we cannot use the concept of a loss function to measure the quality

of a prediction.3 Instead we must use some other form of indirect feedback or “reward” that

indicates the usefulness of a particular prediction [12, 58].

Consider the ML problem of predicting the optimal steering directions for a toy car. The

prediction has to be recalculated for each new state of the toy car. ML methods can sense

the state via a feature vector x whose entries are pixel intensities of a snapshot. The goal

is to learn a hypothesis map from the feature vector x to a guess ŷ = h(x) for the optimal

steering direction y (true label).

In some applications, we might not have access to the true label of any datapoint. This

means that we cannot evaluate the quality of a particular map based on the average loss on

training data. Instead, we might have only some indirect signal about the loss incurred by

the prediction ŷ = h(x). Such a feedback signal, or reward, could be obtained by a distance

sensor which measures the change in the distance between the car and its goal such as the

charging station.

2.4 Putting Together the Pieces

To illustrate how ML methods combine particular design choices for data, model and loss,

we consider datapoints characterized by a single numeric feature x ∈ R and a numeric label

3The evaluation of the loss function requires that the label value is known!

45

y ∈ R. We assume to have access to m labeled datapoints

�
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

�
(2.13)

for which we know the true label values y(i).

The assumption of knowing the exact true label values y(i) for any datapoint is an

idealization. We might often face labelling or measurement errors such that the observed

labels are noisy versions of the true label. Later on, we will discuss techniques that allow

ML methods to cope with noisy labels in Chapter 7.

Our goal is to learn a predictor map h(x) such that h(x) ≈ y for any datapoint. We

require the predictor map to belong to the hypothesis space H of linear predictors

h(w0,w1)(x) = w1x+ w0. (2.14)

The predictor (2.14) is parameterized by the slope w1 and the intercept (bias or offset)

w0. We indicate this by the notation h(w0,w1). A particular choice for w1, w0 defines some

linear predictor h(w0,w1)(x) = w1x+ w0.

Let us use some linear predictor h(w0,w1)(x) to predict the labels of training datapoints.

In general, the predictions ŷ(i) = h(w0,w1)
�
x(i)
�
will not be perfect and incur a non-zero

prediction error ŷ(i) − y(i) (see Figure 2.14).

We measure the goodness of the predictor map h(w0,w1) using the average squared error

loss (see (2.6))

f(w0, w1) := (1/m)
m�

i=1

�
y(i) − h(w0,w1)(x(i))

�2

(2.14)
= (1/m)

m�

i=1

�
y(i) − (w1x

(i) + w0)
�2
. (2.15)

The training error f(w0, w1) is the average of the squared prediction errors incurred by the

predictor h(w0,w1)(x) to the labeled datapoints (2.13).

It seems natural to learn a good predictor (2.14) by choosing the weights w0, w1 to

minimize the training error

min
w1,w0∈R

f(w0, w1)
(2.15)
= min

w1,w0∈R
(1/m)

m�

i=1

�
y(i) − (w1x

(i) + w0)
�2
. (2.16)

46

The optimal weights w�
0, w

�
1 are characterized by the zero-gradient condition,4

∂f(w�
0, w

�
1)

∂w0

= 0, and
∂f(w�

0, w
�
1)

∂w1

= 0. (2.17)

Inserting (2.15) into (2.17) and by using basic rules for calculating derivatives, we obtain the

following optimality conditions

(1/m)
m�

i=1

�
y(i) − (w�

1x
(i) + w�

0)
�
= 0, and (1/m)

m�

i=1

x(i)
�
y(i) − (w�

1x
(i) + w�

0)
�
= 0. (2.18)

Any weights w�
0, w

�
1 that satisfy (2.18) define a predictor h(w�

0,w
�
1) = w�

1x + w�
0 that is

optimal in the sense of incurring minimum training error,

f(w�
0, w

�
1) = min

w0,w1∈R
f(w0, w1).

We find it convenient to rewrite the optimality condition (2.18) using matrices and

vectors. To this end, we first rewrite the predictor (2.14) as

h(x) = wTx with w =
�
w0, w1

�T
,x =

�
1, x
�T

.

Let us stack the feature vectors x(i) =
�
1, x(i)

�T
and labels y(i) of training datapoints (2.13)

into the feature matrix and label vector,

X =
�
x(1), . . . ,x(m)

�T ∈ Rm×2,y =
�
y(1), . . . , y(m)

�T ∈ Rm. (2.19)

We can then reformulate (2.18) as

XT
�
y −Xw�� = 0. (2.20)

The entries of any weight vector w� =
�
w�

0, w
�
1

�
that satisfies (2.20) are solutions to (2.18).

4A necessary and sufficient condition forw� to minimize a convex differentiable function f(w) is∇f(w�) =
0 [8, Sec. 4.2.3].

47

Figure 2.14: We can evaluate the quality of a particular predictor h ∈ H by measuring the
prediction error y − h(x) obtained for a labeled datapoint (x, y).

2.5 Exercises

2.5.1 How Many Features?

Consider the ML problem underlying a music information retrieval smartphone app [63].

Such an app aims at identifying the song title based on a short audio recording of (an

interpretation of) the song obtained via the microphone of a smartphone. Here, the feature

vector x represents the sampled audio signal and the label y is a particular song title out of

a huge music database. What is the length n of the feature vector x ∈ Rn if its entries are

the signal amplitudes of a 20-second long recording which is sampled at a rate of 44 kHz?

2.5.2 Multilabel Prediction

Consider datapoints, each characterized by a feature vector x ∈ R10 and vector-valued labels

y ∈ R30. Such vector-valued labels might be useful in multi-label classification problems.

We might try to predict the label vector based on the features of a datapoint using a linear

predictor map

h(x) = Wx with some matrix W ∈ R30×10. (2.21)

How many different linear predictors (2.21) are there ? 10, 30,40, infinite.

48

2.5.3 Average Squared Error Loss as Quadratic Form

Consider linear hypothesis space consisting of linear maps parameterized by weights w. We

try to find the best linear map by minimizing the average squared error loss (empirical

risk) incurred on some labeled training datapoints (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)). Is

it possible to write the resulting empirical risk, viewed as a function f(w) as a convex

quadratic form f(w) = wTCw + bw + c? If this is possible, how are the matrix C, vector

b and constant c related to the feature vectors and labels of the training data ?

2.5.4 Find Labeled Data for Given Empirical Risk

Consider linear hypothesis space consisting of linear maps h(w)(x) = wTx that are parameterized

by the weight vector w. We learn a good choice for the weight vector by minimizing

the average squared error loss f(w) = E
�
h(w)|D

�
incurred by h(w)(x) on the training set

D =
�
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

�
. Is it possible to reconstruct the training data D just from

knowing the function f(w)?. Is the resulting labeled training data unique or are there

different training sets that could have resulted in the same empirical risk function? Hint:

Write down the training error f(w) in the form f(w) = wTQw + c + bTw with some

matrix Q, vector b and scalar c that might depend on the features and labels of the training

datapoints.

2.5.5 Dummy Feature Instead of Intercept

Show that any predictor of the form h(x) = w1x + w0 can be emulated by combining a

feature map x �→ z with a predictor of the form wTz.

2.5.6 Approximate Non-Linear Maps Using Indicator Functions

for Feature Maps

Consider an ML application generating datapoints characterized by a scalar feature x ∈
R and numeric label y ∈ R. We construct non-linear predictor maps by first mapping

the feature x to a new feature vector z = (φ1(x),φ2(x),φ3(x),φ4(x)). The components

φ1(x), . . . ,φ4(x) are indicator functions of intervals [−10,−5), [−5, 0), [0, 5), [5, 10]. In particular,

φ1(x) = 1 for x ∈ [−10,−5) and φ1(x) = 0 otherwise. We construct a hypothesis space H1

by all maps of the form wTz. Note that the map is a function of the feature x since the

feature vector z is a function of x. Which of the following predictor maps belong to H1?

49

(a) (b)

2.5.7 Python Hypothesis Space

Consider the source codes below for five different Python functions that read in the feature

x and return some prediction ŷ. How many elements does the hypothesis space contain that

is constituted by all maps h(x) that can be represented by one of those Python functions.

2.5.8 A Lot of Features

In many application domains, we have access to a large number of features for each individual

datapoint. Consider healthcare, where datapoints represent human patients. We could use

all the measurements and diagnosis stored in the patient health record as features. When we

use ML algorithms to analyse these datapoints, is it in general a good idea to use as much

features as possible for datapoints ?

2.5.9 Over-Parameterization

Consider datapoints characterized by feature vectors x ∈ R2 and a numeric label y ∈ R. We

want to learn the best predictor out of the hypothesis space

H =
�
h(x) = xTAw : w ∈ S}.

Here, we used the matrix A =

�
1 −1

−1 1

�
and the set

S =
�
(1, 1)T , (2, 2)T , (−1, 3)T , (0, 4)T

�
⊆ R2.

What is the cardinality of H, i.e., how many different predictor maps does H contain?

50

2.5.10 Squared Error Loss

Consider a hypothesis space H constituted by three predictors h1(·), h2(·), h3(·). Each

predictor hj(x) is a real-valued function of a real-valued argument x. Moreover, for each

j ∈ {1, 2, 3}, hj(x) = 0 for all x2 ≤ 1. Can you tell which of these predictors is optimal

in the sense of incurring the smallest average squared error loss on the three (training)

datapoints (x = 1/10, y = 3), (0, 0) and (1,−1).

2.5.11 Classification Loss

Exercise. How would Figure 2.13 change if we consider the loss functions for a

datapoint z = (x, y) with known label y = −1?

2.5.12 Intercept Term

Linear regression models the relation between the label y and feature x of a datapoint by

y = h(x) + e with some small additive term e. The predictor map h(x) is assumed to be

linear h(x) = w1x + w0. The weight w0 is sometimes referred to as the intercept (or bias)

term. Assume we know for a given linear predictor map its values h(x) for x = 1 and x = 3.

Can you determine the weights w1 and w0 based on h(1) and h(3)?

2.5.13 Picture Classification

Consider a huge collection of outdoor pictures you have taken during your last adventure

trip. You want to organize these pictures as three categories (or classes) dog, bird and fish.

How could you formalize this task as a ML problem?

2.5.14 Maximum Hypothesis Space

Consider datapoints characterized by a single real-valued feature x and a single real-valued

label y. How large is the largest possible hypothesis space of predictor maps h(x) that read

in the feature value of a datapoint and deliver a real-valued prediction ŷ = h(x) ?

2.5.15 A Large but Finite Hypothesis Space

Consider datapoints whose features are 10 × 10 black-and-white (bw) pixel images. Each

datapoint is also characterized by a binary label y ∈ {0, 1}. Consider the hypothesis space

51

which is constituted by all maps that take a bw image as input and deliver a prediction for

the label. How large is this hypothesis space?

2.5.16 Size of Linear Hypothesis Space

Consider a training set of m datapoints with feature vectors x(i) ∈ Rn and numeric labels

y(1), . . . , y(m). The feature vectors and label values of the training set are arbitrary except

that we assume the feature matrix X =
�
x(1), . . .

�
is full rank. What condition on m and

n guarantee that we can find a linear predictor h(x) = wTx that perfectly fits the training

set, i.e., y(1) = h
�
x(1)
�
, . . . , y(m) = h

�
x(m)

�
.

52

Chapter 3

Some Examples

As discussed in Chapter 2, ML methods combine three main components:

• the data which is characterized by features which can be computed or measured easily

and labels which represent high-level facts.

• a model or hypothesis space H which consists of computationally feasible predictor

maps h ∈ H.

• a loss function to measure the quality of a particular predictor map h.

Each of these three components involves design choices for the data features and labels, the

model and loss function. This chapter details the specific design choices used by some of the

most popular ML methods.

3.1 Linear Regression

Linear regression uses the feature space X =Rn, label space Y=R and the linear hypothesis

space

H(n) = {h(w) : Rn→R : h(w)(x)=wTx with some

weight vector w ∈ Rn}. (3.1)

The quality of a particular predictor h(w) is measured by the squared error loss (2.6).

Using labeled training data D = {(x(i), y(i))}mi=1, linear regression learns a predictor ĥ which

53

model

logistic
loss

squared
error

hinge
loss

regret

0/1 loss

loss

linear maps neural nets
piecewise
constant

linear
regression

logistic
regression

SVM

LinUCB

Näıve Bayes
Decision Tree
Classifier

Decision Tree
Regression

DeepRL

CNN
Classifier

Figure 3.1: ML methods fit a model to data by minimizing a loss function. Different ML
methods use different design choices for model, data and loss.

minimizes the average squared error loss, or mean squared error, (see (2.6))

ĥ = argmin
h∈H(n)

E(h|D) (3.2)

(2.12)
= argmin

h∈H(n)

(1/m)
m�

i=1

(y(i) − h(x(i)))2.

Since the hypothesis space H(n) is parameterized by the weight vector w (see (3.1)), we

can rewrite (3.2) as an optimization problem directly over the weight vector w:

�w = argmin
w∈Rn

(1/m)
m�

i=1

(y(i) − h(w)(x(i)))2

h(w)(x)=wTx
= argmin

w∈Rn

(1/m)
m�

i=1

(y(i) −wTx(i))2. (3.3)

The optimization problems (3.2) and (3.3) are equivalent in the following sense: Any optimal

weight vector �w which solves (3.3), can be used to construct an optimal predictor ĥ, which

solves (3.2), via ĥ(x) = h(�w)(x) =
�
�w
�T

x.

54

3.2 Polynomial Regression

Consider an ML problem involving datapoints which are characterized by a single numeric

feature x ∈ R (the feature space is X = R) and a numeric label y ∈ R (the label space is

Y = R). We observe a bunch of labeled datapoints which are depicted in Figure 3.2.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

feature x

la
b
el

y

Figure 3.2: A scatterplot of some datapoints (x(i), y(i)).

Figure 3.2 suggests that the relation x �→ y between feature x and label y is highly non-

linear. For such non-linear relations between features and labels it is useful to consider a

hypothesis space which is constituted by polynomial maps

H(n)
poly = {h(w) : R → R : h(w)(x) =

n�

r=1

wrx
r−1, with

some w=(w1, . . . , wn)
T ∈Rn}. (3.4)

We can approximate any non-linear relation y=h(x) with any desired level of accuracy using

a polynomial
�n

r=1 wrx
r−1 of sufficiently large degree n.1

As for linear regression (see Section 3.1), we measure the quality of a predictor by the

squared error loss (2.6). Based on labeled training data D = {(x(i), y(i))}mi=1, with scalar

features x(i) and labels y(i), polynomial regression amounts to minimizing the average squared

error loss (mean squared error) (see (2.6)):

min
h∈H(n)

poly

(1/m)
m�

i=1

(y(i) − h(w)(x(i)))2. (3.5)

1The precise formulation of this statement is known as the “Stone-Weierstrass Theorem” [51, Thm. 7.26].

55

We can interpret polynomial regression as a combination of a feature map (transformation)

(see Section 2.1.1) and linear regression (see Section 3.1). Indeed, any polynomial predictor

h(w) ∈ H(n)
poly is obtained as a concatenation of the feature map

φ(x) �→ (1, x, . . . , xn)T ∈ Rn+1 (3.6)

with some linear map g(w) : Rn+1 → R : x �→ wTx, i.e.,

h(w)(x) = g(w)(φ(x)). (3.7)

Thus, we can implement polynomial regression by first applying the feature map Φ (see

(3.6)) to the scalar features x(i), resulting in the transformed feature vectors

x(i) = Φ
�
x(i)
�
=
�
1, x(i), . . . ,

�
x(i)
�n−1�T ∈ Rn, (3.8)

and then applying linear regression (see Section 3.1) to these new feature vectors. By

inserting (3.7) into (3.5), we end up with a linear regression problem (3.3) with feature

vectors (3.8). Thus, while a predictor h(w) ∈ H(n)
poly is a non-linear function h(w)(x) of the

original feature x, it is a linear function, given explicitly by g(w)(x) = wTx (see (3.7)), of

the transformed features x (3.8).

3.3 Least Absolute Deviation Regression

Learning a linear predictor by minimizing the average squared error loss incurred on training

data is not robust against outliers. This sensitivity to outliers is rooted in the properties of

the squared error loss (ŷ − y)2. Minimizing the average squared error forces the resulting

predictor ŷ to not be too far away from any datapoint. However, it might be useful to

tolerate a large prediction error ŷ−y for few datapoints if they can be considered as outliers.

Replacing the squared loss with a different loss function can make the learning robust

against few outliers. One such robust loss function is the Huber loss [29]

L(y, ŷ) =




(1/2)(y − ŷ)2 for |y − ŷ| ≤ ε

ε(|y − ŷ|− ε/2) else.
(3.9)

The Huber loss contains a parameter �, which has to be adapted to the application at

56

hand. The Huber loss is robust to outliers since the corresponding (large) prediction errors

y − ŷ are not squared. Outliers have a smaller effect on the average Huber loss over the

entire dataset.

The Huber loss contains two important special cases. The first special case occurs when ε

is chosen to be very large, such that the condition |y− ŷ| ≤ ε is satisfied for most datapoints.

In this case, the Huber loss resembles the squared error loss (y − ŷ)2 (up to a scaling factor

1/2).

The second special case occurs when ε is chosen to be very small (close to 0) such that

the condition |y − ŷ| ≤ ε is almost never satisfied. In this case, the Huber loss is equivalent

to the absolute loss |y − ŷ| scaled by a factor ε.

3.4 The Lasso

We will see in Chapter 6 that linear regression (see Section 3.1) does not work well for

datapoints having more features than the number of training datapoints (this is the high-

dimensional regime). One approach to avoid overfitting is to modify the squared error loss

(2.6) by taking into account the weight vector of the linear predictor h(x) = wTx.

The least absolute shrinkage and selection operator (Lasso) is obtained from linear

regression by replacing the squared error loss with the regularized loss

L((x, y), h(w)) = (y −wTx)2 + α�w�1. (3.10)

The choice for the tuning parameter α can be guided by using a probabilistic model,

y = wTx+ ε.

Here, w denotes some true underlying weight vector and ε is as a random variable.

Appropriate values for α can then be determined based on the variance of the noise, the

number of non-zero entries in w and a lower bound on the non-zero values. Another option

for choosing the value α is to try out different candidate values and pick the one resulting

in smallest validation loss (see Section 6.2).

57

3.5 Gaussian Basis Regression

As discussed in Section 3.2, we can extend the basic linear regression problem by first

transforming the features x using a vector-valued feature map φ : R → Rn and then applying

a weight vector w to the transformed features φ(x). For polynomial regression, the feature

map is constructed using powers xl of the scalar feature x.

It is possible to use other functions, different from polynomials, to construct the feature

map φ. We can extend linear regression using an arbitrary feature map

Φ(x) = (φ1(x), . . . ,φn(x))
T (3.11)

with the scalar maps φj : R → R which are referred to as basis functions. The choice

of basis functions depends heavily on the particular application and the underlying relation

between features and labels of the observed datapoints. The basis functions underlying

polynomial regression are φj(x) = xj.

Another popular choice for the basis functions are “Gaussians”

φσ,µ(x) = exp(−(1/(2σ2))(x−µ)2). (3.12)

The family (3.12) of maps is parameterized by the variance σ2 and the mean (shift) µ. We

obtain Gaussian basis linear regression by combining the feature map

φ(x) =
�
φσ1,µ1(x), . . . ,φσn,µn(x)

�T
(3.13)

with linear regression (see Figure 3.3). The resulting hypothesis space is then

H(n)
Gauss = {h(w) : R → R : h(w)(x)=

n�

j=1

wjφσj ,µj
(x)

with weights w = (w1, . . . , wn)
T ∈ Rn}. (3.14)

Different choices for the variance σ2 and shifts µj of the Gaussian function in (3.12) results

in different hypothesis spaces HGauss. Chapter 6.3 will discuss model selection techniques

that allow to find useful values for these parameters.

The hypotheses of (3.14) are parameterized by a weight vector w ∈ Rn. Each hypothesis

in HGauss corresponds to a particular choice for the weight vector w. Thus, instead of

searching over HGauss to find a good hypothesis, we can search over Rn.

58

ŷ = h(w)(x) with h(w)∈H(2)
Gauss

y = h(x)

x

y

0

1

−3 −2 −1 0 1 2 3
Figure 3.3: The true relation x �→ y = h(x) (blue) between feature x and label y is highly
non-linear. We might predict the label using a non-linear predictor ŷ = h(w)(x) with some

weight vector w ∈ R2 and h(w)∈H(2)
Gauss.

Exercise. Try to approximate the hypothesis map depicted in Figure 3.12 by an

element of HGauss (see (3.14)) using σ = 1/10, n = 10 and µj = −1 + (2j/10).

3.6 Logistic Regression

Logistic regression is a method for classifying datapoints which are characterized by feature

vectors x ∈ Rn (feature space X = Rn) according to two categories which are encoded by a

label y.

It will be convenient to use the label space Y = R and encode the two label values as

y = 1 and y = −1. Logistic regression learns a predictor out of the hypothesis space H(n)

(see (3.1)).2 Note that the hypothesis space is the same as used in linear regression (see

Section 3.1).

At first sight, it seems wasteful to use a linear hypothesis h(x) = wTx, with some weight

vector w ∈ Rn, to predict a binary label y. Indeed, while the prediction h(x) can take any

real number, the label y ∈ {−1, 1} takes on only one of the two real numbers 1 and −1.

It turns out that even for binary labels it is quite useful to use a hypothesis map h which

can take on arbitrary real numbers. We can always obtain a predicted label ŷ ∈ {−1, 1} by

comparing hypothesis value h(x) with a threshold. A datapoint with features x, is classified

as ŷ = 1 if h(x) ≥ 0 and ŷ = −1 for h(x) < 0. Thus, we use the sign of the predictor map

h(x) to determine the final prediction for the label. The absolute value |h(x)| is then used

to quantify the reliability of (or confidence in) the classification ŷ.

Consider two datapoints with features x(1),x(2) and a linear classifier map h yielding

the function values h(x(1)) = 1/10 and h(x(2)) = 100. Whereas the predictions for both

datapoints result in the same label predictions, i.e., ŷ(1) = ŷ(2) = 1, the classification of the

datapoint with feature vector x(2) seems to be much more reliable.

2It is important to note that logistic regression can be used with an arbitrary label space which contains
two different elements. Another popular choice for the label space is Y = {0, 1}.

59

In logistic regression, we assess the quality of a particular classifier h(w) ∈ H(n) using the

logistic loss (2.11) Given some labeled training data D = {x(i), y(i)}mi=1, logistic regression

amounts to minimizing the empirical risk (average logistic loss)

E(w|D) = (1/m)
m�

i=1

log(1 + exp(−y(i)h(w)(x(i))))

h(w)(x)=wTx
= (1/m)

m�

i=1

log(1 + exp(−y(i)wTx(i))). (3.15)

Once we have found the optimal weight vector �w which minimizes (3.15), we classify a

datapoint based on its features x according to

ŷ =




1 if h(�w)(x) ≥ 0

−1 otherwise.
(3.16)

Since h(�w)(x) =
�
�w
�T

x (see (3.1)), the classifier (3.16) amounts to testing whether
�
�w
�T

x ≥
0 or not.

The classifier (3.16) partitions the feature space X =Rn into two half-spaces R1 =
�
x :�

�w
�T

x≥0
�
and R−1=

�
x :
�
�w
�T

x<0
�
which are separated by the hyperplane

�
�w
�T

x = 0

(see Figure 2.8). Any datapoint with features x ∈ R1 (x ∈ R−1) is classified as ŷ = 1

(ŷ=−1).

Logistic regression can be interpreted as a maximum likelihood estimator within a particular

probabilistic model for the datapoints. This interpretation is based on modelling the label

y ∈ {−1, 1} of a datapoint as random variables with the probability

P(y = 1;w) = 1/(1 + exp(−wTx))

h(w)(x)=wTx
= 1/(1 + exp(−h(w)(x)))). (3.17)

As the notation indicates, the probability (3.17) is parameterized by the weight vector w of

the linear hypothesis h(w)(x)=wTx. Given the probabilistic model (3.17), we can interpret

the classification (3.16) as choosing ŷ to maximize the probability P(y = ŷ;w).

60

Since P(y = 1) + P(y = −1) = 1,

P(y = −1) = 1− P(y = 1)

(3.17)
= 1− 1/(1 + exp(−wTx))

= 1/(1 + exp(wTx)). (3.18)

In practice we do not know the weight vector in (3.17). Rather, we have to estimate the

weight vector w in (3.17) from observed datapoints. A principled approach to estimate the

weight vector is to maximize the probability (or likelihood) of actually obtaining the dataset

D = {(x(i), y(i))}mi=1 as realizations of i.i.d. datapoints whose labels are distributed according

to (3.17). This yields the maximum likelihood estimator

�w = argmax
w∈Rn

P({y(i)}mi=1)

y(i) i.i.d.
= argmax

w∈Rn

m�

i=1

P(y(i))

(3.17),(3.18)
= argmax

w∈Rn

m�

i=1

1/(1 + exp(−y(i)wTx(i))). (3.19)

Note that the last expression (3.19) is only valid if we encode the binary labels using the

values 1 and −1. Using different label values results in a different expression.

Maximizing a positive function f(w) > 0 is equivalent to maximizing log f(x),

argmax
w∈Rn

f(w)=argmax
w∈Rn

log f(w).

Therefore, (3.19) can be further developed as

�w (3.19)
= argmax

w∈Rn

m�

i=1

− log
�
1+exp(−y(i)wTx(i))

�

= argmin
w∈Rn

(1/m)
m�

i=1

log
�
1+exp(−y(i)wTx(i))

�
. (3.20)

Comparing (3.20) with (3.15) reveals that logistic regression is nothing but maximum likelihood

estimation of the weight vector w in the probabilistic model (3.17).

61

3.7 Support Vector Machines

Support vector machines (SVM) use the hinge loss (2.10) to assess the usefulness of a

hypothesis map h ∈ H for classifying datapoints. The most basic variant of SVM applies to

ML problems with feature space X = Rn, label space Y = {−1, 1} and the hypothesis space

H(n) (3.1). This is the same hypothesis space as used by linear and logistic regression which

we have discussed in Section 3.1 and Section 3.6, respectively.

The soft-margin SVM [37, Chapter 2] uses the loss

L((x, y), h(w)) := max{0, 1− y · h(w)(x)}+ λ�w�2
h(w)(x)=wTx

= max{0, 1− y ·wTx}+ λ�w�2 (3.21)

with a tuning parameter λ > 0. According to [37, Chapter 2], a classifier h(wSVM) minimizing

the loss (3.21), averaged over some labeled datapoints D = {(x(i), y(i))}mi=1, is equivalent

to maximizing the distance (margin) ξ between the decision boundary, given by the set

of points x satisfying wT
SVMx = 0, and each of the two classes C1 = {x(i) : y(i) = 1} and

C2={x(i) : y(i)=−1}.
Making the margin as large as possible is reasonable as it ensures that the resulting

classifications are robust against small (relative to the margin) perturbations of the features

(see Section 7.2).

As depicted in Figure 3.4, the margin between the decision boundary and the classes

C1 and C2 is typically determined by few datapoints (such as x(6) in Figure 3.4) which are

closest to the decision boundary. These datapoints have minimum distance to the decision

boundary and are referred to as the support vectors.

We highlight that both, the SVM and logistic regression amount to linear classifiers

h(w) ∈ H(n) (see (3.1)) whose decision boundary is a hyperplane in the feature space X = Rn

(see Figure 2.8). The difference between SVM and logistic regression is the loss function used

for evaluating the quality of a particular classifier h(w) ∈ H(n). The SVM uses the hinge loss

(2.10) which is the best convex approximation to the 0/1 loss (2.8). Thus, we expect the

classifier obtained by the SVM to yield a smaller classification error probability P(ŷ �= y)

(with ŷ = 1 if h(x) ≥ 0 and ŷ = −1 otherwise) compared to logistic regression which uses

the logistic loss (2.11).

The statistical superiority of the SVM comes at the cost of increased computational

complexity. In particular, the hinge loss (2.10) is non-differentiable which prevents the use

of simple gradient-based methods (see Chapter 5) and requires more advanced optimization

62

x(5)

x(4)

x(3)

x(6)

“support vector”

ξ
h(w)

x(2)

x(1)

Figure 3.4: The SVM aims at a classifier h(w) with small hinge loss. Minimizing hinge loss
of a classifier is the same as maximizing the margin ξ between the decision boundary (of the
classifier) and each class of the training set.

methods. In contrast, the logistic loss (2.11) is convex and differentiable. We can therefore

use gradient based methods to minimize the average logistic loss incurred on a training set

(see Chapter 5).

3.8 Bayes’ Classifier

Consider datapoints characterized by features x ∈ X and some binary label y ∈ Y . We can

use any two different label values but let us assume that the two possible label values are

y = −1 and y = 1.

The goal of ML is to find (or learn) a classifier h : X → Y such that the predicted (or

estimated) label ŷ = h(x) agrees with the true label y ∈ Y as much as possible. Thus, it is

reasonable to assess the quality of a classifier h using the 0/1 loss (2.8). We could then learn

a classifier using the ERM with the loss function (2.8). However, the resulting optimization

problem is typically intractable since the loss (2.8) is non-convex and non-differentiable.

We take a different route to construct a classifier, which we refer to as Bayes’ classifier.

This construction is based on a simple probabilistic model for the datapoints. Using this

model, we can interpret the average 0/1 loss on training data as an approximation for the

probability Perr = P(y �= h(x)).

An important subclass of Bayes’ classifiers uses the hypothesis space (3.1) which is also

underlying logistic regression (see Section 3.6) and the SVM (see Section 3.7). Logistic

regression, the SVM and Bayes’ classifiers are different instances of linear classifiers (see

Figure 2.8).

63

Linear classifiers partition the feature space X into two half-spaces. One half-space

consists of all feature vectors x which result in the predicted label ŷ = 1 and the other

half-space constituted by all feature vectors x which result in the predicted label ŷ = −1.

The difference between these three linear classifiers is how they choose these half-spaces by

using different loss functions. We will discuss Bayes’ classifier methods in more detail in

Section 4.5.

3.9 Kernel Methods

Consider a ML (classification or regression) problem with an underlying feature space X .

In order to predict the label y ∈ Y of a datapoint based on its features x ∈ X , we apply

a predictor h selected out of some hypothesis space H. Let us assume that the available

computational infrastructure only allows to use a linear hypothesis space H(n) (see (3.1)).

For some applications, using a linear hypothesis h(x) = wTx is not suitable since the

relation between features x and label y might be highly non-linear. One approach to extend

the capabilities of linear hypotheses is to transform the raw features of a data point before

applying a linear hypothesis h.

The family of kernel methods is based on transforming the features x to new features

x̂ ∈ X � which belong to a (typically very) high-dimensional space X � [37]. It is not uncommon

that, while the original feature space is a low-dimensional Euclidean space (e.g., X = R2),

the transformed feature space X � is an infinite-dimensional function space.

The rationale behind transforming the original features into a new (higher-dimensional)

feature space X � is to reshape the intrinsic geometry of the feature vectors x(i) ∈ X such

that the transformed feature vectors x̂(i) have a “simpler” geometry (see Figure 3.5).

Kernel methods are obtained by formulating ML problems (such as linear regression or

logistic regression) using the transformed features x̂ = φ(x). A key challenge within kernel

methods is the choice of the feature map φ : X → X � which maps the original feature vector

x to a new feature vector x̂ = φ(x).

64

X

x(5)

x(4)

x(3)
x(2)

x(1)

X �

x̂(5)x̂(4)x̂(3)x̂(2)

x̂(1)

Figure 3.5: Consider a data set D = {(x(i), y(i))}5i=1 constituted by datapoints with features
x(i) and binary labels y(i). Left: In the original feature space X , the datapoints cannot be
separated perfectly by any linear classifier. Right: The feature map φ : X → X � transforms
the features x(i) to the new features x̂(i) = φ

�
x(i)
�
in the new feature space X �. In the new

feature space X � the datapoints can be separated perfectly by a linear classifier.

3.10 Decision Trees

A decision tree is a flowchart-like description of a map h : X → Y which maps the features

x ∈ X of a datapoint to a predicted label h(x) ∈ Y [26].

While decision trees can be used for arbitrary feature space X and label space Y , we will
discuss them for the particular feature space X = R2 and label space Y = R.

Figure 3.6 depicts an example for a decision tree. A decision tree consists of nodes

which are connected by directed edges. We might think of a decision tree as a step-by-step

instruction, or a “recipe”, for how to compute the function value h(x) given the features

x ∈ X of a datapoint. This computation starts at the root node and ends at one of the

leaf nodes of the decision tree.

A leaf node m, which does not have any outgoing edges, represents a decision region

Rm ⊆ X in the feature space. The hypothesis h associated with a decision tree is constant

over the regions Rm, such that h(x) = hm for all x ∈ Rm and some fixed number hm ∈ R.
In general, there are two types of nodes in a decision tree:

• decision (or test) nodes, which represent particular “tests” about the feature vector x

(e.g., “is the norm of x larger than 10?”).

• leaf nodes, which correspond to subsets of the feature space.

The particular decision tree depicted in Figure 3.6 consists of two decision nodes (including

the root node) and three leaf nodes.

65

Given limited computational resources, we can only use decision trees which are not too

deep. Consider the hypothesis space consisting of all decision trees which uses the tests

“�x− u� ≤ r” and “�x− v� ≤ r” , with some vectors u and v, some positive radius r > 0

and depth no larger than 2.3

To assess the quality of a particular decision tree we can use various loss functions.

Examples of loss functions used to measure the quality of a decision tree are the squared

error loss (for numeric labels) or the impurity of individual decision regressions (for discrete

labels).

Decision tree methods use as a hypothesis space the set of all hypotheses which represented

by some collection of decision trees. Figure 3.7 depicts a collection of decision trees which

are characterized by having depth at most two. These methods search for a decision trees

such that the corresponding hypothesis has minimum average loss on some labeled training

data (see Section 4.4).

A collection of decision trees can be constructed based on a fixed set of “elementary

tests” on the input feature vector, e.g., �x� > 3, x3 < 1 or a continuous ensemble of

parametrized tests such as {x2 > η}η∈[0,10]. We then build a hypothesis space by considering

all decision trees not exceeding a maximum depth and whose decision nodes carry out one

of the elementary tests.

�x− u� ≤ r?

h(x) = h1

no

�x−v�≤r?

h(x)=h2

no

h(x)=h3

yes

yes

R3R2

R1

u v

Figure 3.6: A decision tree represents a hypothesis h which is constant on subsets Rm, i.e.,
h(x) = hm for all x∈Rm. Each subset Rm ⊆X corresponds to a leaf node in the decision
tree.

A decision tree represents a map h : X → Y , which is piecewise-constant over regions of

the feature space X . These non-overlapping regions form a partitioning of the feature space.

Each leaf node of a decision tree corresponds to one particular region. Using large decision

trees, which involve many different test nodes, we can represent very complicated partitions

3The depth of a decision tree is the maximum number of hops it takes to reach a leaf node starting from
the root and following the arrows. The decision tree depicted in Figure 3.6 has depth 2.

66

�x− u� ≤ r?

h(x) = 1

no

h(x) = 2

yes

�x− u� ≤ r?

h(x) = 1

no

�x− v� ≤ r?

h(x) = 10

no

h(x) = 20

yes

yes

Figure 3.7: A hypothesis space H consisting of two decision trees with depth at most 2 and
using the tests �x−u�≤r and �x−v�≤r with a fixed radius r and vectors u,v ∈ Rn.

that resemble any given labeled dataset (see Figure 3.8).

This is quite different from ML methods using the linear hypothesis space (3.1), such as

linear regression, logistic regression or SVM. Such linear maps have a rather simple geometry.

Indeed, a linear map is constant along hyperplanes. Moreover, the decision regions obtained

from linear classifiers are always entire half-spaces (see Figure 2.8).

In contrast, the shape of a map represented by a decision tree can be much more

complicated. Using a sufficiently large (deep) decision tree, we can obtain a hypothesis

map that closely approximates any given non-linear map. Using sufficiently deep decision

trees for classification problems allows for highly irregular decision regions.

x(3)

x(4)
x(2)

x(1)

x1

x2

0
1
2
3
4
5
6

0 1 2 3 4 5 6

x1≤3?

x2≤3?

h(x)=y(3)

no

h(x)=y(2)

yes

no

x2≤3?

h(x)=y(1)

no

h(x)=y(4)

yes

yes

Figure 3.8: Using a sufficiently large (deep) decision tree, we can construct a map h that
perfectly fits any given labeled dataset {(x(i), y(i))}mi=1 such that h(x(i))=y(i) for i = 1, . . . ,m.

67

3.11 Artificial Neural Networks – Deep Learning

Another example of a hypothesis space, which has proven useful in a wide range of applications,

e.g., image captioning or automated translation, is based on a network representation

of a predictor h : Rn → R. We can define a predictor h(w) : Rn → R using an artificial

neural network (ANN) structure as depicted in Figure 3.9. A feature vector x ∈ Rn is

input
layer

hidden
layer

output
layer

x1

x2

w1

w2

w3
w4

w5
w6

w7

w8

w9

h(w)(x)

Figure 3.9: ANN representation of a predictor h(w)(x) which maps the input (feature) vector
x = (x1, x2)

T to a predicted label (output) h(w)(x).

fed into the input units, each of which reads in one single feature xi ∈ R. The features xi

are then multiplied with the weights wj,i associated with the link between the i-th input

node (“neuron”) with the j-th node in the middle (hidden) layer. The output of the j-th

node in the hidden layer is given by sj = g(
�n

i=1 wj,ixi) with some (typically non-linear)

activation function g(z). The input (or activation) z for the activation (or output) g(z)

of a neuron is a weighted (linear) combination
�n

i=1 wj,isi of the outputs si of the nodes in

the previous layer. For the ANN depicted in Figure 3.9, the activation of the neuron s1 is

z = w1,1x1 + w1,2x2.

Two popular choices for the activation function used within ANNs are the sigmoid

function g(z) = 1
1+exp(−z)

or the rectified linear unit g(z) = max{0, z}. An ANN with

many, say 10, hidden layers, is often referred to as a deep neural network and the obtained

ML methods are known as deep learning methods (see [22] for an in-depth introduction

to deep learning methods).

68

Remarkably, using some simple non-linear activation function g(z) as the building block

for ANNs allows to represent an extremely large class of predictor maps h(w) : Rn → R. The
hypothesis space generated by a given ANN structure, i.e., the set of all predictor maps which

can be implemented by a given ANN and suitable weights w, tends to be much larger than

the hypothesis space (2.4) of linear predictors using weight vectors w of the same length [22,

Ch. 6.4.1.]. It can be shown that an ANN with only one single hidden layer can approximate

any given map h : X → Y = R to any desired accuracy [14]. However, a key insight which

underlies many deep learning methods is that using several layers with few neurons, instead

of one single layer containing many neurons, is computationally favourable [17].

input
layer

hidden
layer

output
layer

x0 = 1

x

w1

w2

w3

w4

w5

w6

w7

w8

w9

h(w)(x)

Figure 3.10: This ANN with one hidden layer defines a hypothesis space consisting of all maps
h(w)(x) obtained by implementing the ANN with different weight vectors w = (w1, . . . , w9)

T .

Exercise. Consider the simple ANN structure in Figure 3.10 using the “ReLu”

activation function g(z) = max{z, 0} (see Figure 3.11). Show that there is

a particular choice for the weights w = (w1, . . . , w9)
T such that the resulting

hypothesis map h(w)(x) is a triangle as depicted in Figure 3.12. Can you also find

a choice for the weights w = (w1, . . . , w9)
T that produce the same triangle shape if

we replace the ReLu activation function with the linear function g(z) = 10 · z?

69

x1
w1

x2
w2

x3

w3

g(z)

Figure 3.11: Each single neuron of the ANN depicted in Figure 3.10 implements a weighted
summation z =

�
i wixi of its inputs xi followed by applying a non-linear activation function

g(z).

x

h(w)(x)

0

1

−3 −2 −1 0 1 2 3
Figure 3.12: A hypothesis map with the shape of a triangle.

70

The recent success of ML methods based on ANN with many hidden layers (which makes

them deep) might be attributed to the fact that the network representation of hypothesis

maps is beneficial for the computational implementation of ML methods. First, we can

evaluate a map h(w) represented by an ANN efficiently using modern parallel and distributed

computing infrastructure via message passing over the network. Second, the graphical

representation of a parametrized hypothesis in the form of a ANN allows to efficiently

compute the gradient of the loss function via a (highly scalable) message passing procedure

known as back-propagation [22].

3.12 Maximum Likelihood Methods

For many applications it is useful to model the observed datapoints z(i) as realizations of a

random variable z with probability distribution P(z;w) which depends on some parameter

vectorw ∈ Rn. A principled approach to estimating the vectorw based on several independent

and identically distributed (i.i.d.) realizations z(1), . . . , z(m) ∼ P(z;w) ismaximum likelihood

estimation [39].

Maximum likelihood estimation can be interpreted as an ML problem with a hypothesis

space parameterized by the weight vector w, i.e., each element h(w) of the hypothesis space

H corresponds to one particular choice for the weight vector w, and the loss function

L(z, h(w)) := − log P(z;w). (3.22)

A widely used choice for the probability distribution P(z;w) is a multivariate normal

distribution with mean µ and covariance matrix Σ, both of which constitute the weight

vector w = (µ,Σ) (we have to reshape the matrix Σ suitably into a vector form). Given

the i.i.d. realizations z(1), . . . , z(m) ∼ P(z;w), the maximum likelihood estimates µ̂, �Σ of the

mean vector and the covariance matrix are obtained via

µ̂, �Σ = argmin
µ∈Rn,Σ∈Sn+

(1/m)
m�

i=1

− log P(z(i); (µ,Σ)). (3.23)

The optimization in (3.23) is over all choices for the mean vector µ ∈ Rn and the

covariance matrix Σ ∈ Sn
+. Here, Sn

+ denotes the set of all psd Hermitian n× n matrices.

The maximum likelihood problem (3.23) can be interpreted as an instance of ERM (4.2)

71

using the particular loss function (3.22). The resulting estimates are given explicitly as

µ̂ = (1/m)
m�

i=1

z(i), and �Σ = (1/m)
m�

i=1

(z(i) − µ̂)(z(i) − µ̂)T . (3.24)

Note that the expressions (3.24) are valid only when the probability distribution of the

datapoints is modelled as a multivariate normal distribution.

3.13 Nearest Neighbour Methods

The class of k-nearest neighbour (k-NN) predictors (for continuous label space) or classifiers

(for discrete label space) is defined for feature spaces X equipped with an intrinsic notion of

distance between its elements. Mathematically, such spaces are referred to as metric spaces

[51]. A prime example of a metric space is Rn with the Euclidean metric induced by the

distance measure �x−y� between two vectors x,y ∈ Rn.

The hypothesis space underlying k-NN problems consists of all maps h : X → Y such

that the function value h(x) for a particular feature vector x depends only on the (labels of

the) k nearest datapoints of some labeled training data D = {(x(i), y(i))}mi=1.

In contrast to the ML problems discussed above in Section 3.1 - Section 3.11, the

hypothesis space of k-NN depends on the training data D.

3.14 Dimensionality Reduction

datapoints are whole datasets (bunch of datapoint); label is optimal hyperplane that allows

for optimal dimensionality reduction by projecting onto it; the notion of optimality depends

on the application at hand; one notion of optimality is obtained from approximation errors

(PCA).

3.15 Clustering Methods

each datapoint is an entire dataset of lower-level datapoints; labels are correct partitioning/clustering;

loss function is some notion of purity of clustering error; discuss partitional vs. hierarchical

clustering (different choice for hypospace?)

72

x(i)

Figure 3.13: A hypothesis map h for k-NN with k = 1 and feature space X = R2. The
hypothesis map is constant over regions (indicated by the coloured areas) located around
feature vectors x(i) (indicated by a dot) of a dataset D = {(x(i), y(i))}.

3.16 Deep Reinforcement Learning

datapoints are the states of some (AI) agent characterized by features (sensor readings);

labels are optimal actions; however we typically have no access to labeled data as we cannot

try out each and any sequence of actions and such to find out the best action in each situation.

instead we must construct the loss function via a (negative) reward collected over time (e.g.

over an episode);

3.17 LinUCB

datapoints are customers characterized by feature vector; the label is discrete and indicates

which product out of a finite set of products should be advertised to the customer;

73

3.18 Exercises

3.18.1 How Many Neurons?

Consider a predictor map h(x) which is piece-wise linear and consisting of 1000 pieces.

Assume we want to represent this map by an ANN using neurons with ReLU activation

functions. How many neurons must the ANN at least contain?

3.18.2 Linear Classifiers

Consider datapoints characterized by feature vectors x ∈ Rn and binary labels y ∈ {−1, 1}.
We are interested in finding a good linear classifier which is such that the feature vectors

resulting in h(x) = 1 is a half-space. Which of the methods discussed in this chapter aim at

learning a linear classifier?

3.18.3 Data Dependent Hypothesis Space

Consider a ML application involving data points that are characterized by feature vectors

x ∈ R6 and a numeric label y. We learn a hypothesis by minimizing the average loss incurred

on a training set D =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

��
. Which of the following ML methods

uses a hypothesis space that depends on the dataset D?

• logistic regression

• linear regression

• k-NN

74

Chapter 4

Empirical Risk Minimization

predictor h ∈ H

average prediction error

empirical risk

Figure 4.1: ML methods learn a hypothesis h ∈ H that incur small loss when predicting the
label y of datapoint based on its features x. Empirical risk minimization approximates the
expected loss or risk with the empirical risk (solid curve) incurred on a finite set of labeled
datapoints (the training set).

Chapter 2 explained three components of ML (see Figure 2.1):

• the feature space X and label space Y ,

• a hypothesis space H of computationally feasible predictor maps X → Y ,

• and a loss function L((x, y), h) which measures the discrepancy between the predicted

label h(x) and the true label y of a datapoint. error incurred by predictor h ∈ H.

75

Ideally we would like to learn a hypothesis h out of the model H such that h(x) ≈ y or,

in turn, L((x, y), h) is very small, for any datapoint (x, y). However, in practice we can

only use a given set of labeled datapoints (the training set) to measure the average loss of a

hypothesis h.

How can we know the loss of a hypothesis h when predicting the label of datapoints

outside the training set? One possible approach is to use a probabilistic model for the

data. In this model, we interpret datapoints as realizations of i.i.d. random variables with

the (same) probability distribution p(x, y). The training set is one particular set of such

realizations drawn from p(x, y). Moreover, we can generate datapoints outside the training

set by drawing realizations from the distribution p(x, y). Given this probability distribution

over different realizations of datapoints allows to define the risk of a hypothesis h as the

expectation of the loss incurred by h on a random datapoint.

If we would know the probability distribution p(x, y), from which the datapoints are

drawn, we could minimize the risk using probability theory. Roughly speaking, the optimal

hypothesis h can be read directly from the posterior probability distribution p(y|x) of the

label y given the features x of a datapoint. When using the squared error loss, the risk is

minimized by the hypothesis h(x) = E
�
y|x}.

In practice we do not know the true underlying probability distribution p(x, y) and have

to estimate it from data. Therefore, we cannot compute the Bayes’ optimal estimator exactly.

However, we can approximately compute this estimator by replacing the exact probability

distribution with an estimate. Moreover, the risk of the Bayes’ optimal estimator provides a

useful benchmark against which we can compare the average loss of practical ML methods.

Section (4.1) defines the risk of a hypothesis and motivates empirical risk minimization

(ERM) by approximating the risk using an (empirical) average over labeled (training)

datapoints. We then specialize the ERM for three particular ML problems. These three

ML problems use different combinations of model (hypothesis space) and loss functions

which result in ERM with different computational complexities.

Section 4.3 discusses ERM for linear regression (see Section 3.1). Here, ERM amounts

to minimizing a differentiable convex function, which can be done efficiently using gradient-

based methods (see Chapter 5).

We then discuss in Section 4.4 the ERM obtained for decision tree models. The resulting

ERM becomes a discrete optimization problem which are typically much harder than convex

optimization problems. We cannot apply gradient-based methods to solve the ERM for

decision trees. To solve the decision tree ERM we essentially must try out all possible

76

choices for the tree structure [30].

Section 4.5 considers the ERM obtained when learning a linear hypothesis using the

0/1 loss for classification problems. The resulting ERM amounts to minimizing a non-

differentiable and non-convex function. Instead of using computationally expensive methods

for minimizing this function, we will use a different rout via probability theory to construct

approximate solutions to this ERM instance.

As explained in Section 4.6, many ML methods use the ERM during a training period

to learn a hypothesis which is then applied to new datapoints during the inference period.

Section 4.7 demonstrates how an online learning method can be obtained by solving the ERM

sequentially as new datapoints come in. Online learning methods continuously alternate

between training and inference periods.

4.1 Why Empirical Risk Minimization?

Consider some ML application that generates datapoints, each of which is characterized by

a feature vector x and a label y. It is often useful to interpret datapoints as realizations of

i.i.d. random variables with the same probability distribution p(x, y).

The probability distribution p(x, y) allows us to define the expected loss or risk

E
�
L((x, y), h)}. (4.1)

Many ML methods learn a predictor out of H such that (4.1) is minimal.

If we would know the probability distribution of the data, we could in principle readily

determine the best predictor map by solving an optimization problem. This optimal predictor

is known as the Bayes’ predictor and depends on the probability distribution p(x, y) and the

loss function. For the squared error loss, the Bayes’ predictor is the posterior mean of y given

the features x. However, in practice we do not know the probability distribution p(x, y) and

therefore cannot evaluate the expectation in (4.1).1 ERM replaces the expectation in (4.1)

1One exception to this rule is if the datapoints are synthetically generated by drawing realizations from
a given probability distribution p(x, y).

77

with an average over a given set of labeled datapoints,

ĥ = argmin
h∈H

E(h|D)

(2.12)
= argmin

h∈H
(1/m)

m�

i=1

L((x(i), y(i)), h). (4.2)

The ERM (4.2) amounts to learning (finding) a good predictor ĥ ∈ H by “training” it on

the dataset D = {(x(i), y(i))}mi=1, which is therefore referred to as the training set.

4.2 Computational and Statistical Aspects of ERM

Statistical Aspects: Objective in ERM is Noisy version of Actual Objective; sometimes we

do not know most parts of objective function (reinforcement learning); even if we know the

objective function (expected risk) perfectly, optimization might be hard for non-smooth, non-

convex objective functions

Solving the optimization problem (4.2) provides two things. First, the minimizer ĥ is a

predictor which performs optimal on the training set D. Second, the corresponding objective

value E(ĥ|D) (the “training error”) indicates how accurate the predictions of ĥ will be.

As we will discuss in Chapter 7, for some datasets D, the training error E(ĥ|D) obtained

for D can be very different from the average prediction error of ĥ when applied to new

datapoints which are not contained in D.

Many important ML methods use hypotheses that are parametrized by weight vector w.

For each possible weight vector, we obtain a hypothesis h(w)(x). Such a parametrization

is used in linear regression which learns a linear hypotheses h(x) = wTx with some weight

vector w. Another example for such a parametrization are ANNs with the weights assigned

to inputs of individual neurons (see Figure 3.9).

For ML methods that use a parameterized hypothesis h(w)(x), we can reformulate the

optimization problem (4.2) as an optimization of the weight vector,

�w = argmin
w∈Rn

f(w) with f(w) := (1/m)
m�

i=1

L((x(i), y(i)), h(w)). (4.3)

The objective function f(w) in (4.3) is the empirical risk E
�
h(w)|D

�
incurred by the hypothesis

h(w) when applied to the datapoints in the dataset D.

The optimization problems (4.3) and (4.2) are fully equivalent. Given the optimal weight

78

vector �w solving (4.3), the predictor h(�w) is an optimal predictor solving (4.2).

Learning a hypothesis via ERM (4.2) is a form of learning by “trial and error”. An

instructor (or supervisor) provides some snapshots z(i) which are characterized by features

x(i) and associated with known labels y(i).

The learner then uses a hypothesis h to guess the labels y(i) only from the features x(i)

of all training data points. We then determine average loss or training error E(h|D) that is

incurred by the predictions ŷ(i) = h
�
x(i)
�
. If the error E(h|D) is too large, we should try

out another hypothesis map h� different from h with the hope of achieving a smaller training

error E(h�|D).

We highlight that the precise shape of the objective function f(w) in (4.3) depends

heavily on the parametrization of the predictor functions, i.e., how does the predictor h(w)

vary with the weight vector w.

The shape of f(w) depends also on the choice for the loss function L((x(i), y(i)), h).

As depicted in Figure 4.2, the different combinations of predictor parametrisation and loss

functions can result in objective functions with fundamentally different properties such that

their optimization is more or less difficult.

The objective function f(w) for the ERM obtained for linear regression (see Section 3.1)

is differentiable and convex and can therefore be minimized using simple gradient based

methods (see Chapter 5). In contrast, the objective function f(w) of ERM obtained for

the SVM (see Section 3.7) is non-differentiable but still convex. The minimization of such

functions is more challenging but still tractable as there exist efficient convex optimization

methods which do not require differentiability of the objective function [48].

The objective function f(w) obtained for ANN are typically highly non-convex having

many local minima. The optimization of non-convex objective function is in general more

difficult than optimizing convex objective functions. However, it turns out that despite the

non-convexity, iterative gradient-based methods can still be successfully applied to solve the

ERM [22]. Even more challenging is the ERM obtained for decision trees or Bayes’ classifiers.

These ML problems involve non-differentiable and non-convex objective functions.

4.3 ERM for Linear Regression

As discussed in Section 3.1, linear regression methods learn a linear hypothesis h(w)(x) =

wTx with minimum squared error loss (2.6). For linear regression, the ERM problem (4.3)

79

smooth and convex

f(w)

smooth and non-convex

non-smooth and convex non-smooth and non-convex

Figure 4.2: Different types of objective functions obtained for ERM in different settings.

becomes

�w = argmin
w∈Rn

f(w)

with f(w) :=(1/m)
�

(x,y)∈D
(y−xTw)2. (4.4)

Here, m = |D| denotes the (sample) size of the training set D. The objective function

f(w) in (4.4) is computationally appealing since it is a convex and smooth function. Such a

function can be minimized efficiently using the gradient-based methods discussed in Chapter

5.

We can rewrite the ERM problem (4.4) more concisely by stacking the labels y(i) and

feature vectors x(i), for i = 1, . . . ,m, into a “label vector” y and “feature matrix” X,

y = (y(1), . . . , y(m))T ∈ Rm, and

X =
�
x(1), . . . ,x(m)

�T
∈ Rm×n. (4.5)

This allows to rewrite the objective function in (4.4) as

f(w) = (1/m)�y −Xw�22. (4.6)

Inserting (4.6) into (4.4), resulting in the following form of the ERM for linear regression:

�w = argmin
w∈Rn

(1/m)�y −Xw�22. (4.7)

The formulation (4.7) allows for an interesting geometric interpretation of linear regression.

80

�y −X�w�

{Xw : w ∈ Rn}

y

X�w

Figure 4.3: The ERM (4.7) for linear regression amounts to an orthogonal projection of the

label vector y =
�
y(1), . . . , y(m)

�T
on the subspace spanned by the columns of the feature

matrix X =
�
x(1), . . . ,x(m)

�T
.

Solving (4.7) amounts to finding a vector Xw, with fixed feature matrix X (see (4.5)), that

is closest (in the Euclidean norm) to the given label vector y ∈ Rm (see (4.5)). The solution

to this approximation problem is precisely the orthogonal projection of the vector y onto

the subspace of Rm that is spanned by the columns of the feature matrix X.

To solve the optimization problem (4.7), it is convenient to rewrite it as the quadratic

problem

min
w∈Rn

(1/2)wTQw − qTw� �� �
=f(w)

with Q = (1/m)XTX,q = (1/m)XTy. (4.8)

Since f(w) is a differentiable and convex function, a necessary and sufficient condition for

�w to be a minimizer f(�w)=minw∈Rn f(w) is the zero-gradient condition [8, Sec. 4.2.3]

∇f(�w) = 0. (4.9)

Combining (4.8) with (4.9), yields the following necessary and sufficient condition for a

weight vector �w to solve the ERM (4.4),

(1/m)XTX�w = (1/m)XTy. (4.10)

81

This condition can be rewritten as

(1/m)XT
�
y −X�w

�
= 0. (4.11)

We might refer to this condition as “normal equations” as they require the vector

�
y −X�w

�
=
��
y(1) − ŷ(1)

�
, . . . ,

�
y(m) − ŷ(m)

��T
,

whose entries are the prediction errors for the training datapoints, to be orthogonal (or

normal) to the subspace spanned by the columns of the feature matrix X.

It can be shown that, for any given feature matrix X and label vector y, there always

exists at least one optimal weight vector �w which solves (4.10). The optimal weight vector

might not be unique, such that there are several different vectors which achieve the minimum

in (4.4). However, every vector �w which solves (4.10) achieves the same minimum empirical

risk

E(h(�w) | D) = min
w∈Rn

E(h(w) | D) = �(I−P)y�2. (4.12)

Here, we used the orthogonal projection matrix P ∈ Rm×m on the linear span of the feature

matrix X = (x(1), . . . ,x(m))T ∈ Rm×n (see (4.5)).2

If the feature matrix X (see (4.5)) has full column rank, which implies that the matrix

XTX is invertible, the projection matrix P is given explicitly as

P = X
�
XTX

�−1
XT .

Moreover, the solution of (4.10) is then unique and given by

�w =
�
XTX

�−1
XTy. (4.13)

The closed-form solution (4.13) requires the inversion of the n× n matrix XTX.

Computing the inverse of XTX can be computationally challenging for large number n

of features. Figure 2.4 depicts a simple ML problem where the number of features is already

in the millions. The inversion of the matrix XTX is particularly challenging if this matrix is

ill-conditioned. In general, we do not have any control on this condition number as we face

datapoints with arbitrary feature vectors.

2The linear span of a matrix A = (a(1), . . . ,a(m)) ∈ Rn×m, denoted as span
�
A}, is the subspace of Rn

consisting of all linear combinations of the columns a(r) ∈ Rn of A.

82

Section 5.4 discusses a method for computing the optimal weight vector �w which does

not require any matrix inversion. This method, referred to as gradient descent (GD),

constructs a sequence w(0),w(1), . . . of increasingly accurate approximations of �w. This

iterative method has two major benefits compared to evaluating the formula (4.13) using

direct matrix inversion, such as Gauss-Jordan elimination [21]. First, gradient descent

requires much fewer arithmetic operations compared to direct matrix inversion. This is

crucial in modern ML applications involving large feature matrices. Second, gradient descent

does not break when the matrix X is not full rank and the formula (4.13) cannot be used

any more.

4.4 ERM for Decision Trees

Consider the ERM problem (4.2) for a regression problem with label space Y = R, feature
space X = Rn and using a hypothesis space defined by decision trees (see Section 3.10).

In stark contrast to the ERM problem obtained for linear or logistic regression, the

ERM problem obtained for decision trees amounts to a discrete optimization problem.

Consider the particular hypothesis space H depicted in Figure 3.7. This hypothesis space

contains a finite number of predictor maps, each map corresponding to a particular decision

tree.

For the small hypothesis space H in Figure 3.7, ERM is easy. Indeed, we just have to

evaluate the empirical risk for each of the elements inH and pick the one yielding the smallest

empirical risk. However, for increasing size of decision trees the computational complexity

of exactly solving the ERM becomes intractable.

A popular approach to ERM for decision trees is to use greedy algorithms which try to

expand (grow) a given decision tree by adding new branches to leaf nodes in order to reduce

the empirical risk (see [31, Chapter 8] for more details).

The idea behind many decision tree learning methods is quite simple: try

out expanding a decision tree by replacing a leaf node with a decision node

(implementing another “test” on the feature vector) in order to reduce the overall

empirical risk as much as possible.

Consider the labeled dataset D depicted in Figure 4.4 and a given decision tree for

predicting the label y based on the features x. We start with a very simple tree shown in the

top of Figure 4.4. Then we try out growing the tree by replacing a leaf node with a decision

83

node. According to Figure 4.4, replacing the right leaf node results in a decision tree which

is able to perfectly represent the training dataset (it achieves zero empirical risk).

x(3)

x(4)
x(2)

x(1)

x1

x2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

x1≤3?

h(x)=◦
no

h(x)=�
yes

x(3)

x(4)
x(2)

x(1)

x1

x2

x1≤3?

x2≤3?

h(x)=◦
no

h(x)=◦
yes

no

h(x)=�
yes

x(3)

x(4)
x(2)

x(1)

x1

x2 x1≤3?

h(x)=◦
no

x2≤3?

h(x)=�
no

h(x)=◦
yes

yes

Figure 4.4: Given the labeled dataset and a decision tree in the top row, we grow the decision
tree by expanding it at one of its two leaf nodes. The bottom row shows two different decision
trees, along with their decision boundaries, obtained by expanding different leaf nodes of the
tree in the top row.

One important aspect of learning decision trees from labeled data is the question of when

to stop growing. A natural stopping criterion might be obtained from the limitations in

computational resources, i.e., we can only afford to use decision trees up to certain maximum

depth. Besides the computational limitations, we also face statistical limitations for the

maximum size of decision trees. Very large decision trees, which represent highly complicated

maps, we might end up overfitting the training data (see Figure 3.8 and Chapter 7) which

is detrimental to the prediction performance of decision trees obtained for new data (which

has not been used for training or growing the decision tree).

84

4.5 ERM for Bayes’ Classifiers

The family of Bayes’ classifiers is based on using the 0/1 loss (2.8) for measuring the quality

of a classifier h. The resulting ERM is

ĥ = argmin
h∈H

(1/m)
m�

i=1

L((x(i), y(i)), h)

(2.8)
= argmin

h∈H
(1/m)

m�

i=1

I(h(x(i)) �= y(i)). (4.14)

The objective function in this optimization problem is non-differentiable and non-convex (see

Figure 4.2). This prevents us from using gradient-based optimization methods (see Chapter

5) to solve (4.14).

We will now approach the ERM (4.14) via a different route by interpreting the datapoints

(x(i), y(i)) as realizations of i.i.d. random variables which are distributed according to some

probability distribution p(x, y).

As discussed in Section 2.3, the empirical risk obtained using 0/1 loss approximates the

error probability P(ŷ �= y) with the predicted label ŷ = 1 for h(x) > 0 and ŷ = −1 otherwise

(see (2.9)). Thus, we can approximate the ERM (4.14) as

ĥ
(2.9)≈ argmin

h∈H
P(ŷ �= y). (4.15)

Note that the hypothesis h, which is the optimization variable in (4.15), enters into the

objective function of (4.15) via the definition of the predicted label ŷ, which is ŷ = 1 if

h(x) > 0 and ŷ = −1 otherwise.

It turns out that if we would know the probability distribution p(x, y), which is required

to compute P(ŷ �= y), the solution of (4.15) can be found easily via elementary Bayesian

decision theory [49]. In particular, the optimal classifier h(x) is such that ŷ achieves the

maximum “a-posteriori” probability p(ŷ|x) of the label being ŷ, given (or conditioned on)

the features x. However, since we do not know the probability distribution p(x, y), we have

to estimate (or approximate) it from the observed datapoints (x(i), y(i)) which are modelled

as i.i.d. random variables distributed according to p(x, y).

The estimation of p(x, y) can be based on a particular probabilistic model for the features

and labels which depends on certain parameters and then determining the parameters using

maximum likelihood (see Section 3.12). A widely used probabilistic model is based on

85

Gaussian random vectors. In particular, conditioned on the label y, we model the feature

vector x as a Gaussian vector with mean µy and covariance Σ, i.e.,

p(x|y) = N (x;µy,Σ).3 (4.16)

Given (conditioned on) the label y of a data point, the conditional mean of the features

x of this data point is µ1 if y = 1, while for y = −1 the conditional mean of x is µ−1. In

contrast, the conditional covariance matrix Σ = E{(x − µy)(x − µy)
T |y} of x is the same

for both values of the label y ∈ {−1, 1}. The conditional probability distribution p(x|y)
of the feature vector, given the label y, is multivariate normal. In contrast, the marginal

distribution of the features x is a Gaussian mixture model (see Section 8.2).

For this probabilistic model of features and labels, the optimal classifier minimizing the

error probability P(ŷ �= y) is ŷ=1 for h(x)> 0 and ŷ=−1 for h(x)≤ 0 using the classifier

map

h(x) = wTx with w = Σ−1(µ1 − µ−1). (4.17)

Carefully note that this expression is only valid if the matrix Σ is invertible.

We cannot implement the classifier (4.17) directly, since we do not know the true values

of the class-specific mean vectors µ1, µ−1 and covariance matrix Σ. Therefore, we have

to replace those unknown parameters with some estimates µ̂1, µ̂−1 and �Σ. A principled

approach is to use the maximum likelihood estimates (see (3.24))

µ̂1 = (1/m1)
m�

i=1

I(y(i) = 1)x(i),

µ̂−1 = (1/m−1)
m�

i=1

I(y(i) = −1)x(i),

µ̂ = (1/m)
m�

i=1

x(i),

and �Σ = (1/m)
m�

i=1

(z(i) − µ̂)(z(i) − µ̂)T , (4.18)

3We use the shorthand N (x;µ,Σ) to denote the probability density function

p(x) =
1�

det(2πΣ)
exp
�
− (1/2)(x−µ)TΣ−1(x−µ)

�

of a Gaussian random vector x with mean µ = E{x} and covariance matrix Σ = E
�
(x−µ)(x−µ)T

�
.

86

with m1 =
�m

i=1 I(y(i) = 1) denoting the number of datapoints with label y = 1 (m−1

is defined similarly). Inserting the estimates (4.18) into (4.17) yields the implementable

classifier

h(x) = wTx with w = �Σ−1(µ̂1 − µ̂−1). (4.19)

We highlight that the classifier (4.19) is only well-defined if the estimated covariance matrix
�Σ (4.18) is invertible. This requires to use a sufficiently large number of training datapoints

such that m ≥ n.

We derived the classifier (4.19) as an approximate solution to the ERM (4.14). The

classifier (4.19) partitions the feature space Rn into two half-spaces. One half-space consists

of feature vectors x for which the hypothesis (4.19) is non-negative and, in turn, ŷ = 1.

The other half-space is constituted by feature vectors x for which the hypothesis (4.19) is

negative and, in turn, ŷ = −1. Figure 2.8 illustrates these two half-spaces and the decision

boundary between them.

The Bayes’ classifier (4.19) is another instance of a linear classifier like logistic regression

and the SVM. Each of these methods learns a linear hypothesis h(x) = wTx, whose decision

boundary (vectors x with h(x) = 0) is a hyperplane (see Figure 2.8). However, these

methods use different loss functions for assessing the quality of a particular linear hypothesis

h(x) = wx (which defined the decision boundary via h(x) = 0). Therefore, these three

methods typically learn classifiers with different decision boundaries.

For the estimator �Σ (3.24) to be accurate (close to the unknown covariance matrix) we

need a number of datapoints (sample size) which is at least of the order n2. This sample size

requirement might be infeasible for applications with only few datapoints available.

The maximum likelihood estimate �Σ (4.18) is not invertible wheneverm < n. In this case,

the expression (4.19) becomes useless. To cope with small sample size m < n we can simplify

the model (4.16) by requiring the covariance to be diagonal Σ = diag(σ2
1, . . . , σ

2
n). This is

equivalent to modelling the individual features x1, . . . , xn of a datapoint as conditionally

independent, given its label y. The resulting special case of a Bayes’ classifier is often

referred to as a naive Bayes classifier.

We finally highlight that the classifier (4.19) is obtained using the generative model (4.16)

for the data. Therefore, Bayes’ classifiers belong to the family of generative ML methods

which involve modelling the data generation. In contrast, logistic regression and SVM do

not require a generative model for the datapoints but aim directly at finding the relation

between features x and label y of a datapoint. These methods belong therefore to the family

of discriminative ML methods.

87

Generative methods such as Bayes’ classifier are preferable for applications with only very

limited amounts of labeled data. Indeed, having a generative model such as (4.16) allows to

synthetically generate more labeled data by generating random features and labels according

to the probability distribution (4.16). We refer to [47] for a more detailed comparison between

generative and discriminative methods.

4.6 Training and Inference Periods

Some ML methods repeat the cycle in Figure 1 in a highly irregular fashion. Consider a

large image collection which we use to learn a hypothesis about how cat images look like.

It might be reasonable to adjust the hypothesis by fitting a model to the image collection.

This fitting or training amounts to repeating the cycle in Figure 1 during some specific time

period (the “training time”) for a large number.

After the training period, we only apply the hypothesis to predict the labels of new

images. This second phase is also known as inference time and might be much longer

compared to the training time. Ideally, we would like to only have a very short training

period to learn a good hypothesis and then only use the hypothesis for inference.

4.7 Online Learning

So far we considered the training set to be an unordered set of datapoints whose labels

are known. Many applications generate data in a sequential fashion, datapoints arrive

incrementally over time. It is then desirable to update the current hypothesis as soon as

new data arrives.

ML methods differ in the frequency of iterating the cycle in Figure 1. Consider a

temperature sensor which delivers a new measurement every ten seconds. As soon as a

new temperature measurement arrives, a ML method can use it to improve its hypothesis

about how the temperature evolves over time. Such ML methods operate in an online fashion

by continuously learning an improved model as new data arrives.

To illustrate online learning, we consider the ML problem discussed in Section 2.4. This

problem amounts to learning a linear predictor for the label y of datapoints using a single

numeric feature x. We learn the predictor based on some training data. The weight vector

for the optimal linear hypothesis is characterized by (2.20).

Let us assume that the training data is built up sequentially, we start with m = 1

88

datapoints in the first time step, then in the next time step collect another datapoint to get

m = 2 datapoints, We denote the feature matrix and label vector at time m by X(m)

and y(m):

m = 1 : X(1) =
�
x(1)
�T

, y(1) =
�
y(1)
�T

, (4.20)

m = 2 : X(2) =
�
x(1),x(2)

�T
, y(2) =

�
y(1), y(2)

�T
, (4.21)

m = 3 : X(3) =
�
x(1),x(2),x(3)

�T
, y(3 =

�
y(1), y(2), y(3)

�T
. (4.22)

Note that in this online learning setting, the sample size m has the meaning of a time index.

Naively, we could try to solve the optimality condition (2.20) for each time step m.

However, this approach does not reuse computations already invested in solving (2.20) at

previous time steps m� < m.

4.8 Exercise

4.8.1 Uniqueness in Linear Regression

Consider linear regression with squared error loss. When is the optimal linear predictor

unique. Does there always exist an optimal linear predictor?

4.8.2 A Simple Linear Regression Method

Consider datapoints characterized by single numeric feature x and label y. We learn a

hypothesis map of the form h(x) = x + b with some bias b ∈ R. Can you write down

a formula for the optimal b, that minimizes the average squared error on training data�
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

�
.

4.8.3 A Simple Least Absolute Deviation Method

Consider datapoints characterized by single numeric feature x and label y. We learn a

hypothesis map of the form h(x) = x + b with some bias b ∈ R. Can you write down

a formula for the optimal b, that minimizes the average absolute error on training data�
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

�
.

89

4.8.4 Polynomial Regression

Polynomial regression for datapoints with a single feature x and label y is equivalent to

linear regression with the feature vectors x =
�
x0, x1, . . . , xn−1

�T
. Given m = n datapoints�

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

�
, we construct the feature matrix X ∈ Rm×m. The columns of

the feature matrix are the feature vectors x(i). Is this feature matrix a Vandermonde matrix

[20]? Can you say something about the determinant of the feature matrix?

4.8.5 Empirical Risk Approximates Expected Loss

Consider training datapoints
�
x(i), y(i)

�
, for i = 1, . . . , 100. The datapoints are i.i.d. realizations

of a random datapoint (x, y). The feature x of a random datapoint is a Gaussian random

variable with zero mean and unit variance. The label is modelled as via y = x + e with

noise e ∼ N (0, 1) being a standard normal RV. The feature x and noise e are statistically

independent. For the hypothesis h(x) = 0, what is the probability that the empirical risk

(average loss) on the training data is more than 20 % larger than the expected loss or risk?

What is the expectation and variance of the training error and how are those related to the

expected loss ?

90

Chapter 5

Gradient-Based Learning

ML methods are optimization methods, that learn an optimal hypothesis out of the model.

The quality of each hypothesis is measured or scored by some average loss or empirical risk.

This average loss, viewed as a function of the hypothesis, defines an objective function whose

minimum is achieved by the optimal hypothesis.

Many ML methods use gradient-based methods to efficiently search for a (nearly) optimal

hypothesis. These methods locally approximate the objective function by a linear function

which is used to improve the current guess for the optimal hypothesis. The prototype of a

gradient-based optimization method is gradient descent (GD).

Variants of GD are used to tune the weights of artificial neural networks within deep

learning methods [22]. GD can also be applied to reinforcement learning applications. The

difference between these applications is merely in the details for how to compute or estimate

the gradient and how to incorporate the information provided by the gradients.

In the following, we will mainly focus on ML problems with hypothesis spaceH consisting

of predictor maps h(w) which are parameterized by a weight vector w ∈ Rn. Moreover, we

will restrict ourselves to loss functions L((x, y), h(w)) which depend smoothly on the weight

vector w.

Many important ML problems, including linear regression (see Section 3.1) and logistic

regression (see Section 3.6), involve in a smooth loss function. A smooth function f : Rn → R
has continuous partial derivatives of all orders. In particular, we can define the gradient

∇f(w) for a smooth function f(w) at every point w.

91

For a smooth loss function, the resulting ERM (see (4.3))

�w = argmin
w∈Rn

E(h(w) | D)

= (1/m)
m�

i=1

L((x(i), y(i)), h(w))

� �� �
:=f(w)

(5.1)

is a smooth optimization problem

min
w∈Rn

f(w) (5.2)

with a smooth function f : Rn → R of the vector argument w ∈ Rn.

We can approximate a smooth function f(w) locally around some point w0 using a

hyperplane. This hyperplane passes through the point (w0, f(w0)) and has the normal

vector n = (∇f(w0),−1) (see Figure 5.1). Elementary calculus yields the following linear

approximation (around a point w0) [51]

f(w) ≈ f(w0) + (w −w0)
T∇f(w0) for w sufficiently close to w0. (5.3)

The approximation (5.3) lends naturally to an iterative method for finding the minimum

of the function f(w). This method is known as gradient descent (GD) and (variants of it)

underlies many state-of-the-art ML methods, including deep learning methods.

f(w)

f(w0)+(w−w0)
T∇f(w0)

f(w0)
n

Figure 5.1: A smooth function f(w) can be approximated locally around a point w0 using a
hyperplane whose normal vector n = (∇f(w0),−1) is determined by the gradient ∇f(w0).

92

∇f(w(k))

−α∇f(w(k))

1

w

f(w)

w(k)w(k+1)

1

2

3

4

Figure 5.2: The GD step (5.4) amounts to a shift by −α∇f(w(k)).

5.1 The Basic GD Step

We now discuss a very simple, yet quite powerful, algorithm for finding the weight vector �w
which solves continuous optimization problems like (5.1).

Let us assume we have already some guess (or approximation) w(k) for the optimal weight

vector �w and would like to improve it to a new guess w(k+1) which yields a smaller value of

the objective function f(w(k+1)) < f(w(k)).

For a differentiable objective function f(w), we can use the approximation f(w(k+1)) ≈
f(w(k)) + (w(k+1) −w(k))T∇f(w(k)) (cf. (5.3)) for w(k+1) not too far away from w(k). Thus,

we should be able to enforce f(w(k+1)) < f(w(k)) by choosing

w(k+1) = w(k) − α∇f(w(k)) (5.4)

with a sufficiently small step size α > 0 (a small α ensures that the linear approximation

(5.3) is valid). Then, we repeat this procedure to obtain w(k+2) = w(k+1) − α∇f(w(k+1))

and so on.

The update (5.4) amounts to a gradient descent (GD) step. For a convex differentiable

objective function f(w) and sufficiently small step size α, the iterates f(w(k)) obtained by

repeating the GD steps (5.4) converge to a minimum, i.e., limk→∞ f(w(k)) = f
�
�w
�
(see

Figure 5.2).

When the GD step is used within an ML method (see Section 5.4 and Section 3.6), the

step size α is also referred to as the learning rate.

In order to implement the GD step (5.4) we need to choose the step size α and we need

93

to be able to compute the gradient ∇f(w(k)). Both tasks can be very challenging for an ML

problem.

The success of deep learning methods, which represent predictor maps using ANN (see

Section 3.11), can be partially attributed to the ability of computing the gradient ∇f(w(k))

efficiently via a message passing protocol known as back-propagation [22].

For the particular case of linear regression (see Section 3.1) and logistic regression (see

Section 5.5), we will present precise conditions on the step size α which guarantee convergence

of GD in Section 5.4 and Section 5.5. Moreover, the objective functions f(w) arising within

linear and logistic regression allow for closed-form expressions of the gradient ∇f(w).

5.2 Choosing Step Size

f(w(k))
f(w(k+1)) f(w(k+2))

(a)

f(w(k))
f(w(k+1))

f(w(k+2))(5.4)

(5.4)

(b)

Figure 5.3: Effect of choosing learning rate α in GD step (5.4) too small (a) or too large
(b). If the steps size α in the GD step (5.4) is chosen too small, the iterations make very
little progress towards the optimum or even fail to reach the optimum at all. If the learning
rate α is chosen too large, the iterates w(k) might not converge at all (it might happen that
f(w(k+1)) > f(w(k))!).

The choice of the step size α in the GD step (5.4) has a strong impact on the performance

of Algorithm 1. If we choose the step size α too large, the GD steps (5.4) diverge (see Figure

5.3-(b)) and, in turn, Algorithm 1 fails to deliver a satisfactory approximation of the optimal

weight vector w(opt) (see (5.7)).

If we choose the step size α too small (see Figure 5.3-(a)), the updates (5.4) make only

very little progress towards approximating the optimal weight vector �w. In applications that

require real-time processing of data streams, it is possible to repeat the GD steps only for a

moderate number. If the GD step size is chosen too small, Algorithm 1 will fail to deliver

a good approximation of �w within an acceptable number of iterations (which translates to

computation time).

94

The optimal choice of the step size α of GD can be a challenging task and many

sophisticated approaches have been proposed for its solution (see [22, Chapter 8]). We

will restrict ourselves to a simple sufficient condition on the step size which guarantees

convergence of the GD iterations w(k) for k = 1, 2,

If the objective function f(w) is convex and smooth, the GD steps (5.4) converge to an

optimum �w for any step size α satisfying [46]

α ≤ 1

λmax

�
∇2f(w)

� for all w ∈ Rn. (5.5)

Here, we use the Hessian matrix ∇2f(w) ∈ Rn×n of a smooth function f(w) whose entries

are the second-order partial derivatives ∂f(w)
∂wi∂wj

of the function f(w). It is important to note

that (5.5) guarantees convergence for every possible initialization w(0) of the GD iterations.

Note that while it might be computationally challenging to determine the maximum

eigenvalue λmax

�
∇2f(w)

�
for arbitrary w, it might still be feasible to find an upper bound

U for the maximum eigenvalue. If we know an upper bound U ≥ λmax

�
∇2f(w)

�
(valid for

all w ∈ Rn), the step size α = 1/U still ensures convergence of the GD iteration.

5.3 When To Stop

Fixed number of iteration (for this we might use convergence analysis of GD methods);

use gradient as indicator for distance to optimum; monitor decrease in objective function;

monitor decrease in validation error

5.4 GD for Linear Regression

We will now formulate a complete ML algorithm. This algorithm is based on applying GD

to the linear regression problem discussed in Section 3.1. This algorithm learns the weight

vector for a linear hypothesis (see (3.1))

h(w)(x) = wTx. (5.6)

The weight vector is chosen to minimize average squared error loss (2.6)

E(h(w)|D)
(4.3)
= (1/m)

m�

i=1

(y(i) −wTx(i))2, (5.7)

95

incurred by the predictor h(w)(x) when applied to the labeled dataset D = {(x(i), y(i))}mi=1.

The optimal weight vector �w for (5.6) is characterized as

�w = argmin
w∈Rn

f(w) with f(w) = (1/m)
m�

i=1

(y(i) −wTx(i))2. (5.8)

The optimization problem (5.8) is an instance of the smooth optimization problem (5.2).

We can therefore use GD (5.4) to solve (5.8), to obtain the optimal weight vector �w. To

implement GD, we need to compute the gradient ∇f(w).

The gradient of the objective function in (5.8) is given by

∇f(w) = −(2/m)
m�

i=1

(y(i) −wTx(i))x(i). (5.9)

By inserting (5.9) into the basic GD iteration (5.4), we obtain Algorithm 1.

Algorithm 1 “Linear Regression via GD”

Input: labeled dataset D = {(x(i), y(i))}mi=1 containing feature vectors x(i) ∈ Rn and labels
y(i) ∈ R; GD step size α > 0.

Initialize: set w(0) :=0; set iteration counter k :=0
1: repeat
2: k := k + 1 (increase iteration counter)
3: w(k) := w(k−1) + α(2/m)

�m
i=1(y

(i) −
�
w(k−1))Tx(i))x(i) (do a GD step (5.4))

4: until convergence
Output: w(k) (which approximates �w in (5.8))

Let us have a closer look on the update in step 3 of Algorithm 1, which is

w(k) := w(k−1) + α(2/m)
m�

i=1

(y(i) −
�
w(k−1))Tx(i))x(i). (5.10)

The update (5.10) has an appealing form as it amounts to correcting the previous guess (or

approximation) w(k−1) for the optimal weight vector �w by the correction term

(2α/m)
m�

i=1

(y(i) −
�
w(k−1))Tx(i))� �� �
e(i)

x(i). (5.11)

The correction term (5.11) is a weighted average of the feature vectors x(i) using weights

(2α/m) · e(i). These weights consist of the global factor (2α/m) (that applies equally to

96

all feature vectors x(i)) and a sample-specific factor e(i) = (y(i) −
�
w(k−1))Tx(i)), which

is the prediction (approximation) error obtained by the linear predictor h(w(k−1))(x(i)) =�
w(k−1))Tx(i) when predicting the label y(i) from the features x(i).

We can interpret the GD step (5.10) as an instance of “learning by trial and error”.

Indeed, the GD step amounts to “trying out” the predictor h(x(i)) =
�
w(k−1))Tx(i)

and then correcting the weight vector w(k−1) according to the error e(i) = y(i) −�
w(k−1))Tx(i).

The choice of the step size α used for Algorithm 1 can be based on the sufficient condition

(5.5) with the Hessian ∇2f(w) of the objective function f(w) underlying linear regression

(see (5.8)). This Hessian is given explicitly as

∇2f(w) = (1/m)XTX, (5.12)

with the feature matrix X =
�
x(1), . . . ,x(m)

�T ∈ Rm×n (see (4.5)). Note that the Hessian

(5.12) does not depend on the weight vector w.

Comparing (5.12) with (5.5), one particular strategy for choosing the step size in Algorithm

1 is to (i) compute the matrix productXTX, (ii) compute the maximum eigenvalue λmax

�
(1/m)XTX

�

of this product and (iii) set the step size to α = 1/λmax

�
(1/m)XTX

�
.

While it might be challenging to compute the maximum eigenvalue λmax

�
(1/m)XTX

�
,

it might be easier to find an upper bound U for it.1 Given such an upper bound U ≥
λmax

�
(1/m)XTX

�
, the step size α = 1/U still ensures convergence of the GD iteration.

Consider a dataset {(x(i), y(i))}mi=1 with normalized features, i.e., �x(i)� = 1 for all i =

1, . . . ,m. Then, by elementary linear algebra, one can verify the upper bound U = 1, i.e.,

1 ≥ λmax

�
(1/m)XTX

�
. We can then ensure convergence of the GD iterations w(k) (see

(5.10)) by choosing the step size α = 1.

5.5 GD for Logistic Regression

As discussed in Section 3.6, logistic regression learns a linear hypothesis h(�w) by minimizing

the average logistic loss (3.15) obtained for a dataset D = {(x(i), y(i))}mi=1, with features

x(i) ∈ Rn and binary labels y(i) ∈ {−1, 1}. This minimization problem is an instance of the

1The problem of computing a full eigenvalue decomposition ofXTX has essentially the same complexity as
solving the ERM problem directly via (4.10), which we want to avoid by using the “cheaper” GD algorithm.

97

smooth optimization problem (5.2),

�w = argmin
w∈Rn

f(w)

with f(w) = (1/m)
m�

i=1

log(1+exp(−y(i)wTx(i))). (5.13)

To apply GD (5.4) to solve (5.13), we need to compute the gradient ∇f(w). The gradient

of the objective function in (5.13) is given by

∇f(w) = (1/m)
m�

i=1

−y(i)

1 + exp(y(i)wTx(i))
x(i). (5.14)

By inserting (5.14) into the basic GD iteration (5.4), we obtain Algorithm 2.

Algorithm 2 “Logistic Regression via GD”

Input: labeled dataset D = {(x(i), y(i))}mi=1 containing feature vectors x(i) ∈ Rn and labels
y(i) ∈ R; GD step size α > 0.

Initialize:set w(0) :=0; set iteration counter k :=0
1: repeat
2: k :=k+1 (increase iteration counter)

3: w(k) := w(k−1)+α(1/m)
�m

i=1
y(i)

1+exp
�
y(i)
�
w(k−1)

�T
x(i)
�x(i) (do a GD step (5.4))

4: until convergence
Output: w(k), which approximates a solution �w of (5.13))

Let us have a closer look on the update in step 3 of Algorithm 2, which is

w(k) := w(k−1) + α(1/m)
m�

i=1

y(i)

1 + exp
�
y(i)
�
w(k−1)

�T
x(i)
�x(i). (5.15)

The update (5.15) has an appealing form as it amounts to correcting the previous guess (or

approximation) w(k−1) for the optimal weight vector �w by the correction term

(α/m)
m�

i=1

y(i)

1 + exp(y(i)wTx(i))� �� �
e(i)

x(i). (5.16)

The correction term (5.16) is a weighted average of the feature vectors x(i), each of which

is weighted by the factor (α/m) · e(i). These weighting factors are a product of the global

98

factor (α/m) that applies equally to all feature vectors x(i). The global factor is multiplied

by a datapoint-specific factor e(i) = y(i)

1+exp(y(i)wTx(i))
, which quantifies the error of the classifier

h(w(k−1))(x(i)) =
�
w(k−1))Tx(i) for a single datapoint with true label y(i) ∈ {−1, 1} and features

x(i) ∈ Rn.

We can use the sufficient condition (5.5) for the convergence of GD to guide the choice of

the step size α in Algorithm 2. To apply condition (5.5), we need to determine the Hessian

∇2f(w) matrix of the objective function f(w) underlying logistic regression (see (5.13)).

Some basic calculus reveals (see [26, Ch. 4.4.])

∇2f(w) = (1/m)XTDX. (5.17)

Here, we used the feature matrix X =
�
x(1), . . . ,x(m)

�T ∈ Rm×n (see (4.5)) and the diagonal

matrix D = diag{d1, . . . , dm} ∈ Rm×m with diagonal elements

di =
1

1 + exp(−wTx(i))

�
1− 1

1 + exp(−wTx(i))

�
. (5.18)

We highlight that, in contrast to the Hessian (5.12) obtained for the objective function arising

in linear regression, the Hessian (5.17) varies with the weight vector w. This makes the

analysis of Algorithm 2 and the optimal choice of step size somewhat more difficult compared

to Algorithm 1. However, since the diagonal entries (5.18) take values in the interval [0, 1],

for normalized features (with �x(i)� = 1) the step size α = 1 ensures convergence of the GD

updates (5.15) to the optimal weight vector datapoin solving (5.13).

5.6 Data Normalization

The convergence speed of the GD steps (5.4), i.e., the number of steps required to reach the

minimum of the objective function (4.4) within a prescribed accuracy, depends crucially on

the condition number κ(XTX). This condition number is defined as the ratio

κ(XTX) := λmax/λmin (5.19)

between the largest and smallest eigenvalue of the matrix XTX.

The condition number is only well-defined if the columns of the feature matrix X (see

(4.5)), which are precisely the feature vectors x(i), are linearly independent. In this case the

condition number is lower bounded as κ(XTX) ≥ 1.

99

It can be shown that the GD steps (5.4) converge faster for smaller condition number

κ(XTX) [32]. Thus, GD will be faster for datasets with a feature matrix X such that

κ(XTX) ≈ 1. It is therefore often beneficial to pre-process the feature vectors using a

normalization (or standardization) procedure as detailed in Algorithm 3.

Algorithm 3 “Data Normalization”

Input: labeled dataset D = {(x(i), y(i))}mi=1

1: remove sample means x̄ = (1/m)
�m

i=1 x
(i) from features, i.e.,

x(i) := x(i) − x̄ for i = 1, . . . ,m

2: normalise features to have unit variance,

x̂
(i)
j := x

(i)
j /σ̂ for j = 1, . . . , n and i = 1, . . . ,m

with the empirical variance σ̂2
j = (1/m)

�m
i=1

�
x
(i)
j

�2
Output: normalized feature vectors {x̂(i)}mi=1

The preprocessing implemented in Algorithm 3 reshapes (transforms) the original feature

vectors x(i) into new feature vectors x̂(i) such that the new feature matrix �X = (x̂(1), . . . , x̂(m))T

tends to be well-conditioned, i.e., κ(�XT �X) ≈ 1.

Exercise. Consider the dataset with feature vectors x(1) = (100, 0)T ∈ R2 and

x(2) = (0, 1/10)T which we stack into the matrix X = (x(1),x(2))T . What is

the condition number of XTX? What is the condition number of
��X
�T �X with

the matrix �X = (x̂(1), x̂(2))T constructed from the normalized feature vectors x̂(i)

delivered by Algorithm 3.

5.7 Stochastic GD

Consider an ML problem with a hypothesis space H which is parametreized by a weight

vector w ∈ Rn (such that each element h(w) of H corresponds to a particular choice of w)

and a loss function L((x, y), h(w)) which depends smoothly on the weight vector w. The

resulting ERM (5.1) amounts to a smooth optimization problem which can be solved using

GD (5.4).

The gradient∇f(w) obtained for the optimization problem (5.1) has a particular structure.

100

Indeed, the gradient is a sum

∇f(w) = (1/m)
m�

i=1

∇fi(w) with fi(w) := L((x(i), y(i)), h(w)), (5.20)

with the components corresponding to the datapoints (x(i), y(i)), for i = 1, . . . ,m. Note that

each GD step (5.4) requires to compute the gradient (5.20).

Computing the sum in (5.20) can be computationally challenging for at least two reasons.

First, computing the sum exactly is challenging for extremely large datasets with m in the

order of billions. Second, for datasets which are stored in different data centres located all

over the world, the summation would require a huge amount of network resources. Moreover,

the finite transmission rate of communication networks limits the rate by which the GD steps

(5.4) can be executed.

ImageNet. The “ImageNet” database contains more than 106 images [36]. These

images are labeled according to their content (e.g., does the image show a dog?).

Let us assume that each image is represented by a (rather small) feature vector

x ∈ Rn of length n = 1000. Then, if we represent each feature by a floating point

number, performing only one single GD update (5.4) per second would require at

least 109 FLOPS.

The idea of stochastic GD (SGD) is to replace the exact gradient ∇f(w) by some

approximation which can be computed easier than (5.20). The word “stochastic” in the

name SGD hints already at the use of stochastic approximations.

A basic variant of SGD approximates the gradient∇f(w) (see (5.20)) a randomly selected

component∇fî(w) in (5.20), with the index î being chosen randomly out of {1, . . . ,m}. SGD

amounts to iterating the update

w(k+1) = w(k) − α∇fî(w
(k)). (5.21)

It is important to use a fresh randomly chosen index î during each new iteration. The indices

used in different iterations are statistically independent.

Note that SGD replaces the summation over all training datapoints in the GD step

(5.4) just by the random selection of a single component of the sum. The resulting savings

in computational complexity can be significant in applications where a large number of

datapoints is stored in a distributed fashion. However, this saving in computational complexity

101

comes at the cost of introducing a non-zero gradient noise

ε = ∇f(w)−∇fî(w), (5.22)

into the SGD updates.

To avoid a detrimental accumulation of the gradient noise (5.22) during the SGD updates

(5.24), the step size α needs to be gradually decreased. Thus, the step-size used in the SGD

update (5.22) typically depends on the iteration number k, α = αk. The sequence αk of

step-sizes is referred to as a learning rate schedule [22, Chapter 8]. One popular choice

for the learning rate schedule is α= 1/k [45]. We consider conditions on the learning rate

schedule that guarantee convergence of SGD in Exercise 5.8.2.

The SGD iteration (5.24) assumes that the training data is already collected but so large

that the sum in (5.20) is computationally intractable. Another variant of SGD is obtained

by assuming a different data generation mechanism. If datapoints are collected sequentially,

one new datapoint x(t), y(t) at each new time step t, we could use a SGD variant for online

learning (see Section 4.7). This online SGD algorithm amounts to computing, for each time

step t, the iteration

w(t+1) = w(t) − αt∇ft+1(w
(t)). (5.23)

5.8 Exercises

5.8.1 Use Knowledge About Problem Class

Consider the space P of sequences f = (f [0], f [1], . . .) that have the following properties

• they are monotone increasing, f [k�] ≥ f [k] for any k� ≥ k and f ∈ P

• a change point k, where f [k] �= f [k+1] can only be at integer multiples of 100, e.g.,

k=100 or k=300.

Given some unknown function f ∈ P and starting point k0 the problem is to find the

minimum value of f as quickly as possible. We consider iterative algorithms that can query

the function at some point k to obtain the values f [k], f [k−1] and f [k+1].

102

5.8.2 SGD Learning Rate Schedule

Consider learning a linear hypothesis h(x) = wTx from datapoints that arrive sequentially.

In each time step k = 1, . . . ,, we collect a new datapoint
�
x(k), y(k)

�
. The datapoints are

modelled as realizations of i.i.d. copies of a random data point
�
x, y
�
. The probability

distribution of the features x is a standard multivariate normal distribution N (0, I). The

label of a random datapoint is related to its features via y = w̄Tx+ ε with noise ε ∼ N (0, 1)

following a standard normal distribution. We use SGD to learn the weight vector w of a

linear hypothesis,

w(k+1) = w(k) − αk

��
w(k)

�T
x(k) − y(k)

�
x(k). (5.24)

with learning rate schedule αk = β/kγ. Note that we implement one SGD iteration (5.24)

during each time step k. Thus, the iteration counter is the time index in this case. What

conditions on the hyper-parameters β, γ ensure that lim
k→∞

w(k) = w̄ in distribution?

5.8.3 Apple or No Apple?

Consider datapoints representing images. Each image is characterized by the RGB values

(value range 0, . . . , 255) of 1024× 1024 pixels, which we stack into a feature vector x ∈ Rn.

We assign each image the label y = 1 if it shows an apple and y = −1 if it does not show an

apple.

We use logistic regression to learn a linear hypothesis h(x) = wTx for classifying an

image according to ŷ = 1 if h(x) ≥ 0. We use a training set of m = 1010 labeled images

which are stored in the cloud. We implement the ML method on our own laptop which is

connected to the internet with a rate of at most 100 Mbps. Unfortunately we only store at

most five images on our computer. How long does one single GD step take at least?

103

Chapter 6

Model Validation and Selection

training error validation error

some benchmark
(Bayes’ risk, human
performance,. . .)

Figure 6.1: To diagnose ML methods we compare the training with validation error. Ideally
both errors are on the same level as a relevant benchmark.

Chapter 4 discussed ERM as a principled approach to learning a good hypothesis out

of a hypothesis space or model. ERM-based methods learn a hypothesis ĥ ∈ H that incurs

minimum average loss on a set of labeled datapoints which is as the training set. We refer

to the average loss incurred by a hypothesis on the training set as the training error. The

minimum average loss achieved by a hypothesis that solves the ERM might be referred to

as the training error of the overall ML method.

ERM makes sense only if the training error of a hypothesis is a good indicator for its loss

incurred on datapoints outside the training set. Whether the training error of a hypothesis

is a reliable indicator for its performance outside the training set depends on the statistical

104

properties of the datapoints and on the hypothesis space used by the ML method.

ML methods often use hypothesis spaces with a large effective dimension (see Section

2.2). As an example consider linear regression (see Section 3.1) with datapoints having a

vast number n of features. The effective dimension of the linear hypothesis space (3.1), which

is used by linear regression, is equal to the number n of features. Modern technology allows

collect a huge number of features about individual datapoints which implies, in turn, that the

effective dimension of (3.1) is huge. Another example of high-dimensional hypothesis spaces

are deep learning methods whose hypothesis spaces are constituted by all maps represented

by some ANN with billions of tunable weights.

A high-dimensional hypothesis space is typically very likely to contain a hypothesis that

fits perfectly any given training set. Such a hypothesis achieves a very small training error

but might incur a large loss when predicting the labels of datapoints outside the training

data. The (minimum) training error achieved by a hypothesis learnt by ERM can be highly

misleading. We say that a ML method, such as linear regression using too many features,

overfits the training data it it leans a hypothesis (e.g., via ERM) that has small training

error but incurs much larger loss outside the training set.

Section 6.1 shows why linear regression will most likely overfit as soon as the number of

features of a datapoint exceeds the size of the training set. Section 6.2 demonstrates how to

validate a learnt hypothesis by computing its average loss on datapoints which are different

from the training set. The datapoints used to validate the hypothesis are referred to as the

validation set. When a ML method is overfitting the training set, it will learn a hypothesis

whose training error is much smaller than the validation error. Thus, we can detect if a ML

method overfits by comparing its training and validation errors (see Figure 6.1).

We can use the validation error not only to detect if a ML method overfits. The validation

error can also be used as a quality measure for an entire hypothesis space or model. This

is similar in spirit to the concept of a loss function that allows to evaluate the quality of

a hypothesis h∈H. Section 6.3 shows how to do model selection based on comparing the

validation errors obtained for different candidate models (hypothesis spaces).

Section 6.4 uses a simple probabilistic model for the data to study the relation between

training error and the expected loss or risk of a hypothesis. The analysis of the probabilistic

model reveals the interplay between the data, the hypothesis space and the resulting training

and validation error of a ML method.

Section 6.5 presents the bootstrap as a simulation-based alternative to the analysis of

Section 6.4. While Section 6.4 assumes a particular probability distribution of datapoints, the

105

bootstrap does not require no detailed assumptions about the data distribution. Bootstrap

methods allow to analyze statistical fluctuations in the learning process that may arise from

using different training sets. The bootstrap allows for a more fine-grained diagnosis of ML

methods than by relying only on a training and validation error.

As indicated in Figure 6.1, for some ML applications, we might know a benchmark error

level for ML methods. Such a benchmark level might be obtained from existing ML methods,

human performance levels or from a probabilistic model (see Section 6.4). Section 6.6 details

how the comparison between training and validation error with some benchmark error level

informs possible improvements of the ML method. These improvements might be obtained

by collecting more datapoints, using more features of datapoints or by changing the model

(hypothesis space). Having a benchmark level also allows to tell if a ML method already

provides satisfactory results. If the training and validation error of a ML method are on the

same level as the error of the theoretically optimal Bayes’ estimator, there is little point in

modifying the ML method as it already performs (nearly) optimal.

6.1 Overfitting

We now have a closer look at the occurrence of overfitting in linear regression which is one of

the ML method discussed in Section 3.1. Linear regression methods learn a linear hypothesis

h(x) = wTx which is parametrized by the weight vector w ∈ Rn. The learnt hypothesis

is then used to predict the numeric label y ∈ R of a datapoint based on its feature vector

x ∈ Rn.

Linear regression aims at finding a weight vector �w with minimum average squared error

loss incurred on a training set

D =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

��
.

The training set consists of m datapoints
�
x(i), y(i)

�
, for i = 1, . . . ,m, with known label

values y(i). We stack the feature vectors x(i) and labels y(i) of the training data into the

feature matrix X = (x(1), . . . ,x(m))T and label vector y = (y(1), . . . , y(m))T .

The ERM (4.12) of linear regression is solved by any weight vector �w that solves (4.10).

106

The (minimum) training error of the hypothesis h(�w) is obtained as

E(h(�w) | D)
(4.3)
= min

w∈Rn
E(h(w)|D)

(4.12)
= �(I−P)y�2. (6.1)

Here, we used the orthogonal projection matrix P on the linear span

span{X} =
�
Xa : a ∈ Rn

�
⊆ Rm,

of the feature matrix X = (x(1), . . . ,x(m))T ∈ Rm×n.

In many ML applications, we have access to a huge number of individual datapoints. If

a datapoint represents a snapshot obtained from a smartphone camera, we can use millions

of pixel colour intensities as its features. Therefore, it is common to have more features for

datapoints than the size of the training set,

n ≥ m. (6.2)

Whenever (6.2) holds, the feature vectors x(1), . . . ,x(m) ∈ Rn of the datapoints in D are

typically linearly independent. As a case in point, If the feature vectors x(1), . . . ,x(m) ∈ Rn

are realizations of i.i.d. RVs with a continuous probability distribution, these vectors are

linearly independent with probability one [44].

If the feature vectors x(1), . . . ,x(m) ∈ Rn are linearly independent, the span of the feature

matrix X = (x(1), . . . ,x(m))T coincides with Rm which implies, in turn, P = I. Inserting

P = I into (4.12) yields

E(h(�w) | D) = 0. (6.3)

As soon as the number m = |D| of training datapoints does not exceed the number n of

features that characterize datapoints, there is (with probability one) a linear predictor h(�w)

achieving zero training error.

While the hypothesis h(�w) achieves zero training error, it will typically incur a non-zero

average prediction error y− h(�w)(x) on datapoints (x, y) outside the training set (see Figure

6.2). Section 6.4 will make this statement more precise by using a probabilistic model for

the datapoints within and outside the training set.

Note that (6.3) also applies if the features x and labels y of datapoints are completely

unrelated. As a case in point, consider a ML problem with datapoints whose labels y and

107

features are realizations of a RV that are statistically independent. Thus, in a very strong

sense, the features x contain no information about the label of a datapoint. Nevertheless, as

soon as the number features exceeds the size of the training set, such that (6.2) holds, linear

regression will learn a hypothesis with zero training error.

We can easily extend the above discussion about the occurrence of overfitting in linear

regression to other methods that combine linear regression with a feature map. Polynomial

regression, using datapoints with a single feature z, combines linear regression with the

feature map z �→ Φ(z) :=
�
z0, . . . , zn−1

�T
as discussed in Section 3.2. It can be shown that

whenever (6.2) holds and the features z(1), . . . , z(m) of the training data are all different, the

feature vectors x(1) = Φ
�
z(1)
�
, . . . ,x(m) = Φ

�
z(m)
�
are linearly independent. This implies, in

turn, that polynomial regression is guaranteed to find a hypothesis with zero training error

whenever m ≤ n and the training datapoints have different feature values.

Figure 6.2: Polynomial regression learns a polynomial map with degree n−1 by minimizing its
average loss on a training set (blue crosses). Using high-degree polynomials (large n) results
in a small training error. However, the learnt high-degree polynomial performs poorly on
datapoints outside the training set (orange dots).

6.2 Validation

Consider an ML method that uses ERM (4.2) to learn a hypothesis ĥ ∈ H out of the

hypothesis space H. Section 6.2 showed that the training error of ĥ can be a poor indicator

for the performance of ĥ for datapoints outside the training set that has been used in ERM.

108

�
x(1), y(1)

�

�
x(2), y(2)

�

�
x(3), y(3)

�

D(train)

�
x(4), y(4)

�

�
x(5), y(5)

�

D(val)

Figure 6.3: We split the dataset D into two subsets, a training set D(train) and a validation
set D(val). We use the training set to learn (find) the hypothesis ĥ with minimum empirical
risk E(ĥ|D(train)) on the training set (4.2). We then validate ĥ by computing its average
loss E(ĥ|D(val)) on the validation set D(val). The average loss E(ĥ|D(val)) obtained on the
validation set is the validation error. Note that ĥ depends on the training set D(train) but
is completely independent of the validation set D(val).

109

The hypothesis ĥ tends to “look better” for the training set on which it has been tuned by

ERM. The basic idea of validating the predictor ĥ is simple: after learning ĥ using ERM on

a training set, compute its average loss on datapoints which have not been used in ERM.

By validation we refer to the computation of the average loss on datapoints that have not

been used in ERM.

Assume we have access to a dataset of m datapoints,

D =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

��
.

Each datapoint is characterized by a feature vector x(i) and a label y(i). Algorithm 4 outlines

how to learn and validate a hypothesis h ∈ H by splitting the dataset D into a training set

and a validation set.

Algorithm 4 Validated ERM

Input: model H, loss function L, dataset D =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

��
; split ratio ρ

1: randomly shuffle the datapoints in D
2: create the training set D(train) using the first mt=�ρm� datapoints,

D(train) =
��

x(1), y(1)
�
, . . . ,

�
x(mt), y(mt)

��
.

3: create the validation set D(val) by the mv = m−mt remaining datapoints,

D(val) =
��

x(mt+1), y(mt+1)
�
, . . . ,

�
x(m), y(m)

��
.

4: learn hypothesis ĥ via ERM on the training set,

ĥ := argmin
h∈H

E
�
h|D(train)

�
(6.4)

5: compute training error

Et := E
�
ĥ|D(train)

�
= (1/mt)

mt�

i=1

L((x(i), y(i)), h). (6.5)

6: compute validation error

Ev := E
�
ĥ|D(val)

�
= (1/mv)

m�

i=mt+1

L((x(i), y(i)), ĥ). (6.6)

Output: learnt hypothesis ĥ, training error Et, validation error Ev

110

The random shuffling in step 1 of Algorithm 4 ensures that the order of the datapoints has

no meaning. This is important in applications where the datapoints are collected sequentially

over time and consecutive datapoints might be correlated. We could avoid the shuffling step,

if we construct the training set by randomly choosing a subset of size mt instead of using

the first mt datapoints.

6.2.1 The Size of the Validation Set

The choice of the split ratio ρ ≈ mt/m in Algorithm 4 is often based on trial and error.

We try out different choices for the split ratio and pick the one resulting in the smallest

validation error. It is difficult to make a precise statement on how to choose the split ratio

which applies broadly [38]. This difficulty stems from the fact that the optimal choice for ρ

depends on the precise statistical properties of the datapoints.

To obtain a lower bound on the required size of the validation set, we need a probabilistic

model for the datapoints. Let us assume that datapoints are realizations of i.i.d. random

variables with the same probability distribution p(x, y). Then the validation error Ev (6.6)

becomes a realization of a random variable. The expectation (or mean) E{Ev} of this RV is

precisely the risk E{L((x, y), ĥ)} of ĥ (see (4.1)).

The random validation error Ev fluctuates around its mean. We can quantify this

fluctuations using the variance

σ2
Ev

:= E
��

Ev − E{Ev}
�2�

.

Note that the validation error is the average of the realizations L((x(i), y(i)), ĥ) of i.i.d.

RVs. The probability distribution of the RV L((x, y), ĥ) is determined by the probability

distribution p(x, y), the choice of loss function and the hypothesis ĥ. In general, we do not

know p(x, y) and, in turn, also do not know the probability distribution of L((x, y), ĥ).
If we know an upper bound U on the variance of the (random) loss L((x(i), y(i)), ĥ), we

can bound the variance of Ev as

σ2
Ev

≤ U/mv.

We can then, in turn, that the variance σ2
Ev

of the validation error does not exceed a given

threshold η, say η = (1/100)E2
t , by using a validation set of size

mv ≥ U/η. (6.7)

111

fold 1 D(val)=D1

fold 2 D(val)=D2

fold 3 D(val)=D3

fold 4 D(val)=D4

fold 5 D(val)=D5

dataset D =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

��

Figure 6.4: Illustration of k-fold CV for k = 5. We evenly partition the entire dataset D
into k = 5 subsets (or folds) D1, . . . ,D5. We then repeat the validated ERM Algorithm 4 for
k = 5 times. The bth repetition uses the bth fold Db as the validation set and the remaining
k−1(= 4) folds as the training set for ERM (4.2).

The lower bound (6.7) is only useful if we can determine an upper bound U on the variance

of the RV L((x, y), ĥ) where
�
x, y
�
is a RV with probability distribution p(x, y). Such an

upper bound can be derived using probability theory when the probability distribution p(x, y)

is known. Another option is to estimate the variance of L((x, y), ĥ) using the sample variance

of the actual loss values L((x(1), y(1)), ĥ), . . . ,L((x(m), y(m)), ĥ) obtained for the dataset D.

6.2.2 k-Fold Cross Validation

Algorithm 4 uses the most basic form of splitting a given dataset D into a training and a

validation set. Many variations and extensions of this basic splitting approach have been

proposed and studied (see)[16] and Section 6.5).

One very popular modification of the single split into training and validation set is known

as k-fold cross-validation (CV) [26, Sec. 7.10]. Figure 6.4 depicts the operations principle

behind k-fold CV which is based on dividing the entire dataset evenly into subsets or folds of

same set. The training and validation of a hypothesis is then repeated for k times. During

each repetition, we use a different subsets for training and validation. The average (over all

repetitions) validation error is a more robust estimator for the expected loss or risk compared

to the validation error obtained from a single split. When using a single split into training

and validation set, we might choose a very atypical set of datapoint for the validation set.

Algorithm 5 is obtained from Algorithm 4 by replacing the single split into training and

validation set by k-fold CV.

112

Algorithm 5 k-fold CV ERM

Input: model H, loss function L, dataset D =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

��
; number k of

folds
1: randomly shuffle the datapoints in D
2: divide the shuffled dataset D into k folds D1, . . . ,Dk of size B = �m/k�,

D1=
��

x(1), y(1)
�
, . . . ,

�
x(B), y(B)

�
}, . . . ,Dk=

��
x((k−1)B+1), y((k−1)B+1)

�
, . . . ,

�
x(m), y(m)

�
} (6.8)

3: for fold index b = 1, . . . , k do
4: use bth fold as the validation set D(val) = Db

5: use rest as the training set D(train) = D \ Db

6: learn hypothesis ĥ via ERM on the training set,

ĥ(b) := argmin
h∈H

E
�
h|D(train)

�
(6.9)

7: compute training error

E
(b)
t := E

�
ĥ|D(train)

�
= (1/

��D(train)
��)
�

i∈D(train)

L((x(i), y(i)), h). (6.10)

8: compute validation error

E(b)
v := E

�
ĥ|D(val)

�
= (1/

��D(val)
��)
�

i∈D(val)

L((x(i), y(i)), ĥ). (6.11)

9: end for
10: compute average training and validation errors

Et := (1/k)
k�

b=1

E
(b)
t , and Ev := (1/k)

k�

b=1

E(b)
v

11: pick a learnt hypothesis ĥ := ĥ(b) for some b ∈ {1, . . . , k}
Output: learnt hypothesis ĥ; average training error Et; average validation error Ev

113

6.2.3 Imbalanced Data

The simple validation approach discussed above requires the validation set to be a good

representative for the overall statistical properties of the data. This might not be the case

in applications with discrete valued labels and some of the label values being very rare. We

might then be interested in having a good estimate of the conditional risks E{L((x, y), h)|y =

y�} where y� is one of the rare label values. This is more than requiring a good estimate for

the risk E{L((x, y), h)}.
Consider datapoints characterized by a feature vector x and binary label y ∈ {−1, 1}.

Assume we aim at learning a hypothesis h(x) = wTx to classify datapoints via ŷ = 1 if

h(x) ≥ 0 while ŷ = −1 otherwise. The learning is based on a dataset D which contains only

one single (!) datapoint with y = −1. If we then split the dataset into training and validation

set, it is with high probability that the validation set does not include any datapoint with

y = −1. This cannot happen when using k-fold CV since the single data point must be one

of the validation folds. However, even when using k-fold CV for such an imbalanced dataset

is problematic since we evaluate the performance of a hypothesis h(x) using only one single

datapoint with y = −1. The validation error will then be dominated by the loss of h(x)

incurred only on datapoints with the label y = 1.

When learning and validating a hypothesis using imbalanced data, it might be useful to

to generate synthetic datapoints to enlarge the minority class. This can be done using data

augmentation techniques which we discuss in Section 7.3. Another option is to use a loss

function that takes the different frequency of label values into account.

Consider an imbalanced dataset of size m = 100, which contains 90 datapoints with

label y = 1 but only 10 datapoints with label y = −1. We might then put more weight on

wrong predictions obtained for the minority class (of datapoints with y = −1). This can

be done by using a much larger value for the loss L((x, y = −1), h(x) = 1) than for the loss

L((x, y = 1), h(x) = −1). Remember that the loss function is a design choice and can been

freely set by the ML engineer.

6.3 Model Selection

Chapter 3 illustrated how many well-knownMLmethods are obtained by different combinations

of a hypothesis space or model, loss function and data representation. While for many ML

applications there is often a natural choice for the loss function and data representation,

the right choice for the model is typically less obvious. This chapter shows how to use the

114

validation methods of Section 6.2 to choose between different candidate models.

Consider datapoints characterized by a single numeric feature x ∈ R and numeric label

y ∈ R. If If we suspect that the relation between feature x and label y is non-linear, we might

use polynomial regression which is discussed in Section 3.2. Polynomial regression uses the

hypothesis space H(n)
poly with some maximum degree n. Different choices for the maximum

degree n yield a different hypothesis space: H(1) = H(0)
poly,H(2) = H(1)

poly, . . . ,H(M) = H(M−1)
poly .

Another ML method that learns non-linear hypothesis map is Gaussian basis regression

(see Section 3.5). Here, different choices for the variance σ and shifts µ of the Gaussian basis

function (3.12) result in different hypothesis spaces. For example, H(1) = H(2)
Gauss with σ = 1

and µ1 = 1 and µ2 = 2, H(2) = H(2)
Gauss with σ = 1/10, µ1 = 10, µ2 = 20.

Algorithm 6 summarizes a simple method to choose between different candidate models

H(1),H(2), . . . ,H(M). The idea is to first learn and validate a hypothesis, separately for each

model, using Algorithm 5. For each model H(l), we lean a hypothesis ĥ(l) (via (6.4)) and

compute its validation error E
(l)
v (6.6). We then choose the hypothesis ĥ(l̂) from those model

H(l̂) which resulted in the smallest validation error E
(l̂)
v = minl=1,...,M E

(l)
v .

The “work-flow” of Algorithm 6 is quite similar to the work-flow of ERM. The idea of

ERM is to learn a hypothesis out of a set of different candidates (the hypothesis space). The

quality of a particular hypothesis h is measured using the (average) loss incurred on some

training set. We use a similar principle for model selection but on a higher level. Instead

of learning a hypothesis within a hypothesis space, we learn a hypothesis space within a set

of candidate hypothesis spaces. For a particular hypothesis space H we the validation error

(6.6) of the hypothesis ĥ ∈ H with minimum training error (6.4).

We have introduced validation techniques as a method to assess the quality of a hypothesis

ĥ that is learnt using ERM on a training set. The idea was to try out the hypothesis on a

validation set which consists of datapoints that have not been used for learning or tuning

the hypothesis ĥ.

The model selection Algorithm 6 learns a hypothesis ĥ not only by using a training set

for ERM (see (6.9)). We also use the validation set in (6.11) to find the best model H(l̂)

(see step 10) which contains ĥ. Since we use the validation set to learn or tune the final

hypothesis ĥ delivered by Algorithm 6, we cannot use the validation error (6.11) as a good

indicator for the general performance of ĥ.

We must try out the final hypothesis ĥ on a test set which contains datapoints that have

neither been used within ERM for a specific model nor when we do model selection via

minimizing the validation error. The average loss of the final hypothesis on the test set is

115

referred to as the test error. The test error is computed in the steps 3 and 12 of Algorithm

6.

Algorithm 6 Model Selection

Input: list of candidate models H(1), . . . ,H(M), loss function L, dataset D =��
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

��
; number k of folds, test fraction ρ

1: randomly shuffle the datapoints in D
2: determine size m� := �ρm� of test set
3: construct test set

D(test) =
��

x(1), y(1)
�
, . . . ,

�
x(m�), y(m

�)
��

4: construct the set used for training and validation,

D(trainval) =
��

x(m�+1), y(m
�+1)
�
, . . . ,

�
x(m), y(m)

��

5: for model index l = 1, . . . ,M do
6: run Algorithm 5 using H = H(l), dataset D = D(trainval), loss function L and k folds
7: Algorithm 5 delivers hypothesis ĥ and validation error Ev

8: store learnt hypothesis ĥ(l) := ĥ and validation error E
(l)
v := Ev

9: end for
10: pick model H(l̂) with minimum validation error E

(l̂)
v =minl=1,...,M E

(l)
v

11: define optimal hypothesis ĥ = ĥ(l̂)

12: compute test error

E(test) := E
�
ĥ|D(test)

�
= (1/

��D(test)
��)
�

i∈D(test)

L((x(i), y(i)), ĥ). (6.12)

Output: hypothesis ĥ; training error E
(l̂)
t ; validation error E

(l̂)
v , test error E(test).

Sometimes it might be useful to use different loss functions for the training and the

validation of a hypothesis. As an example, consider the methods logistic regression and

SVM. Both methods learn a linear hypothesis but using two different loss functions, the

logistic loss (2.11) and the hinge loss (2.10), respectively. We then compute the validation

errors using those two loss functions. It is difficult to compare these two methods since

their validation errors are measured in different loss functions, the logistic loss (2.11) and

the hinge loss (2.10), respectively. We could instead compute the validation error for both

methods, logistic regression and SVM, using the average 0/1 loss (2.8) (“accuracy”). The

resulting average loss (accuracy) on the validation set can then be compared directly.

Algorithm 6 requires as one of its inputs a given list of candidate models. The longer this

list, the more computation is required from Algorithm 6. Sometimes it is possible to prune

116

the list of candidate models by removing models that are very unlikely to have minimum

validation error.

Consider polynomial regression which uses as the model the space H(r)
poly of polynomials

with maximum degree r (see (3.4)). For r = 1, H(r)
poly is the space of polynomials with

maximum degree one (which are linear maps), h(x) = w2x + w1. For r = 2, H(r)
poly is the

space of polynomials with maximum degree two, h(x) = w3x
2 + w2x+ w1.

The polynomial degree r parametrizes a nested set of models,

H(1)
poly ⊂ H(2)

poly ⊂

For each degree r, we learn a hypothesis h(r) ∈ H(r)
poly with minimum average loss (training

error) E
(r)
t on a training set (see (6.5)). To validate the learnt hypothesis h(r), we compute

its average loss (validation error) E
(r)
v on a validation set (see (6.6)).

Figure 6.5 depicts the typical dependency of the training and validation errors on the

polynomial degree r. The training error E
(r)
t decreases monotonically with increasing degree

r. To understand why this is the case, consider the two specific choices r = 3 and r = 5

with corresponding models H(3)
poly and H(5)

poly. Note that H(3)
poly ⊂ H(5)

poly since any polynomial

with degree not exceeding 3 is also a polynomial with degree not exceeding 5. Therefore, the

training error (6.5) obtained when minimizing over the larger model H(5)
poly can only decrease

but never increase compared to (6.5) using the smaller model H(3)
poly

Figure 6.5 indicates that the validation error E
(r)
v (see (6.6)) behaves very different

compared to the training error E
(r)
t . Starting with degree r = 0, the validation error first

decreases with increasing degree r. As soon as the degree r is increased beyond a critical

value, the validation error starts to increase with increasing r. For very large values of r,

the training error becomes almost eligible while the validation error becomes very large. In

this regime, polynomial regression overfits the training data.

We illustrate the overfitting of polynomial regression with too large degree in Figure 6.6.

Figure 6.6 depicts a learnt hypothesis which is a degree 9 polynomial that fits very well the

training set, resulting in a very small training error. However, in order to achieve this low

training error the resulting polynomial has an unreasonable high rate of change for feature

values x ≈ 0. This results in large prediction errors for validation datapoints with feature

values x ≈ 0.

117

� � � � � � � � � �
���������������

���

���

���

���

���

���

��������

����������

Figure 6.5: The training error and validation error obtained from polynomial regression
using different values r for the maximum polynomial degree.

0.0 0.2 0.4 0.6 0.8 1.0

feature x

 8

 7

 6

 5

 4

 3

 2

la
b
e
l
y

learnt hypothesis for r=9

training set

validation set

Figure 6.6: A hypothesis ĥ which is a polynomial with degree not larger than r = 9. The
hypothesis has been learnt by minimizing the average loss on the training set. Note the fast
rate of the change of ĥ for feature values x ≈ 0.

118

6.4 A Probabilistic Analysis of Generalization

More Data Beats Clever Algorithms ?; More Data Beats Clever Feature Selection?

A key challenge in ML is the ensure that a hypothesis that predicts well the labels of

training datapoints will also predict well the labels of datapoints outside the training set.

We say that a ML method generalizes if a small loss on the training set implies small loss

on other datapoints as well.

To study generalization within a linear regression problem (see Section 3.1), we will use a

probabilistic model for the data. We interpret datapoints as i.i.d. realizations of RVs that

have the same distribution as a random datapoint z = (x, y). The random feature vector x

is assumed to have zero mean and covariance being the identity matrix, i.e., x ∼ N (0, I).

The label y of a random datapoint is related to its features x via a linear Gaussian model

y = w̄Tx+ ε, with noise ε ∼ N (0, σ2). (6.13)

We assume the noise variance σ2 fixed and known. This is a simplifying assumption as in

practice, we would need to estimate the noise variance from data [13]. Note that, within our

probabilistic model, the error component ε in (6.13) is intrinsic to the data and cannot be

overcome by any ML method. We highlight that the probabilistic model for the observed data

points is just a modelling assumption. This assumption allows us to study some fundamental

behaviour of ML methods. There are principled methods (“tests”) that allow to determine

if a given dataset can be accurately modelled using (6.13) [28].

We predict the label y from the features x using a linear hypothesis h(x) that depends

only on the first r features x1, . . . , xr. Thus, we use the hypothesis space

H(r) = {h(w)(x) = (wT ,0)x with w ∈ Rr}. (6.14)

The design parameter r determines the size of the hypothesis space H(r) and, in turn, the

computational complexity of learning the optimal hypothesis in H(r).

For r < n, the hypothesis space H(r) is a proper subset of the space of linear predictors

(2.4) used within linear regression (see Section 3.1). Note that each element h(w) ∈ H(r)

corresponds to a particular choice of the weight vector w ∈ Rr.

The quality of a particular predictor h(w) ∈ H(r) is measured via the mean squared error

E(h(w) | D(train)) incurred over a labeled training set D(train) = {x(i), y(i)}mt
i=1. Within our toy

model (see (6.13), (6.15) and (6.16)), the training datapoints (x(i), y(i)) are i.i.d. copies of

the datapoint z = (x, y).

119

The datapoints in the training dataset and any other datapoints outside the training

set are statistically independent. However, the training datapoints (x(i), y(i)) and any other

datapoint (x, y) are drawn from the same probability distribution, which is a multivariate

normal distribution,

x,x(i) i.i.d. with x,x(i) ∼ N (0, I) (6.15)

and the labels y(i), y are obtained as

y(i) = w̄Tx(i) + ε(i), and y = w̄Tx+ ε (6.16)

with i.i.d. noise ε, ε(i) ∼ N (0, σ2).

As discussed in Chapter 4, the training error E(h(w) | D(train)) is minimized by the

predictor h(�w)(x) = �wT Ir×nx, with weight vector

�w = (XT
r Xr)

−1XT
r y (6.17)

with feature matrix Xr and label vector y defined as

Xr=(x(1), . . . ,x(mt))T In×r∈Rmt×r, and

y=
�
y(1), . . . , y(mt)

�T ∈Rmt . (6.18)

It will be convenient to tolerate a slight abuse of notation and denote both, the length-r

vector (6.17) as well as the zero padded length-n vector (�wT ,0)T , by �w. This allows us to

write

h(�w)(x) = �wTx. (6.19)

We highlight that the formula (6.17) for the optimal weight vector �w is only valid if the

matrix XT
r Xr is invertible. However, it can be shown that within our toy model (see (6.15)),

this is true with probability one whenever mt ≥ r. In what follows, we will consider the case

of having more training samples than the dimension of the hypothesis space, i.e., mt > r

such that the formula (6.17) is valid (with probability one). The case mt ≤ r will be studied

in Chapter 7.

The optimal weight vector �w (see (6.17)) depends on the training data D(train) via the

feature matrixXr and label vector y (see (6.18)). Therefore, since we model the training data

as random, the weight vector �w (6.17) is a random quantity. For each different realization

of the training dataset, we obtain a different realization of the optimal weight �w.

120

The probabilistic model (6.13) relates the features x of a datapoint to its label y via

some (unknown) true weight vector w̄. Intuitively, the best linear hypothesis would be

h(x) = �wTx with weight vector �w = w̄. However, in general this will not be achievable since

we have to compute �w based on the features x(i) and noisy labels y(i) of the data points in

the training dataset D.

In general, learning the weights of a linear hypothesis by ERM (4.4) results in a non-zero

estimation error

Δw := �w − w̄. (6.20)

The estimation error (6.20) is a random quantity (realization of a random variable) since the

learnt weight vector �w (see (6.17)) is a random quantity itself.

Bias and Variance. As we will see below, the prediction quality achieved by h(�w)

depends crucially on the mean squared estimation error (MSE)

Eest := E{�Δw�22} = E
����w − w̄

��2
2

�
. (6.21)

We can decompose the MSE Eest into two components. The first component is the bias

which characterizes the average behaviour, over all different realizations of training sets, of

the learnt hypothesis. The second component is the variance which quantifies the amount

of random fluctuations of the hypothesis obtained from ERM applied to different realizations

of the training set. Both components depend on the model complexity parameter r.

It is not too difficult to show that

Eest = �w̄ − E{�w}�22� �� �
“bias”B2

+E��w − E{�w}�22� �� �
“variance”V

(6.22)

The bias term in (6.22), which can be computed as

B2 = �w̄ − E{�w}�22 =
n�

l=r+1

w̄2
l , (6.23)

measures the distance between the “true hypothesis” h(w̄)(x) = w̄Tx and the hypothesis

space H(r) (see (6.14)) of the linear regression problem.

The bias (6.23) is zero if w̄l = 0 for any index l = r + 1, . . . , n, or equivalently if

h(w̄) ∈ H(r). We can ensure that for every possible true weight vector w̄ in (6.13) only if we

use the hypothesis space H(r) with r = n.

When using the model H(r) with r < n, we cannot guarantee a zero bias term since we

121

bias

variance

model complexity r

Eest

Figure 6.7: The estimation error Eest incurred by linear regression can be decomposed into
a bias term B2 and a variance term V (see (6.22)). These two components depend on the
model complexity r in an opposite manner resulting in a bias-variance trade-off.

have no access to the true underlying weight vector w̄ in (6.13). In general, the bias term

decreases with an increasing model size r (see Figure 6.7). We highlight that the bias term

does not depend on the variance σ2 of the noise ε in our toy model (6.13).

Let us now consider the variance term in (6.22). Using the properties of our toy model

(see (6.13), (6.15) and (6.16))

V = E{��w − E{�w}�22} = σ2tr
�
E{(XT

r Xr)
−1}
�
. (6.24)

By (6.15), the matrix (XT
r Xr)

−1 is random and distributed according to an inverse Wishart

distribution [40]. For mt > r + 1, its expectation is given as

E{(XT
r Xr)

−1} = 1/(mt − r − 1)Ir×r. (6.25)

By inserting (6.25) and tr{Ir×r} = r into (6.24),

V = E{��w − E{�w}�22} = σ2r/(mt − r − 1). (6.26)

As indicated by (6.26), the variance term increases with increasing model complexity r (see

Figure 6.7). This behaviour is in stark contrast to the bias term which decreases with

increasing r. The opposite dependency of bias and variance on the model complexity is

known as the bias-variance trade-off. Thus, the choice of model complexity r (see (6.14))

has to balance between a small variance and a small bias.

Generalization. Consider the linear hypothesis h(x) = �wTx with the weight vector (6.17)

which results in a minimum training error. We would like this predictor to generalize well

122

to datapoints which are different from the training set. This generalization capability can

be quantified by the expected loss or risk

Epred = E
��

y − ŷ
�2�

(6.13)
= E{ΔwTxxTΔw}+ σ2

(a)
= E{E{ΔwTxxTΔw | D}}+ σ2

(b)
= E{ΔwTΔw}+ σ2

(6.20),(6.21)
= Eest + σ2

(6.22)
= B2 + V + σ2. (6.27)

Step (a) uses the law of total expectation [5] and step (b) uses that, conditioned on the

dataset D, the feature vector x of a new datapoint is a random vector with zero mean and

a covariance matrix E{xxT} = I (see (6.15)).

According to (6.27), the average (expected) prediction error Epred is the sum of three

components: (i) the bias B2, (ii) the variance V and (iii) the noise variance σ2. Figure

6.7 illustrates the typical dependency of the bias and variance on the model, which is

parametrized by r.

The bias and variance, whose sum is the estimation error Eest, can be influenced by

varying the model complexity r which is a design parameter. The noise variance σ2 is the

intrinsic accuracy limit of our toy model (6.13) and is not under the control of the ML

engineer. It is impossible for any ML method - no matter how advanced it is - to achieve,

on average, a prediction error smaller than the noise variance σ2.

We finally highlight that our analysis of bias (6.23), variance (6.26) and the average

prediction error (6.27) only applies if the observed datapoints are well modelled as realizations

of random vectors according to (6.13), (6.15) and (6.16). The usefulness of this model for

the data arising in a particular application has to be verified in practice by some validation

techniques [66, 61].

An alternative approach for analyzing bias, variance and average prediction error of linear

regression is to use simulations. Here, we generate a number of i.i.d. copies of the observed

datapoints by some random number generator [1]. Using these i.i.d. copies, we can replace

exact computations (expectations) by empirical approximations (sample averages).

123

6.5 The Bootstrap

Consider learning a hypothesis ĥ ∈ H by minimizing the average loss incurred on a dataset

D = {
�
x(1), y(1)

�
, . . . ,

�
x(m), y(m)

�
}. The datapoints

�
x(i)), y(i)

�
are modelled as realizations

of i.i.d. random variables. Let use denote the (common) probability distribution of these

random variables by p(x, y).

If we interpret the datapoints
�
x(i)), y(i)

�
as realizations of random variables, also the

learnt hypothesis ĥ is a realization of a random variable. Indeed, the hypothesis ĥ is obtained

by solving an optimization problem (4.2) that involves realizations of random variables. The

bootstrap is a method for estimating (parameters of) the probability distribution p(ĥ) [26].

Section 6.4 used a probabilistic model for datapoints to derive analytically (some parameters

of) the probability distribution p(ĥ). While the analysis in Section 6.4 only applies to the

specific probabilistic model (6.15), (6.16), the bootstrap can be used for datapoints drawn

from an arbitrary probability distribution.

The core idea behind the bootstrap is to use the empirical distribution or histogram

p̂(z) of the available datapoints D to generate B new datasets D(1), Each dataset is

constructed such that is has the same size as the original dataset D. For each dataset D(b), we

solve a separate ERM (4.2) to obtain the hypothesis ĥ(b). The hypothesis ĥ(b) is a realization

of a random variable whose distribution is determined by the empirical distribution p̂(z) as

well as the hypothesis space and the loss function used in the ERM (4.2).

6.6 Diagnosing ML

compare training, validation and benchmark error. benchmark can be Bayes risk when using

probabilistic model (such as i.i.d.), or human performance or risk of some other ML methods

(”experts” in regret framework)

Consider a ML method which uses Algorithm 4 (or Algorithm 5) to learn and validate the

hypothesis ĥ ∈ H. Beside the learn hypothesis ĥ, these algorithms also deliver the training

error Et and the validation set Ev. Comparing the training with the validation error of a

ML method allows to diagnose the method. This diagnoses is further enabled if we know a

benchmark (or reference) error level E(ref) .

Sometimes, a benchmark error level E(ref) can be obtained using a probabilistic model for

the datapoints (see Section 6.4). Given a probabilistic model, which specifies the probability

distribution p(x, y) of the features and label of datapoints, we can compute the minimum

achievable expected loss or risk (4.1). Indeed, the minimum achievable risk is precisely the

124

expected loss of the Bayes’ estimator ĥ(x) of the label y, given the features x of a datapoint.

The Bayes’ estimator ĥ(x) is fully determined by the probability distribution p(x, y) of the

features and label of a (random) datapoint [39, Chapter 4].

A further potential source for a benchmark error level E(ref) is another ML method.

This other ML method might be computationally too expensive to be used for a ML

application. However, we could still use its error level measured in illustrative test scenarios

as a benchmark.

Finally, a benchmark might simply be prescribed by the specification of the overall

product which uses the ML method. If we want to develop a ML method that detects

certain type of skin cancers from images of the skin, a benchmark might be the current

classification accuracy achieved by experienced dermatologists [18].

We can diagnose a ML method by comparing the training error Et with the validation

error Ev and (if available) the benchmark E(ref).

• Et ≈ Ev ≈ E(ref): There is not much to improve here since the validation error is

already on the desired error level. Moreover, the training error is not much smaller

than the validation error which indicates that there is no overfitting and we cannot

reduce the validation error by much.

• Ev � Et ≈ E(ref): The ERM (4.2) results in a hypothesis ĥ with sufficiently small

training error but when applied to new datapoints, such as those in the validation

set, the performance of ĥ is significantly worse. This is an indicator for overfitting

which can be addressed by using using a smaller hypothesis space. Reducing the size

of the hypothesis space can be achieved by using only a subset of features in a linear

model (3.1), by using a shorter decision tree (Section 3.10) or by using a smaller ANN

(Section 3.11). Another option to avoid overfitting is to use regularization techniques,

which will be discussed in Chapter 7.

• Et � Ev: This indicates that the method for solving the ERM (4.2) fails to find (an

approximation of) the minimum in (4.2). Indeed, the training error obtained by solving

the ERM (4.2) should typically be smaller than the validation error. When using GD

(see Section 5.4) to solve ERM, one reason for Et � Ev could be that the step size α

in the GD step (5.4) is chosen too large (see Figure 5.3-(b)).

125

6.7 Exercises

6.7.1 Validation Set Size

Consider a linear regression problem with datapoints characterized by a scalar feature and

a numeric label. Assume datapoints are i.i.d. Gaussian with zero-mean and covariance

matrix C. How many datapoints do we need to include in the validation set such that with

probability of at least 0.8 the validation error does not deviate by more than 20 percent from

the expected loss or risk?

6.7.2 Validation Error Smaller Than Training Error?

Consider learning a linear hypothesis by minimizing the average squared error on some

training set. The resulting linear predictor is then validated on some other validation set.

Can you construct a training and validation set such that the validation error is strictly

smaller than the training set?

126

Chapter 7

Regularization

label y

feature x

(x(i), y(i))

ĥ(x)

Figure 7.1: A highly non-linear hypothesis map ĥ that perfectly fits the training set and,
in turn, has vanishing training error. Note that while fitting perfectly the training set, the
hypothesis delivers the trivial prediction ŷ = ĥ(x) = 0 for any datapoint whose feature x is
not in the vicinity of the feature values for the training datapoints.

Many ML methods use the principle of ERM (see Chapter 4) to learn a hypothesis out

of a hypothesis space by minimizing the average loss (training error) on a set of labeled

datapoints (training set). Using ERM as a guiding principle for ML methods makes sense

only if the training error is a good indicator for the loss it incurs on other datapoints which

are different from the training set. Figure 7.1 illustrates a typical scenario for a modern ML

method which uses a large hypothesis space. This large hypothesis space includes highly non-

linear maps which can perfectly resemble any dataset of modest size. However, there might

be non-linear maps for which a small training error does not guarantee accurate predictions

for the labels of datapoints outside the training set.

127

Chapter 6 discussed validation techniques to verify if a hypothesis with small training

error will predict well also on datapoints outside the training set. The key idea behind those

validation techniques (see Algorithm 4 and Algorithm 5) is the probe a hypothesis, that

has been chosen based on minimizing the average loss on a training set, on a validation

set. The validation set consists of datapoints which have not been used in the training set.

The validation error, which is the average loss of the hypothesis on the datapoints in the

validation set, serves as an estimate for the average error or risk (4.1) of a hypothesis.

This chapter discusses regularization as an alternative to using a validation set consisting

of datapoints that are not used for training. Instead of computing a validation error, as the

average loss on the validation set, regularization techniques compute an estimate for the loss

increase when a hypothesis would be applied to datapoints outside the training set. This

loss increase is estimated by adding a regularization term to the training error in ERM (4.2).

Section 7.1 discusses the resulting regularized ERM, which is also referred to as structural

risk minimization (SRM). It turns out that the SRM is equivalent to ERM on a pruned

hypothesis space. The amount of pruning depends on the strength of regularization term

relative to the training error.

The regularization term in SRM can be obtained in different ways. Section 7.2 constructs

a regularization terms by requiring the resulting ML method to be robust against (small)

random perturbations to the training data. Conceptually, we replace each training datapoint�
x(i), y(i)

�
by a RV

�
x, y
�
that fluctuates around

�
x(i), y(i)

�
. This construction allows to

interpret regularization as a (implicit) form of data augmentation.

Section 7.3 discusses data augmentation methods as a simulation-based variant of the

techniques discussed in Section 7.2. Data augmentation adds to each training datapoint a

certain number of perturbed copies. One way to construct a perturbed copy of a training

datapoint
�
x(i), y(i)

�
is to add (the realization of) a random vector to the features x(i).

Section 7.4 analyzes the effect of regularization for linear regression using a simple

probabilistic model for data points. This analysis parallels the analysis of model validation

in Section 6.4. In particular, we will obtain another instance of a bias-variance trade-off.

While this trade-off was traced out by a discrete model complexity parameter in Section 6.4,

here it is traced out by a continuous regularization parameter.

Semi-supervised learning problems refer to ML problems that involve a mix of labeled and

unlabeled data points. Section 7.5 shows how to use the statistical properties of unlabeled

datapoints, for which we only know the features, to construct regularization terms for doing

regularized ERM on the (typically small) subset of labeled datapoints, for which we also

128

know the label values.

Multitask learning methods exploit similarities between different ML problems. As an

example, consider two ML problems that use the same datapoints and their features but

different choices for their labels. Here, a similarity between these two ML problems could

arise if the same subset of features is relevant for both choices for the label. Section 7.6

designs regularization terms for individual ML problems by using their similarities.

7.1 Structural Risk Minimization

Section 2.2 defined the effective dimension d(H) of a hypothesis space H as the maximum

number of datapoints that can be perfectly fit by some h ∈ H. As soon as the effective

dimension of the hypothesis space in (4.2) exceeds the number m of training data points,

we can easily find a hypothesis that perfectly fits the training data but might give poor

predictions for labels of datapoints outside the training set (see Figure 7.1).

A main challenge for modern ML methods is the use of hypothesis spaces with a huge

effective dimension. Examples for large hypothesis spaces are linear maps using a large

number features or ANNs using a very large number (billions) of neurons. The effective

dimension of the hypothesis space consisting of all maps that are represented by given ANN

structure is typically on the order of the number of tunable weights [52]. A deep learning

method using an ANN with billions of tunable weights would therefore require a training set

containing billions of datapoints with known label.

It seems quite natural to combat overfitting of a ML method by pruning its hypothesis

space H. We can reduce the tendency of a ML method to overfit if we prune (or remove)

some of the hypothesis in H, resulting in the smaller hypothesis space H� ⊂ H. We then

replace ERM (4.2) with the restricted ERM

ĥ = argmin
h∈H�

E(h|D) with pruned hypothesis space H�⊂H. (7.1)

As an example consider linear regression which uses the hypothesis space (3.1) constituted

by linear maps h(x) = wTx. This hypothesis space might be too large if we use a large

number n of features, leading to overfitting. We can prune this hypothesis space by using

only linear hypotheses h(x) =
�
w��Tx whose weight vectors have only its first two entries

being non-zero, w�
3 = w�

4 = . . . = w�
n = 0. These restricted hypotheses form the smaller

hypothesis space H� whose dimension is 2 instead of n.

129

Pruning the hypothesis space is a special case of a more general strategy which we refer

to as structural risk minimization (SRM) [60]. The idea behind SRM is to modify the

training error in ERM (4.2) to favour hypotheses which are more smooth or regular in a

specific sense. By enforcing a smooth hypothesis, a ML methods becomes less sensitive, or

more robust, to small perturbations of the training datapoints. Section 7.2 discusses the

intimate relation between the robustness (against perturbations of the training set) of a ML

method and its ability to generalize to datapoints outside the training set.

We measure the smoothness of a hypothesis using a regularizer R(h) ∈ R+. Roughly

speaking, the value R(h) measures the irregularity or variation of a predictor map h. The

(design) choice for the regularizer depends on the precise definition of what is meant by

regularity or variation of a hypothesis. Section 7.3 discusses how a natural choice for the

regularizer Rh can arise from a probabilistic model for the datapoints arising in an ML

application.

The SRM approach is obtained from ERM (4.2) by adding the scaled regularizer λR(h),

ĥ = argmin
h∈H

�
E(h|D) + λR(h)

�

(2.12)
= argmin

h∈H

�
(1/m)

m�

i=1

L((x(i), y(i)), h) + λR(h)
�
. (7.2)

We can interpret the regularization term λR(h) in (7.2) as an estimate (or approximation)

for the increase, relative to the training error on D, of the average loss of a hypothesis ĥ

when it is applied to datapoints outside D. Another interpretation of the term λR(h) will

be discussed in Section 7.3.

The regularization parameter λ allows to trade between a small training error E(h(w)|D)

and small R(h) (a smooth or regular hypothesis h) in the following sense. If we choose a

large value for λ, irregular or hypotheses h, with large R(h), are heavily “punished” in (7.2).

Thus, increasing the value of λ results in the solution (minimizer) of (7.2) having smaller

R(h). On the other hand, choosing a small value for λ in (7.3) puts more emphasis on

obtaining a hypothesis h incurring a small training error. In the extreme case of λ = 0, SRM

(7.3) reduces to ERM (4.2).

The pruning approach (7.1) is intimately related to the SRM (7.2). They are, in a certain

sense, dual to each other. First, note that (7.2) reduces to the pruning approach (7.1) when

choosing the regularizer R(h) = 0 for all h ∈ H� and R(h) = ∞ otherwise. In the other

direction, for many important choices for the regularizerR(h), there is a restrictionH(λ) ⊂ H

130

λ = 0

H(λ=0)

λ = 1

H(λ=1)

λ = 10

H(λ=10)

Figure 7.2: Adding the scaled regularizer λR(h) to the training error in the objective function
of SRM (7.2) is equivalent to solving ERM (7.1) with a pruned hypothesis space H(λ).

such that the solutions of (7.1) and (7.2) coincide (see Figure 7.2). The relation between

the optimization problems (7.1) and (7.2) can be made precise using the theory of convex

duality (see [8, Ch. 5] and [4].

For a hypothesis space H whose elements h ∈ H parameterized by some weight vector

w, we can rewrite SRM (7.2) as

�w(λ) = argmin
w∈Rn

�
E(h(w)|D) + λR(w)

�

= argmin
w∈Rn

�
(1/m)

m�

i=1

L((x(i), y(i)), h(w)) + λR(w)
�
. (7.3)

For the particular choice of squared error loss (2.6), linear hypothesis space (3.1) and

regularizer R(w) = �w�22, SRM (7.3) specializes to

�w(λ) = argmin
w∈Rn

�
(1/m)

m�

i=1

�
y(i) −wTx(i)

�2
+ λ�w�22

�
. (7.4)

The SRM special case (7.4) is also known as ridge regression.

7.2 Robustness

Overfitting is a main challenge in the use of modern ML methods. This is mainly because

modern ML methods use large hypothesis spaces that allow to represent highly non-linear

predictor maps. Just by pure luck we can find one such predictor map that perfectly fits the

131

training set resulting in zero training error and, in turn, solving ERM (4.2).

Overfitting is closely related to another property of ML methods which is referred to as

robustness. A ML method is robust if the delivered hypothesis does not change significantly

after small perturbations to the training set. Since we typically expect the datapoints to

have similar labels if they have similar features, robustness is almost a necessary condition

for a ML method to generalize well.

The ML methods discussed in Chapter 4 rest on the idealizing assumption that we have

access to the true label values and feature values of a set of datapoints (the training set).

However, the acquisition of the label and feature values of datapoints is often prone to errors.

These errors might stem from the measurement device itself (hardware failures) or might be

due to human mistakes such as labelling errors. We need ML methods that do not “break”

if we feed it slightly perturbed label values for the training data.

7.3 Data Augmentation

implement robustness principle by augmenting dataset with random perturbations of original

training data.

ML methods using ERM (4.2) are prone to overfitting as soon as the effective dimension

of the hypothesis space H exceeds the number m of training datapoints. Section 6.3 and

Section 7.1 approached this by modifying either the model or the loss function. We can also

approach this via somehow enlarging the dataset.

The data arising in many ML applications exhibit intrinsic symmetries and invariances at

least in some approximation. The rotated image of a cat still shows a cat. The temperature

measurement taken at a given location will be similar to another measurement taken 10

milliseconds later. Data augmentation exploits such symmetries and invariances to augment

the raw data with additional synthetic data.

Let us illustrate data augmentation using an application that involves data points characterized

by features x ∈ Rn and number labels y ∈ R. We assume that the data generating process

is such that data points with close feature values have the same label. This suggests to

augment a data point
�
x, y
�
by several synthetic data points

�
x+ ε(1), y

�
, . . . ,

�
x+ ε(B), y

�
, (7.5)

with ε(1), . . . , ε(B) being realizations of i.i.d. random vectors with the same probability

distribution p(u).

132

Figure 7.3: Modern ML methods allow to find a predictor map that perfectly fits training
data. Such a predictor might perform poorly on a new datapoint outside the training set. To
prevent ML methods to learn such a hypothesis map we could require it learn a hypothesis
whose performance is robust against small perturbations in training datapoints and the
hypothesis map itself.

133

Given a (raw) datasetD =
��

x(1), y(1)
�
, . . . ,

�
x(m), y(m)

�
} we denote the associated augmented

dataset by

D� =
��

x(1,1), y(1)
�
, . . . ,

�
x(1,B), y(1)

�
,

�
x(2,1), y(2)

�
, . . . ,

�
x(2,B), y(2)

�
,

. . .
�
x(m,1), y(m)

�
, . . . ,

�
x(m,B), y(m)

�
}. (7.6)

The size of the augmented dataset D� is m� = B ×m. For a sufficiently large augmentation

parameter B, the augmented samplesize m� is larger than the effective dimension n of the

hypothesis space H. We might then learn a hypothesis by ERM on the augmented dataset,

ĥ = argmin
h∈H

E(h|D�)

(7.6)
= argmin

h∈H
(1/m�)

m�

i=1

B�

b=1

L((x(i,b), y(i,b)), h)

(7.5)
= argmin

h∈H
(1/m)

m�

i=1

(1/B)
B�

b=1

L((x(i) + ε(b), y(i)), h). (7.7)

We can interpret data-augmented ERM (7.7) as a data-driven form of regularization (see

Section 7.1). The regularization is implemented by replacing the loss L((x(i), y(i)), h) incurred

for the datapoint (x(i), y(i)) with the average loss (1/B)
�B

b=1 L((x(i) + ε(b), y(i)), h) incurred

over the augmented datapoints.

Note that in order to implement (7.7) we need to first generate B realizations ε(b) ∈ Rn

of i.i.d. random vectors with probability distribution p(u). This might be computationally

costly for a large B, n. However, when using a large augmentation parameter B, we might

use the approximation

(1/B)
B�

b=1

L((x(i) + ε(b), y(i)), h) ≈ Eε∼p(u)

�
L((x(i) + ε, y(i)), h)

�
. (7.8)

This approximation is made precise by a key result of probability theory, known as the law

of large numbers.

134

We can learn a hypothesis by inserting (7.8) into (7.7),

ĥ = argmin
h∈H

(1/m)
m�

i=1

Eε∼p(u)

�
L((x(i) + ε, y(i)), h)

�
. (7.9)

The usefulness of (7.9) as a computationally efficient approximation to the augmented

ERM (7.7) depends on the complexity of computing the expectation Eε∼p(u)

�
L((x(i) + ε, y(i)), h)

�
.

The complexity of computing this expectation depends on the choice of loss function and

the choice for the probability distribution p(u).

Let us evaluate (7.9) for the special case of squared error loss (2.6) and p(u) being a

multivariate normal distribution with zero mean and covariance matrix σ2I. Using basic

calculus of probability theory,

Eε∼p(u)

�
L((x(i) + ε, y(i)), h(w))

� (2.6)
= Eε∼p(u)

�
y(i) − h(w)

�
x(i) + ε

��2

h(w)(x)=wTx
= Eε∼p(u)

�
y(i) −wT

�
x(i) + ε

��2
. (7.10)

We can develop (7.10) further by using

E{
�
y(i) −wTx(i)

�
ε} = 0, (7.11)

which follows from our assumption that the datapoints
�
x(i), y(i) are fixed and known (deterministic)

while ε is a zero-mean random vector. Inserting (7.11) into (7.10),

Eε∼p(u)

�
L((x(i) + ε, y(i)), h(w))

� (7.11),(7.10)
= Eε∼p(u)

��
y(i) −wTx(i)

�2
+
��w
��2��ε

��2�

=
�
y(i) −wTx(i)

�2
+
��w
��2Eε∼p(u)

��ε
��2, (7.12)

where the last step used the linearity of expectations. Since the covariance matrix of ε is

σ2I, i.e., Eε∼p(u)

��ε
��2 = nσ2,

Eε∼p(u)

�
L((x(i) + ε, y(i)), h(w))

�
=
�
y(i) −wTx(i)

�2
+ n
��w
��2σ2. (7.13)

Inserting (7.13) into (7.9),

ĥ = argmin
h∈H

(1/m)
m�

i=1

�
y(i) −wTx(i)

�2
+ n
��w
��2σ2. (7.14)

135

We have obtained (7.14) as an approximation of the augmented ERM (7.7) for the special

case of squared error loss and linear hypotheses. This approximation uses the law of large

numbers (7.8) and becomes more accurate for increasing augmentation parameter B.

We emphasize that (7.14) is nothing but ridge regression (7.4) using the regularization

parameter λ = nσ2. Thus, we can interpret ridge regression as using an implicit data

augmentation (7.6) using random perturbations (7.5) of the feature vectors of raw datapoint

(while leaving their labels untouched).

Note that the regularizer R(w) = �w�2 in (7.14) arose naturally from the specific choice

for the probability distribution p(u) of the random perturbation ε(i) in (7.5) and using the

squared error loss. Other choices for this probability distribution or the loss function result

in different regularizers.

7.4 A Probabilistic Analysis of Regularization

Specialising (7.3) to the squared error loss and linear predictors yields regularized linear

regression (see (4.4)):

�w(λ) = argmin
w∈Rn

�
(1/mt)

mt�

i=1

(y(i) −wTx(i))2 + λ�w�22
�
, (7.15)

The optimization problem (7.15) is also known under the name ridge regression [26].

Using the feature matrix X =
�
x(1), . . . ,x(mt)

�T
and label vector y = (y(1), . . . , y(mt))T ,

we can rewrite (7.15) more compactly as

�w(λ) = argmin
w∈Rn

�
(1/mt)�y −Xw�22 + λ�w�22

�
. (7.16)

The solution of (7.16) is given by

�w(λ) = (1/mt)((1/mt)X
TX+ λI)−1XTy. (7.17)

This reduces to the closed-form expression (6.17) when λ = 0 in which case regularized

linear regression reduces to ordinary linear regression (see (7.15) and (4.4)). It is important

to note that for λ > 0, the formula (7.17) is always valid, even when XTX is singular (not

invertible). This implies, in turn, that for λ > 0 the optimization problem (7.16) (and (7.15))

has a unique solution (which is given by (7.17)).

136

We now study the effect of regularization on the bias, variance and average prediction

error incurred by the predictor h(�w(λ))(x) =
�
�w(λ)
�T

x. To this end, we will again invoke the

simple probabilistic toy model (see (6.13), (6.15) and (6.16)) used already in Section 6.4.

In particular, we interpret the training data D(train) = {(x(i), y(i))}mt
i=1 as realizations of i.i.d.

random variables according to (6.13), (6.15) and (6.16).

As discussed in Section 6.4, the average prediction error is the sum of three components:

the bias, the variance and the noise variance σ2 (see (6.27)). The bias of regularized linear

regression (7.15) is obtained as

B2 =
��(I− E{(XTX+mλI)−1XTX})w̄

��2
2
. (7.18)

For sufficiently large sample size mt we can use the approximation

XTX ≈ mtI (7.19)

such that (7.18) can be approximated as

B2 ≈
��(I−(I+λI)−1)w̄

��2
2

=
n�

l=1

λ

1 + λ
w̄2

l . (7.20)

Compare the (approximate) bias term (7.20) of regularized linear regression with the bias

term (6.23) of ordinary linear regression. Using regularization typically increases the bias.

The bias increases with increasing regularization parameter λ.

The variance of regularized linear regression (7.15) satisfies

V = (σ2/m2
t)×

tr
�
E{((1/mt)X

TX+λI)−1XTX((1/mt)X
TX+λI)−1}

�
. (7.21)

Inserting the approximation (7.19) into (7.21),

V ≈ σ2(n/mt)(1/(1 + λ)). (7.22)

According to (7.22), the variance of regularized linear regression decreases with increasing

regularization parameter λ. This is the opposite behaviour as for the bias (7.20), which

increases with increasing λ.

137

bias of �w(λ)

variance of �w(λ)

regularization parameter λ

Figure 7.4: The bias and variance of regularized linear regression depend on the regularization
parameter λ in an opposite manner resulting in a bias-variance trade-off.

Figure 7.4 illustrates a trade-off between the bias B2 (7.20), which increases for increasing

λ, and the variance V (7.22) which decreases with increasing λ. We have discussed another

example for a bias-variance trade-off already in Section 6.4. In contrast to the trade-off

obtained there for the discrete model complexity r in (6.14), here we obtain a continuous

trade-off via the real-valued parameter λ.

So far, we only have discussed the statistical effect of regularization on the resulting ML

method. Regularizations allows to trade-off bias against variance in order to reduce the risk

of the learnt hypothesis.

There is also a computational aspect to regularization. Adding a regularization term to

the ERM changes the shape of the objective function that is minimized by a learning method.

The shape of the objective function determines the difficulty in finding a (approximate)

minimizer. Thus, regularization influences the computational complexity of the resulting

ML method.

Note that the objective function in (7.16) is a smooth (infinitely often differentiable)

convex function. Similar to linear regression, we can solve the regularized linear regression

problem using GD (2.6) (see Algorithm 7).

Adding the regularization term λ�w�22 to the objective function of linear regression

speeds up GD. To verify this claim, we first rewrite (7.16) as the quadratic problem

min
w∈Rn

(1/2)wTQw − qTw� �� �
=f(w)

with Q = (1/m)XTX+ λI,q = (1/m)XTy. (7.23)

This is similar to the quadratic optimization problem (4.8) underlying linear regression but

138

with a different matrix Q. It turns out that the convergence speed of GD (see (5.4)) applied

to solving a quadratic problem of the form (7.23) depends crucially on the condition number

κ(Q) ≥ 1 of the psd matrix Q [32]. In particular, GD methods are fast if the condition

number κ(Q) is small (close to 1).

This condition number is given by λmax((1/m)XTX)
λmin((1/m)XTX)

for ordinary linear regression (see

(4.8)) and given by λmax((1/m)XTX)+λ
λmin((1/m)XTX)+λ

for regularized linear regression (7.23). For increasing

regularization parameter λ, the condition number obtained for regularized linear regression

(7.23) tends to approach 1,

lim
λ→∞

λmax((1/m)XTX) + λ

λmin((1/m)XTX) + λ
= 1. (7.24)

According to (7.24), the GD implementation of regularized linear regression (see Algorithm

7) with a large value of the regularization parameter λ in (7.15) will converge faster compared

to GD for linear regression (see Algorithm 1).

Algorithm 7 “Regularized Linear Regression via GD”

Input: labeled dataset D = {(x(i), y(i))}mi=1 containing feature vectors x(i) ∈ Rn and labels
y(i) ∈ R; GD step size α > 0.

Initialize:set w(0) :=0; set iteration counter k :=0
1: repeat
2: k := k + 1 (increase iteration counter)
3: w(k) := (1− αλ)w(k−1) + α(2/m)

�m
i=1(y

(i) −
�
w(k−1))Tx(i))x(i) (do a GD step (5.4))

4: until convergence
Output: w(k) (which approximates �w(λ) in (7.16))

Let us finally point out a close relation between regularization (which amounts to adding

the term λ�w�2 to the objective function in (7.3)) and model selection (see Section 6.3).

The regularized ERM (7.3) can be shown (see [4, Ch. 5]) to be equivalent to

�w(λ) = argmin
h(w)∈H(λ)

(1/mt)
mt�

i=1

(y(i) − h(w)(x(i)))2 (7.25)

with the restricted hypothesis space

H(λ) := {h(w) : Rn → R : h(w)(x) = wTx

, with some w satisfying �w�2 ≤ C(λ)} ⊂ H(n). (7.26)

139

For any given value λ, there is a C(λ) such that solutions of (7.3) coincide with the solutions

of (7.25). We can interpret regularized ERM (7.3) as a form of model selection using a

continuous ensemble of hypothesis spaces H(λ) (7.26). In contrast, the simple model selection

strategy considered in Section 6.3 uses a discrete sequence of hypothesis spaces.

7.5 Semi-Supervised Learning

Can we use unlabelled datapoints to construct better regularizers? We could use unlabled

data to learn some subspace of features that are most relevant ? (relation to feature learning

?)

7.6 Multitask Learning

Remember that a formal ML problem is specified by identifying datapoints, their features

and labels, a model (hypothesis space) and a loss function. Note that we can use the very

same raw data, model and loss function and still define many different ML problems by

using different choices for the label. Multitask learning aims at exploiting relations between

similar ML problems or tasks.

Consider the ML problem (task) of predicting the confidence level of a hand-drawing

showing an apple. To learn such a predictor we use a collection of hand-drawings. We then

annotate each hand-drawing by the object that it depicts. These annotations can be used to

define different labels of the hand-drawings. One choice for the label could be to define the

label y = 1 if a hand-drawing shows an apple and y = 0 if it does not show a hand-drawing.

Another definition for the label could be based on the fact that the hand-drawing shows an

apple or not.

Different choices for the label result in different ML problems. These different ML

problems are related since they are based on the same data points, the hand-drawings.

Some ML problems (label choices) are more difficult to solve while others are easier to solve.

One important criterion for judging the difficulty of solving a particular ML problem is

the availability of labeled datapoints. For some choices for the labels, we might have no

labeled datapoints available. Consider datapoints representing different days in Finland.

It might be easy to get labeled datapoints when the label of a datapoint is the minimum

daytime temperature measured at some observation station of FMI. If we would use instead

use the precise water temperature at some remote lake (not having any sensors) as the label,

140

we might not have access to any labeled datapoint.

Consider the ML problem arising from guiding the operation of a mower robot. For

a mowing robot, it is important to determine if it is currently on grassland or not. Let us

assume the mower robot is equipped with an on-board camera which allows to take snapshots

which are characterized by a feature vector x (see Figure 2.4). We could then define the

label as either y = 1 if the snapshot suggests that the mower is on grassland and y = −1 if

not. However, we might be interested in obtaining more fine-grained information about the

floor type and define the label as y = 1 for grassland, y = 0 for soil and y = −1 for when the

mower is on tiles. The latter problem is more difficult since we have to distinguish between

three different types of floor (“grass” vs. “soil” vs. “tiles”) whereas for the former problem

we only have to distinguish between two types of floor (“grass” vs. “no grass”).

7.7 Transfer Learning

use regularization term that measures distance to a good initial guess for hypothesis (e.g.

obtained by pretraining)

7.8 Exercises

7.8.1 Ridge Regression as Quadratic Form

Consider the linear hypothesis space consisting of linear maps parameterized by weights w.

We try to find the best linear map by minimizing the regularized average squared error loss

(empirical risk) incurred on some labeled training datapoints (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)).

As the regularizer we use �w�2, yielding the following learning problem

min
w

f(w) =
m�

i=1

. . .+ �w�22.

Is it possible to write the objective function f(w) as a convex quadratic form f(w) =

wTCw+ bw+ c? If this is possible, how are the matrix C, vector b and constant c related

to the feature vectors and labels of the training data ?

141

7.8.2 Regularization or Model Selection

Consider datapoints characterized by n = 10 features x ∈ Rn and a single numeric label y.

We want to learn a linear hypothesis h(x) = wTx by minimizing the average squared error on

the training set D of size m = 4. We could learn such a hypothesis by two approaches. The

first approach is to split the dataset into training and validation set of the same size (two).

Then we consider all models that consists of linear hypotheses with weight vectors having

at most two non-zero weights. Each of these models corresponds to a different subset of two

weights that might be non-zero. Each of these models corresponds to a different subset of

two features that are linearly combined to obtain a predicted label value. We can use their

validation errors (see Algorithm 4) to choose between these models. The second approach

is to learn a linear hypothesis with an arbitrary weight vector w but using regularization

(ridge).

142

Chapter 8

Clustering

x(3)

x(4)

x(2)

x(1)

x(5)

x(6)

x(7)

xg

xr

Figure 8.1: A scatterplot depicting some images. The i-th image is represented by the
feature vector x(i) = (x

(i)
r , x

(i)
g)T with the average redness x

(i)
r and average greenness x

(i)
g of

the image.

So far, we have mainly considered ML methods which require labeled training data in

order to learn a good hypothesis via ERM. This and the following chapter discusses ML

methods which do not require any labeled datapoint. These methods are often referred to as

“unsupervised” since they do not require a supervisor (or teacher) which provides the labels

for datapoints that can be used as a training set in ERM.

One important class of unsupervised methods, known as clustering methods, aims at

grouping datapoints into few subsets (or clusters). Informally, a cluster is a subset of

datapoints which are more similar to each other than to the remaining datapoints outside

143

the cluster. Different clustering methods are obtained by using different means to measure

the “similarity” between datapoints. We mainly discuss clustering methods for datapoints

characterized by numeric feature vectors. The similarity between such datapoints can be

naturally defined in terms of the Euclidean distance between feature vectors.

There are two main flavours of clustering methods:

• hard clustering (see Section 8.1)

• and soft clustering methods (see Section 8.2).

Within hard clustering, each datapoint x(i) belongs to one and only one cluster. In contrast,

soft clustering methods assign a datapoint x(i) to several different clusters with varying

degree of belonging (confidence).

Clustering methods determine for each datapoint z(i) a cluster assignment y(i). The

cluster assignment y(i) encodes the cluster to which the datapoint x(i) is assigned. For hard

clustering with a prescribed number of k clusters, the cluster assignments y(i) ∈ {1, . . . , k}
represent the index of the cluster to which x(i) belongs.

In contrast, soft clustering methods allow each datapoint to belong to several different

clusters. The degree with which datapoint x(i) belongs to cluster c ∈ {1, . . . , k} is represented
by the degree of belonging y

(i)
c ∈ [0, 1], which we stack into the vector y(i) =

�
y
(i)
1 , . . . , y

(i)
k

�T ∈
[0, 1]k. Thus, while hard clustering generates non-overlapping clusters, the clusters produced

by soft clustering methods may overlap.

We intentionally used the same symbol y(i) for cluster assignments of a datapoint as we

used to denote an associated label in classification problems. There is a strong conceptual

link between clustering and classification. We can interpret clustering as an extreme case

of classification without having access to any labeled training data, i.e., we do not know

the label of any datapoint. To find the correct labels (cluster assignments) y
(i)
c , clustering

methods rely solely on the intrinsic geometry of the datapoints.

144

8.1 Hard Clustering with K-Means

In what follows we assume that datapoints z(i), for i = 1, . . . ,m, are characterized by feature

vectors x(i) ∈ Rn and measure similarity between datapoints using the Euclidean distance

�x(i)−x(j)�. With a slight abuse of notation, we will occasionally denote a datapoint z(i) using

its feature vector x(i). In general, the feature vector is only a (incomplete) representation of

a datapoint but it is customary in many unsupervised ML methods to identify a datapoint

with its features.Thus, we consider two datapoints z(i) and z(j) similar if �x(i)−x(j)� is small.

Moreover, we assume the number k of clusters to be fixed and known.

A simple method for hard clustering is the “k-means” algorithm which requires the

number k of clusters to specified before-hand. The idea underlying k-means is quite simple.

First, given a current guess for the cluster assignments y(i), determine the cluster means

m(c) = 1
|{i:y(i)=c}|

�
i:y(i)=c

x(i) for each cluster. Then, in a second step, update the cluster

assignments y(i) ∈ {1, . . . , k} for each datapoint x(i) based on the nearest cluster mean. By

iterating these two steps we obtain Algorithm 8.

Algorithm 8 “k-means”

Input: dataset D = {x(i)}mi=1; number k of clusters.
Initialize: choose initial cluster means m(c) for c = 1, . . . , k.
1: repeat
2: for each datapoint x(i), i=1, . . . ,m, do

y(i) ∈ argmin
c�∈{1,...,k}

�x(i) −m(c�)� (update cluster assignments) (8.1)

3: for each cluster c=1, . . . , k do

m(c) =
1

|{i : y(i) = c}|
�

i:y(i)=c

x(i) (update cluster means) (8.2)

4: until convergence
Output: cluster assignments y(i) ∈ {1, . . . , k}

In (8.1) we denote by argmin
c�∈{1,...,k}

�x(i) −m(c�)� the set of all cluster indices c ∈ {1, . . . , k}

such that �x(i) −m(c)� = minc�∈{1,...,k} �x(i) −m(c�)�.
The k-means algorithm requires the specification of initial choices for the cluster means

m(c), for c = 1, . . . , k. There is no unique optimal strategy for the initialization but several

heuristic strategies can be used. One option is to initialize the cluster means with i.i.d.

145

realizations of a random vectorm whose distribution is matched to the dataset D = {x(i)}mi=1,

e.g., m ∼ N (m̂, �C) with sample mean m̂ = (1/m)
�m

i=1 x
(i) and the sample covariance

�C = (1/m)
�m

i=1(x
(i)−m̂)(x(i)−m̂)T . Another option is to choose the cluster means m(c) by

randomly selecting k different data points x(i). The cluster means might also be chosen by

evenly partitioning the principal component of the dataset (see Chapter 9).

We now show that k-means can be interpreted as a variant of ERM. To this end we define

the empirical risk as the clustering error,

E
�
{m(c)}kc=1, {y(i)}mi=1 | D

�
= (1/m)

m�

i=1

���x(i) −m(y(i))
���
2

. (8.3)

Note that the empirical risk (8.3) depends on the current guess for the cluster means

{m(c)}kc=1 and cluster assignments {y(i)}mi=1.

Finding the global optimum of the function (8.3), over all possible cluster means {m(c)}kc=1

and cluster assignments {y(i)}mi=1, is difficult as the function is non-convex. However, minimizing

(8.3) only with respect to the cluster assignments {y(i)}mi=1 but with the cluster means

{m(c)}kc=1 held fixed is easy. Similarly, minimizing (8.3) over the choices of cluster means

with the cluster assignments held fixed is also straightforward. This observation is used by

Algorithm 8: it is alternatively minimizing E over all cluster means with the assignments

{y(i)}mi=1 held fixed and minimizing E over all cluster assignments with the cluster means

{m(c)}kc=1 held fixed.

The interpretation of Algorithm 8 as a method for minimizing the cost function (8.3)

is useful for convergence diagnosis. In particular, we might terminate Algorithm 8 if the

decrease of the objective function E is below a prescribed (small) threshold.

A practical implementation of Algorithm 8 needs to fix three issues:

• Issue 1: We need to specify a “tie-breaking strategy” to handle the case when several

different cluster indices c∈{1, . . . , k} achieve the minimum value in (8.1).

• Issue 2: We need to handle the situation when after a cluster assignment update (8.1),

there is a cluster c with no datapoints associated with it, |{i : y(i) = c}| = 0. For such

a cluster c, the update (8.2) is not well-defined.

• Issue 3: We need to specify a stopping criterion (“checking convergence”).

The following algorithm fixes those three issues in a particular way [24].

The variable b(c) ∈ {0, 1} indicates if the cluster c is active (b(c) = 1) or the cluster

c is inactive (b(c) = 0). The cluster c is referred to as inactive if there are no datapoints

146

Algorithm 9 “k-Means II” (slight variation of “Fixed Point Algorithm” in [24])

Input: dataset D = {x(i)}mi=1; number k of clusters; tolerance ε ≥ 0.

Initialize: choose initial cluster means
�
m(c)

�k
c=1

and cluster assignments
�
y(i)
�m
i=1

; set

iteration counter k := 0; compute E(k) = E
�
{m(c)}kc=1, {y(i)}mi=1 | D

�
;

1: repeat
2: for all datapoints i=1, . . . ,m, update cluster assignment

y(i) := min{ argmin
c�∈{1,...,k}

�x(i) −m(c�)�} (update cluster assignments) (8.4)

3: for all clusters c=1, . . . , k, update the activity indicator

b(c) :=

�
1 if |{i : y(i) = c}| > 0

0 else.

4: for all c=1, . . . , k with b(c) = 1, update cluster means

m(c) :=
1

|{i : y(i) = c}|
�

i:y(i)=c

x(i) (update cluster means) (8.5)

5: k := k + 1 (increment iteration counter)
6: E(k) = E

�
{m(c)}kc=1, {y(i)}mi=1 | D

�
(see (8.3))

7: until E(k−1) − E(k) ≤ ε
Output: cluster assignments y(i)∈{1, . . . , k} and cluster means m(c)

147

assigned to it during the preceding cluster assignment step (8.4). We need the cluster activity

indicators b(c) to make sure that the mean update (8.5) is only applied to clusters c with at

least one datapoint x(i).

It can be shown that Algorithm 9 amounts to a fixed-point iteration

{y(i)}mi=1 �→ P{y(i)}mi=1 (8.6)

with a particular operator P (which depends on the dataset D).

Each iteration of Algorithm 9 updates the cluster assignments y(i) by applying the

operator P . By interpreting Algorithm 9 as a fixed-point iteration (8.6), the authors of

[24, Thm. 2] present an elegant proof of the convergence of Algorithm 9 within a finite

number of iterations (even for ε = 0). What is more, after running Algorithm 9 for a finite

number of iterations the cluster assignments {y(i)}mi=1 do not change any more.

We illustrate the operation of Algorithm 9 in Figure 8.2. Each column corresponds

to one iteration of Algorithm 9. The upper picture in each column depicts the update of

cluster means while the lower picture shows the update of the cluster assignments during

each iteration.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

2

3

4

5

6

7

8

first iteration

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

2

3

4

5

6

7

8

second iteration

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

2

3

4

5

6

7

8

third iteration

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

2

3

4

5

6

7

8

fourth iteration

Figure 8.2: Evolution of cluster means (large dot and large cross) and cluster assignments
during the iterations of k-means.

148

While Algorithm 9 is guaranteed to terminate after a finite number of iterations, the

delivered cluster assignments and cluster means might only be (approximations) of local

minima of the clustering error (8.3) (see Figure 8.3).

To escape local minima, it is useful to repeat Algorithm 9 several times. For each

repetition of Algorithm 9, we use a different initializations for the cluster means. We then

pick the cluster assignments {y(i)}mi=1 obtained for the repetition that resulted in the smallest

clustering error (8.3).

E
�
{m(c)}kc=1, {y(i)}mi=1 | D

�

local minimum

Figure 8.3: The clustering error E
�
{m(c)}kc=1, {y(i)}mi=1 | D

�
(see (8.3)), which is minimized

by k-means, is a non-convex function of the cluster means and assignments. The k-means
algorithm can get trapped around a local minimum.

Up till now, we have assumed the number k of clusters to be given beforehand. In some

applications it is unclear what a good choice for k is. The choice for the number k of clusters

depends on the precise role of the clustering method within an overall ML application. If

the clustering method serves as a pre-processing for a supervised ML problem, we could try

out different values of the number k and determine, for each choice k, the corresponding

validation error. We then pick the value of k which results in the smallest validation error.

If the clustering method is mainly used as a tool for data visualization, we might prefer a

small number of clusters.

Another approach to choosing k is the so-called “elbow-method”. We run the k-means

Algorithm 9 for several different choices of k. For each choice of k, Algorithm 9 delivers a

different (approximate) optimum empirical error

E (k) = E
�
{m(c)}kc=1, {y(i)}mi=1 | D

�
.

We then plot the minimum empirical error E (k) as a function of the number k of clusters.

Figure 8.4 depicts an example for such a plot which typically starts with a steep decrease for

increasing k and then flattening out for larger values of k. Finally, the choice of k might be

149

2 4 6 8 10

2

4

6

8

k

E(
k
)

Figure 8.4: The clustering error E (k) achieved by k-means for increasing number k of clusters.

guided by some probabilistic model which specifies a prior distribution of the values for k.

8.2 Soft Clustering with Gaussian Mixture Models

The cluster assignments obtained from hard-clustering methods, such as Algorithm 9, provide

rather coarse-grained information. Indeed, even if two data points x(i),x(j) are assigned to

the same cluster c, their distances to the cluster mean m(c) might be very different. For

some applications, we would like to have a more fine-grained information about the cluster

assignments.

Soft-clustering methods provide such fine-grained information by explicitly modelling the

degree (or confidence) by which a particular datapoint belongs to a particular cluster. More

precisely, soft-clustering methods track for each datapoint x(i) the degree of belonging to

each of the clusters c ∈ {1, . . . , k}.
A principled approach to modelling a degree of belonging to different clusters is based

on a probabilistic (generative) model for the dataset D = {x(i)}mi=1. This approach identifies

a cluster with a probability distribution. One popular choice for this distribution is the

multivariate normal distribution

N (x;µ,Σ) =
1�

det{2πΣ}
exp
�
− (1/2)(x−µ)TΣ−1(x−µ)

�
(8.7)

150

of a Gaussian random vector with mean µ and (invertible) covariance matrix Σ.1

Each cluster c ∈ {1, . . . , k} is represented by a distribution of the form (8.7) with a

cluster-specific mean µ(c) ∈ Rn and cluster-specific covariance matrix Σ(c) ∈ Rn×n.

Since we do not know the cluster assignment c(i) of the datapoint x(i) beforehand, we

interpret c(i) as the realization of a RV with the probability distribution

pc := P(c(i) = c) for c = 1, . . . , k. (8.8)

The (prior) probabilities pc, for c = 1, . . . , k, are either assumed to be known or estimated

from data, e.g., using a maximum likelihood method.

The random cluster assignment c(i) selects the cluster-specific distribution (8.7) of the

random datapoint x(i),

P(x(i)|c(i)) = N (x;µ(c(i)),Σ(c(i))) (8.9)

with mean vector µ(c) and covariance matrix Σ(c).

The modelling of cluster assignments c(i) as (unobserved) random variables suggests a

natural definition for degree y
(i)
c by which datapoint x(i) belongs to cluster c. We define the

degree y
(i)
c of datapoint x(i) belonging to cluster c as the “a-posteriori” probability of the

cluster assignment c(i) being equal to c ∈ {1, . . . , k}:

y(i)c := P(c(i) = c|D). (8.10)

By their very definition (8.10), the degrees of belonging y
(i)
c always sum to one,

k�

c=1

y(i)c = 1 for each i = 1, . . . ,m. (8.11)

It is important to note that we use the conditional cluster probability (8.10), conditioned

on the dataset D, for defining the degree of belonging y
(i)
c . This is reasonable since the degree

of belonging y
(i)
c depends on the overall (cluster) geometry of the data set D.

A probabilistic model for the observed datapoints x(i) is obtained by considering each

datapoint x(i) as a random draw from the distribution N (x;µ(c(i)),Σ(c(i))) with some cluster

c(i).

Since the cluster indices c(i) are unknown,2 we model them as random variables. In

1Note that the distribution (8.7) is only defined for an invertible (non-singular) covariance matrix Σ.
2After all, the goal of soft-clustering is to estimate the cluster indices c(i).

151

µ(1)

Σ(1)

µ(2)

Σ(2)

µ(3)

Σ(3)

Figure 8.5: The GMM (8.12) yields a probability density function which is a weighted sum
of multivariate normal distributions N (µ(c),Σ(c)). The weight of the c-th component is the
cluster probability P(c(i) = c).

particular, we model the cluster indices c(i) as i.i.d. with probabilities pc = P(c(i) = c).

The overall probabilistic model (8.9), (8.8) amounts to a Gaussian mixture model

(GMM). The marginal distribution P(x(i)), which is the same for all datapoints x(i), is a

(additive) mixture of multivariate normal (Gaussian) distributions,

P(x(i)) =
k�

c=1

P(c(i) = c)� �� �
pc

P(x(i)|c(i) = c)� �� �
N (x(i);µ(c),Σ(c))

. (8.12)

The cluster assignments c(i) are hidden (unobserved) random variables. We thus have to infer

or estimate these variables from the observed datapoints x(i) which are i.i.d. realizations of

the GMM (8.12).

Using the GMM (8.12) for explaining the observed datapoints x(i) turns the clustering

problem into a statistical inference or parameter estimation problem [34, 39]. The

estimation problem is to estimate the true underlying cluster probabilities pc (see (8.8)),

cluster means µ(c) and cluster covariance matricesΣ(c) (see (8.9)) from the observed datapoints

D = {x(i)}mi=1. The datapoints x
(i) are realizations of i.i.d. random vectors with the common

probability distribution (8.12).

We denote the estimates for the GMM parameters by p̂c(≈ pc), m
(c)(≈ µ(c)) and C(c)(≈

Σ(c)), respectively. Based on these estimates, we can then compute an estimate ŷ
(i)
c of the

(a-posteriori) probability

y(i)c = P(c(i) = c | D) (8.13)

152

of the i-th datapoint x(i) belonging to cluster c, given the observed dataset D.

This estimation problem becomes significantly easier by operating in an alternating

fashion. In each iteration, we first compute a new estimate p̂c of the cluster probabilities pc,

given the current estimate m(c),C(c) for the cluster means and covariance matrices. Then,

using this new estimate p̂c for the cluster probabilities, we update the estimates m(c),C(c)

of the cluster means and covariance matrices. Then, using the new estimates m(c),C(c), we

compute a new estimate p̂c and so on. By repeating these two steps, we obtain an iterative

soft-clustering method which is summarized in Algorithm 10.

Algorithm 10 “A Soft-Clustering Algorithm” [7]

Input: dataset D = {x(i)}mi=1; number k of clusters.
Initialize: use initial guess for GMM parameters {m(c),C(c), p̂c}kc=1

1: repeat

2: for each datapoint x(i) and cluster c ∈ {1, . . . , k}, update degrees of belonging

y(i)c =
p̂cN (x(i);m(c),C(c))�k

c�=1 p̂c�N (x(i);m(c�),C(c�))
(8.14)

3: for each cluster c ∈ {1, . . . , k}, update estimates of GMM parameters:

• cluster probability p̂c=mc/m, with effective cluster size mc=
m�
i=1

y
(i)
c

• cluster mean m(c) = (1/mc)
m�
i=1

y
(i)
c x(i)

• cluster covariance matrix C(c) = (1/mc)
m�
i=1

y
(i)
c

�
x(i)−m(c)

��
x(i)−m(c)

�T

4: until convergence
Output: soft cluster assignments y(i) = (y

(i)
1 , . . . , y

(i)
k)T for each datapoint x(i)

As for k-means, we can interpret the soft clustering problem as an instance of the ERM

principle discussed in Chapter 4. Indeed, Algorithm 10 aims at minimizing the empirical

risk

E
�
{m(c),C(c), p̂c}kc=1 | D

�
= − log Prob

�
D; {m(c),C(c), p̂c}kc=1

�
. (8.15)

The interpretation of Algorithm 10 as a method for minimizing the empirical risk (8.15)

suggests a stopping criterion. We can monitor the decrease of the empirical risk

− log Prob
�
D; {m(c),C(c), p̂c}kc=1

�

153

to decide when to stop iterating (see step 4 of Algorithm 10).

Similar to the k-means Algorithm 8, the soft clustering Algorithm 10 also suffers from

the problem of getting stuck in local minima of the empirical risk (8.15). As for k-means,

we can avoid local minima by running Algorithm 10 several times, each time with a different

initialization for the GMM parameter estimates {m(c),C(c), p̂c}kc=1 and then picking the result

which yields the smallest empirical risk (8.15).

The empirical risk (8.15) underlying the soft-clustering Algorithm 10 is essentially a

log-likelihood function. Thus, Algorithm 10 can be interpreted as an approximate

maximum likelihood estimator for the true underlying GMM parameters {µ(c),Σ(c), pc}kc=1.

In particular, Algorithm 10 is an instance of a generic approximate maximum likelihood

technique referred to as expectation maximization (EM) (see [26, Chap. 8.5] for more

details). The interpretation of Algorithm 10 as a special case of EM allows to characterize

the behaviour of Algorithm 10 using existing convergence results for EM methods [65].

There is an interesting link between the soft-clustering Algorithm 10 and k-means. The

k-means algorithm can be interpreted as an extreme case of the soft-clustering Algorithm

10. Consider fixing the cluster covariance matrices Σ(c) within the GMM (8.9) to be the

scaled identity:

Σ(c) = σ2I for all c ∈ {1, . . . , k}. (8.16)

We assume the covariance matrix (8.16), with a particular value for σ2, to be the actual

“correct” covariance matrix for cluster c. Thus, we replace the covariance matrix updates in

Algorithm 10 with C(c) := Σ(c).

When choosing a very small variance σ2 in (8.16), the update (8.14) tends to enforce

y
(i)
c ∈ {0, 1}. Thus, each datapoint x(i) is associated exclusively to the cluster c whose

cluster mean m(c) has minimum Euclidean distance to the datapoint x(i). To summarize,

for σ2 → 0, the soft-clustering update (8.14) reduces to the hard cluster assignment update

(8.1) of the k-means Algorithm 8.

8.3 Density-Based Clustering with DBSCAN

Both, the k-means algorithm and soft-clustering using GMM, use the Euclidean distance as a

measure of similarity between datapoints. However, in some applications, the datapoints do

not conform to the Euclidean structure. Moreover, some applications generate datapoints,

such as text documents, which are not naturally represented by numeric feature vectors.

There exist powerful feature extraction methods that map non-numeric datapoints to

154

numeric features x ∈ Rn. However, the resulting dataset might not conform with a Euclidean

structure. Similar text documents might not be mapped to feature vectors that have small

Euclidean distance.

Density-based spatial clustering of applications with noise (DBSCAN) is a hard clustering

method that uses a notion of similarity that is based on connectivity. DBSCAN considers

two datapoints as similar if they can be reached by intermediate datapoints that have a

small Euclidean distance. Two datapoints can be similar in terms of connectivity, even if

their Euclidean distance is large.

In contrast to k-means and GMM, DBSCAN does not require the number of clusters to be

pre-defined. The number of clusters delivered by DBSCAN is determined by the choice of the

parameters. DBSCAN also performs an implicit outlier detection. The outliers delivered by

DBSCAN are those clusters which contain a single datapoint only. For a detailed discussion

of how DBSCAN works, we refer to https://en.wikipedia.org/wiki/DBSCAN.

8.4 Exercises

8.4.1 Image Compression with k-means

use k-means to compress a RGB bitmap image. Instead of RGB values we need to store only

cluster index and the cluster means.

8.4.2 Compression with k-means

Consider m = 10000 datapoints x(1), . . . ,x(m) which are represented by numeric features

vectors of length two. We apply k-means to cluster the data set into two clusters. How

many bits do we need to store the clustering? For simplicity, we assume that any real

number can stored perfectly as a floating point numbers (32 bit).

155

Chapter 9

Feature Learning

“Solving Problems By Changing the Viewpoint.”

Figure 9.1: Dimensionality reduction methods aim at finding a map h which maximally
compresses the raw data while still allowing to accurately reconstruct the original datapoint
from a small number of features x1, . . . , xn.

Chapter 2 discussed features as those properties of a datapoint that can be measured

or computed easily. Sometimes the choice of features follows naturally from the available

hard and software. As an example we might use the measurements delivered by sensing

devices as features. Beside direct sensor readings, we might construct new features by simple

computations.

Consider datapoints representing ski days which are characterized by the minimum

daytime temperature as their feature x. Then we might construct new features of a datapoint

by computing powers x2 and x3. Another feature is obtained by x + 5. Each of these

computations produces a new feature. Which of these additional features are most useful?

156

Feature learning methods automate the choice of finding a good features. These methods

learn a map that read in the original raw features and transform them to a set of new features.

A subclass of feature learning methods are dimensionality reduction methods, where the new

feature space has a (much) smaller dimension than the original feature space (see Section

9.1). Sometimes it might be useful to change to a higher-dimensional feature space. Section

9.6 discusses feature learning method that result in new feature vectors which are longer

than the raw feature vector

??? Develop feature learning as an approximation problem. The raw data is the vector

to be approximated. The approximation has to be in a (small) subspace which is spanned

by all possible low-dimensional feature vectors???

9.1 Dimensionality Reduction

Consider a ML method that aims at predicting the label y of a datapoint z based on some

features x which characterize the datapoint z. Intuitively, it should be beneficial to use as

many features as possible. Indeed, the more features of a datapoint we know, the more we

should know about its label y.

There are, however, two pitfalls in using an unnecessarily large number of features. The

first one is a computational pitfall and the second one is a statistical pitfall. The larger

the feature vector x ∈ Rn (with large n), the more computation (and storage) is required for

executing the resulting ML method. Moreover, using a large number of features makes the

resulting ML methods more prone to overfitting. Indeed, linear regression will overfit when

using feature vectors x ∈ Rn whose length n exceeds the number m of labeled datapoints

used for training (see Chapter 7).

Thus, both from a computational and statistical perspective, it is beneficial to use only

the maximum necessary amount of relevant features. A key challenge here is to select those

features which carry most of the relevant information required for the prediction of the

label y. Beside coping with overfitting and limited computational resources, dimensionality

reduction can also be useful for data visualization. Indeed, if the resulting feature vector has

length d = 2, we can use scatter plots to depict datasets.

The basic idea behind most dimensionality reduction methods is quite simple. As

illustrated in Figure 9.1, these methods aim at learning (finding) a “compression” map that

transforms a raw datapoint z to a (short) feature vector x = (x1, . . . , xn)
T in such a way that

it is possible to find (learn) a “reconstruction” map which allows to accurately reconstruct the

157

original datapoint from the features x. The compression and reconstruction map is typically

constrained to belong some set of computationally feasible maps or hypothesis space (see

Chapter 3 for different examples of hypothesis spaces). In what follows we restrict ourselves

to using only linear maps for compression and reconstruction leading to principal component

analysis. The extension to non-linear maps using deep neural networks is known as deep

autoencoders [22, Ch. 14].

9.2 Principal Component Analysis

Consider a datapoint z ∈ RD which is represented by a (typically very long) vector of length

D. The length D of the raw feature vector might be easily of the order of millions. To obtain

a small set of relevant features x ∈ Rn, we apply a linear transformation to the datapoint:

x = Wz. (9.1)

Here, the “compression” matrix W ∈ Rn×D maps (in a linear fashion) the large vector

z ∈ RD to a smaller feature vector x ∈ Rn.

It is reasonable to choose the compression matrix W ∈ Rn×D in (9.1) such that the

resulting features x ∈ Rn allow to approximate the original datapoint z ∈ RD as accurate

as possible. We can approximate (or recover) the datapoint z ∈ RD back from the features

x by applying a reconstruction operator R ∈ RD×n, which is chosen such that

z ≈ Rx
(9.1)
= RWz. (9.2)

The approximation error E
�
W,R | D

�
resulting when (9.2) is applied to each datapoint

in a dataset D = {z(i)}mi=1 is then

E
�
W,R | D

�
= (1/m)

m�

i=1

�z(i) −RWz(i)�. (9.3)

One can verify that the approximation error E
�
W,R | D

�
can only by minimal if the

compression matrix W is of the form

W = WPCA :=
�
u(1), . . . ,u(n)

�T ∈ Rn×D, (9.4)

with n orthonormal vectors u(l) which correspond to the n largest eigenvalues of the sample

158

covariance matrix

Q := (1/m)ZTZ ∈ RD×D (9.5)

with data matrix Z=
�
z(1), . . . , z(m)

�T ∈Rm×D. 1 By its very definition (9.5), the matrix Q

is positive semi-definite so that it allows for an eigenvalue decomposition (EVD) of the form

[56]

Q =
�
u(1), . . . ,u(D)

�



λ(1) . . . 0

0
. . . 0

0 . . . λ(D)



�
u(1), . . . ,u(D)

�T

with real-valued eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥ λ(D) ≥ 0 and orthonormal eigenvectors

{ur}Dr=1.

The features x(i), obtained by applying the compression matrix WPCA (9.4) to the raw

datapoints z(i), are referred to as principal components (PC). The overall procedure

of determining the compression matrix (9.4) and, in turn, computing the PC vectors x(i)

is known as principal component analysis (PCA) and summarized in Algorithm 11.

Note that the length n of the feature vectors x, which is also the number of PCs used, is

Algorithm 11 Principal Component Analysis (PCA)

Input: dataset D = {z(i) ∈ RD}mi=1; number n of PCs.
1: compute EVD (9.6) to obtain orthonormal eigenvectors

�
u(1), . . . ,u(D)

�
corresponding

to (decreasingly ordered) eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥ λ(D) ≥ 0

2: construct compression matrix WPCA :=
�
u(1), . . . ,u(n)

�T ∈ Rn×D

3: compute feature vector x(i) = WPCAz
(i) whose entries are PC of z(i)

4: compute approximation error E (PCA) =
�D

r=n+1 λ
(r) (see (9.6)).

Output: x(i), for i = 1, . . . ,m, and the approximation error E (PCA).

an input parameter of Algorithm 11. The number n can be chosen between n = 0 and

n = D. However, it can be shown that PCA for n > m is not well-defined. In particular,

the orthonormal eigenvectors u(n+1), . . . ,u(D) are not unique.

From a computational perspective, Algorithm 11 essentially amounts to performing an

EVD of the sample covariance matrix Q (see (9.5)). Indeed, the EVD of Q provides not

only the optimal compression matrix WPCA but also the measure E (PCA) for the information

loss incurred by replacing the original datapoints z(i) ∈ RD with the smaller feature vector

1Some authors define the data matrix as Z =
�
�z(1), . . . ,�z(m)

�T ∈ Rm×D using “centered” datapoints

�z(i) − �m obtained by subtracting the average �m = (1/m)
�m

i=1 z
(i).

159

x(i) ∈ Rn. In particular, this information loss is measured by the approximation error

(obtained for the optimal reconstruction matrix Ropt = WT
PCA)

E (PCA) := E
�
WPCA, Ropt����

=WT
PCA

| D
�
=

D�

r=n+1

λ(r). (9.6)

As depicted in Figure 9.2, the approximation error E (PCA) decreases with increasing number

n of PCs used for the new features (9.1). The maximum error E (PCA) = (1/m)
�m

i=1 �z(i)�2
is obtained for n = 0, which amounts to completely ignoring the datapoints z(i). In the

other extreme case where n=D and x(i)=z(i), which amounts to no compression at all, the

approximation error is zero E (PCA)=0.

2 4 6 8 10

2

4

6

8

n

E(
P
C
A
)

Figure 9.2: Reconstruction error E (PCA) (see (9.6)) of PCA for varying number n of PCs.

9.2.1 Combining PCA with Linear Regression

One important use case of PCA is as a pre-processing step within an overall ML problem such

as linear regression (see Section 3.1). As discussed in Chapter 7, linear regression methods

are prone to overfitting whenever the datapoints are characterized by feature vectors whose

length D exceeds the number m of labeled datapoints used for training. One simple but

powerful strategy to avoid overfitting is to preprocess the original feature vectors (they are

considered as the raw datapoints z(i) ∈ RD) by applying PCA in order to obtain smaller

feature vectors x(i) ∈ Rn with n < m.

160

9.2.2 How To Choose Number of PC?

There are several aspects which can guide the choice for the number n of PCs to be used as

features.

• for data visualization: use either n = 2 or n = 3

• computational budget: choose n sufficiently small such that the computational complexity

of the overall ML method does not exceed the available computational resources.

• statistical budget: consider using PCA as a pre-processing step within a linear regression

problem (see Section 3.1). Thus, we use the output x(i) of PCA as the feature vectors

in linear regression. In order to avoid overfitting, we should choose n < m (see Chapter

7).

• elbow method: choose n large enough such that approximation error E (PCA) is reasonably

small (see Figure 9.2).

9.2.3 Data Visualisation

If we use PCA with n = 2 PC, we obtain feature vectors x(i) = Wz(i) (see (9.1)) which can be

depicted as points in a scatter plot (see Section 2.1.3). As an example, consider datapoints

z(i) obtained from historic recordings of Bitcoin statistics. Each datapoint z(i) ∈ R6 is a

vector of length D = 6. It is difficult to visualise points in an Euclidean space RD of

dimension D > 2. We apply PCA with n = 2 which results in feature vectors x(i) ∈ R2.

Such feature vectors can be depicted conveniently as a scatter plot (see Figure 9.3).

9.2.4 Extensions of PCA

There have been proposed several extensions of the basic PCA method:

• kernel PCA [26, Ch.14.5.4]: combines PCA with a non-linear feature map (see

Section 3.9).

• robust PCA [64]: modifies PCA to better cope with outliers in the dataset.

• sparse PCA [26, Ch.14.5.5]: requires each PC to depend only on a small number

of data attributes zj.

161

−8,000−6,000−4,000−2,000 2,000 4,000 6,000

−400

−200

200

400

second PC x2

first PC x1

Figure 9.3: A scatter plot of feature vectors x(i) =
�
x
(i)
1 , x

(i)
2

�T
whose entries are the first two

PCs of the Bitcoin statistics z(i) of the i-th day.

• probabilistic PCA [50, 59]: generalizes PCA by using a probabilistic (generative)

model for the data.

9.3 Linear Discriminant Analysis

Dimensionality reduction is typically used as a preprocessing step within some overall ML

problem such as regression or classification. It can then be useful to exploit the availability

of labeled data for the design of the compression matrix W in (9.1). However, plain PCA

(see Algorithm 11) does not make use of any label information provided additionally for the

raw datapoints z(i) ∈ RD. Therefore, the compression matrix WPCA delivered by PCA can

be highly suboptimal as a pre-processing step for labeled datapoints. A principled approach

for choosing the compression matrix W such that datapoints with different labels are well

separated is linear discriminant analysis [26].

9.4 Random Projections

Note that PCA amounts to computing an EVD of the sample covariance matrix Q =

(1/m)ZZT with the data matrix Z =
�
z(1), . . . , z(m)

�T
containing the datapoints z(i) ∈ RD

as its columns. The computational complexity (amount of multiplications and additions)

162

for computing this PCA is lower bounded by min{D2,m2} [15, 53]. This computational

complexity can be prohibitive for ML applications with n andm being of the order of millions

(which is already the case if the features are pixel values of a 512 × 512 RGB bitmap, see

Section 2.1.1). There is a surprisingly cheap alternative to PCA for finding a good choice

for the compression matrix W in (9.1). Indeed, a randomly chosen matrix W with entries

drawn i.i.d. from a suitable probability distribution (such as Bernoulli or Gaussian) yields a

good compression matrix W (see (9.1)) with high probability [6, 33].

9.5 Information Bottleneck

We can use information bottleneck for feature learning. Using Gaussian process model, we

even get closed-form solutions of Gaussian Information Bottleneck.

9.6 Dimensionality Increase

? Discuss kernel methods; and polynomial regression as special case???

Feature learning methods are mainly dimensionality reduction methods. However, it

might be beneficial to also consider feature learning methods that produce new feature

vectors which are longer than the raw feature vectors. An extreme example for such a feature

map are kernel methods which map finite length vector to infinite dimensional spaces.

Mapping raw feature vectors into higher-dimensional spaces might be useful if the intrinsic

geometry of the datapoints is simpler when looked at in the higher-dimensional space.

Consider a binary classification problem where datapoints are highly inter-winded in the

original feature space. By mapping into higher-dimensional feature space we might ”even-

out” this non-linear geometry such that we can use linear classifiers in the higher-dimensional

space.

163

Chapter 10

Privacy-Preserving ML

Many ML applications involve datapoints representing individual humans. These datapoints

might include sensitive data, such as medical records, which is subject to privacy protection.

This chapter discusses some techniques for preprocessing the raw data to protect privacy

of individuals while still allowing to solve the overall ML task. We will illustrate these

techniques using a stylized healthcare application.

Figure 10.1: datapoints represent humans. We are interested in the fruit preference of
humans. Their gender is considered sensitive information and should not be revealed to ML
methods.

A key challenge for health-care are pandemics. To optimally manage pandemics it is

important to have accurate information about the dynamics. We can model this as a

ML problem with datapoints representing humans. One key feature of datapoints is if it

represents an infected human or not. This data is sensitive and typically only available to

public health-care institutes.

Consider the patient database of a hospital which should provide information about the

average number of infected patients. Instead of directly forward the patient files, the hospital

164

must only forward the fraction of infected patients. This is an example of privacy-preserving

data processing. For a sufficiently large number of patients at the hospital (say, more than

1000), we cannot infer much about individual patients just form the fraction of infected

patients treated in that hospital.

10.1 Privacy-Preserving Feature Learning (Operating

on level of individual datapoints)

Privacy-preserving ML can be implemented using modification of feature learning methods

discussed in Chapter 9. Generic feature learning methods aim at learning a compressed

representation of the raw datapoints which contain as much information as possible about

the quantity of interest. In contrast, privacy-preserving ML does not aim at compression

but rather obscuring the raw data such that it does not reveal sensible information about

datapoints.

10.1.1 Privacy-Preserving Information Bottleneck

10.1.2 Privacy-Preserving Feature Selection

?? ignore features which are sensitive (name, social ID) but not very relevant for actual task

(e.g. predicting income). ???

10.1.3 Privacy-Preserving Random Projections

?? cheap form: random projections/compressed sensing. random projections blur features

of individual datapoints but still allow to learn a sparse linear model using e.g. Lasso ???

10.2 Exercises

10.2.1 Where are you?

Consider a ML method that uses FMI data for temperature forecasts. The ML methods

downloads the following sequence of daily temperatures: ??,???,???,??. What is the most

likely nearest observation station to the ML user ?

165

10.3 Federated Learning (Operates on level of local

datasets)

FL method only exchange model parameter updates; no raw local data is revealed;

166

Chapter 11

Explainable ML

A key challenge for the successful deployment of ML methods to many (critical) application

domain is their explainability. Human users of ML seem to have a strong desire to get

explanations that resolve the uncertainty about predictions and decisions obtained from ML

methods. Explainable ML enables the user to better predict the outcomes of ML methods.

Explainable ML is challenging since explanations must be tailored (personalized) to

individual users with varying backgrounds. Some users might have received university-level

education in ML, while other users might have no formal training in linear algebra. Linear

regression with few features might be perfectly interpretable for the first group but might

be considered a black-box by the latter.

?????? discuss relation between finding good explanations and active learning. Active

learning aims at finding datapoints (by their features) which provide most information about

the true model parameters. XML aims at finding explanations (e.g. datapoints from training

set) which provide most information about the prediction provided by some black-box ML

method. ????????????? discuss relation between XML and feature learning. XML can be

obtained from feature learning methods by learning those subset of features which provide

most information about the prediction (not about the label itself) ??????????????

11.1 A Model Agnostic Method

We propose a simple probabilistic model for the predictions and user knowledge. This model

allows to study explainable ML using information theory. Explaining is here considered as

the task of reducing the “surprise” incurred by a prediction. We quantify the effect of an

explanation by the conditional mutual information between the explanation and prediction,

167

given the user background.

11.2 Explainable Empirical Risk Minimization

The approach discussed in Section 11.1 constructs explanations for any given ML method

such that the user is able to better predict the outcome of this ML method. Instead of

providing an explanation we could also try to make the ML method itself more predictable

for a user.

168

Chapter 12

Lists of Symbols

12.1 Sets

R The set of real numbers x.

R+ The set of non-negative real numbers x ≥ 0.

12.2 Matrices and Vectors

I The identity matrix having ones on the main diagonal and zeros off diagonal.

Rn The set of all vectors constituted by n real-valued entries.

x =
�
x1, . . . , xn)

T Some vector of length n. The jth entry of the vector is denoted xj.

�x�2 The Euclidean norm of the vector x, �x�2 :=

����
n�

j=1

x2
j

�x� Some norm of the vector x, by default the Euclidean norm.

169

12.3 Machine Learning

t A discrete time index.

i Generic index used to enumerate datapoints in a list of datapoints.

m The number of different datapoints in the training set.

h(·) A predictor that maps a feature vector x of a datapoint to a predicted label ŷ = h(x).

y The label of some datapoint.
�
x(i), y(i)

�
The i-th datapoint within an indexed set of datapoints.

y(i) The label of the ith datapoint.

x Feature vector whose entries are the features of some datapoint.

x(i) Feature vector whose entries are the features of the ith datapoint.

n The number of (real-valued) features of a single datapoint.

xj The jth entry of a vector x =
�
x1, . . . , xn

�T
.

170

Chapter 13

Glossary

• a sample: a sequence of datapoints z(1), . . . , z(i) which are interpreted as the realizations

of i i.i.d. random variables with the same probability distribution p(z). The length m

of the list is also known as the sample size.

• classification problem: A ML problem involving a discrete label space Y such as

Y = {−1, 1} for binary classification, or Y = {1, 2, . . . , K} with K > 2 for multi-class

classification.

• classifier. a hypothesis map h : X → Y with discrete label space (e.g., Y = {−1, 1}).

• condition number. κ(Q) of a matrix Q: the ratio of largest to smallest eigenvalue

of a psd matrix Q.

• datapoint: an elementary unit of information such as a single pixel, a single image, a

particular audio recording, a letter, a text document or an entire social network user

profile.

• labeled datapoint. a datapoint for which we know the value of its label.

• dataset: a collection (set or list) of datapoints.

• eigenvalue/eigenvector: for a square matrix A ∈ Rn×n we call a non-zero vector

x ∈ Rn an eigenvector of A if Ax = λx with some λ ∈ R, which we call an eigenvalue

of A.

• features: any measurements (or quantities) used to characterize a datapoint (e.g.,

the maximum amplitude of a sound recoding or the greenness of an RGB image). In

171

principle, we can use as a feature any quantity which can be measured or computed

easily in an automated fashion.

• hypothesis map: a map (or function) h : X → Y from the feature space X to

the label space Y . Given a datapoint with features x we use a hypothesis map to

estimate (or approximate) the label y using the predicted label ŷ = h(x). ML is about

automating the search for a good hypothesis map such that the error y−h(x) is small.

• hypothesis space: a set of computationally feasible (predictor) maps h : X → Y .

• i.i.d.: independent and identically distributed; e.g., “x, y, z are i.i.d. random variables”

means that the joint probability distribution p(x, y, z) of the random variables x, y, z

factors into the product p(x)p(y)p(z) of the marginal probability distributions of the

variables x, y, z which are identical.

• label: some property of a datapoint which is of interest, such as the fact if a webcam

snapshot shows a forest fire or not. In contrast to features, labels are properties of

datapoints that cannot be measured or computed easily in an automated fashion.

Instead, acquiring accurate label information often involves human expert labour.

Many ML methods aim at learning accurate predictor maps that allow to guess or

approximate the label of a datapoint based on its features.

• loss function: a function which associates a given datapoint (x, y) with features x and

label y and hypothesis map h a number that quantifies the prediction error y − h(x).

• positive semi-definite: a positive semi-definite matrix Q is a symmetric matrix

Q = QT such that xTQx ≥ 0 for every vector x.

• predictor: a hypothesis map h : X → Y with continuous label space (e.g., Y = R).

• psd: positive semi-definite.

• regression problem: an ML problem involving a continuous label space Y (such as

Y = R).

• training data: a dataset which is used for finding a good hypothesis map h ∈ H out

of a hypothesis space H, e.g., via empirical risk minimization (see Chapter 4).

• validation data: a dataset which is used for evaluating the quality of a predictor

which has been learnt using some other (training) data.

172

Bibliography

[1] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for

machine learning. Machine Learning, 50(1-2):5 – 43, 2003.

[2] P. Austin, P. Kaski, and K. Kubjas. Tensor network complexity of multilinear maps.

arXiv, 2018.

[3] D. Bertsekas and J. Tsitsiklis. Introduction to Probability. Athena Scientific, 2 edition,

2008.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd edition,

June 1999.

[5] P. Billingsley. Probability and Measure. Wiley, New York, 3 edition, 1995.

[6] E. Bingham and H. Mannila. Random projection in dimensionality reduction:

Applications to image and text data. In Knowledge Discovery and Data Mining, pages

245–250. ACM Press, 2001.

[7] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press,

Cambridge, UK, 2004.

[9] S. Bubeck. Convex optimization. algorithms and complexity. In Foundations and Trends

in Machine Learning, volume 8. Now Publishers, 2015.

[10] P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data. Springer, New

York, 2011.

[11] S. Carrazza. Machine learning challenges in theoretical HEP. arXiv, 2018.

173

[12] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University

Press, New York, NY, USA, 2006.

[13] I. Cohen and B. Berdugo. Noise estimation by minima controlled recursive averaging

for robust speech enhancement. IEEE Sig. Proc. Lett., 9(1):12–15, Jan. 2002.

[14] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems 2, (4):303–314, 1989.

[15] Q. Du and J. Fowler. Low-complexity principal component analysis for hyperspectral

image compression. Int. J. High Performance Comput. Appl, pages 438–448, 2008.

[16] B. Efron and R. Tibshirani. Improvements on cross-validation: The 632+ bootstrap

method. Journal of the American Statistical Association, 92(438):548–560, 1997.

[17] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. CoRR,

abs/1512.03965, 2015.

[18] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.

Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542,

2017.

[19] M. Gao, H. Igata, A. Takeuchi, K. Sato, and Y. Ikegaya. Machine learning-based

prediction of adverse drug effects: An example of seizure-inducing compounds. Journal

of Pharmacological Sciences, 133(2):70 – 78, 2017.

[20] W. Gautschi and G. Inglese. Lower bounds for the condition number of vandermonde

matrices. Numer. Math., 52:241 – 250, 1988.

[21] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, 3rd edition, 1996.

[22] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[23] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. Neural Inf. Proc.

Syst. (NIPS), 2014.

[24] R. Gray, J. Kieffer, and Y. Linde. Locally optimal block quantizer design. Information

and Control, 45:178 – 198, 1980.

174

[25] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE

Intelligent Systems, March/April 2009.

[26] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. Springer, New York, NY, USA, 2001.

[27] E. Hazan. Introduction to Online Convex Optimization. Now Publishers Inc., 2016.

[28] P. Huber. Approximate models. In C. Huber-Carol, N. Balakrishnan, M. Nikulin, and

M. Mesbah, editors, Goodness-of-Fit Tests and Model Validity. Statistics for Industry

and Technology. Birkhäuser, Boston, MA, 2002.

[29] P. J. Huber. Robust Statistics. Wiley, New York, 1981.

[30] L. Hyafil and R. Rivest. Constructing optimal binary decision trees is np-complete.

Information Processing Letters, 5(1):15–17, 1976.

[31] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical

Learning with Applications in R. Springer, 2013.

[32] A. Jung. A fixed-point of view on gradient methods for big data. Frontiers in Applied

Mathematics and Statistics, 3, 2017.

[33] A. Jung, G. Tauböck, and F. Hlawatsch. Compressive spectral estimation for

nonstationary random processes. IEEE Trans. Inf. Theory, 59(5):3117–3138, May 2013.

[34] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice

Hall, Englewood Cliffs, NJ, 1993.

[35] P. Koehn. Europarl: A parallel corpus for statistical machine translation. In The 10th

Machine Translation Summit, page 79–86., AAMT,, Phuket, Thailand, 2005.

[36] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep

convolutional neural networks. In Neural Information Processing Systems, NIPS, 2012.

[37] C. Lampert. Kernel methods in computer vision. Foundations and Trends in Computer

Graphics and Vision, 2009.

[38] J. Larsen and C. Goutte. On optimal data split for generalization estimation and model

selection. In IEEE Workshop on Neural Networks for Signal Process, 1999.

175

[39] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, New York, 2nd

edition, 1998.

[40] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press,

1979.

[41] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. In ICLR (Workshop Poster), 2013.

[42] T. Mitchell. The need for biases in learning generalizations. Technical Report CBM-TR

5-110,, Rutgers University, New Brunswick, New Jersey, USA, 1980.

[43] K. Mortensen and T. Hughes. Comparing amazon’s mechanical turk platform to

conventional data collection methods in the health and medical research literature. J.

Gen. Intern Med., 33(4):533–538, 2018.

[44] R. Muirhead. Aspects of Multivariate Statistical Theory. John Wiley & Sons Inc., 1982.

[45] N. Murata. A statistical study on on-line learning. In D. Saad, editor, On-line Learning

in Neural Networks, pages 63–92. Cambridge University Press, New York, NY, USA,

1998.

[46] Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied

Optimization. Kluwer Academic Publishers, Boston, MA, 2004. A basic course.

[47] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of

logistic regression and naive bayes. In T. G. Dietterich, S. Becker, and Z. Ghahramani,

editors, Advances in Neural Information Processing Systems 14, pages 841–848. MIT

Press, 2002.

[48] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization,

1(3):123–231, 2013.

[49] H. Poor. An Introduction to Signal Detection and Estimation. Springer, 2 edition, 1994.

[50] S. Roweis. EM Algorithms for PCA and SPCA. In Advances in Neural Information

Processing Systems, pages 626–632. MIT Press, 1998.

[51] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, 3 edition,

1976.

176

[52] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning – from Theory

to Algorithms. Cambridge University Press, 2014.

[53] A. Sharma and K. Paliwal. Fast principal component analysis using fixed-point analysis.

Pattern Recognition Letters, 28:1151 – 1155, 2007.

[54] S. Smoliski and K. Radtke. Spatial prediction of demersal fish diversity in the baltic

sea: comparison of machine learning and regression-based techniques. ICES Journal of

Marine Science, 74(1):102–111, 2017.

[55] S. Sra, S. Nowozin, and S. J. Wright, editors. Optimization for Machine Learning. MIT

Press, 2012.

[56] G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press, MA,

2007.

[57] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, MA, 5 edition,

2016.

[58] R. S. Sutton and A. G. Barto. Reinforcement learning: An

introduction, volume 1. draft in progress, available online at

http://www.incompleteideas.net/book/bookdraft2017nov5.pdf, 2017.

[59] M. E. Tipping and C. Bishop. Probabilistic principal component analysis. Journal of

the Royal Statistical Society, Series B, 21/3:611–622, January 1999.

[60] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1999.

[61] O. Vasicek. A test for normality based on sample entropy. Journal of the Royal Statistical

Society. Series B (Methodological), 38(1):54–59, 1976.

[62] M. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.

Cambridge: Cambridge University Press, 2019.

[63] A. Wang. An industrial-strength audio search algorithm. In International Symposium

on Music Information Retrieval, Baltimore, MD, 2003.

[64] J. Wright, Y. Peng, Y. Ma, A. Ganesh, and S. Rao. Robust principal component

analysis: Exact recovery of corrupted low-rank matrices by convex optimization. In

Neural Information Processing Systems, NIPS 2009, 2009.

177

[65] L. Xu and M. Jordan. On convergence properties of the EM algorithm for Gaussian

mixtures. Neural Computation, 8(1):129–151, 1996.

[66] K. Young. Bayesian diagnostics for checking assumptions of normality. Journal of

Statistical Computation and Simulation, 47(3–4):167 – 180, 1993.

178

