diff --git a/Makefile b/Makefile index 42b9d8334..a58b140db 100644 --- a/Makefile +++ b/Makefile @@ -6,6 +6,17 @@ PYTHON := $(VENV_DIR)/bin/python PIP := $(VENV_DIR)/bin/pip # Default target +.PHONY: help +help: + @echo "Available targets:" + @echo " all - Install dependencies and run tests" + @echo " venv - Create a virtual environment" + @echo " install - Install Python dependencies" + @echo " lint - Run Black code formatting" + @echo " test - Run tests" + @echo " docker-build - Build the Docker image" + @echo " docker-run - Run the Docker container with the example" + .PHONY: all all: install test diff --git a/README.md b/README.md index d94ddd528..5c0ca1487 100644 --- a/README.md +++ b/README.md @@ -43,7 +43,7 @@ pip install -e . ### Quick Start We use the OpenAI SDK, so you can use any LLM or provider that supports an OpenAI compatible API. Just set the `OPENAI_API_KEY` environment variable -and update the `api_base` in config.yaml if you are using a provider other than OpenAI. For local models, you can use +and update the `api_base` in config.yaml if you are using a provider other than OpenAI. For local models, you can use an inference server like [optillm](https://github.com/codelion/optillm). ```python @@ -133,7 +133,7 @@ cat checkpoints/checkpoint_*/best_program_info.json | grep -A 10 metrics You can also install and execute via Docker: ```bash docker build -t openevolve . -docker run --rm -v .:/app openevolve examples/function_minimization/initial_program.py examples/function_minimization/evaluator.py --config examples/function_minimization/config.yaml --iterations 1000 +docker run --rm -v $(pwd):/app openevolve examples/function_minimization/initial_program.py examples/function_minimization/evaluator.py --config examples/function_minimization/config.yaml --iterations 1000 ``` ## Configuration @@ -183,7 +183,7 @@ We have sucessfully replicated the results from the AlphaEvolve paper, below is ![alpha-evolve-replication](https://github.com/user-attachments/assets/00100f9e-2ac3-445b-9266-0398b7174193) -This is exactly the packing reported by AlphaEolve in their paper (Figure 14): +This is exactly the packing reported by AlphaEvolve in their paper (Figure 14): ![alpha-evolve-results](https://github.com/user-attachments/assets/0c9affa5-053d-404e-bb2d-11479ab248c9)