Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
250 lines (183 sloc) 7.57 KB

py-algorand-sdk

Build Status PyPI version Documentation Status

A python library for interacting with the Algorand network.

Installation

Run $ pip3 install py-algorand-sdk to install the package.

Alternatively, choose a distribution file, and run $ pip3 install [file name].

Quick start

Here's a simple example you can run without a node.

from algosdk import account, encoding

# generate an account
private_key, address = account.generate_account()
print("Private key:", private_key)
print("Address:", address)

# check if the address is valid
if encoding.is_valid_address(address):
    print("The address is valid!")
else:
    print("The address is invalid.")

Node setup

Follow the instructions in Algorand's developer resources to install a node on your computer.

Running example.py

Before running example.py, start kmd:

$ ./goal kmd start -d [data directory]

Next, create a wallet and an account:

$ ./goal wallet new [wallet name] -d [data directory]
$ ./goal account new -d [data directory] -w [wallet name]

Visit the Algorand dispenser and enter the account address to fund your account.

Next, in params.py, either update the tokens and addresses, or provide a path to the data directory.

You're now ready to run example.py!

More examples

using the Wallet class

Instead of always having to keep track of handles, IDs, and passwords for wallets, create a Wallet object to manage everything for you.

import params
from algosdk import kmd
from algosdk.wallet import Wallet

# create a kmd client
kcl = kmd.KMDClient(params.kmd_token, params.kmd_address)

# create a wallet object
wallet = Wallet("wallet_name", "wallet_password", kcl)

# get wallet information
info = wallet.info()
print("Wallet name:", info["wallet"]["name"])

# create an account
address = wallet.generate_key()
print("New account:", address)

# delete the account
delete = wallet.delete_key(address)
print("Account deleted:", delete)

backing up a wallet with mnemonic

import params
from algosdk import kmd, mnemonic
from algosdk.wallet import Wallet

# create a kmd client
kcl = kmd.KMDClient(params.kmd_token, params.kmd_address)

# create a wallet object
wallet = Wallet("wallet_name", "wallet_password", kcl)

# get the wallet's master derivation key
mdk = wallet.export_master_derivation_key()
print("Master Derivation Key:", mdk)

# get the backup phrase
backup = mnemonic.from_master_derivation_key(mdk)
print("Wallet backup phrase:", backup)

You can also back up accounts using mnemonic.from_private_key().

recovering a wallet using a backup phrase

import params
from algosdk import kmd, mnemonic

# get the master derivation key from the mnemonic
backup = "such chapter crane ugly uncover fun kitten duty culture giant skirt reunion pizza pill web monster upon dolphin aunt close marble dune kangaroo ability merit"
mdk = mnemonic.to_master_derivation_key(backup)

# create a kmd client
kcl = kmd.KMDClient(params.kmd_token, params.kmd_address)

# recover the wallet by passing mdk when creating a wallet
kcl.create_wallet("wallet_name", "wallet_password", master_deriv_key=mdk)

You can also recover accounts using mnemonic.to_private_key().

writing transactions to file

If you don't want to send your transactions now, you can write them to file. This works with both signed and unsigned transactions.

import params
from algosdk import algod, kmd, transaction

sender = "sender_address"
receiver = "receiver_address"

# create an algod and kmd client
acl = algod.AlgodClient(params.algod_token, params.algod_address)
kcl = kmd.KMDClient(params.kmd_token, params.kmd_address)

# get suggested parameters
params = acl.suggested_params()
gen = params["genesisID"]
gh = params["genesishashb64"]
last_round = params["lastRound"]
fee = params["fee"]

# create a transaction
amount = 10000
txn = transaction.PaymentTxn(sender, fee, last_round, last_round+100, gh, receiver, amount)

# write to file
txns = [txn]
transaction.write_to_file([txn], "pathtofile.tx")

We can also read transactions after writing them to file.

# read from file
read_txns = transaction.retrieve_from_file("pathtofile.tx")

manipulating multisig transactions

import params
from algosdk import account, transaction, algod, encoding

acl = algod.AlgodClient(params.algod_token, params.algod_address)

# generate three accounts
private_key_1, account_1 = account.generate_account()
private_key_2, account_2 = account.generate_account()
private_key_3, account_3 = account.generate_account()

# create a multisig account
version = 1  # multisig version
threshold = 2  # how many signatures are necessary
msig = transaction.Multisig(version, threshold, [account_1, account_2])

# get suggested parameters
params = acl.suggested_params()
gen = params["genesisID"]
gh = params["genesishashb64"]
last_round = params["lastRound"]
fee = params["fee"]

# create a transaction
sender = msig.address()
amount = 10000
txn = transaction.PaymentTxn(sender, fee, last_round, last_round+100, gh, account_3, amount)

# create a SignedTransaction object
mtx = transaction.MultisigTransaction(txn, msig)

# sign the transaction
mtx.sign(private_key_1)
mtx.sign(private_key_2)

# print encoded transaction
print(encoding.msgpack_encode(mtx))

working with NoteField

We can put things in the "note" field of a transaction; here's an example with an auction bid. Note that you can put any bytes you want in the "note" field; you don't have to use the NoteField object.

from algosdk import auction, transaction, encoding, account, constants
import base64

# generate account
private_key, address = account.generate_account()
auction_address = "string address"

# create bid
external_currency = 10000  # how much external currency you're willing to spend
max_price = 260  # maximum price for one algo
bid = auction.Bid(address, external_currency, max_price,
                  "bid_id", auction_address, "auc_id")

# sign bid
sb = bid.sign(private_key)

# create notefield
note_field = auction.NoteField(sb, constants.note_field_type_bid)

# create transaction; you can sign and send this like any other transaction
fee = 1
first_valid_round = 567
gh = "genesis hash"
note_field_bytes = base64.b64decode(encoding.msgpack_encode(note_field))
txn = transaction.PaymentTxn(address, fee, first_valid_round,
                             first_valid_round+100, gh, auction_address,
                             100000, note=note_field_bytes)

We can also get the NoteField object back from its bytes:

# decode notefield
decoded = encoding.msgpack_decode(base64.b64encode(note_field_bytes))
print(decoded.dictify())

Documentation

Documentation for the Python SDK is available at py-algorand-sdk.readthedocs.io.

License

py-algorand-sdk is licensed under a MIT license. See the LICENSE file for details.

You can’t perform that action at this time.