
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS
Přihlášena do soutěže SVOČ 2014

Ondřej Plátek

Rozpoznávání řeči pomocí KALDI

Speech recognition using KALDI

Institute of Formal and Applied Linguistics
Supervisor: Ing. Mgr. Filip Jurčíček, Ph.D.
Study branch: Theoretical Computer Science

Prague 2014

ii

I would like to thank my supervisor, Ing. Mgr. Filip Jurčíček, Ph.D., for his
advice, guidence and for keeping me motivated. I would like to thank namely,
Matěj Korvas for HTK scripts results and advice, Lukáš Žilka, David Marek
and Ondřej Dušek for hacks in Vim, Bash and Perl, Marek Vašut for advice
with shared library linking, Tomáš Martinec for C++ advice and Pavel Mencl
for proofreading. I am also very grateful to the Kaldi team, which was very
responsive and helpful. Expecially, Daniel Povey and Vassil Panayotov. Last
but not least, I would like to thank my parents and Adéla Čiháková for all
the help and support.

I declare that I wrote my master thesis independently and exclusively with the use
of the cited sources. I agree with lending and publishing this thesis.

I understand that my work relates to the rights and obligations under
the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
the fact that the Charles University in Prague has the right to conclude
a license agreement on the use of this work as a school work pursuant to
Section 60 paragraph 1 of the Copyright Act.
Prague, April 1, 2014 Ondřej Plátek

iii

Název práce: Rozpoznávání řeči pomocí Kaldi
Autor: Ondřej Plátek
Katedra: Ústav formální a aplikované lingvistiky
Vedoucí diplomové práce: Ing. Mgr. Filip Jurčíček, Ph.D.
E-mail vedoucího: jurcicek@ufal.mff.cuni.cz

Abstrakt: Tématem této práce je implementace výkonného rozpoznávače
v open-source systému trénování ASR Kaldi (http://kaldi.sourceforge.net/)
pro dialogové systémy. Kaldi již obsahuje ASR dekodéry, které však nejsou
vhodné pro dialogové systémy. Hlavními důvody jsou jejich malá optimal-
izace na rychlost a jejich velké zpoždění v generování výsledku po ukončení
promluvy. Cílem této práce je proto vyvinutí real-time rozpoznávače pro di-
alogové systémy optimalizovaného na rychlost a minimalizujícího zpoždění.
Zrychlení může být realizováno například pomocí multi-vláknového dekó-
dování nebo s využitím grafických karet pro obecné výpočty. Součástí práce
je také příprava akustického modelu a testování ve vyvíjeném dialogovém
systému ”Vystadial”.

Klíčová slova: ASR,rozpoznávání mluvené řeči, dekodér

Title: Automatic speech recognition using Kaldi
Author: Ondřej Plátek
Department: Ústav formální a aplikované lingvistiky
Supervisor: Ing. Mgr. Filip Jurčíček, Ph.D.
Supervisor’s e-mail address: jurcicek@ufal.mff.cuni.cz

Abstract: The topic of this thesis is to implement efficient decoder for speech
recognition training system ASR Kaldi (http://kaldi.sourceforge.net/). Kaldi
is already deployed with decoders, but they are not convenient for dialogue
systems. The main goal of this thesis to develop a real-time decoder for
a dialogue system, which minimize latency and optimize speed. Methods
used for speeding up the decoder are not limited to multi-threading decoding
or usage of GPU cards for general computations. Part of this work is devoted
to training an acoustic model and also testing it in the "Vystadial" dialogue
system.

Keywords: ASR,speech recognition, decoder

http://kaldi.sourceforge.net/
http://kaldi.sourceforge.net/

iv

Contents

1 Introduction 3
1.1 The goals of the thesis . 3

1.1.1 Training acoustic models 3
1.1.2 Development real-time speech recogniser 4
1.1.3 Integration into Alex SDSs framework 4

2 Background 5
2.1 Automatic speech recognition 5

2.1.1 Speech parameterisation 6
2.1.2 Acoustic modelling . 9
2.1.3 Language modelling . 13
2.1.4 Speech decoding . 14
2.1.5 Evaluating ASR quality 18

2.2 Hidden Markov Model Toolkit (HTK) 20
2.3 Julius decoding engine . 20
2.4 Kaldi . 21

2.4.1 Finite State Transducers 22

3 Acoustic model training 25
3.1 Vystadial acoustic data . 25
3.2 Acoustic modelling scripts . 26
3.3 Evaluation . 29

3.3.1 Results . 31
3.3.2 Kaldi and HTK comparison 32

4 Real time recogniser 33
4.1 OnlineLatgenRecogniser . 33

4.1.1 OnlineLatgenRecogniser interface 34
4.1.2 OnlLatticeFasterDecoder 35
4.1.3 On-line feature pre-processing 36
4.1.4 Post-processing the lattice 38

4.2 PyOnlineLatgenRecogniser . 39
4.3 Summary . 40

5 Kaldi ASR in Alex SDS 41
5.1 Alex dialogue system architecture 41
5.2 Kaldi integration into SDS framework 43

5.2.1 PyOnlineLatgenRecogniser in Alex 43
5.2.2 Building in-domain decoding graph 45

5.3 Evaluation of PyOnlineLatgenRecogniser in Alex 46

6 Conclusion 51

1

A Acronyms 53

B CD content 55

The bibliography 56

2

1. Introduction

Spoken dialogue is the most intuitive form of communication among peo-
ple. Spoken dialogue systems allow people to communicate with machines
in an natural way. The quality of a dialogue with a spoken dialogue system
significantly depends on speech recognition accuracy.

Automatic Speech Recognition (ASR) in a spoken dialogue system con-
verts speech to text so that the dialogue system is able to extract semantic
meaning from the text. Dialogue systems are able to exploit multiple alterna-
tive text hypotheses. State-of-the-art speech recognisers are able to extract
multiple hypotheses in real time. We prefer extracting multiple hypotheses
in form of a word lattice because it efficiently represents multiple hypotheses.

The Alex dialogue system had used the HTK toolkit [48] and the Open-
Julius [20] lattice speech recogniser to train acoustic models and to decode
lattices in real time respectively. Unfortunately, OpenJulius crashes when
extracting lattices. Fixing OpenJulius’s complicated source code seemed un-
realistic due to lack of documentation and community support. As a result,
we decided abandon OpenJulius and HTK.

As and alternative, we decided to use the Kaldi toolkit [29] because its
speech recognisers are able to produce high-quality lattices and are suffi-
ciently fast1 for real-time recognition.[30] In addition, the Kaldi toolkit is
actively maintained, and is distributed under the permissive Apache 2.0 li-
cense2. We still need to implement a speech recogniser which supports incre-
mental speech processing, prepare acoustic modeling scripts and evaluate the
developed recogniser, so that the Kaldi toolkit can be used in Alex dialogue
system.

1.1 The goals of the thesis

The goals of the thesis are:

1. to build Acoustic Models (AMs) using the Kaldi toolkit,

2. to develop new real-time recogniser which supports incremental speech
recognition,

3. to integrate the recogniser into our Alex Spoken Dialogue System (SDS)
written in Python and evaluate its performance.

1.1.1 Training acoustic models

A Kaldi speech recogniser requires statistical models, an Acoustic Model
and a Language Model. We focus on finding the best Acoustic Models.
The developed acoustic models will be compared with the AMs trained with

1So far, the Kaldi developers focused on improving acoustic model training. However,
In August 2012 a Kaldi team published a demo version of an on-line one-best hypothesis
speech recogniser.

2http://www.apache.org/licenses/LICENSE-2.0

3

http://www.apache.org/licenses/LICENSE-2.0

the HTK toolkit. The models will be trained for Czech and English acoustic
data.

1.1.2 Development real-time speech recogniser

We will modify a Kaldi speech recogniser in order to allow incremental speech
recognition. The resulting incremental interface will be simple yet allow
state-of-the-art performance. In addition, we will implement such speech
parametrisation and feature transformation preprocessing, so high-quality
acoustic models can be used. Finally, we will implement posterior lattice
computation the posterior probabilities of the word lattice representing mul-
tiple ASR hypotheses.

In addition, we may suggest potential speed improvements e.g. approxi-
mations, use of Graphics Processing Unit (GPU) or Deep Neural Networks
(DNN) [43].

1.1.3 Integration into Alex Spoken Dialogue Systems

framework

As Alex SDS is implemented in Python, we will develop a thin Python wrap-
per which efficiently exposes the speech recognition interfaces. The resulting
recogniser will be integrated into Alex SDS and the decoding parameters will
be tuned to obtain best performance. The evaluation of the speech recogni-
tion setup is an important part of the integration.

Thesis outline

In Chapter 2 we introduce a fundamental theory of speech recognition for
related areas to our work. In Sections 2.2 and 2.3 we describe alternatives
to Kaldi speech recognition toolkit. At the end of the chapter, we present
OpenFST framework which allows the Kaldi library effectively implement
many standard speech recognition operations. To obtain high-quality Acous-
tic Models, we develop training scripts described in Chapter 3. In addition,
we compare acoustic models trained by Kaldi and previously used HTK
toolkit. Chapter 4 presents in detail the new Kaldi real-time recogniser
and discuss its on-line properties. We distinguish the original work done by
the Kaldi team and our improvements. Then in Chapter 5, we describe de-
ployment of the real-time recogniser into dialogue system Alex, we suggest
evaluation criteria and also evaluate the integrated recogniser accordingly.
Finally, Chapter 6 summarises the thesis and concludes with future research
directions.

4

2. Background

This chapter introduce basics of speech recognition related to this work.
Section 2.1 introduces speech preprocessing, Acoustic Model (AM) and
Language Model (LM) training, and explains important aspects of speech
decoding. Next sections describe specific speech recognition software imple-
mentations. The Kaldi toolkit is described in Section 2.4, the HTK toolkit
in Section 2.2 and the Julius decoder in Section 2.3.

The statistical methods for continuous speech recognition were estab-
lished more than 30 years ago. The most popular statistical methods are
based on acoustic modelling using Hidden Markov Models (HMMs) and n-
grams LMs, which are also used in Kaldi, the toolkit of our choice. We
introduce principles of speech recognition and present techniques which are
used in Kaldi.

Speech Input

Signal processing

Acoustic observations a For example MFCC

Decoding w∗: argmaxwP (a | w) ∗ P (w)
Language model: P (w)

Acoustic model: P (a | w)

Recognized words w∗

Figure 2.1: Architecture of statistical speech recognizer[25]

2.1 Automatic speech recognition

The goal of statistical ASR is to decode the most likely word sequence
given speech. The term decoding finds its origin in HMM terminology. In
speech recognition it is equivalent to recognizing the word sequence from
the speech. Formally, we search for the most probable sequence of words
w∗ given the acoustic observations a as described in Equation 2.1. The best
word sequence w∗ does not depend on probability of the acoustic features
P (a) so it can be eliminated as shown on the second row of the equation.

w∗ = argmaxw{P (w | a)} = argmaxw{
P (a | w) ∗ P (w)

P (a)
}

= argmaxw{P (a | w) ∗ P (w)}

(2.1)

5

The task of acoustic modelling is to estimate the parameters θ of a model
so the probability P (a | w; θ) is as accurate as possible.1 Similarly, the LM
represents the probability P (w). 2

The Figure 2.1 illustrate the process of decoding the most probableframes

word hypotheses w∗ for given speech utterance. First, the sampled audio
signal is processed by speech parametrisation and feature transformations,
so the decoding itself takes acoustic features a as input. The acoustic features
a are computed on small overlapping windows of audio signal. The acoustic
signal in one windows is known as a frame.

The decoding itself is performed time synchronously frame by frame us-
ing beam search. The beam search expands hypotheses from previous step
by taking account the new frame features, and it computes probabilities of
the expanded hypotheses using AM and LM. If the number of hypotheses ex-
ceeds the beam, the low probable hypotheses are pruned. After the decoding
the last audio frame, all hypotheses represents whole utterance. The word
labels w∗ are extracted from the most probably hypothesis which survived
the beam search.

Improving the accuracy of speech recognition engine depends mainly on
improving AM and LM and also on parameters of the beam search such as
threshold how many hypotheses are allowed at maximum.

2.1.1 Speech parameterisation

The goal of speech parameterization is to reduce the negative environmental
influences on speech recognition. The speech varies in a number of aspects.
Some of them are listed below:

• Differences among speakers pronunciation depends on gender, dialect,
voice, etc.

• Environmental noises. In the dialogue system Alex where our ASR
implementation is used the speech is typically recorded in a noisy street
environment.

• The recorded channel. For example the telephone signal is reduced to
frequency band between 300 to 3000Hz. The quality of mobile phone
signal also influences the quality of the audio signal.

Different speech parametrisation may improve robustness of speech recogni-
tion for different recording conditions.

Speech parametrisation extracts speech-distinctive acoustic features fromacoustic

features raw waveform. The two most successful methods for speech parametrisation
in last decades are Mel Frequency Cepstral Coefficients (MFCC)[9] and
Perceptual Linear Prediction (PLP)[14]. Both MFCC and PLP transforma-
tions are applied on a sampled and quantized audio signal.3 For each win-
dow MFCC or PLP efficiently computes statistics with a reduced dimension.

1Acoustic modelling is described in Section 2.1.2.
2We describe language modelling in Section 2.1.3.
3In our experiments we use 16 kHz sampling frequency and 16 bit samples.

6

The methods are very computationally effective and significantly improve
the quality of recognised speech.

The toolkits used in our dialogue system, Kaldi and HTK toolkit, com-
pute MFCC coefficients for given audio input in a similar way.4 Therefore,
we choose MFCC as speech parametrisation technique for both toolkits, so
we can compare them.

The MFCC statistics are computed for each frame. In Figure 2.2 there
are 7 windows — frames with length of 25 ms and frame shift of 10 ms.
The whole utterance lasts 85 ms.

frames=7shift = 10ms

win_len = 25ms
audio_len = 85ms

Figure 2.2: PLP or MFCC features are computed every 10 ms seconds in 25
ms windows. Audio length is (frames− 1) ∗ shift + win_len = 85ms

Let us describe the MFCC computation for 25 ms window shifted by 10
ms and 16kHz audio sampling frequency. The 16000 ∗ 0.025 = 400 samples
in one window are reduced to 13 static cepstral coefficients.

The MFCC static features are usually extended by time derivatives ∆+
∆∆ features [36]. As a result, MFCC ∆ + ∆∆ extracts 13 + 13 + 13 = 39
acoustic features for one frame. The original vector of 400 audio samples in
one frame is reduced to vector of 39 MFCC ∆+∆∆ acoustic features.

The MFCC features are computed by the following steps:

1. The audio samples are transformed into frequency domain by Discrete Fourier
Transformation (DFT) in the window.

2. The frequency spectrum from the previous step is transformed onto the mel
scale, a perceptual scale of frequencies, using triangular overlapping filters.

3. From the mel frequencies the logs of the powers are taken from each of the mel
frequencies.

4. At the end the discrete cosine transform is applied on the list of mel log
powers.

5. The MFCC coefficients are the amplitudes of the resulting spectrum.

6. The ∆+∆∆ coefficients are computed from the current and previous static
features. See Figure 2.3.

4The subtle differences are caused by implementation approaches, but does not effect
the quality of MFCC coefficients in significant way.

7

Speech
Signal

Windowed
FFT

12 DCT coeff.

Energy

Measure
Delta

Delta-Delta

Mel-spaced

Filterbanks

1
3

st
a
ti
c

fe
a
tu

re
s

1
3

d
el

ta
fe

a
tu

re
s

1
3

d
el

ta
-d

el
ta

Figure 2.3: Typical setup with 39 features using MFCC.

Feature space transformations

Feature space transformations are usually applied in addition to MFCC or
PLP parametrisation. The feature space transformations are also typicallyframe

applied per frame, but they usually take into account context of several
preceding (left context) and consecutive frames (right context).

The linear or affine transformations are expressed by matrix multiplica-
tions Ax respectively Ax+. The matrix A represents the transformation.
The x is the input vector and Ax are the transformed features. The affine
transformations uses extended vector (x+)T = (x1, . . . , xn, 1) and matrix
A : (n+ 1) ∗ (n+ 1).

There is a large variety of available transformations. Dependently on
acoustic data one should choose the most appropriate one. Some transfor-
mations are estimated discriminatively, some use generative models. Some
are speaker dependent, some speaker independent.

We list some of Kaldi transformations in order to illustrate rich choice of
feature transformations in Kaldi toolkit.

• Heteroscedastic Linear Discriminant Analysis (HLDA)[10].

• Linear Discriminant Analysis (LDA)[13] is typically used with MLLT
for speaker independent training.

• Maximum Likelihood Linear Transform (MLLT) also known as Semi-
Tied Covariance (STC)[13]

• Exponential Transform (ET)[34]. It uses small number of speaker spe-
cific parameters for adaptation on speaker.

• Cepstral Mean and Variance Normalisation (CMVN)[23]. Typically
normalise the cepstrum mean and variance per speaker.

In our acoustic modelling scripts, see Chapter 3, we use two non-speaker
adaptive feature transformations, which can be computed with very small
context. The first transformation, ∆+∆∆ for MFCC coefficients, was already
introduced. The second transformation, LDA and MLLT, is described briefly
below.

8

Linear Discriminant Analysis and MLLT feature transformation

The LDA+MLLT is an alternative setup to ∆ + ∆∆ transformation in our
training scripts. We use it also on top of MFCC coefficients. Using sev-
eral spliced MFCC vectors the LDA+MLLT searches for the best dynamic
transformation.

The combination of LDA and MLLT applies the feature transformation in
two steps: LDA reduces the feature dimension and MLLT applies linear sim-
ple transformation[13]. Whereas, the HLDA estimates dimension reduction
and space transformation in one step.[10] The combination LDA and MLLT
performs very similar feature transformation to HLDA and gains significant
improvements over ∆+∆∆ transformation similarly as HLDA[10][13].

2.1.2 Acoustic modelling

Acoustic modelling is arguably the heart of speech recognition. The AM es-
timates the probability P (a|w; θ) of generating acoustic features a for given
words w and thus directly affects speech recognition quality as seen in Equa-
tion 2.1.

Acoustic modelling has only partial information available for training
AM parameters θ because the corresponding textual transcription is time-
unaligned. The hidden information of the word (time) alignment in a utter-
ance makes acoustic model training more challenging. Modern speech recog-
nition toolkits use Hidden Markov Model for modelling uncertainty between
acoustic features and the corresponding transcription.

Choice of training units

The most successful acoustic modelling methods do not estimate the P (a|w)
directly, but estimate probability P (a|f1f2f3f4) of generating acoustic fea-
tures a for phones w = f1f2f3f4 which forms the pronunciation of the word
w. Moreover, the triphones are used even more successfully for estimating
probability of acoustic features give word pronunciation.

Phone is the smallest contrastive unit of speech. Let us see few examples phone

of words and their phonetic transcriptions according CMU dictionary[44].

• youngest & Y AH1 NG G AH0 S T

• youngman & Y AH1 NG M AE2 N

• earned & ER1 N D

• ear with two transcribed pronunciations IY1 R and IH1 R

The CMU dictionary distinguishes among several variations for each vowel
e.g. AH1 and AH0. It also stores two possible pronunciations for the word
ear.

The acoustic features for a phone significantly depend on its context.
The previous and the following phone strongly influence the sound of the mid-
dle phone.

The triphone is a sequence of three phones and captures the context of triphone

9

single phone. As a result, acoustic properties of the triphones vary much less
according to the context than phones. Let us note that certain combinations
of prefixes have the same effect on the central phone, e.g. q and k has
the same effect on i. In order to reduce the number of triphones for acoustic
modelling, these triphones are clustered together.

Hidden Markov Models (HMMs)

The HMMs is a very powerful statistical method for characterizing observed
data samples of a discrete-time series with an unknown state. [15]. In case
of speech recognition the hidden states typically represent monophones or
triphones and we observe samples of the acoustic features.

Hidden Markov Models have two type of parameters transition probabili-transition

probability ties among states and probabilistic distribution for generating observation in
given state. These parameters need to be estimated in AM training.5

The transition probability is a probability of changing state q to state
u. Each transition is represented as arc e = qu between the states q and u,
see 2.4. The probability is typically represented as the weight we of arc e.

Importantly, an HMM use self loop arc e = uu for all states to model
acoustic features which are generated several times from the same state u.
As a result, an HMM is able to model variable length of phones.

The Markov model emits an observation during traversal over its arcs.Gaussian

HMM The Hidden Markov Model emits the observation stochastically based on
the probabilistic distribution related to the visited state. In speech recog-
nition, a multivariate Gaussian distribution is typically used to model ob-
servation probabilities of HMM states. The Gaussian distribution models
probability of emitting acoustic features in given state. The parameters of
the Gaussian distribution are estimated for each state individually. However,
the states are usually clustered during AM training and the states within
a cluster share same parameters to the Gaussian distribution.

Training HMM

The Kaldi uses Viterbi training and the HTK toolkit uses Expectation Max-
imization algorithms to train HMM Acoustic Model. The toolkits models
the observation probabilities using multivariate Gaussian distribution with
dimension of the acoustic features a.

Typically, the transition probabilities are initialised with values uniformly
distributed. The observation probabilities are usually initialized by multi-
variate Gaussian distribution with µ and Σ set to global mean and global
covariance matrix estimated on all training acoustic data.

Let us describe how the Expectation Maximization (EM) algorithm op-EM

erates for one pair of training data consisting of acoustic features a and
corresponding text speech transcription t. We create HMM t′, where each
state represents one monophone.6 The monophones are extracted from tran-
scription t using pronunciation dictionary. In Figure 2.4 the utterance how

5Both kind of parameters are denoted together as θ in Equation 2.1.
6We describe the identical training procedure for simplicity on monophones. The state-

of-the-art AMs use triphones.

10

do you do was expanded to monophone HMM model. Given the HMM model
for transcription t and acoustic features a the parameters of the model are
estimated. It should be obvious that only states representing phones in tran-
scription can be trained by training pair (a, t). Consequently, one needs lot
of training data to robustly estimate parameters of all states.

The EM algorithm iterates following steps in order to update parameters
of transition and observation probabilities:

• The observation probabilities are computed using HMM t′.

• E-step: Based on the observation probabilities the observation are
align to states of HMM t′.

• M-step: Based on the alignment of observation to states the t′ param-
eters are re-estimated.

The E-step finds a distribution for the alignment between HMM t′ and Baum-

Welchtranscription t using Maximum Likelihood Estimation (MLE)[13] and obser-
vation probabilities. MLE takes into account takes into account all possi-
ble alignments and its probabilities to compute the resulting distribution.
The Baum-Welch equations can be derived from the fact, that the MLE cri-
terion is also used for finding the most probable distribution in M-step.[15]

how do you do

D UW1HH AW1 Y UW1D UW1SIL SILSIL

Figure 2.4: Markov monophone model for four words. Such an HMM is con-
structed for monophone Viterbi training and reference transcriptions how do
you do. The parameters of the HMM model are updated according Equa-
tion 2.9, 2.10 and 2.11.

Maximum Likelihood Estimation method

The MLE is a general approach to setting statistical model parameters. It
searches for best parameters θ∗ in order to maximize the likelihood function
f for Independent and Identically Distributed (IID) training data illustrated
in Equation 2.4. For IID training data holds Equation 2.2 describing data
joint probability.

f(x1, x2, x3, . . . , xn|θ) = f(x1|θ) ∗ f(x2|θ) ∗ . . . ∗ f(xn|θ) (2.2)

The likelihood function can be derived from Equation 2.2 assuming training
data fixed and parameter θ free as described in Equation 2.3.

L(θ | x1, . . . , xn) =
n

∑

i=1

log(f(xi|θ)) (2.3)

θ∗ = argmaxθL(θ | x1, . . . , xn) (2.4)

11

Viterbi training of acoustic models

On the other hand, the Kaldi toolkit applies the Viterbi criterion in assigning
the acoustic observation to HMM states. The Viterbi training approximates
EM algorithm by choosing single best alignment and maximizing the poste-
rior probability for the chosen alignment. Latest work suggest that Viterbi
training is just as effective for continuous speech recognition as Baum-Welch
algorithm [38]. Moreover, Viterbi training needs much less computational
resources.

We detail the Viterbi training since it is used in the Kaldi toolkit for
acoustic model training and also a very similar algorithm is used for Viterbi
decoding.

Given set of training observations Or, 1 ≤ r ≤ R and HMM state sequence
1 < j < N the observation sequence is aligned to the state sequence via
Viterbi alignment.[6] The best alignment T results from maximising Equa-
tion 2.5 for 1 < i < N .

φN(T) = maxi[φi(T)aiN] (2.5)

The φi(ot) from Equation 2.5 is computed recursively according Equa-
tion 2.6

φi(ot) = bj(ot)max

{

φj(t− 1)ajj
φj−1(t− 1)aj − 1j

(2.6)

The initial conditions are φ1(1) = 1 and φj(1) = a1jbj(o1), for 1 < j < N .
In our case the likelihoods are modeled as mixture Gaussian densities, so
the output probability bj(ot) is defined as in Equation 2.7.

bj(ot) =

Mj
∑

m=1

cjmN (ot;µjm,Σjm) (2.7)

The Mj represents number of mixture components in state j, cjm is
the weight of mth component and N (ot;µjm,Σjm) is multivariate Gausian
with mean vector µ and covariance Σ.

Firstly, model parameters are updated based on the single-best alignment
of individual observation to states and Gaussian components within states.
Secondly, transition probabilities are estimated from the relative frequencies,
Equation 2.13 where Aij denotes the number of transitions from state i to
state j.

âij =
Aij

∑N

k=2Aik

(2.8)

The indicator function ψr
jm(t) is used for updating means and covariance

matrix from statistics. It returns one if ort is associated with mixture com-
ponent m of state j and is zero otherwise. The mean vector and covariance
matrix is updated according Equations 2.9 and 2.10.

ˆµjm =

∑R

r=1

∑Tr

t=1 ψ
r
jm(t)o

r
t

∑R

r=1

∑Tr

t=1 ψ
r
jm(t)

(2.9)

12

ˆΣjm =

∑R

r=1

∑Tr

t=1 ψ
r
jm(t)(o

r
t − ˆµjm)(o

r
t − ˆµjm)

′

∑R

r=1

∑Tr

t=1 ψ
r
jm(t)

(2.10)

Finally, the mixture weights are computed based on the number of ob-
servations allocated to each component.7

cjm =

∑R

r=1

∑Tr

t=1 ψ
r
jm(t)

∑R

r=1

∑Tr

t=1

∑M

l=1 ψ
r
jl(t)

(2.11)

To conclude, AM are trained using MLE or Viterbi training, which ap- generative

trainingproximates the theoretically optimal MLE Baum-Welch training; however, in
practice Viterbi training performs as well as MLE modelling. Baum-Welch
or Viterbi training aim at modelling likelihood of spoken utterance and per-
form so called generative training. However, discriminative methods, which
re-estimates generative AMs, perform better.

Discriminative training

The discriminative training uses its objective function and likelihood of gen- discrimina-

tive

training
erative models to discriminate – boost differences between high probable and
low probable hypotheses. The discriminative training is typically initialised
by acoustic generative model from Baum-Welch or Viterbi training. Then,
the likelihood from the generative model is boosted according an objective
function and the AM is re-estimated. Following objective functions and ac-
cordingly named discriminative training methods are used in our training
scripts:

• Maximum Mutual Information[8]

• Boosted Maximum Mutual Information[31]

• Minimum Phone Error[28]

For details how the methods are initialized and its usage in Kaldi see Chap-
ter 3.

2.1.3 Language modelling

A Language Model effectively reduces and more importantly prioritise the AM
hypothesis. A probability of acoustic features given words transcription
P (a|w) estimated by AM is combined with the probability of the words
transcription P (w) estimated by LM for given domain in order to compute
posterior probability of transcription P (w|a) = P (a|w)∗P (w)

P (a)
.

The statistical LM assigns a given word sequence its probability according
Equation 2.12. The most used, n-gram LMs compute the probability of
k word sequence W according Equation 2.12.[5] The Markov assumption
approximates the probability by assuming that only the most recent n − 1
words are relevant when predicting next word. We call the number n an LM order

7The Viterbi equations has the same notation as in [6].

13

order of LM.

P (W) = P (wk, wk−1, wk−2, ..., w1) ≈
k
∏

i=1

P (wi|w
i−1
i−n+1) (2.12)

The probabilities P (wi|w
i−1
i−n+1) for each word wi are estimated using rel-

ative frequencies of the n-grams, (n-1)-grams, (n-2)-grams, . . . on training
data. The MLE is used for estimating estimating relative frequencies r ac-
cording Equation 2.13.

r(wi|w
i−1
i−n+1) =

f(wi
i−n+1)

f(wi−1
i−n+1)

(2.13)

The Equation 2.13 is intuitive but many valid and even reasonable utterances
are missing or too few. Consequently, the numerator might be zero and
the relative frequency may be undefined. This is known as sparse datasparse data

problem. Smoothing techniques are often used to estimate the higher n-LM

smoothing gram relative frequencies based on the lower frequencies.[12]. In principle,
the predictive accuracy of the language model can be improved by increasing
the order of the n-gram. However, doing so further exacerbates the sparse
data problem.[5]

The LM estimates the probability by counting the relative frequencies on
text corpus which is typically chosen according the targeted ASR domain.
For example, in training scripts which are described in Chapter 3 we train
the LM only on text transcriptions from the training data using Witten-Bell
smoothing.[45]

2.1.4 Speech decoding

The speech HMM decoders find the most probable word sequences by search-
ing phone sequences which corresponds to the words. The phones are typi-
cally represented as triphones in AM.

Using combination of AM and LM probabilities as described in Equa-
tion 2.1 does not produce the most accurate speech transcriptions. Typically
a Language Model Weight (LMW) wlm is used to improve speech recogni-
tion accuracy. It is tuned on development set and balances the impact of
the two models. Using the LMW the words best sequence is found according
Equation 2.14.

w∗ = argmaxw{P (w | a)} = argmaxw{P (a | w) ∗ P (w)
wlm} (2.14)

The ASR is a pattern recognition task as well as a search problem. In
speech recognition, making a search decision is also referred to as decoding.[15]

For a word recognition the AM limits the possible phone sequences only
to words in lexicon — the words in training data. The word recognition is
nowadays the most successful form of ASR. The HMM sequences represent
phone sequence which forms words only as illustrated on Figures 2.5 and 2.6.
The words are connected via HMM model which represent inter word silence.

14

For isolated word recognition the HMMs are evaluated for each word
possibility. Using the forward algorithm for each HMM hw, we are able to
compute the probability of every word w given the acoustic observations.
The isolated word recognition becomes a simple recognition problem, where
we select the most probable HMM h∗ from a finite set of word HMMs.

Note that the HMM training is identical for continuous ASR and isolated
word recognition, but the decoding is more complicated for continuous ASR
where we aim to decode word sequences.

two

one

sil

ǫ:P (wtwo)

ǫ:P (wone)

ǫ

ǫ

s e

Figure 2.5: Diagram of how LM is combined with HMMs.

Let us introduce simple example of continuous word ASR. Imagine a LM
of order 1 modelling only two words - one and two each uniformly dis-
tributed8. We want to decode any possible sequence of words one, two.
The ǫ transition at the end of words HMMs to final state e allow us intro-
duce HMM silence model which connect the final state e and start state s.
Consequently, the words are chained using silence HMM model as illustrated
in Figure 2.5. Expanded monophone HMM for words one and two is shown
in Figure 2.6. Note that LM weight P (w) can be stored on the in the ǫ

transition at the beginning.
Even the simple HMM network in Figure 2.6 can become large search

problem partially because the search space of words grows exponentially in
number of words in utterance and partially because the word boundaries are
unknown. Each word can begin in any moment and last with decreasing
probability ad infinity, so the search space explode. In addition, higher order
LMs increase the decoding complexity even more.

One can see that the search space of speech recognition problem is enor-
mous and still has to be solved in very short time for real-time applications.

Natural choice for one-best hypothesis is Viterbi beam search[15]. It uses
a dynamic programming to compute the new best partial hypotheses for new
audio data based on partial hypotheses from previous step.

The Viterbi algorithm is breadth-first search algorithm and a beam is
used to limit number of nodes, which are expanded from current set of nodes

8If a LM of order 1 assigns to every word equal probability, we say it has order 0

15

sil

ǫ:P (wtwo)

ǫ:P (wone)

ǫ

ǫ

T UW1

W AH1 N

s e

Figure 2.6: Expanded HMMs for words one and two. The arrows at HMM
states illustrate that every observation of acoustic features can be generated
according to the statistical distribution. Note that if a speaker says two
a HMM model with well trained parameters should output higher probability
for HMM representing two. For longer speaker sequences e.g. two one one
two ... the HMMs are connected over the ǫ transitions, and a search is used
for selecting the most probable sequence.

to next iteration. We list few alternatives how to set up the beam for speech
decoding.

• Fixed beam guarantees maximum size of memory footprint and fast
decoding.

• Relative one-best hypothesis comparison effectively discards most of
the improbably hypothesis if the one-best hypothesis is significantly
better than alternatives and keeps lot of alternatives if one-best hy-
pothesis is weak. The relative one-best hypothesis comparison natu-
rally broaden the beam in uncertain region, but does not guarantee no
hard limits e.g., maximum number of nodes expanded.

• Combination of methods applies the strictest criteria on beam in each
iteration.

Numerical stability

The hypotheses which are represented as the paths of states are typically
rather long in the search graph and lot of hypothesis are assigned with tiny
probabilities. In order to keep the numeric stability, the probabilities are
expressed in a logarithmic arithmetic.

In order to use the shortest distance measure to find the most probable
path we use formula 2.15 derived from equation 2.14. The C(a | w) and C(w)
are costs with range between zero and one, where cost of one corresponds

16

to zero probability C(1) ∼= P (0) and cost of infinity corresponds to one
probability C(∞) ∼= P (1).

w∗ = argminw{log(
1

C(a | w) ∗ C(w)wlm
)}

= argminw{−log(C(a | w) ∗ C(w)wlm)}

= argminw{−log(C(a | w))− wlm ∗ log(C(w))}

(2.15)

Decoding formats

The one-best hypothesis outputs only single sequence of words despite the fact
that other sequences of words are often almost as probable as the best hy-
pothesis. Formats which are able to represent alternative hypothesis provide
better results for further processing than one-best hypothesis because the al-
ternatives may cover almost all probable hypotheses. We present n-best list
and lattice formats, which both are able to represent alternative hypothesis.

N-best list is an extension to the one-best hypothesis format. In n-best n-best list

list is included apart from the most probable word sequence, also the second,
third, . . . , n-th most probable hypothesis.

0.5 hi how are you
0.2 hi where are you
0.1 bey how are you

Figure 2.7: Example of 3-best list output with posterior probability for each
path. N-best list in Kaldi can be easily extracted from lattices. Correspond-
ing example lattice is in Figure 2.8.

Figure 2.8: Word posterior lattice. Common parts of hypotheses are effec-
tively represented. All outgoing arcs for each node sum to 1.0.

A lattice is a convenient type of ASR output. It effectively represents lattice

the alternative hypotheses by sharing their common parts. Example of word
lattice in Figure 2.8 shows word posterior lattice. Each hypothesis is repre-
sented as sequence of arcs from starts to final node. The words and their
weights are associated with the arcs. The posterior probability of a hy-
pothesis is computed as a product of posterior probabilities of each word in
the hypothesis.

It is useful to capture how the quality of each hypothesis contrasts to its
alternatives or even provide an absolute quality measure. Typically likelihood
and posterior probability is associated with each word sequence to express

17

its quality. The likelihood measure can be used only for relative compari-
son, whereas posterior probability is an normalised absolute measure. For
some applications the likelihood measure is sufficient, other applications for
example dialogue systems prefer posterior probabilities. Note that posterior
probabilities for n-best lists typically do not sum to one and may need to be
renormalised, because n-best list omits some hypothesis which are used to
compute the posterior probability in lattices. See Figure 2.7 for such example
for 3-best list.

2.1.5 Evaluating Automatic Speech Recognition quality

The accuracy of a speech recognizer is typically measured using Word ErrorWER

Rate. The Word Error Rate (WER) measure is computed on one-best ASR
hypotheses and their human transcriptions. The WER is computed as a min-
imum edit distance on words between the ASR output and reference tran-
scription. Following edit operations are used substitution, deletion, insertion
to compute the minimum edit distance as illustrated in 2.16. The effective
implementation for computing WER uses dynamic programing and is not
computationally intensive because ASR hypotheses are typically quite short.

WER = 100∗
min_dist(decodedAM,LM(a), t, edit_operation = {Subs,Del, Ins})

words in t
(2.16)

Note that WER is an error function so the ideal value is zero because forreference

WER = 0 the one-best hypothesis decoded(a) and the reference transcription
t are identical. The WER value of 100 show that every single word is different
between decoded(a) and reference t if the number of words in ASR output
and reference are equal. Despite the fact that WER resembles percentage
format, it can be bigger than 100. See the third example in Figure 2.9.

decoded(a) = ’hi hi hi hi’
t=’hi hi ha ha’
WER = 100 * (2 / 4) = 50

decoded(a) = ’how do you do’
t=’how do you do’’
WER = 100 * (0 / 4) = 0

decoded(a) = ’hi hi hi hi’
t=’hello’
WER = 100 * (4 / 1) = 400

Figure 2.9: WER captures the ASR one-best hypotheses accuracy.

Note that the data used for evaluation should not be used in AM training
because we are evaluating the ability to decode unknown speech. We should
also measure the ASR quality on speech from a speaker who does not appear

18

in speech training data because we usually want to decode speech of an
unheard speaker.

Alternative measures

The Sentence Error Rate measures how many decoded utterances decoded(a) SER

match exactly its reference t for all pairs (a, t) in test set T .

SER =

∑

{(a,t)∈T ;decoded(a)=t} 1

|T |
(2.17)

If the n-best list or lattice is used the one-best hypothesis is extracted oracle

WERto compute WER or Sentence Error Rate (SER). On the other hand, we are
using n-best lists or lattice because the one-best hypothesis might be wrong
and the alternative hypothesis may be closer to the reference. In order to
evaluate quality of alternative hypotheses one may use oracle WER which re-
ports the WER of the best hypotheses in n-best list or in lattice. The lattices
with rich alternatives gain much lower oracle WER than short n-best lists
or even one-best hypotheses. The rich alternatives contain additional infor-
mation and for example a dialogue system Spoken Language Understanding
component may exploit the alternatives.

Measuring speed

In this thesis we are especially concerned about the speed of speech decoding
because the implemented decoder is used in a real-time Spoken Dialogue
System.

A very natural measure of a speech decoding speed is Real Time Factor, Real Time

Factorwhich expresses how much the recognizer decodes slower than the user speaks.
We measure the Real Time Factor (RTF) for each recording as described
in Equation 2.18.

RTF =
time(decode(a))

length(a)
(2.18)

For real-time decoding in a dialogue system we need smaller than one RTF <

1.0. In other words, the decoding of an utterance should take less time than
a user needed for pronouncing the utterance. WithRTF < 1.0 the hypothesis
is decoded immediately after the user finishes the speech.

The decoding is performed while user is speaking, but extracting the ASR
hypothesis output is triggered at the very end of the speech. The users have
to wait at least the time when the ASR hypotheses is extracted.

In real-time SDS the critical measure is a delay how long the user has latency

to wait for its answer. The latency measures the time between the end
of the user speech and the time when a decoder returns the hypothesis,
which is the most important speed measure for ASR component in SDS.
Note if RTF < 1.0 then the latency corresponds to time of ASR hypotheses
extraction.

19

2.2 HTK

The HTK toolkit is a set of command line tools, sample scripts and library for
training and decoding HMM focused on speech recognition. With the toolkit
are distributed two decoders HVite and HDecode, which are not designed for
real-time applications.

Functionality of the core library can be accessed through command line
executables. The command line programs are typically combined in training
scripts to train acoustic and language models. In Figure 2.10 the acous-
tic models are labelled as "HMMs" and the language models in HTK are
represented in "Networks". The trained models are used in one of HTK de-
coders e.g. HVite for decoding transcriptions, which can be evaluated using
HResults.

Figure 2.10: Figure 2.2 from HTK Book 3.4[49]

The HTK library use Baum-Welch algorithm to train acoustic models.
The HVite decoder uses token passing algorithm and Viterbi criterion.[49]
Only unigram and bigram LMs can be used with HVite. The
termHDecode decoder can handle bigram or trigram language models.

Let us stress that we use high quality Bash and Perl scripts for training
HTK AM from Vertanen improved by Matěj Korvas.[42][19]

The HTK toolkit is licensed under a special license9. The HDecode has
very similar license condition but can be only used for research purposes.10

2.3 Julius decoding engine

Julius is a large vocabulary continuous speech decoder which can use AM in
HTK format for decoding.[20] Julius is BSD licensed11 and performs almost

9http://htk.eng.cam.ac.uk/docs/license.shtml
10You need to register even to see the license:

http://htk.eng.cam.ac.uk/prot-docs/hdecode_register.shtml
11http://www.linfo.org/bsdlicense.html

20

http://htk.eng.cam.ac.uk/docs/license.shtml
http://htk.eng.cam.ac.uk/prot-docs/hdecode_register.shtml
http://www.linfo.org/bsdlicense.html

real-time decoding.
Julius is a two pass decoder. In the first pass, the decoding is performed

using time synchronous beam search. The second pass re-ranks and further
prunes the extracted hypothesis from the pass one. Bigram LM is used for
the first pass and more complex trigram LM is used for re-ranking.

Before the implementation of this thesis was finished the Alex SDS team
had been interested in Julius because its ability of real-time decoding and
confusion network12 output format.

The Alex team abandoned the Julius decoder for software issues e.g.,
crashes of the decoder. The crashes appeared during extracting confusion
networks from Julius. In addition, the crashes were hard to detect because
Julius used to run in a separate process.

2.4 Kaldi

Kaldi is a speech recognition toolkit consisting of a library, command line
programs and scripts for acoustic modelling. Kaldi deploys several decoders
for evaluation Kaldi AMs. Kaldi uses Viterbi training for estimating AMs.
Only in special cases of speaker adaptive discriminative training the extended
Baum-Welch algorithm is also used[29].

The architecture of the Kaldi toolkit could be separated to Kaldi li-
brary and training scripts. The scripts access the functionality of Kaldi
library through command line programs. The C++ Kaldi library is based
on the OpenFST [3] library and it uses optimized libraries for linear algebra
such as BLAS and LAPACK. Related functionality is usually grouped in one
namespace in C++ code, which corresponds to one directory on file system.
The examples of the namespaces or directories can be seen in Figure 2.11

Kaldi uses executables which load its input from files and typically store
results again to files. Alternatively, the output of one Kaldi program can
be feed into next command using system pipes. There are usually many
alternatives for every speech recognition tasks as seen in list of executables
below:

1. Speech parametrisation

• apply-mfcc

• compute-mfcc-feats

• compute-plp-feats

• . . .

2. Feature transformation

• apply-cmvn

• compute-cmvn-stats

• acc-lda

• fmpe-apply-transform

12A confusion network is approximation of a lattice described in Section 2.1.4.

21

Figure 2.11: Kaldi toolkit architecture[29]

• . . .

3. Decoders

• gmm-latgen-faster

• gmm-latgen-faster-parallel

• gmm-latgen-biglm-faster

• . . .

4. Evaluation and utilities

• compute-wer

• show-alignments

• . . .

In addition, Kaldi provides very useful standardized scripts which wrap Kaldi
executables or add new functionality. The scripts are located in utils and
steps directories and are used in many training scripts recipes for different
corpus data. In this thesis we created a new training recipe using the Kaldi in-
frastructure and Czech and English training corpus [19]. The recipe, the data
and acoustic modelling scripts are described in Chapter 3.

2.4.1 Finite State Transducers

The Finite State Transducer framework and its implementation OpenFST
determines the shape of the Kaldi data structures. Kaldi uses Finite State
Transducer (FST) as underlaying representation for LM, partially for AM,

22

lexicon and also for representing transformation between text, pronunciation
and triphones.

The FST framework provides well studied graph operations[21] which
can be effectively used for acoustic modelling. Using the FST framework
the speech decoding task is expressed as a beam search in a graph, which is
well studied problem.

The FST graphs used for AM model training and speech decoding can be
constructed as sequence of standardized OpenFST operations.[21]. Decoding
is performed on so called decoding graph HCLG which is constructed from
simple FST graphs as illustrated in Equation 2.19.

HCLG = H ◦ C ◦ L ◦G (2.19)

. The symbol ◦ represents an associative binary operation of composition
on FSTs. We briefly explain the functionality of the transducers from Equa-
tion 2.19:

1. G is an acceptor that encodes the grammar or language model.

2. L represents the lexicon. Its input symbols are phones. Its output
symbols are words.

3. C represents the relationship between context-dependent phones on
input and phones on output.

4. H contains the HMM definitions, that take as input id number of
Probability Density Functions (PDFs) and return context-dependent
phones.

Following one liner illustrates how Kaldi decoding graph is created using
standard FST operations13.[21]

HCLG = asl(min(rds(det(H ′omin(det(Comin(det(LoG)))))))) (2.20)

Most of the operations operate on paths in the decoding graph. Path is Semiring

a sequence of edges which have weights and an input and an output labels.
Based on the weight type and weight path operations we distinguish several
semirings.

Formally, a semiring (K,⊕,⊗, 0̄, 1̄) is an algebraic structure on set K with
operations ⊕ and ⊗. The binary operations multiplication ⊕ and addition
⊗ have identity element 0̄ respectively 1̄. The (K,⊕) forms commutative
monoid and (K,⊗) forms just a monoid. The multiplication is left and right
distributive over addition. Moreover, multiplication by 0̄ annihilates any
member of K to zero. Table 2.4.1 shows useful semirings in OpenFST.

13Kaldi tutorial on building HCLG: http://kaldi.sourceforge.net/graph_recipe_test.html

23

http://kaldi.sourceforge.net/graph_recipe_test.html

Name K ⊕ ⊗ 0̄ 1̄
Real [0,∞) + * 0 1
Log (−∞,∞) −log(e−x + e−y) + ∞ 0
Tropical (−∞,∞) min + ∞ 0

Table 2.1: Semirings used in speech recognition.[37]

24

3. Acoustic model training

This chapter presents Kaldi acoustic modelling scripts for free Czech and
English "Vystadial" data. The scripts were developed as part of this thesis,
they are licensed under the Apache 2.0 license and are publicly available in
the Kaldi repository1. The Acoustic Model (AM) trained using these scripts
can be used for both batch speech recognition with common Kaldi decoders
and our OnlineLatgenRecognizer, which performs on-line decoding described
in Chapter 4.

The first Section 3.1 describes the used data. The chapter continues
by presenting the AMs training in Section 3.2. Later, in Section 3.3 we
evaluate trained AMs and also compare them to generative HTK AMs which
are trained using state of art HTK scripts.

3.1 Vystadial acoustic data

The data were collected in Vystadial project2, and they are released under
the Creative Commons Share-alike (CC-BY-SA 3.0) license. The Czech3and
English4 data are available online in the Lindat repository56.

The English acoustic data consists of recorded phone calls among humans
and the Spoken Dialogue System, which was designed to provide the user with
information on a suitable dining venue in the town. Most of the data was
spoken in American English. The typical sentences recorded from users were
queries for the dialogue system e.g.,

I NEED A CHINESE TAKE AWAY RESTAURANT IN THE CHEAP PRICE RANGE
I’M LOOKING FOR AN INTERNATIONAL RESTAURANT
I NEED TO FIND A PUB IT SHOULD ALLOW CHILDREN AND HAVE A TELEVISION

On the other hand, the Czech recordings were collected in three different
ways[19]:

1. using a free Call Friend phone service

2. using the Repeat After Me speech data collecting process,

3. from the telephone interactions with the Alex SDS in a Public Trans-
port Information (PTI) domain.

In the Call Friend service native Czech speakers were invited to make
free calls. In Repeat After Me process volunteers called a number where
they were asked to repeat sentences synthesized by a Text to Speech (TTS).

1http://sourceforge.net/p/kaldi/code/HEAD/tree/sandbox/oplatek2/egs/vystadial/
2http://ufal.mff.cuni.cz/grants/vystadial
3Czech data: http://hdl.handle.net/11858/00-097C-0000-0023-4670-6
4English data: http://hdl.handle.net/11858/00-097C-0000-0023-4671-4
5http://lindat.mff.cuni.cz/repository/
6A previous version of our training scripts is published with the data in the Lindat

repository and described in work [19].

25

http://hdl.handle.net/11858/00-097C-0000-0023-4670-6
http://hdl.handle.net/11858/00-097C-0000-0023-4671-4

The user language differs significantly in dialogues with Alex system and
the other two settings. The sentences in Alex’s PTI domain, as seen in
the first paragraph, are shorter and contain noises. The speech is sponta-
neous and proper names are frequently used. On the other hand, the other
two recording tasks, as seen in the second paragraph, have much broader
vocabulary with less named entities, and the ideas are expressed in longer
sentences.

PTI

samples

A DALŠÍ
NOISE
JO DĚKUJU MOC TO JSEM CHTĚL VĚDĚT
ZE ZASTÁVKY DEJVICKÁ

Call Friend

samples

PRYČ S TYRANY A ZRÁDCI VŠEMI
UTRHNE SI KVĚT Z KYTICE A ODCHÁZÍ
DYŤ TO JE HORŠÍ NEŽ ZVÍŘE
O LIBERALIZMU TEHDY NEBYLO ŘEČI
CO BY TAM S TEBOU DĚLALI

The AMs for Czech are trained on acoustic data from all the three very
different domains, because there is only two hours of in-domain data avail-
able in the Alex’s public transport domain. The evaluation for Czech data
in Section 5.3 is performed on a Vystadial test set combined from all three
domains. The English AMs are trained and tested on the data collected from
the Venue domain using SDS. The summary of audio sizes in training, de-
velopment and test set are presented in Table 3.1. Both Czech and English
orthographic speech transcriptions were transcribed by humans.

dataset audio[hour] # sentences # words
English
training 41:30 47,463 178,110
development 01:45 2,000 7,376
test 01:46 2,000 7,772
Czech
training 15:25 22,567 126,333
development 01:23 2,000 11,478
test 01:22 2,000 11,204

Table 3.1: Size of the data: length of the audio (hours:minutes), number of
sentences (which is the same as the number of recordings), number of words
in the transcriptions.[19]

3.2 Acoustic modelling scripts

We search for the best non-speaker adaptive AMs in our scripts for AM train-
ing. In this section, the explored methods and their settings are described,

26

and the Section 5.3 presents the results for both Czech and English datasets.
The Czech and English training scripts differ only in using a different pho-
netic dictionary, but otherwise the scripts remains exactly the same.

The recordings and their transcriptions from training dataset are used
for acoustic modelling. The estimated AMs are evaluated on the test set.
The decoding of the test utterances is performed always with the same pa-
rameters, so that different AMs can be compared. The Figure 3.1 lists all
acoustic models trained in our scripts. An advanced AM is always initi-
ated by audio alignments (respectively acoustic features alignments) using
a simpler AM.

In paragraphs below, the organisation of acoustic model training is de-
scribed. The used methods are listed in Figure 3.1 together with their hier-
archy. The hierarchy shows that a more advanced method typically reuses
initial values from previously trained simpler AM.

At first, a mono-phone model is trained from flat start using the MFCCs,
∆ and ∆∆ features. We force-align the feature vectors to HMM states using
utterances’ transcriptions. Secondly, we retrain the triphone AM (tri1a).
One branch of experiments finishes by training MFCC ∆+∆∆ triphone AM
(tri2a).

On the other hand, the second branch instead of ∆+∆∆ transformation
uses LDA+MLLT to train AM (tri2b). Using the AM tri2b three AMs are
discriminatively trained using the following objective functions:

1. Maximum Mutual Information[8]7. The model tri2b_mmi is trained in
four loops.

2. Boosted Maximum Mutual Information[31]. The model tri2b_bmmi is
trained in four loops with parameter 0.05.

3. Minimum Phone Error[28]. The model tri2b_mpe is also retrained in
four loops.

mono tri1

tri2a

tri2b

tri2b_mmi

tri2b_bmmi

tri2b_mpe

Training method name Script shortcut

Monophone mono
Triphone tri1
∆+∆∆ tri2a
LDA+MLLT tri2b
LDA+MLLT+MMI tri2b_mmi
LDA+MLLT+bMMI tri2b_bmmi
MPE tri2b_mpe

Figure 3.1: Training partial order among AM in our training scripts

7Note the Maximum Mutual Information (MMI) function is implemented as bMMI
with boosted parameter set to 0.

27

The acoustic models mono, tri1, tri2a and tri2b are trained generatively.
The models tri2b_mmi, tri2b_bmmi and tri2b_mpe are trained discrimina-
tively in four iterations. The discriminative models yield better results than
generative models if enough data is available. See Figure 3.2 for evidence.

The discriminative models from may significantly over-fit to the train-over-fitting

ing data. Discriminative training uses a unigram LM estimated on training
dataset in order to compute their objective function, each iteration adapts
more to the training data. We used four iterations for discriminative models
training, and we have not experienced such behaviour.

Setup for feature transformations

We explored not only AM training methods but also experimented with two
feature transformation techniques. First, the ∆+∆∆ triples the number of
13 MFCC features by computing the first and the second derivatives from
MFCC coefficients. The computation of MFCC coefficients with the deriva-
tives produce 39 features per frame in total.

Second, the combination of LDA and MLLT is computed from 9 spliced
frames consisting of 13 MFCC features. The default context window of 9
frames takes current frame, four frames from the left context and four frames
from the right context. The LDA and MLLT feature transformation gains
substantial improvement over ∆+∆∆ transformation. See Figure 3.2.

Decoding setup

We use the trained AMs described above for decoding the utterances from
the test dataset. For each trained AM we use the same speech parametri-
sation and feature transformation method as was used for the given AM at
training time. We experiment with all trained AMs with both zerogram and
bigram LM.

The default bigram and zerogram LMs for are built from orthographic
transcriptions. The bigram LM is estimated from the training data tran-
scriptions. Consequently, in a test set appear unknown words, so calledOOV

Out of Vocabulary Word. The zerogram is extracted from a test set tran-
scriptions. The zerogram is a list of words with probabilities uniformlyzerogram

distributed, so it helps decoding just by limiting the vocabulary size. The bi-
gram LM contains 17433 unigrams and 79333 bigrams for Czech and 936
unigrams and 5521 bigrams for English. The zerogram LM is limited to 2944
words for Czech and to 302 words for English.

The speech recognition parameters are set to default values; the excep-
tions are decoding parameters: beam=12.0, lattice-beam=6.0, max-active-
states=14000 and Language Model Weight. The LMW parameter sets the weight
of a LM, i.e., it regulates how much the LM is used to help AM in decoding.
The LMW value is estimated on the development set and the best value is
used for decoding on the test dataset. The details about beam=12.0, lattice-
beam=6.0 and max-active-states=14000 can be found in Subsection 4.1.2.
Section 5.3 evaluates the ASR performance for this parameters.

The gmm-latgen-faster decoder is used for the evaluation on testing data.
It generates a word level lattice for each utterance and the one-best hypoth-

28

esis is extracted from the decoded lattice and evaluated by WER and SER
metrics against the reference transcription.

Note, that we are able to exactly reproduce the results of gmm-latgen-
faster decoder with our OnlineLatgenRecogniser. The gmm-latgen-faster was
used for evaluation in the scripts, so the Kaldi users do not have to install
our extension.

3.3 Evaluation

The experiments focus on comparing the quality of ASR hypothesis measured
by WER on AMs trained by different methods. We are not interested in
absolute numbers since we model the language using a weak LM focusing on
the acoustic modelling. By training only simple bigram LM we let the AM
influence the recognition quality more significantly. The same motivation
lead us to use zerogram LM which just limits vocabulary in the decoding
task. Consequently, the best words are chosen among all hypotheses only by
acoustic similarity.

We concentrate on acoustic modelling since we believe that; if two AMs
am1, am2 are trained with the same weak Language Model lmweak and
the first AM gains lower WER than the second one (werweak

1 < werweak
2),

then in the same experiment with a richer LM lmrich will still gain lower
WER for the first AM (werrich1 < werrich2).

First, we show how the data size influence the quality of AMs measured
by WER. Second, the best results on full data is presented. Finally in
Subsection 3.3.2, the best Kaldi results are compared against the results
obtained by well-written HTK scripts by Keith Vertanen and modified for
the same Vystadial dataset[19].

0 20 40 60 80 100
Portion of training size [%]

65

70

75

80

85

90

W
E
R

 [
%

]

mono
tri2a
tri2b

Figure 3.2: The figure displays improving performance of Czech generative
AMs based on growing size of training data for acoustic modelling. The ze-
rogram LM allows to evaluate only acoustic modelling, but causes a high
WER.

29

The Figure 3.2 describes how the amount of acoustic data influences
the WER. We illustrate that even with small datasets like Vystadial the high
quality AM can be trained. The WER decreases significantly if new data are
added to small dataset, but only small WER reduction is achieved when
the last 50% of data is added. One can also see that the ∆ + ∆∆ feature
transformation is clearly outperformed on full data by LDA+MLLT setup.
Note also that the monophone AM is typically used for the initialisation
of triphone models and requires small portion of data to reach its limit.
The WER is rather high due to the use of zerogram LM. We evaluate only
generative LMs since we would have to have a fixed LM for discriminative
methods and we do not have any obvious choice how to build one.

It may seem that more acoustic data is not needed for this domain, but
discriminative training methods require more training data, and with more
transcribed data a better LM adaptation can be achieved. The Figure 3.3
shows the effect of in-domain data size for LM on quality of speech decoding.
The AM tri2b_bmmi and decoding parameters were fixed. The experiments
were performed with different LMs which differ only in the training data size.
Note that this experiment was run by Ondřej Dušek.8 The experiment was
run on different test set from Public Transport Information (PTI) domain
and the LMs were built also from that in-domain data.

10 20 30 40 50 60 70 80 90 100
Portion of training size [%]

25

26

27

28

29

30

31

32

33

34

W
E
R

 [
%

]

Figure 3.3: Influence of in-domain text size of LM on speech recognition
quality. The AM tri2b_bmmi and parameters are fixed and only LM training
size varies.

To conclude we are able to train reasonable AM with relatively small
dataset such as Vystadial. On the other hand, additional data should improve
speech recognition accuracy because

• the language domain changes in time and the new data reflect the dif-
ferences,

8Ondřej Dušek used our scripts developed for Alex dialogue system for the PTI domain
for the experiment.

30

• more data still may improve the best discriminatively trained AM,

• and last but not least the speech recogniser is more robust to new
speakers.

3.3.1 Results

In this section we present the results of different acoustic training methods
and we choose the best non-speaker adaptive setup. The Table 3.2 presents
AMs results.

language/method zerogram bigram

Czech
tri ∆+∆∆ 70.7 56.6
tri LDA+MLLT 68.2 53.9
tri LDA+MLLT+MMI 65.3 49.5
tri LDA+MLLT+bMMI 65.3 49.3
tri LDA+MLLT+MPE 63.8 49.2

English
tri ∆+∆∆ 35.7 16.2
tri LDA+MLLT 33.28 15.8
tri LDA+MLLT+MMI 25.01 10.4
tri LDA+MLLT+bMMI 23.9 10.2
tri LDA+MLLT+MPE 22.41 11.1

Table 3.2: Word error rates for zerogram and bigram LM for different training
triphone methods. The ‘tri ∆+∆∆’ row shows results for a generative model
which is comparable to the model trained using the HTK scripts.

The complexity of the Czech data is clearly much larger than the com-
plexity of the English data. The high WER on the Czech dataset may be
explained be following reasons:

• The mix of a very different domain and recording conditions is difficult
to model by both AM and LM.

• The Call Friend and Repeat After Me collections task have a really
broad domain which affect language modelling.

• The flective languages such as Czech have larger vocabulary and higher
Out of Vocabulary Words (OOVs) since one word may have several
inflected forms.

The WER on the Vystadial English data is lower than 20% for discrimi-
native methods, which is reasonable, given the broad domain.

The discriminative training methods clearly outperformed the generative
AMs, and also the LDA+MLLT is more effective feature transformation than
using ∆+∆∆ features. On the other hand, there are subtle differences among
the three discriminatively trained AM in terms of performance. As a result,

31

we choose AM (tri2b_bmmi) discriminatively trained by Boosted Maximum
Mutual Information (bMMI) with MFCC, and LDA+MLLT preprocessing
because informal experiments shows that decoding with Minimum Phone
Error (MPE) Acoustic Model is slightly more computationally demanding
compared with bMMI AM.

3.3.2 Kaldi and previous HTK results comparison

We compared Kaldi and HTK on the Vystadial Czech and English datasets,
to confirm that the Kaldi toolkit is a good alternative for HTK. In addi-
tion, by using state of the art HTK scripts we saw that the complexity of
the Vystadial datasets is higher than in other datasets trained with the HTK
scripts.9

We present results for triphone AM estimated using Baum-Welch itera-
tive training on zerogram and bigram LMs. The HVite HTK decoder was
used to perform the decoding with the same LMs as used in Kaldi scripts.
The training procedure is further described in work [19].

language/method zerogram bigram

Czech
tri ∆+∆∆ 64.5 60.4

English
tri ∆+∆∆ 50.0 17.5

Table 3.3: HTK results: Word error rates on test set are obtained by both
a zerogram and a bigram LM. The AMs can be compared with the basic tri
∆+∆∆ Kaldi setup in Table 3.2.

The results suggest that Kaldi achieves similar WER compared to HTK
when using standard generative training methods and bigram LMs. Fur-
thermore, one may obtain a substantial reduction in WER by using more
advanced discriminative training methods.

The experiment using MFCC, LDA & MLLT and bMMI discriminative
training is a state of the art set up for speaker independent speech recognition
[24] and outperforms HTK models.

Furthermore, in Chapter 5, we evaluate the trained Czech AMs on Public
Transport Information domain on a different test set with a fine tuned LM
and the best AM from list in Figure 3.1. The best AM is selected based
on the results in Section 3.3.

9Unfortunately, the dataset is not publicly available.

32

4. Real time recogniser

This chapter presents the OnlineLatgenRecogniser, the new on-line Kaldi
recogniser which can be used in real-time applications. Section 4.1 describes
the implementation of the OnlineLatgenRecogniser. Next Section 4.2 intro-
duces PyOnlineLatgenRecogniser, a Python extension of C++ OnlineLat-
genRecogniser. Finally, Section 4.3 summarizes properties of the new imple-
mented Kaldi recogniser.

We implemented a lightweight modification of the LatticeFasterDecoder
from the Kaldi toolkit, improved on-line speech parametrisation and feature
processing in order to create an OnlineLatgenRecogniser. The Kaldi On-
lineLatgenRecogniser implements on-line interface which allows incremental
speech processing, and it is able to process the incoming speech in small
chunks incrementally. As a result, the real-time speech decoding can be
performed while a user is speaking and the ASR output is obtained with
a minimal latency.

The implementation of the recogniser was motivated by the lack of an
on-line recognition support in Kaldi toolkit. Therefore, the toolkit decoders
could not be used in applications such as spoken dialogue systems. Although
Kaldi included an on-line recognition application; hard-wired timeout excep-
tions, audio source fixed to a sound card, and a specialised 1-best decoder
limit its use only to demonstration of Kaldi recognition capabilities.

Our on-line recogniser uses acoustic models trained using the state-of-
the-art techniques, such as Linear Discriminant Analysis (LDA), Maximum
Likelihood Linear Transform (MLLT), Boosted Maximum Mutual Informa-
tion (BMMI) and Minimum Phone Error (MPE). It produces word posterior
lattices which can be easily converted into high quality n-best lists.

The recogniser’s speed and latency can be effectively controlled off-line by
optimising a language model. At runtime the speed of decoding is controlled
by a beam threshold. The latency depends on the amount of time spent on
word posterior lattice extraction from the recogniser, which can be regulated
by a level of approximations used during the word lattice creation.

4.1 OnlineLatgenRecogniser

The standard Kaldi executables which implements speech parametrisation,
feature transformations and decoder are using a batch file interface. Each
executable loads the input from a file, processes a whole utterance and saves
its output to another file. However, in real-time applications one would like to
take advantage of the fact that an acoustic signal of an utterance is recorded
in small chunks and can be processed incrementally.

We reimplemented speech parameterisation and feature transformations
in order to fit on-line OnlineLatgenRecogniser’s interface, which can process
audio features incrementally. In addition, we subclassed LatticeFasterDe- LatticeFas-

terDecodercoder and reorganized its original batch interface, so that it supports on-line
decoding. Such implementation almost eliminates latency of a recogniser
since almost all of the decoding can be performed while the user is still

33

speaking.
First, we present the public on-line interface of OnlineLatgenRecogniser

and in next subsections we introduce its components. The Subsection 4.1.2
describes the decoder, the core component. Subsection 4.1.3 introduces
on-line speech parametrisation and feature transformations and the Subsec-
tion 4.1.4 discusses word posterior lattice extraction.

4.1.1 OnlineLatgenRecogniser interface

The OnlineLatgenRecogniser makes use of the incremental speech pre-processing
and modified LatticeFasterDecoder in order to provide the following speech
recognition interface:

• AudioIn – queueing new audio for pre-processing,

• Decode – decoding a fixed number of audio frames,

• PruneFinal – preparing internal data structures for lattice extraction,

• GetLattice – extracting a word posterior lattice and returning log like-
lihood of processed audio,

• GetBestPath – extracting a one best word sequence,

• Reset – preparing the recogniser for a new utterance,

The interface is influenced by the decoder interface and the preprocessing
of the utterance is completely hidden for the user of OnlineLatgenRecogniser.
The AudioIn is the only method which is not related to the decoder func-
tionality.

The C++ example in Listing 4.1 shows a typical use of OnlineLatgenRecog-
niser. When audio data becomes available, it is queued into the recogniser’s
buffer (line 11) and immediately decoded (lines 12-14). If the audio data
is supplied in sufficiently small chunks, the decoding of queued data is fin-
ished before new data arrives. When the recognition is finished, the recog-
niser prepares for lattice extraction (line 16). Line 20 shows how to obtain
word posterior lattice as an OpenFST object. The auxiliary getAudio() func-
tion represents a separate process supplying speech data. Please note that
the recogniser’s latency is mainly determined by the time spent in the Get-
Lattice function since the whole loop is processed while the user is speaking.

We designed the interface with following criteria in mind:

• Passing the audio in the recogniser should accept any size of audio
input.

• Decoding should return a number of actually decoded frames. The recog-
niser may decode less frames than requested if not enough audio is
available.

• Decoding should be called frequently on small chunks, which guaranties
quick response times of the Decode method.

34

Listing 4.1: Example of the decoder usage
1 OnlineLatgenRecogniser rec ;

2 rec.Setup (...) ;

3

4 size_t decoded_now = 0;

5 size_t max_decode = 10;

6 char *audio_array = NULL;

7

8 while (recognitionOn())

9 {

10 size_t audio_len = getAudio (audio_array);

11 rec .AudioIn (audio_array , audio_len);

12 do {

13 decoded_now = rec.Decode (max_decode);

14 } while (decoded_now > 0);

15 }

16 rec.PruneFinal ();

17

18 double tot_lik ;

19 fst :: VectorFst <fst ::LogArc > word_post_lat;

20 rec.GetLattice (& word_post_lat , &tot_lik);

21

22 rec.Reset ();

Consequently, OnlineLatgenRecogniser does not block a process to either
load audio or decode an utterance. The loading of audio and the decoding
can be easily alternated back and forth. Obviously, the decoding of single
utterance can be separated into number of parts and other tasks can be run
in a single process with speech recognition in order to allow an application to
stay responsive. We are able to decode the utterance while the user speaks.

On the other hand, extracting the word posterior lattice may block the pro-
cess since it is very computationally demanding. It lasts several tens of mil-
liseconds. However, it is called only at the end of each utterance. Extracting
one best word sequence is much faster and can be called at any time.

4.1.2 OnlLatticeFasterDecoder

In the OnlLatticeFasterDecoder implementation we reorganised the code of
base class LatticeFasterDecoder. The LatticeFasterDecoder::Decode function
runs a beam search from frame 0 to the end of each utterance. In addition,
a pruning is triggered periodically in the function. In OnlineLatgenRecog-
niser, we split the LatticeFasterDecoder::Decode method which performed
several tasks into three methods in order to control beam search:

• Decode – decoding a fixed number of audio frames instead of decoding
whole utterance, pruning is triggered periodically,

• PruneFinal – run final pruning and so prepare the internal data struc-
tures for lattice extraction,

• Reset – preparing the recogniser for a new utterance.

In the PruneFinal function, which is called at the end of an utterance,
the states are pruned by beam search with the knowledge that no further
search will be performed, so more states can be safely discarded.

35

The decoding is performed on request by calling the Decode method with
a parameter (int max_frames) which limits the number of decoded frames.
It returns the number of frames which were actually decoded, which is always
smaller or equal to max_frames value. The OnlLatticeFasterDecoder::Decode
method performs decoding frame by frame using the Viterbi beam search.
The speed of the Viterbi search is highly predictable for fixed settings of
the recogniser. As a result, the max_frames parameter effectively limits
the amount of time in the Decode method. Repeated calls of Decode with
small values of max_frames keep the recognition responsive as implemented
in Listing 4.1.

The ASR output is extracted by the original methods of LatticeFaster-
Decoder :

• GetRawLattice returns state-level lattice,

• GetLattice extracts from state-level lattice word lattice which is re-
turned,

• GetBestPath returns just one-best path hypothesis.

The state-level lattice, which is returned from the GetRawLattice method,
can be understood as lattice on triphone level. In the state-level lattice,
a single word hypothesis is typically can be obtained from multiple state-level
hypotheses due to different word alignments, i.e., the same words sequences
were pronounced with different timing.

The decoding of LatticeFasterDecoder as well as lattice extraction can be
controlled by several parameters. We mention the most important parame-
ters which affect both speed and the ASR output quality. The parameters
either increase speed and decrease ASR output quality or vice versa.

decoding parameters The beam and max-active-states parameters directly
affect the speed of decoding. The beam parameter affects the speed of all
utterances, whereas the max-active-states parameter plays its role for noisy
utterances with uncertainty in beam search. In fact, the max-active-states
is a threshold for worst case scenarios. The lattice-beam influences speed of
lattice extraction.

The properties of the parameters and its relationship to ASR output
quality is described in detail in Section 5.3 where we evaluate the recogniser.

4.1.3 On-line feature pre-processing

This section describes audio signal buffering, MFCC feature extraction and
feature transformation. The resulting acoustic features are then used with
an AM in OnlLatticeFasterDecoder to obtain likelihood of each state ex-
plored by Viterbi search. OnlineLatgenRecogniser only uses the likelihood
to run Viterbi search. The likelihood itself is extracted from AM based on
the acoustic features by DecodableInterface.

When a decoder is asked to perform decoding it needs to estimate likeli-
hood for the states which should be explored, and so it requests the Decod-
ableInterface. We implemented on-line version of DecodableInterface which
let the decoder ask for likelihoods of new acoustic features frame by frame.

36

The decoder, the pre-processing pipeline and the data flow between the com-
ponents are illustrated in Figure 4.1. We briefly describe one step of Viterbi
search:

• Audio is extracted from a buffer.

• The MFCC features are computed on overlapping audio window. The new
audio is used for shifting the audio window.

• Applying feature transformation on top of MFCC features.

– ∆+∆∆ requires at least two previous frames, if available the acous-
tic features a are returned.

– The LDA+MLLT is computed using context, which by default is
set to four previous and four future frames. If context is available,
the acoustic features a are returned.

Note, that the LDA +MLLT and the ∆ + ∆∆ transformations are
complementary.

• The OnlDecodableDiagGmmScaled queries the AM for the likelihood of
acoustic features and given state.

• The decoder itself performs the search in state level space having the prob-
abilities from the Decodable interface.

Decodable

Decode(max_frames)

LDA+MLLTBuffering Mfcc

Decoder

50ms ai ati

li

GetLattice CompactLatticeToWordPost

Forward decoding: every 10ms

Backward decoding: Once per uterance

Figure 4.1: Components for on-line decoding

Each step in Figure 4.1 is implemented as a separate C++ class. On-
lineLatticeRecogniser instantiate each class during the setup.

The on-line implementation OnlDecodableDiagGmmScaled of DecodableIn-
terface easily handles missing audio data. If the likelihood for new frame is
requested and the OnlDecodableDiagGmmScaled cannot obtain new acoustic
features it returns default empty value. Then, the decoder’s method De-
code(int max_frames) returns zero indicating that no frames were decoded.
Similarly, the speech parametrisation and feature transformations compo-
nents returns their default empty value if they cannot compute its output.
Consequently, OnlineLatgenRecogniser either decodes few frames or imme-
diately returns zero indicating that no frames were decoded.

37

We have not experimented speech parametrisation settings. We used
the recommended values, which are tested in tens of Kaldi recipes. The list
the most important parameters:

• The frame width (set to 25 ms),

• the frame shift (set to 10 ms),

• and the frame splicing used for LDA+MLLT (nine frames are spliced).

4.1.4 Post-processing the lattice

The OnlineLatgenRecogniser not only extracts word lattice using OnlLattice-
FasterDecoder::GetLattice function, but also computes posterior probabilities
for the word lattice. The OnlLatticeFasterDecoder returns word lattice with
alignments in form of CompactLattice. The CompactLattice determinised at
state level still may contain multiple paths for each word sequence encoded
in the lattice. The CompactLattice distinguishes each path not only accord-
ing to the word labels on the path, but also according to the alignments. In
order to obtain only the word lattice, we discard the alignments.

The steps of converting CompactLattice to word posterior lattice areCompact-

Lattice listed below. For the implementation details see Listing 4.2:

• Joining multiple word sequences which differer in word alignments is
performed in two steps:

– Discarding the alignments from CompactLattice.

– Converting the lattice to its minimal lattice representation with
no alternatives for one word hypothesis.

• The computing of the posterior probabilities through a standard forward-
backward algorithm, which is implemented in two steps:

– Computing α and β data structures for which a Kaldi implemen-
tation is reused.

– Updating the lattice weights from likelihood to posterior proba-
bilities based on α and β, which we implemented in the Move-
PostToArcs function.

The word posterior probability is converted from the likelihood of the words
in word lattice. The word lattice obviously contains alternatives which were
explored by the beam search during decoding the utterance. Consequently,
the posterior probability is an approximation because the very low probable
alternatives discarded by beam search are not considered. On the other hand,
the discarded alternatives are so improbable so they almost do not influence
the posterior probability.

Presumably, the word posterior values are more impacted by inaccurate
likelihood values taken from the Acoustic Model. Generative models are im-
proved so the likelihood match the reality as much as possible. On the other
hand, the discriminative AM models deliberately favour the most probable

38

Listing 4.2: Converting CompactLattice to posterior word lattice
1 double CompactLatticeToWordsPost (CompactLattice &clat ,

2 fst :: VectorFst <fst ::LogArc > *pst) {

3 {

4 Lattice lat;

5 fst ::VectorFst <fst ::StdArc > t_std;

6 RemoveAlignmentsFromCompactLattice (&clat); // remove the alignments

7 ConvertLattice(clat , &lat); // convert to non -compact form .. no new

→֒states

8 ConvertLattice(lat , &t_std); // this adds up the (lm ,acoustic) costs

9 fst ::Cast(t_std , pst); // reinterpret the inner implementations

10 }

11 fst :: Project (pst , fst :: PROJECT_OUTPUT);

12 fst :: Minimize (pst);

13 fst :: ArcMap (pst , fst :: SuperFinalMapper <fst ::LogArc >());

14 fst :: TopSort (pst);

15 std ::vector <double > alpha , beta;

16 double tot_lik = ComputeLatticeAlphasAndBetas (*pst , &alpha , &beta);

17 MovePostToArcs(pst , alpha , beta);

18 return tot_lik ;

19 }

hypothesis by boosting the likelihood of the most probable hypothesis. As
a result, the word posterior probability for the best hypothesis is artificially
boosted. At the moment, we do not calibrate the word posterior probabilities
in extracted lattices.

4.2 PyOnlineLatgenRecogniser

We also developed a Python extension, PyOnlineLatgenRecogniser, exporting
the OnlineLatgenRecogniser C++ interface to Python. It can be used as an
example of bringing Kaldi’s on-line speech recognition functionality to higher-
level programming languages. We extended also PyFST library[7], which PyFST

interfaces OpenFST C++ template library into Python because we need to
process further the OpenFST lattices produced by PyOnlineLatgenRecogniser
in Python. Consequently, the recogniser as well as its input and output can
be seamlessly used both from C++ and Python.

PyOnlineLatgenRecogniser is a thin wrapper around OnlineLatgenRecog-
niser implemented using Cython[4]. The Cython compiler is well known for
generating fast code when interfacing Python and C++ and the wrapper
causes no measurable overhead.

We implemented conversion of the word posterior lattices to an n-best list.
The implementation is efficient since the OpenFST shortest path algorithm
is used on small lattices.

The minimalistic Python example in Listing 4.3 shows usage of the Py-
OnlineLatgenRecogniser and the decoding of a single utterance.

The audio is passed to the recogniser in small chunks (line 4), so the de-
coding (line 5 and 8) can be performed while the user is speaking. When
no more audio data is available a likelihood and a word posterior lattice is
extracted from the recogniser(line 10).

Note that PyOnlineLatgenRecogniser and OnlineLatgenRecogniser are
initialised by string vector of arguments in command line format. The pa-
rameters are parsed using Kaldi’s command line parser and options affect

39

Listing 4.3: Fully functional example of the PyOnlineLatgenRecogniser in-
terface

1 d = PyOnlineLatgenRecogniser ()

2 d.setup(argv)

3 while audio_to_process():

4 d.audio_in (get_raw_pcm_audio ())

5 dec_t = d.decode (max_frames =10)

6 while dec_t > 0:

7 decoded_frames += dec_t

8 dec_t = d.decode (max_frames =10)

9 d.prune_final ()

10 lik , lat = d.get_lattice ()

behaviour speech parametrisation, feature transformations and the OnlLat-
ticeFasterDecoder. In addition, exactly the same parameters can be parsed by
standard Kaldi utilities. We created demos1 which use the same parameters
for speech recognition using:

• standard Kaldi executables and scripts

• PyOnlineLatgenRecogniser

• OnlineLatgenRecogniser

The alternatives produce exactly the same results.

4.3 Summary

The OnlLatticeFasterDecoder performs the on-line speech recognition. We
suggest exploiting the OnlineLatgenRecogniser and decoding utterances in
small chunks and pass the audio to the recogniser immediately as it is avail-
able. The speech recognition parameters are initialized with reasonable de-
fault values and the parameters are the same as used in Kaldi executables.
As a result, one can use the parameters from any Kaldi recipe to obtain
the exactly same high quality results in the on-line speech recognition set-
ting.

The implemented minimal on-line interface which supports MFCC speech
parametrisation, ∆ − ∆∆ feature transformation or LDA+MLLT and both
generative training and discriminative training using bMMI and MPE. The MFCC,
LDA+MLLT and bMMI is one of the best setup for the speaker independent
speech recognition. To conclude, we reimplemented Kaldi batch speech recog-
nition, so that it can perform on-line real-time speech recognition and still
maintain its high quality. The next Chapter 5 evaluates in detail the recog-
nisers’ real-time performance in the Alex Dialogue Systems Framework.

1https://github.com/UFAL-DSG/pykaldi/tree/master/egs/vystadial/online_demo

40

https://github.com/UFAL-DSG/pykaldi/tree/master/egs/vystadial/online_demo

5. Kaldi ASR in Alex SDS

This chapter discuss the details of deploying OnlineLatgenRecogniser into
Alex dialogue system. The OnlineLatgenRecogniser is used in Alex dialogue
system for Czech Public Transport Information (PTI) domain available on
public toll-free (+420) 800 899 998 line.

First, the architecture of Alex Spoken Dialogue System (SDS) is de-
scribed. Second, Section 5.2 presents how the wrapper PyOnlineLatgenRecog-
niser is integrated into SDS Alex. Finally, Section 5.3 evaluates the decoder
in Alex dialogue system on Czech PTI domain.

5.1 Alex dialogue system architecture

The Alex dialogue system has a speech to speech user interface. The Alex
dialogue system is developed in Python programming language and consists
of six major components.

1. Voice Activity Detection (VAD)

2. Automatic Speech Recognition (ASR)

3. Spoken Language Understanding (SLU)

4. Dialogue Manager (DM)

5. Natural Language Generation (NLG)

6. Text to Speech (TTS)

The system interacts with a user in turns. The schema in Figure 5.1 illus-
trates how the user’s input is processed in single turn. The spoken input is
passed to ASR component which generates corresponding textual represen-
tation. SLU extracts semantic meaning from the text and DM decides which
response to present. The NLG component generates textual response from
an internal representation of DM and finally the TTS read the text with
human voice.

Each of the Alex’s component runs in separate process in order parallelize
the input data processing and output data generation. The components
communicates among themselves through system pipes.

In order to prepare ASR unit for PyOnlineLatgenRecogniser, we have im-
plemented not only the wrapper itself, but also scripts for building decoding
graph and evaluation. In addition, we integrated AM training scripts to Alex
framework. Let us introduce the framework organisation, so we can better
explain how our scripts are used. The framework is separated into several
logical parts:

• The core library is located at alex/components/. The library is domain
and language independent. All components in Figure 5.1 are imple-
mented in this core library.

41

VAD

ASR

SLU

DM

NLG

TTS

Dialogue System

Speech

Speech

Speech Text/Lattice

Semantic meaning

ActionText

b

Figure 5.1: Single turn in Alex dialogue system

• Settings and scripts for specific domain applications are located in
alex/applications/. For example, application for PTI domain can be
found in alex/applications/PublicTransportInfoCS/ directory.

• The scripts which use external tools or data can be found in:

– alex/corpustools/ directory which focuses on formatting and or-
ganising the collected data,

– and alex/tools/ directory which stores code for modelling VAD,
ASR, SIP client, etc.

• Integration tests are stored in alex/tests/.

• The alex/utils/ directory contains simple utilities for various purposes.

The components depicted in Figure 5.1 are represented as Python mod-
ules under the alex/components/ directory. The source code of the compo-
nents is very modular, so each component may support multiple implemen-
tations. For example the ASR component currently supports several ASR
recognisers. The recognisers implement a common base class ASRInterface
which is presented in Listing 5.1. The supported speech recognisers are:

• OpenJulius (alex/components/asr/julius.py) interfaces OpenJulius de-
coder through sockets for on-line recognition.

• Google (alex/components/asr/google.py) uses cloud service for batch
decoding.

• Kaldi (alex/components/asr/kaldi.py) imports PyOnlineLatgenRecog-
niser class and uses its functionality for on-line decoding.

42

One can easily choose an ASR recogniser in Alex configuration file. The con-
figuration file is also the right place to specify AM and LM and the speech
recognition parameters if necessary.

In order to prepare a specific application with PyOnlineLatgenRecogniser
one need to train AM and LM. One need to always train SLU unit based
on the ASR unit outputs. The LM model training and consequently SLU
training is very domain specific so the scripts are deployed for each applica-
tion separately. For example, the scripts for LM and SLU model training for
PTI domain are located under directory alex/applications/PublicTransport-
InfoCS/ in directories lm/ and slu/.

5.2 Kaldi integration into Alex’s Spoken Dia-

logue System framework

Integration of the Kaldi real-time recognizer into Alex’s framework required
implementing following features:

1. The kaldi.py module which exploits functionality of PyOnlineLatgen-
Recogniser and implements the abstract ASRInterface.

2. The training scripts for Acoustic Models.

3. The scripts for building custom decoding graph HCLG. HCLG graph
is a Kaldi effective representation of AM and LM used for decoding.

4. Evaluation of the ASR recogniser in Alex, so the best speech recogniser
can be selected.

The PyOnlineLatgenRecogniser integration is described in Subsection 5.2.1.
The training scripts for training AMs were described in Chapter 3. However,
note that we adjusted their directory structure and copied them into alex/-
tools/kaldi directory so they nicely integrate in the Alex SDS. The scripts
for building the HCLG decoding graph are introduced in Subsection 5.2.2.
They are stored at alex/applications/PublicTransportInfoCS/hclg/. Finally,
the Section 5.3 evaluates the performance of PyOnlineLatgenRecogniser in
Alex SDS and briefly compares it with Google speech recognition service used
through Python module alex/components/asr/google.py.

5.2.1 PyOnlineLatgenRecogniser in Alex

The ASR component in the Alex dialogue system runs as separate process,
and the speech recognition is triggered based on VAD decisions.

If VAD detects start of speech in the input audio stream, it sends the speech
signal to ASR component and the rec_in method is called. The rec_in
method is a part of Alex abstract ASRInterface illustrated in Listing 5.1.
See Listing 5.1. In Kaldi implementation of rec_in, the audio is decoded us-
ing beam search while the user is speaking, i.e., the method rec_in gradually

43

adds the new audio to PyOnlineLatgenRecogniser’s buffer and immediately
decodes it.1

If VAD recognises end of speech, no more data are sent to PyOnlineLat-
genRecogniser engine and hyp_out method is called in order to extracted
word posterior lattice. Then, the word posterior lattice is converted to an n-
best list.2

The flush method is used only if the speech recogniser wants to throw
away the buffered audio input and reset the decoding.

Listing 5.1: ASRInterface
1 class ASRInterface(object):

2

3 def rec_in (self , frame):

4

5 def flush(self):

6

7 def hyp_out (self):

8

9 def rec_wav (self , pcm):

10 self.rec_in (pcm)

11 return self.hyp_out ()

The method rec_wav from Alex’s ASRInterface nicely illustrates how
the two methods rec_in and hyp_out are used for decoding. Since the method
is used only for testing purposes, it sends all input audio to the speech recog-
niser at once. However, in real-time application the audio is passed to Py-
OnlineLatgenRecogniser in small chunks, so the decoding can run as a user
speaks.

In the on-line Kaldi settings, latency of the ASR unit depends mostly
on the time spent in hyp_out method. In the hyp_out method a word
posterior lattice is extracted using the PyOnlineLatgenRecogniser::GetLattice
method as described in Subsection 4.2. For most cases the latency is well
below 200 ms for our settings as illustrated in Figure 5.3.

The Alex dialogue system frequently handles several spoken requests im-
mediately one after another. At the end of each utterance the hyp_out
method is called and the ASR hypothesis is extracted. Since the user already
speaks when the lattice is extracted, the processor time which is already used
for lattice extraction cannot be used for decoding. Consequently, the rec_in
must decode the audio faster than the user speaks otherwise the audio cu-
mulates in the recogniser’s buffer.

We noticed the problem for chains of noises detected in VAD components
as multiple short utterances. The hyp_out method was called so often that
almost no decoding was performed.

We solved the problem by improving VAD so the hyp_out method is
triggered less often. We reserved circa 100 ms for decoding between calls
of the hyp_out method. All the utterance which are classified as speech are
longer than 200 ms. As a result, the utterances can be decoded as they arrive

1If the ASR component is busy with decoding the audio just waits in VAD buffer
instead of in PyOnlineLatgenRecogniser ’s buffer.

2We would like to implement direct keyword spotting from pyfst lattices in Alex SLU
unit in future.

44

because the decoding runs almost twice as fast as user speaks and the time
for decoding is at least half the time of the utterance.

5.2.2 Building in-domain decoding graph

A decoding graph is a graph represented as an OpenFst object. It stores all HCLG

the LM model information and part of information for acoustic modelling.
The decoding graph is necessary for decoding with Kaldi decoders. We build
the HCLG graph using standard OpenFst operations which are implemented
in Kaldi utilities.

We designed our scripts so they automatically update newly built AMs
and LMs and create all files necessary for decoding with OnlineLatgenRecog-
niser including HCLG graph. The same files can also be used with standard
Kaldi decoders or PyOnlineLatgenRecogniser.

The HCLG build script requires:

• Language Model

• Acoustic Model

• Acoustic phonetic decision tree

• Phonetic dictionary

In addition to building HCLG, the script also copies necessary files for
decoding from AM and the HCLG graph to one directory. To sum up,
following files are necessary for decoding with Kaldi decoders:

• Decoding graph HCLG,

• Acoustic Model,

• a matrix which defines feature transformations,

• a configuration file for speech parametrisation and feature transforma-
tions with the same settings as used for AM training,

• and a Word Symbol Table (WST) — a file containing mapping between
integer labels.

We also developed evaluation scripts which simply compute the statis-
tics of measures which are evaluated given AM, LM and parameters in Sec-
tion 5.3. Both the evaluation scripts and build HCLG script are located in
the alex/applications/PublicTransportInfoCS/hclg/ directory.

Acoustic and language models for PTI domain

The OnlineLatgenRecogniser is evaluated on a corpus of audio data from
the Public Transport Information (PTI) domain. In PTI, users can interact PTI

domainin Czech language with a telephone-based dialogue system to find public
transport connections [41]. The PTI corpus consist of approximately 12,000
user utterances with a length varying between 0.4 s and 18 s with median

45

around 3 s. The data were divided into training, development, and test
data where the corresponding data sizes are 9496, 1188, 1188 utterances
respectively. For evaluation, a domain specific class-based language model
with a vocabulary size of approximately 52,000 and 559,000 n-grams was
estimated from the training data. Named entities e.g., cities or bus stops, in
class-based language model are expanded before building a decoding graph.
The perplexity of the resulting language model evaluated on the development
data is about 48.

Since the PTI acoustic data amounts to less then 5 hours, the acoustic
training data was extended by additional 15 hours of telephone out-of-domain
data from VYSTADIAL 2013 - Czech corpus [19]. The acoustic models were
obtained by BMMI discriminative training with LDA and MLLT feature
transformations. A detailed description of the training procedure is given in
Chapter 3.

5.3 Evaluation of PyOnlineLatgenRecogniser

in Alex

We focus on evaluating the speed of the OnlineLatgenRecogniser and its re-
lationship with the accuracy of the decoder. We evaluate following measures:

• Real Time Factor (RTF) of decoding – the ratio of the recognition time
to the duration of the audio input,

• Latency – the delay between utterance end and the availability of
the recognition results,

• Word Error Rate (WER).

Accuracy and speed of the OnlineLatgenRecogniser are controlled by
the max-active-states, beam, and lattice-beam parameters [29]. Max-active-
states limits the maximum number of active tokens during decoding. Beam
is used during graph search to prune ASR hypotheses at the state level.
Lattice-beam is used when producing word level lattices after the decoding is
finished. It is crucial to tune these parameters to obtain good results.

In general, one aims for a RTF smaller than 1.0. Moreover, it is useful
in practice if the RTF is even smaller because other processes running on
the machine can influence the amount of available computational resources.
Therefore, we target the RTF with value of 0.6, which was estimated as
sufficient by informal experiments.

We used grid search on the test set to identify the optimal parameters
values. Figure 5.4 (a) shows the impact of the beam on the WER and RTF
measures. In this case, we set max-active-states to 2000 in order to limit
the worst case RTF to 0.6. Observing Figure 5.4 (a), we chose beam of
value 13 for further experiments as this setting balances the WER. Fig-
ure 5.4 (b) shows the impact of the lattice-beam on WER and latency when
beam is fixed to 13. We set lattice-beam to 5 based on Figure 5.4 (b) to
obtain the 95th latency percentile of 200 ms, which is considered natural in
a dialogue [40]. Lattice-beam does not affect WER, but larger lattice-beam

46

8 9 10 11 12 13 14 15 16

beam

0.0

0.2

0.4

0.6

0.8

1.0

R
T
F

19

20

21

22

23

24

25

W
E
R

a

95th RTF percentile
Average RTF
Desired 0.6 RTF
WER

1 2 3 4 5 6 7 8 9 10

lattice-beam

0

200

400

600

800

1000

La
te

n
cy

 [
m

s]

19

20

21

22

23

24

25

W
E
R

b

95th latency percentile
Desired latency 200 ms
WER

Figure 5.2: The upper graph (a) shows that WER decreases with increasing
beam and the average RTF linearly grows with the beam. The growth of
the 95th RTF percentile is limited at 0.6 by setting max-active-states to 2000,
because the max-active-states parameters influence presumably the worst
cases with large search space. The lower graph (b) shows latency growth in
response to increasing lattice-beam.

improves the oracle WER of generated lattices [30]. Richer lattices may
improve SLU performance.

Figure 5.3 shows the percentile graphs of the RTF and latency measures
over the test set. The 95th percentile is the value of a measure such that 95% percentile

of the data has the measure below that value. One can see from Figure 5.3
that 95% of test utterances is decoded with RTF under 0.6 and latency under
200 ms. The extreme values for 5% of test utterances are in most cases caused
by decoding long noisy utterances where uncertainty in decoding increase
the search space slows down the recogniser. Using beam of 13, the lattice-
beam of 5 and 2000 max-active-states, the OnlineLatgenRecogniser decodes
the test utterances with a WER of about 21%.

In addition, we have also evaluated Google ASR service as we used it
previously in Alex SDS. The Google ASR service decoded the test utterances
from the PTI domain with 95% latency percentile of 1900ms and it reached
WER about 48%. The high latency is presumably caused by the batch
processing of audio data and network latency, and the high WER is likely
caused by a mismatch between Google’s acoustic and language models and
the test data.

47

0 20 40 60 80 100

percentile

0.0

0.5

1.0

1.5

2.0

R
T
F

a

RTF
Desired 0.6 RTF
Critical 1.0 RTF
95th percentile

0 20 40 60 80 100

percentile

0

100

200

300

400

500

600

700

800

La
te

n
cy

 [
m

s]

b

Latency
Desired latency 200 ms
95th percentile

Figure 5.3: The percentile graphs show RTF and Latency scores for test
data for max-active-sates=2000, beam=13, lattice-beam=5. Note that 95 %
of utterances were decoded with the latency lower that 200ms.

Results

To conclude, we implemented ASR component based on OnlineLatgenRecog-
niser. We also implemented scripts which allow easy AM training and testing,
and LM evaluation for Kaldi speech recognition in Alex SDS.

Based on evaluation, we selected the best setup3 for ASR component in
Alex Dialogue System Framework with WER under 22 %, latency less tha
200 ms and RTF under 0.6 on PTI domain. As a results, the OnlineLatgen-
Recogniser performs significantly better than the previous ASR engines.

3Setup: beam 12, lattice-beam 5, max-active-states 2000.

48

0 2 4 6 8 10 12 14 16 18

Wave duration [s]

0

5000

10000

15000

20000

25000

La
te
n
cy
 [
m
s]

Batch vs Online decoding (Kaldi vs Google service)

OnlineLatgenRecogniser latency ~ extracting lattice
Google ASR latency ~ batch decoding

Figure 5.4: Almost constant latency of on-line decoder (OnlineLatgenRecog-
niser) and linearly growing latency of cloud based speech recogniser (Google
ASR service) for increasing utterance length.

49

50

6. Conclusion

This work presented the OnlineLatgenRecogniser, an extension of the Kaldi
automatic speech recognition toolkit. The recogniser and its Python exten-
sion is stable and intensively used in a publicly available Spoken Dialogue
System Alex[41]. The recogniser produces high quality word posterior lattices
thanks to the use of a standard Kaldi lattice decoder. Scripts for Acoustic
Model training and evaluation in Alex SDS were prepared.

The training scripts1 as well as the source code of the OnlineLatgenRecog-
niser 2 are currently merged into Kaldi repository. The Alex dialogue system
and the integration of OnlineLatgenRecogniser is Apache, 2.0 licensed and
freely available on Github3. The training scripts, the OnlineLatgenRecogniser
and its Python wrapper PyOnlineLatgenRecogniser were developed also un-
der Apache, 2.0 license on Github4

The goals set in introduction were achieved. We have successfully trained
acoustic models, designed and also implemented speech recogniser and im-
proved real-time decoder. Furthermore, we integrated the C++ OnlineLat-
genRecogniser into Alex dialogue system written in Python. The recogniser’s
parameters were tuned and evaluated on PTI domain. A state-of-the-art
performance of speaker independent real-time recognition was achieved. As
a result, the recogniser is deployed in publicly available Spoken Dialogue
System Alex5.

In addition to our implementation effort, we have also co-authored an ar-
ticle which uses AM training scripts described in Chapter 3. The article[19]
describes the Czech and English Vystadial data sets as well as its acoustic
modelling scripts in Kaldi and HTK. We also submitted an article about
OnlineLatgenRecogniser’s implementation and properties to the Sigdial con-
ference6. The article is currently in a review process.

Future plans include implementing more sophisticated speech parame-
terisation interface and feature transformations, implementing normalisation
of word posterior lattices and exploring acoustic modelling based on Deep
Neural Networks.

Acknowledgments

This research was partly funded by the MEYS of the Czech Republic under
the grant agreement LK11221 and core research funding of Charles Univer-
sity in Prague. The work described herein uses language resources hosted
by the LINDAT/CLARIN repository, funded by the project LM2010013 of
the MEYS of the Czech Republic. We would also like to thank Daniel Povey,

1http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_en/

and http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_cz/
2http://sourceforge.net/p/kaldi/code/HEAD/tree/sandbox/oplatek2/src/dec-wrap/
3https://github.com/UFAL-DSG/alex
4https://github.com/UFAL-DSG/pykaldi, https://github.com/UFAL-DSG/pyfst
5Alex provides Public Transport Information on toll-free line 800 899 998 in Czech.
6http://www.sigdial.org/

51

http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_en/
http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_cz/
http://sourceforge.net/p/kaldi/code/HEAD/tree/sandbox/oplatek2/src/dec-wrap/
https://github.com/UFAL-DSG/alex
https://github.com/UFAL-DSG/pykaldi
https://github.com/UFAL-DSG/pyfst
http://www.sigdial.org/

Vassil Panayotov, Pavel Mencl, Ondřej Dušek, Matěj Korvas, Lukáš Žilka,
David Marek and Tomáš Martinec for their useful comments and discussions.

52

A. Acronyms

DNN Deep Neural Networks. .4

SLU Spoken Language Understanding . 41

ASR Automatic Speech Recognition . 3

FST Finite State Transducer . 22

DFT Discrete Fourier Transformation . 7

GPU Graphics Processing Unit . 4

HTK Hidden Markov Model Toolkit . 1

EM Expectation Maximization . 10

PDF Probability Density Function . 23

OOV Out of Vocabulary Word . 31

RTF Real Time Factor . 19

HLDA Heteroscedastic Linear Discriminant Analysis . 8

HMM Hidden Markov Model .5

LDA Linear Discriminant Analysis . 8

LM Language Model .5

AM Acoustic Model .3

MFCC Mel Frequency Cepstral Coefficients . 6

PLP Perceptual Linear Prediction . 6

PTI Public Transport Information . 25

IID Independent and Identically Distributed . 11

MLE Maximum Likelihood Estimation . 11

MLLT Maximum Likelihood Linear Transform. 8

CMVN Cepstral Mean and Variance Normalisation . 8

STC Semi-Tied Covariance . 8

ET Exponential Transform . 8

MMI Maximum Mutual Information . 27

bMMI Boosted Maximum Mutual Information. .32

PDF Probability Density Function . 23

MPE Minimum Phone Error . 32

PLP Perceptual Linear Prediction . 6

SER Sentence Error Rate . 19

SDS Spoken Dialogue System. .3

WER Word Error Rate . 18

LMW Language Model Weight . 14

53

VAD Voice Activity Detection . 41

DM Dialogue Manager . 41

TTS Text to Speech . 25

NLG Natural Language Generation . 41

WST Word Symbol Table . 45

54

B. CD content

The CD contains source code of projects developed, extended or modified as
implementation part of this thesis. The thesis texts describes my work on
projects listed below:

• Alex — Alex Dialogue System Framework where I added following files
and directories:

– alex/components/asr/kaldi.py — ASR component interfacing Py-
OnlineLatgenRecogniser

– alex/tools/kaldi/ — Kaldi training scripts modified for Alex

– alex/applications/PublicTransportInfoCs/hclg/ — Decoding graph
(HCLG) scripts, and scripts for ASR evaluation.

• The Kaldi toolkit — Speech recognition toolkit where I added directo-
ries:

– src/onl-rec — Implementation of OnlineLatgenRecogniser and util-
ities

– src/pykaldi — Python wrapper PyOnlineLatgenRecogniser and
utilities

– egs/vystadial/s5 — Training scripts for acoustic modelling1

– egs/vystadial/online_demo — Demos using using OnlineLatgen-
Recogniser and PyOnlineLatgenRecogniser.

• Pyfst — Python wrapper of OpenFst, where I improved installation
and addedd several simple functions. Note I forked the original pyfst
library.

• Pykaldi-eval — Repository for evaluation OnlineLatgenRecogniser writ-
ten in IPython notebook. See interesting graphs.

• thesis.pdf

• Reference documentation for C++ code in kaldi/src/onl-rec.

• Reference documentation for Python code in kaldi/src/pykaldi.

• The reference documentation for my code in Alex.

1The same scripts were integrated into Kaldi svn trunk repository.
However, the scripts are separated for Czech and English data. See
http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_cz/

and http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_en/

55

http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_cz/
http://sourceforge.net/p/kaldi/code/HEAD/tree/trunk/egs/vystadial_en/

56

Bibliography

[1] ADSF, The Alex Dialogue Systems Framework, April 2014,
https://github.com/UFAL-DSG/alex.

[2] Lee Akinobu, Open-Source Large Vocabulary CSR Engine Julius, April
2014, http://julius.sourceforge.jp/en_index.php.

[3] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and
Mehryar Mohri, OpenFst: A general and efficient weighted finite-
state transducer library, Implementation and Application of Automata,
Springer, 2007, pp. 11–23.

[4] Stefan Behnel, Robert Bradshaw, Lisandro Dalcín, Mark Florisson,
Vitja Makarov, and Dag Seljebotn, Cython: C-Extensions for Python,
2014, http://cython.org/.

[5] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey
Dean, Large language models in machine translation, In Proceedings
of the Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, Citeseer,
2007.

[6] Senaka Buthpitiya, Ian Lane, and Jike Chong, A parallel implementation
of Viterbi training for acoustic models using graphics processing units,
Innovative Parallel Computing (InPar), 2012, IEEE, 2012, pp. 1–10.

[7] Victor Chahuneau and Ondrej Platek, The PyFst library: OpenFst in
Python, 2014, https://github.com/UFAL-DSG/pyfst .

[8] Y-L Chow, Maximum mutual information estimation of HMM param-
eters for continuous speech recognition using the< e1> N</e1>-best
algorithm, Acoustics, Speech, and Signal Processing, 1990. ICASSP-90.,
1990 International Conference on, IEEE, 1990, pp. 701–704.

[9] Steven Davis and Paul Mermelstein, Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spoken sen-
tences, Acoustics, Speech and Signal Processing, IEEE Transactions on
28 (1980), no. 4, 357–366.

[10] Mark JF Gales, Semi-tied covariance matrices for hidden Markov mod-
els, Speech and Audio Processing, IEEE Transactions on 7 (1999), no. 3,
272–281.

[11] Zoubin Ghahramani, Unsupervised learning, Advanced Lectures on Ma-
chine Learning, Springer, 2004, pp. 72–112.

[12] Joshua T Goodman, A bit of progress in language modeling, Computer
Speech & Language 15 (2001), no. 4, 403–434.

57

http://cython.org/
https://github.com/UFAL-DSG/pyfst

[13] Ramesh A Gopinath, Maximum likelihood modeling with Gaussian dis-
tributions for classification, Acoustics, Speech and Signal Processing,
1998. Proceedings of the 1998 IEEE International Conference on, vol. 2,
IEEE, 1998, pp. 661–664.

[14] Hynek Hermansky, Perceptual linear predictive (PLP) analysis of speech,
The Journal of the Acoustical Society of America 87 (1990), 1738.

[15] Xuedong Huang, Alejandro Acero, Hsiao-Wuen Hon, et al., Spoken lan-
guage processing, vol. 15, Prentice Hall PTR New Jersey, 2001.

[16] David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W Black, Mo-
sur Ravishankar, and Alex I Rudnicky, Pocketsphinx: A free, real-time
continuous speech recognition system for hand-held devices, Acoustics,
Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, vol. 1, IEEE, 2006, pp. I–I.

[17] Abdul J Jerri, The shannon sampling theorem—its various extensions
and applications: A tutorial review, Proceedings of the IEEE 65 (1977),
no. 11, 1565–1596.

[18] Filip Jurčíček, VYSTADIAL: Development of statisti-
cal methods for spoken dialogue systems, April 2014,
http://ufal.mff.cuni.cz/grants/vystadial.

[19] Matěj Korvas, Ondřej Plátek, Ondřej Dušek, Lukáš Žilka, and Filip Ju-
rčíček, Free English and Czech telephone speech corpus shared under the
CC-BY-SA 3.0 license, Proceedings of the Eigth International Confer-
ence on Language Resources and Evaluation (LREC 2014), 2014, p. To
Appear.

[20] Akinobu Lee and Tatsuya Kawahara, Recent development of open-source
speech recognition engine julius, 2009.

[21] Mehryar Mohri, Fernando Pereira, and Michael Riley, Weighted finite-
state transducers in speech recognition, Computer Speech & Language
16 (2002), no. 1, 69–88.

[22] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, Founda-
tions of machine learning, The MIT Press, 2012.

[23] Sirko Molau, Florian Hilger, and Hermann Ney, Feature space normal-
ization in adverse acoustic conditions, Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International
Conference on, vol. 1, IEEE, 2003, pp. I–656.

[24] Fabrizio Morbini, Kartik Audhkhasi, Kenji Sagae, Ron Artstein, Dogan
Can, Panayiotis Georgiou, Shri Narayanan, Anton Leuski, and David
Traum, Which ASR should I choose for my dialogue system?, Proceed-
ings of the SIGDIAL 2013 Conference (Metz, France, 2013, pp. 394–403.

[25] Hermann Ney, Acoustic modeling of phoneme units for continuous speech
recognition, Proc. Fifth Europ. Signal Processing Conf, 1990, pp. 65–72.

58

[26] Daniel Povey, The Kaldi ASR toolkit, April 2014,
http://sourceforge.net/projects/kaldi.

[27] Daniel Povey, Lukas Burget, Mohit Agarwal, Pinar Akyazi, Kai Feng,
Arnab Ghoshal, Ondrej Glembek, Nagendra K Goel, Martin Karafiát,
Ariya Rastrow, et al., Subspace Gaussian mixture models for speech
recognition, Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, IEEE, 2010, pp. 4330–4333.

[28] Daniel Povey, Mark JF Gales, Do Yeong Kim, and Philip C Wood-
land, MMI-MAP and MPE-MAP for acoustic model adaptation., IN-
TERSPEECH, 2003.

[29] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin
Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely,
The Kaldi speech recognition toolkit, IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding, IEEE Signal Processing Society,
December 2011, IEEE Catalog No.: CFP11SRW-USB.

[30] Daniel Povey, Mirko Hannemann, Gilles Boulianne, Lukas Burget,
Arnab Ghoshal, Milos Janda, Martin Karafiát, Stefan Kombrink, Petr
Motlicek, Yanmin Qian, et al., Generating exact lattices in the WFST
framework, Acoustics, Speech and Signal Processing (ICASSP), 2012
IEEE International Conference on, IEEE, 2012, pp. 4213–4216.

[31] Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhuvana Ramabhad-
ran, George Saon, and Karthik Visweswariah, Boosted MMI for model
and feature-space discriminative training, Acoustics, Speech and Sig-
nal Processing, 2008. ICASSP 2008. IEEE International Conference on,
IEEE, 2008, pp. 4057–4060.

[32] Daniel Povey and Brian Kingsbury, Evaluation of proposed modifications
to MPE for large scale discriminative training, Acoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE International Conference
on, vol. 4, IEEE, 2007, pp. IV–321.

[33] Daniel Povey, Brian Kingsbury, Lidia Mangu, George Saon, Hagen
Soltau, and Geoffrey Zweig, fMPE: Discriminatively trained features for
speech recognition, Proc. ICASSP, vol. 1, Philadelphia, 2005, pp. 961–
964.

[34] Daniel Povey, G. Zweig, and A. Acero, The Exponential Transform as a
generic substitute for VTLN, IEEE ASRU, 2011.

[35] Josef Psutka, Benefit of maximum likelihood linear transform (MLLT)
used at different levels of covariance matrices clustering in ASR systems,
Text, Speech and Dialogue, Springer, 2007, pp. 431–438.

[36] Josef Psutka, Ludek Müller, and Josef V Psutka, Comparison of MFCC
and PLP parameterizations in the speaker independent continuous speech
recognition task., INTERSPEECH, 2001, pp. 1813–1816.

59

[37] Michael Riley, OpenFst Quick Tour, April 2014,
http://www.openfst.org/twiki/bin/view/FST/FstQuickTour.

[38] Luis Javier Rodríguez and Inés Torres, Comparative study of the Baum-
Welch and Viterbi training algorithms applied to read and spontaneous
speech recognition, Pattern Recognition and Image Analysis, Springer,
2003, pp. 847–857.

[39] David Rybach, Stefan Hahn, Patrick Lehnen, David Nolden, Martin
Sundermeyer, Zoltan Tüske, Siemon Wiesler, Ralf Schlüter, and Her-
mann Ney, RASR-The RWTH Aachen University open source speech
recognition toolkit, Proc. IEEE Automatic Speech Recognition and Un-
derstanding Workshop, 2011.

[40] Gabriel Skantze and David Schlangen, Incremental dialogue processing
in a micro-domain, Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, Association
for Computational Linguistics, 2009, pp. 745–753.

[41] UFAL-DSG, The Alex Dialogue Systems Framework - Public Transport
Information, April 2014, http://ufal.mff.cuni.cz/alex-dialogue-systems-
framework/.

[42] Keith Vertanen, Baseline WSJ acoustic models for HTK and Sphinx:
Training recipes and recognition experiments, Tech. report, Cavendish
Laboratory, University of Cambridge, 2006.

[43] Karel Veselỳ, Arnab Ghoshal, Lukáš Burget, and Daniel Povey, Sequence
discriminative training of deep neural networks, Proc. INTERSPEECH,
2013, pp. 2345–2349.

[44] R Weide, The cmu pronunciation dictionary, release 0.7a, Carnegie Mel-
lon University, 1998.

[45] Ian H Witten and Timothy Bell, The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression, Informa-
tion Theory, IEEE Transactions on 37 (1991), no. 4, 1085–1094.

[46] Xuchen Yao, Pravin Bhutada, Kallirroi Georgila, Kenji Sagae, Ron Art-
stein, and David R Traum, Practical evaluation of speech recognizers for
virtual human dialogue systems., LREC, Citeseer, 2010.

[47] Jinjin Ye, Speech recognition using time domain features from phase
space reconstructions, Ph.D. thesis, Marquette University Milwaukee,
Wisconsin, 2004.

[48] SJ Young, The HTK Hidden Markov Model Toolkit: Design and Philos-
ophy, vol. 2, 1994, pp. 2–44.

[49] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Ker-
shaw, Xunying Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan
Povey, et al., The HTK book (for HTK version 3.4), Cambridge univer-
sity engineering department 2 (2006), no. 2, 2–3.

60

[50] Xiaohui Zhang, Jan Trmal, Daniel Povey, and Sanjeev Khudanpur, Im-
proving deep neural network acoustic models using generalized maxout
networks, submitted to ICASSP (2014).

61

	Introduction
	The goals of the thesis
	Training acoustic models
	Development real-time speech recogniser
	Integration into Alex SDSs framework

	Background
	Automatic speech recognition
	Speech parameterisation
	Acoustic modelling
	Language modelling
	Speech decoding
	Evaluating ASR quality

	HTK
	Julius decoding engine
	Kaldi
	Finite State Transducers

	Acoustic model training
	Vystadial acoustic data
	Acoustic modelling scripts
	Evaluation
	Results
	Kaldi and HTK comparison

	Real time recogniser
	OnlineLatgenRecogniser
	OnlineLatgenRecogniser interface
	OnlLatticeFasterDecoder
	On-line feature pre-processing
	Post-processing the lattice

	PyOnlineLatgenRecogniser
	Summary

	Kaldi ASR in Alex SDS
	Alex dialogue system architecture
	Kaldi integration into SDS framework
	PyOnlineLatgenRecogniser in Alex
	Building in-domain decoding graph

	Evaluation of PyOnlineLatgenRecogniser in Alex

	Conclusion
	Acronyms
	CD content
	The bibliography

