Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
import numpy as np
import cv2
from lanetracker.window import Window
from lanetracker.line import Line
from lanetracker.gradients import get_edges
from lanetracker.perspective import flatten_perspective
class LaneTracker(object):
"""
Tracks the lane in a series of consecutive frames.
"""
def __init__(self, first_frame, n_windows=9):
"""
Initialises a tracker object.
Parameters
----------
first_frame : First frame of the frame series. We use it to get dimensions and initialise values.
n_windows : Number of windows we use to track each lane edge.
"""
(self.h, self.w, _) = first_frame.shape
self.win_n = n_windows
self.left = None
self.right = None
self.l_windows = []
self.r_windows = []
self.initialize_lines(first_frame)
def initialize_lines(self, frame):
"""
Finds starting points for left and right lines (e.g. lane edges) and initialises Window and Line objects.
Parameters
----------
frame : Frame to scan for lane edges.
"""
# Take a histogram of the bottom half of the image
edges = get_edges(frame)
(flat_edges, _) = flatten_perspective(edges)
histogram = np.sum(flat_edges[int(self.h / 2):, :], axis=0)
nonzero = flat_edges.nonzero()
# Create empty lists to receive left and right lane pixel indices
l_indices = np.empty([0], dtype=np.int)
r_indices = np.empty([0], dtype=np.int)
window_height = int(self.h / self.win_n)
for i in range(self.win_n):
l_window = Window(
y1=self.h - (i + 1) * window_height,
y2=self.h - i * window_height,
x=self.l_windows[-1].x if len(self.l_windows) > 0 else np.argmax(histogram[:self.w // 2])
)
r_window = Window(
y1=self.h - (i + 1) * window_height,
y2=self.h - i * window_height,
x=self.r_windows[-1].x if len(self.r_windows) > 0 else np.argmax(histogram[self.w // 2:]) + self.w // 2
)
# Append nonzero indices in the window boundary to the lists
l_indices = np.append(l_indices, l_window.pixels_in(nonzero), axis=0)
r_indices = np.append(r_indices, r_window.pixels_in(nonzero), axis=0)
self.l_windows.append(l_window)
self.r_windows.append(r_window)
self.left = Line(x=nonzero[1][l_indices], y=nonzero[0][l_indices], h=self.h, w = self.w)
self.right = Line(x=nonzero[1][r_indices], y=nonzero[0][r_indices], h=self.h, w = self.w)
def scan_frame_with_windows(self, frame, windows):
"""
Scans a frame using initialised windows in an attempt to track the lane edges.
Parameters
----------
frame : New frame
windows : Array of windows to use for scanning the frame.
Returns
-------
A tuple of arrays containing coordinates of points found in the specified windows.
"""
indices = np.empty([0], dtype=np.int)
nonzero = frame.nonzero()
window_x = None
for window in windows:
indices = np.append(indices, window.pixels_in(nonzero, window_x), axis=0)
window_x = window.mean_x
return (nonzero[1][indices], nonzero[0][indices])
def process(self, frame, draw_lane=True, draw_statistics=True):
"""
Performs a full lane tracking pipeline on a frame.
Parameters
----------
frame : New frame to process.
draw_lane : Flag indicating if we need to draw the lane on top of the frame.
draw_statistics : Flag indicating if we need to render the debug information on top of the frame.
Returns
-------
Resulting frame.
"""
edges = get_edges(frame)
(flat_edges, unwarp_matrix) = flatten_perspective(edges)
(l_x, l_y) = self.scan_frame_with_windows(flat_edges, self.l_windows)
self.left.process_points(l_x, l_y)
(r_x, r_y) = self.scan_frame_with_windows(flat_edges, self.r_windows)
self.right.process_points(r_x, r_y)
if draw_statistics:
edges = get_edges(frame, separate_channels=True)
debug_overlay = self.draw_debug_overlay(flatten_perspective(edges)[0])
top_overlay = self.draw_lane_overlay(flatten_perspective(frame)[0])
debug_overlay = cv2.resize(debug_overlay, (0, 0), fx=0.3, fy=0.3)
top_overlay = cv2.resize(top_overlay, (0, 0), fx=0.3, fy=0.3)
frame[:250, :, :] = frame[:250, :, :] * .4
(h, w, _) = debug_overlay.shape
frame[20:20 + h, 20:20 + w, :] = debug_overlay
frame[20:20 + h, 20 + 20 + w:20 + 20 + w + w, :] = top_overlay
text_x = 20 + 20 + w + w + 20
self.draw_text(frame, 'Radius of curvature: {} m'.format(self.radius_of_curvature()), text_x, 80)
self.draw_text(frame, 'Distance (left): {:.1f} m'.format(self.left.camera_distance()), text_x, 140)
self.draw_text(frame, 'Distance (right): {:.1f} m'.format(self.right.camera_distance()), text_x, 200)
if draw_lane:
frame = self.draw_lane_overlay(frame, unwarp_matrix)
return frame
def draw_text(self, frame, text, x, y):
cv2.putText(frame, text, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .8, (255, 255, 255), 2)
def draw_debug_overlay(self, binary, lines=True, windows=True):
"""
Draws an overlay with debugging information on a bird's-eye view of the road (e.g. after applying perspective
transform).
Parameters
----------
binary : Frame to overlay.
lines : Flag indicating if we need to draw lines.
windows : Flag indicating if we need to draw windows.
Returns
-------
Frame with an debug information overlay.
"""
if len(binary.shape) == 2:
image = np.dstack((binary, binary, binary))
else:
image = binary
if windows:
for window in self.l_windows:
coordinates = window.coordinates()
cv2.rectangle(image, coordinates[0], coordinates[1], (1., 1., 0), 2)
for window in self.r_windows:
coordinates = window.coordinates()
cv2.rectangle(image, coordinates[0], coordinates[1], (1., 1., 0), 2)
if lines:
cv2.polylines(image, [self.left.get_points()], False, (1., 0, 0), 2)
cv2.polylines(image, [self.right.get_points()], False, (1., 0, 0), 2)
return image * 255
def draw_lane_overlay(self, image, unwarp_matrix=None):
"""
Draws an overlay with tracked lane applying perspective unwarp to project it on the original frame.
Parameters
----------
image : Original frame.
unwarp_matrix : Transformation matrix to unwarp the bird's eye view to initial frame. Defaults to `None` (in
which case no unwarping is applied).
Returns
-------
Frame with a lane overlay.
"""
# Create an image to draw the lines on
overlay = np.zeros_like(image).astype(np.uint8)
points = np.vstack((self.left.get_points(), np.flipud(self.right.get_points())))
# Draw the lane onto the warped blank image
cv2.fillPoly(overlay, [points], (0, 255, 0))
if unwarp_matrix is not None:
# Warp the blank back to original image space using inverse perspective matrix (Minv)
overlay = cv2.warpPerspective(overlay, unwarp_matrix, (image.shape[1], image.shape[0]))
# Combine the result with the original image
return cv2.addWeighted(image, 1, overlay, 0.3, 0)
def radius_of_curvature(self):
"""
Calculates radius of the lane curvature by averaging curvature of the edge lines.
Returns
-------
Radius of the lane curvature in meters.
"""
return int(np.average([self.left.radius_of_curvature(), self.right.radius_of_curvature()]))