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ABSTRACT

A new dynamical scheme with the conservative forms of the equations of density, momentum, and internal
energy is proposed for the nonhydrostatic models. With this scheme, the conservations of the mass and the total
energy are satisfied within round-off errors. In particular, methods for the integration of energy are discussed
in detail, and three of the approaches are compared; one is in the form of the pressure equation, the second is
the integration of internal energy with corrections on the transformation terms, and the third is use of the sum
of internal energy and kinetic energy as a prognostic variable. This scheme is incorporated into a nonhydrostatic
model with the horizontally explicit and vertically implicit time integration scheme for sound waves, and various
numerical experiments for the dry atmosphere are performed. The numerical results show that the conservative
properties are well satisfied.

1. Introduction

In recent years, the nonhydrostatic models have been
used for predictions of climate change with long time
integrations. Directly calculating interactions of water
vapors, clouds, and radiation for several tens of days,
radiative–convective equilibriums are obtained in a
large domain with horizontal length from 100 to 1000
km (Held et al. 1993; Tompkins and Craig 1998b, 1999).
Some research groups, on the other hand, try to extend
nonhydrostatic models to cover the entire globe (Se-
mazzi et al. 1995; Cullen et al. 1997; Qian et al. 1998;
Côté et al. 1998a,b; Smolarkiewicz et al. 1999). In the
near future, development of computer facilities will al-
low us to use high-resolution global climate models with
horizontal resolution around 5–10 km. In those days,
we will need to choose the nonhydrostatic equations as
the dynamical framework of the climate models.

The nonhydrostatic models, or the cumulus resolving
models, are nowadays developed and used by many re-
search groups, and have shown successful simulations
of mesoscale convections. These models are, however,
originally intended to be used for short-range integra-
tions of, say, a few days, so that much attention is not
being paid to conservation of physical quantities. Al-
though one needs to integrate for several tens of days
to obtain a radiative–convective equilibrium (Tompkins
and Craig 1998a), the conservations of mass and energy
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were not fully discussed in the nonhydrostatic model
studies for such long-range integrations. One may think
that the conservations of mass and energy are not the
primary requirement for calculations of radiative–con-
vective equilibrium or climate modeling, since there re-
mains uncertainty derived from the artificial numerical
smoothing even when the domain integral quantities are
conserved. In the case that the numerical scheme does
not guarantee the conservations, however, reliability of
model results would be reduced at least to the range of
fluctuations of the conserved quantities.

The nonhydrostatic equations have less approxima-
tions to the governing equations of the numerical models
of the atmosphere, in comparison to the hydrostatic
equations usually used for the large-scale models. The
nonhydrostatic equations system is categorized into two
groups: the incompressible system (Ogura and Phillips
1962) and the compressible system. Since the density
is not a variable quantity in the incompressible system,
we only consider the compressible nonhydrostatic equa-
tions in this paper. Essentially, the compressible non-
hydrostatic equations are equivalent to the Euler equa-
tions in the fluid dynamics since they do not introduce
any approximations to the governing equations of a flu-
id. As in the case of the Euler equations, the equations
are formulated with the conservative forms of natural
variables, that is, density, momentum, and total energy.
Therefore, if these variables are discretized in the flux
forms, we will obtain a conservative numerical scheme
of the nonhydrostatic equations.

Such an approach according to fluid dynamics has
not usually been taken in the nonhydrostatic modeling
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to simulate mesoscale convections. Instead of density
and total energy, pressure p (or the Exner function p)
and potential temperature u (or temperature T) are usu-
ally used as prognostic variables. Historically, the
choice of these variables may be due to the fact that p
and T are directly measured from observations. Fur-
thermore, The quasi-Boussinesq approximation of a
deep atmosphere, which is the base of the incompress-
ible nonhydrostatic equations, is formulated by using p
and u by Ogura and Phillips (1962). It is also an ad-
vantage of using potential temperature since u is con-
served in the Lagrangian sense in adiabatic motions and
can be used as a tracer in simulations of the mesoscale
convection.

The recent advance of computing resources has in-
voked the need for climate modeling with the nonhy-
drostatic equations. The importance of conservations of
mass and energy is being pointed out and becoming
appreciated. Doms and Schättler (1997) suggest a tran-
sition to use the equations of using density and internal
energy as prognostic variables instead of pressure and
enthalpy. Taylor (1984) and Gallus and Rančić (1996)
have proposed the energy conserving schemes by using
enthalpy or temperature as a prognostic variable. Re-
cently, Klemp et al. (2000) have devised a conservative
form of discretized equations by using density as a prog-
nostic variable in addition to a flux form potential tem-
perature. Xue et al. (2000) have also proposed a con-
servative form of discretized equations with minimum
approximations to the original governing equations.

On the other hand, most of the currently used global
models in the hydrostatic equations are based on the
conservative forms. Arakawa and Lamb (1977) and Ar-
akawa and Suarez (1983) developed an energy con-
serving scheme by considering a transformation of the
kinetic energy to enthalpy based on the pressure coor-
dinates. As an extension of this approach, there is a
category of the nonhydrostatic models in which pressure
in the hydrostatic balance is used as a vertical coordinate
(Laprise 1992; Juang 1992; Gallus and Rančić 1996;
Klemp et al. 2000). In particular, Gallus and Rančić
(1996) took care of the conservation of energy in their
nonhydrostatic model with the pressure coordinate. It is
true that the use of the pressure coordinate in nonhy-
drostatic models is advantageous; it is easy to incor-
porate observational data to the models and the model
results can be directly compared with those of the large-
scale models. This does not mean, however, that the use
of the pressure coordinate is the only way to the energy
conserving scheme.

We think that as a horizontally resolvable scale of
models becomes smaller, such as below 10 km, the geo-
metric height z coordinate is a more appropriate choice
for the vertical coordinate, since the assumption of the
hydrostatic balance becomes less relevant. The height-
based coordinate is used in many groups of the non-
hydrostatic models, and will be an important candidate
when the nonhydrostatic models are extended to the

global model. In this respect, we develop a conservative
numerical scheme using the height coordinate in the
compressible nonhydrostatic equations. Our approach is
similar to that of Taylor (1984). Although Taylor (1984)
reported the vertical discretization method for the con-
servation of energy and entropy, we particularly con-
centrate on the time discretization in order to stably
calculate propagation of sound waves. We also dem-
onstrate some numerical experiments to show the use-
fulness of the scheme, while Taylor (1984) did not show
any application of his scheme.

The structure of this paper is as follows. In section
2, we formulate a conservative scheme of the nonhy-
drostatic model that will be used in the following sec-
tion. In particular, in section 3, the conservation of en-
ergy is discussed and alternative forms of the energy
conservation are argued. In section 4, the numerical
scheme is applied to some test simulations. Section 5
summarizes the results and compares them with other
research.

2. Numerical scheme

a. Objectives

We summarize first the requirements of the new
scheme to be developed. We are in the course of de-
veloping a global climate model in the nonhydrostatic
equations to operate with a ultramassive parallel com-
puter with distributed memories. The proposed new
scheme is for the purpose of this target. First, we require
conservations of variables; in particular, conservations
of mass and energy are important for the climate mod-
eling. To satisfy the conservations, we discretized the
equations in the flux forms with the finite volume meth-
od. Second, the use of a massive parallel computer gives
a restriction on the choice of the time integration
scheme. We are only considering a horizontally two-
dimensional decomposition of the domain for the par-
allel computation, that is, the whole horizontal com-
putational domain consists of tiles of a rectangular area,
each of which is assigned to one of computer nodes. In
order to efficiently run on massive parallel computers,
data communications between nodes should be smaller.
Particularly, we should avoid those methods that gen-
erate global communications among many nodes, or
large transfer of memory between nodes. The spectrum
method and the finite element method are counted as
such methods. Use of the horizontally implicit method
for sound and gravity waves or the anelastic equations
should be reserved since they require elliptic equations
to be solved. Solving an elliptic equation on massive
parallel computers usually generates large communi-
cations between nodes, although efficient numerical
methods such as a multigrid method are nowadays avail-
able.

Choice of the time integration scheme greatly de-
pends on the treatment of sound waves. We choose the
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horizontally explicit and vertically implicit scheme for
sound waves based on the reason described above. For
a horizontally explicit scheme, one also can use the time
splitting scheme (Klemp and Wilhelmson 1978; Ska-
marock and Klemp 1992) to accelerate the efficiency;
only the terms related to sound waves are integrated by
a small time step and the other slower terms such as
advection terms are integrated by a large time step. The
scheme shown below can incorporate the time splitting
scheme, although the results with the time splitting will
be omitted throughout the paper, since the conservation
properties are the main concern of the present study.

We start from the Euler equations and make the least
approximations to them. The Euler equations are written
in the conservative forms of density, momentum, and
total energy. The equation of total energy is converted
to that of the internal energy, which has transformation
terms with the kinetic and potential energies. We choose
density r and internal energy e as prognostic variables.
This choice is contrasted with that in the usual non-
hydrostatic models where pressure p (or the Exner func-
tion p) and potential temperature u (or temperature T)
are used as prognostic variables. Here, the Exner func-
tion is defined as p 5 5 T/u, where p00 5R /Cd p(p/p )00

1000 hPa, Rd is the gas constant for dry air, and Cp is
the specific heat at constant pressure. We will discuss
these choices of the prognostic variables in terms of the
‘‘pressure equation’’ in section 2c. Furthermore, we
must say that the conservation of internal energy does
not mean the conservation of total energy. Even if the
flux form discretization of the prognostic equation of
internal energy is used, the volume integral of total en-
ergy is not conserved unless each of the transformation
terms with other energies are properly discretized. We
will discuss an alternative approach in section 3. In
section 2e, we will modify the equations in the terrain-
following coordinates for cases where topography ex-
ists.

b. The basic equations

We start from the Euler equations. The equations of
density, momentum, and total energy are written as

]
r 1 = · (rv) 5 0, (1)

]t

] ] ]F
(ry ) 1 (ry y 1 pd 2 s ) 5 2r , (2)i i j ij ij]t ]x ]xj i

]
tot tot(re ) 1 = · (rve 1 pv 2 y s 1 q) 5 0, (3)j ij]t

where y i(i 5 1, 2, 3) is each a component of velocity
vector v 5 (u, y, w), etot is the total energy defined by

tot 2e 5 e 1 F 1 v /2, (4)

where e is the internal energy and F is the gravitational
potential. Here sij is the stress tensor and q is the heat

flux. We use the summation convention for the repeated
indices of i or j with x1 5 x, x2 5 y, and x3 5 z. The
F is a function of only z and ]F/]z 5 g is the accel-
eration due to gravity.

Subtracting the equations of kinetic energy and po-
tential energy from the equations of total energy (3),
we have the equation of internal energy (see section 3):

]
(re) 1 = · (rvh) 5 v · =p 1 Q, (5)

]t

where h 5 e 1 p/r is enthalpy and

]y iQ 5 2= · q 1 s , (6)ij]xj

is the diabatic term. In the case of the moist atmosphere,
the latent heat release Qm is added to the right-hand
side.

As in the formulations of the usual nonhydrostatic
models, we define perturbation pressure from a basic
reference state that satisfies the hydrostatic balance,

1
0 5 2 =p 2 g. (7)srs

The pressure and the density of the basic state ps and
rs are determined if an appropriate temperature profile
Ts is given. Using the perturbations defined by p9 5 p
2 ps and r9 5 r 2 rs, the continuity equation (1) and
the equation of motion (2) are rewritten as

]
r9 1 = · (rv) 5 0, (8)

]t

]s] ]p9 xj
(ru) 1 = · (rvu) 5 2 1 , (9)

]t ]x ]xj

]s] ]p9 yj
(ry) 1 = · (rvy) 5 2 1 , (10)

]t ]y ]xj

]s] ]p9 z j
(rw) 1 = · (rvw) 5 2 2 r9g 1 . (11)

]t ]z ]xj

Thus far, no approximation is introduced by the sub-
traction of the basic state. However, the transformation
terms of energy become different forms as

]
(re) 1 = · (rvh)

]t

5 (v · =p9 1 r9wg) 2 rwg 1 Q. (12)

The first term (v · =p9 1 r9wg) on the right is the trans-
formation with the kinetic energy, whereas the second
term 2rwg is the transformation with the potential en-
ergy.

c. The pressure equation

In the fully compressible nonhydrostatic models, the
perturbation of pressure p9 or the Exner function p9 is
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usually used as a prognostic variable instead of that of
density r9. Normally, p9 or p9, T or u, and three com-
ponents of velocities are chosen for the five prognostic
variables of the models. To choose p9 as a prognostic
variable, one need to use the pressure equation instead
of the equation of density. From the thermodynamic
equation, tendency of density is related to that of pres-
sure as

]r 1 ]p r ]u
5 2 , (13)

2]t c ]t u ]ts

where cs is the speed of sound, which is given, for the
ideal gas, by 5 gRdT, where g 5 Cp/Cy and Cy is2cs

the specific heat at constant volume. From Eqs. (13) and
(8), one obtains

1 ]p9 r ]u9
1 = · (rv) 5 . (14)

2c ]t u ]ts

This is one of the forms of the pressure equation.
The advantage of the use of the pressure equation is

that the propagation of sound waves is directly incor-
porated. This is typically shown by the linearized equa-
tion in an isentropic gas with no gravity. Substituting
the divergence of linearized Eqs. (9)–(11) into the time
derivative of Eq. (14) with g 5 0 and u9 5 0, one obtains
the equation for the sound waves:

21 ] p9
25 ¹ p9. (15)

2 2c ]ts

In the nonhydrostatic model, in practice, one needs to
implicitly treat the terms related to the sound waves. If
the pressure equation is used, p9 can be implicitly cal-
culated by solving a Helmholtz equation.

The following problems arise, however, if the pres-
sure equation is used as a prognostic equation. First, the
conservation of mass is not exactly satisfied. In fact, in
the case that cs is not constant, a volume integral of p9
does not conserve when Eq. (14) is discretized in the
flux form. Even when cs is constant, it is not the total
mass but the domain integral of pressure that is con-
served.

The second problem, which has not been relatively
noticed, is that the pressure equation is not compatible
with the conservation of energy. For instance, if one
integrates internal energy re in the flux form, it is equiv-
alent to use pressure as a prognostic variable, since

Cyre 5 C rT 5 p, (16)y Rd

where the equation of state for the ideal gas is used.
Since most of the past nonhydrostatic models use T or
u as a prognostic variable, the above problem has been
avoided. For our purpose, however, the conservation of
energy is required so that the use of the pressure equa-
tion should be abandoned.

In order to resolve the above two problems, we use
alternative prognostic variables, r9 and re, which are

directly suggested from the original Euler equations.
Although the pressure equation is not used, an equation
for the implicit calculation of sound waves can be for-
mulated if one notes the relation (16). That is, substi-
tuting Eq. (16) into the equation of internal energy (12)
and dividing by Cy /Rd, we obtain

]
2p 1 = · (c rv)s]t

Rd5 [(v · =p9 1 r9wg) 2 rwg 1 Q], (17)
Cy

where

R Rd d 2h 5 C T 5 gR T 5 c (18)p d sC Cy y

is used for the ideal gas. Formally, Eq. (17) is analogous
to the pressure equation (14). The conservation of in-
ternal energy is satisfied if Eq. (17) is discretized in the
flux form even when cs is not a constant. We have chosen
a pair of the prognostic variables (r, re), which cor-
respond to a pair of (r, p). In this sense, our dynamical
framework is different from that with the customary
used variables (p, T) or (p, u).

In the case of no gravity, the contribution from the
right-hand side of Eq. (17) vanishes in the linearized
equation around the basic reference state. The conver-
gence of the advective flux rv on the left-hand side,2cs

which is originally the advection of enthalpy, plays a
role in the compressibility. In order to implicitly cal-
culate propagation of sound waves, we need to treat this
convergence term implicitly.

d. Time discretization

The governing equations of the nonhydrostatic model
in this study are based on the flux form equations with
prognostic variables being density r9, three components
of momentum ru, ry, rw, and internal energy re. We
define symbols as follows:

V 5 (U, V, W ) 5 (ru, ry , rw), (19)

P 5 p9, (20)

R 5 r9, (21)

E 5 re. (22)

For the time integration, we use the forward scheme for
U and V, and the backward scheme for R, W, and E.
That is, the horizontally explicit and vertically implicit
(HE–VI) scheme is used. Furthermore, we can use the
time splitting scheme by partitioning terms of fast and
slow motions (Klemp and Wilhelmson 1978; Skamarock
and Klemp 1992).

Substituting the symbols defined above, the flux form
equations (8), (9), (10), (11), and (12) become
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] ] ] ]
R 1 U 1 V 1 W 5 0, (23)

]t ]x ]y ]z

]s] ] xj
U 1 P 5 2= · (Vu) 1

]t ]x ]xj

[ G , (24)U

]s] ] yj
V 1 P 5 2= · (Vy) 1

]t ]y ]xj

[ G , (25)V

]s] ] z j
W 1 P 1 Rg 5 2= · (Vw) 1

]t ]z ]xj

[ G , (26)W

] ] ] ]
E 1 (Uh) 1 (Vh) 1 (Wh)

]t ]x ]y ]z

2 (v · =P 1 Rwg) 1 Wg 5 Q. (27)

We have placed the fast terms related to sound waves
and gravity waves on the left-hand side of the equations.
The choice of the implicit terms is based on the lin-
earized equations around the reference state at rest; the
terms responsible for the propagation of sound waves
in the linearized equations are treated as implicit terms.
Note that the buoyancy term is also treated implicitly
in order to take account of the buoyancy effect on sound
waves. The stability analysis of the implicit scheme of
is given in the appendix. As noted when Eq. (17) is
derived, the advection of enthalpy in the equation of
internal energy is related to the compressibility of sound
waves. This means that the advection terms in Eq. (27)
should be treated implicitly.

Based on the forward–backward scheme, therefore,
the time discretized forms of Eqs. (23)–(27) become

n11
]U ]V ]W

d R 1 1 1 5 0, (28)t 1 2]x ]y ]z
n]P

nd U 1 5 G , (29)t U]x
n]P

nd V 1 5 G , (30)t V]y
n11]P

n11 nd W 1 1 R g 5 G , (31)t W]z

] ] ]
n n11 n n11 n n11d E 1 (h U ) 1 (h V ) 1 (h W )t ]x ]y ]z

n n n11]P ]P ]P
† † † n112 u 2 y 2 w 1 R g1 2]x ]x ]z

n11 n1 W g 5 Q . (32)

The superscripts n and n 1 1 represent the quantities

of the nth and (n 1 1)th step in the time integration and
we express

t1Dt t n11 nd A 5 (A 2 A )/Dt 5 (A 2 A )/Dt. (33)t

In Eq. (32), we have introduced u†, y†, and w†, whose
discretization should be determined so as to keep the
consistency of the transformation between the internal
energy and the kinetic energy. We will argue about the
transformations of energy and the possible forms of u†,
y†, and w† in section 3. Here, we proceed using a prac-
tical approach.

Equations (28)–(32) are integrated via two steps.
First, the (n 1 1)th step values of U, V are calculated
from Eqs. (29) and (30), respectively. The equation of
the internal energy (32) is transformed to the equation
of P using Eq. (16). A set of Eqs. (28), (31), and (32),
therefore, consists of the implicit equations for the three
variables, Rn11, Wn11, and Pn11. It is troublesome to
solve for the (n 1 1)th step variables, however, if u†,
y†, and w† contains either Rn11, Wn11, or Pn11. To
avoid the nonlinearity of the (n 1 1)th step variables,
we choose

n n11 n n11U 1 U V 1 V
† †u 5 , y 5 . (34)

n n2(r 1 R ) 2(r 1 R )s s

Under the condition that the change in density is small,
the transformation with the kinetic energy of the hori-
zontal winds is consistent with the equation of momen-
tum as will be discussed in section 3. We also replace
the term in Eq. (32) as

n11 n11 n]P W ]P
† n11w 1 R g → 1 R g . (35)nn1 2 1 2]z r 1 R ]zs

Although the left-hand side contains nonlinear terms of
(n 1 1)th, step variables to keep the conservation (sec-
tion 3), this replacement makes it linear and thus the
implicit calculation can be easily performed. This term
is an effect of stratification on sound/gravity waves. The
use of the right-hand side means that the nth step strat-
ification is used as a basic state and does not affect linear
propagation of sound/gravity waves. On the other hand,
the transformation of energy becomes incomplete with
this approximation. We will make a correction when the
integration of E is performed [see Eq. (47) below]. Us-
ing Eq. (16), the equation of internal energy (32) is
transformed to

] R Rd d2 n11 n11 nd P 1 (c W ) 1 W g̃ 5 G , (36)t s E]z C Cy y

where
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Rd2 n nc [ h 5 gR T , (37)s dCy

n1 ]P
ng̃ [ g 2 1 R g , (38)

n1 2r 1 R ]zs

n] ] ]P
n n11 n n11 n †G [ 2 (U h ) 2 (V h ) 1 uE ]x ]y ]x

n]P
† n1 y 1 Q . (39)

]y

In the case of the hydrostatic balance, g̃ agrees with the
acceleration due to gravity g.

We are in a position of describing how the equations
are integrated. First, from Eqs. (29) and (30),

n]P
n11 n nU 5 U 1 Dt 2 1 G , (40)U1 2]x

n]P
n11 n nV 5 V 1 Dt 2 1 G . (41)V1 2]y

The remaining variables Rn11, Wn11, Pn11 are solved
by the implicit calculation of the three equations (28),
(31), and (36). They are formally solved for the (n 1
1)th step:

n11]W
n11 n nR 5 R 1 Dt 2 1 G , (42)R1 2]z

n11]P
n11 n n11 nW 5 W 1 Dt 2 2 R g 1 G , (43)W1 2]z

] Rdn11 n 2 n11 n11P 5 P 1 Dt 2 (c W ) 2 W g̃s[ ]z Cy

Rd n1 G , (44)E]Cy

where

n11
]U ]V

nG 5 2 1 . (45)R 1 2]x ]y

Substituting Rn11 and Pn11 of Eqs. (42) and (44) into
Eq. (43), we obtain a Helmholtz equation for Wn11:

2 n11] ] R ]Wd2 2 n11 2 n11 22 (Dt c W ) 2 Dt g̃W 1 Dt gs2 1 2[ ]]z ]z C ]zy

] Rdn11 n n n n1 W 5 W 1 DtG 2 Dt P 1 Dt GW E1 2]z Cy

n n2 Dtg(R 1 DtG ).R (46)

If we use the first-order discretization in the vertical
gradient, this equation is discretized as a form of a tri-

diagonal matrix multiplied by the vector Wn11. This
type of equation is easily solved.

The density Rn11 is integrated with a conservative
flux form by substituting Wn11 into Eq. (42). Similarly,
Pn11 can be integrated by using Eq. (44). The replace-
ment of Eq. (35), however, introduced inconsistency in
the transformation of energy. Then, we recover Eq. (32)
instead of (44) to integrate E, that is,

] ]
n11 n n n11 n n11E 5 E 1 Dt 2 (h U ) 2 (h V )[ ]x ]y

n n] ]P ]P
n n112 (h W ) 1 u 1 y

]z ]x ]x

n11]P
n11 n11 n1 w 1 R g 2 W g 1 Q ,1 2 ]]z

(47)

where 5 (An 1 An11)/2. It is clear that En11 obtainedA
by (47) and Pn11 obtained by (44) do not satisfy the
relation (16). Precisely, one needs to iterate for En11

and Pn11; number of iterations should be determined
by the relative importance between the accuracy and the
computation time. For our purpose, however, no itera-
tion is needed as long as the integration is stable, since
it is thought that the accuracy of sound waves is un-
important.

In the above formula, we derived the Helmholtz equa-
tion for Wn11. The other choice of the equation for
Rn11 or Pn11 may be considered. One of the advantages
of solving for W is that the top and the bottom boundary
conditions are easily incorporated; in the case when the
kinematic condition is applied at the boundaries, the
boundary values of Wn11 are directly given. In addition,
round-off errors will be smaller if Rn11 and En11 are
directly integrated using the flux form equations. In par-
ticular, by using the energy equation (47), we can make
a correction for the errors introduced when Eq. (36) is
derived. Furthermore, if the specific heat depends on
temperature or humidity, Eq. (36) is only an approxi-
mation. Equation (47) satisfies the conservation since
the advection term is written in the flux form.

e. Terrain-following coordinate

The conservation form of the equations is extended
to the terrain-following coordinate when the surface has
a topography. We summarize here the flux form equa-
tions in the terrain following coordinate. We assume
that a new vertical coordinate j is steady and monotonic
in the vertical direction. A simplest example of j is

z (z 2 z )T sj 5 , (48)
z 2 zT s

where zT is the top of the model domain and zs is the
height of the surface. This coordinate is used for the
simulation of topographic waves in section 4d.
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The metrics are defined as

]z 1 ]j
1/2 13G [ 5 , G [ ,1 2 1 2]j ]x]jx,y z1 2]z

x,y

]j
23G [ , (49)1 2]y

z

]z
1/2 13J [ 5 2G G ,x 1 2]x

j

]z
1/2 23J [ 5 2G G . (50)y 1 2]y

j

Mass element within a vertical length dz is dm 5 rdz.
Denoting the corresponding length in the j coordinate
by dj, we have

]z
1/2dm 5 rdz 5 r dj 5 G rdj. (51)

]j

Hence, the prognostic variable of the equation of f is
transformed to G1/2rf in the flux form equation. We
also have the transformation of the derivatives:

]f ] ]
1/2 1/2G 5 (G f)| 2 (J f)|j x x,y1 2]x ]x ]j

z

] ]
1/2 1/2 135 (G f)| 1 (G G f)| , (52)j x,y]x ]j

]f ] ]
1/2 1/2G 5 (G f)| 2 (J f)|j y x,y1 2]y ]y ]j

z

] ]
1/2 1/2 235 (G f)| 1 (G G f)| , (53)j x,y]y ]j

]f ]f
1/2G 5 . (54)1 2 1 2]z ]j

x,y x,y

Thus, the divergence of a flux F 5 (Fx, Fy, Fz) is ex-
pressed as

]F]F ]Fyx z1/2 1/2 1/2 1/2G = · F 5 G 1 G 1 G
]x ]y ]z
1/2 1/2](G F ) ](G F ) ]x y

5 1 1 F*, (55)z1 2 1 2]x ]y ]j
j

where

F* 5 F 2 J F 2 J Fz z x x y y

1/2 13 1/2 235 F 1 G G F 1 G G F . (56)z x y

The vertical velocity in the j coordinate is

dj 1 1
13 23j̇ [ 5 G u 1 G y 1 w 5 w*, (57)

1/2 1/2dt G G

where

w* 5 w 2 J u 2 J yx y

1/2 13 1/2 235 w 1 G G u 1 G G y . (58)

Therefore, multiplying G1/2 to the equation,

] ] ]
(rf) 1 (rfu 1 F ) 1 (rfy 1 F )x y]t ]x ]y

]
1 (rfw 1 F ) 5 S, (59)z]z

we have the flux form equation in the (x, y, j) coor-
dinates as

] ]
1/2 1/2 1/2(G rf) 1 (G rfu 1 G F )x]t ]x

] ]
1/2 1/21 (G rfy 1 G F ) 1 (rfw* 1 F*)y z]y ]j

1/25 G S. (60)

By transforming Eqs. (23)–(27) using this formula, we
obtain a set of the equations in the terrain following
coordinate.

3. Energy budget

a. Transformation of energy

In section 2d, we described the time discretization of
the model equations. We have pointed out that each of
the transformation terms of energy should be consis-
tently discretized to satisfy the conservation of energy,
and have presented one possible approach. In this sec-
tion, we consider how the conservation of energy is
satisfied in the numerical scheme and argue about al-
ternative forms of the equation of energy.

The total energy is defined as the sum of kinetic en-
ergy, potential energy, and internal energy as Eq. (4).
The change in each energy is written as

2 2] v v
r 1 = · rv 5 2v · =p9 2 r9wg1 2 1 2]t 2 2

]sij
1 y , (61)i ]xj

]
(rF) 1 = · (rFv) 5 rwg, (62)

]t

]
(re) 1 = · (rvh) 5 (v · =p9 1 r9wg)

]t

2 rwg 1 Q. (63)

The sum of Eqs. (61), (62), and (63) gives the conser-
vation of total energy Eq. (3). Let us denote the trans-
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formation term from the potential energy to the internal
energy by CPI, and that from the kinetic energy to the
internal energy by CKI:

C 5 2rwg, (64)PI

C 5 v · =p9 1 r9wg. (65)KI

Note that the contribution of the stress tensor is not
considered here. To satisfy the conservation of total en-
ergy, we need to consistently discretize these transfor-
mation terms.

The form of CPI depends on the discretization of the
equation of density. We have chosen Eq. (28) for the
equation of density. In this case, the corresponding
change in the potential energy is written as

] ] ]
n11 n11 n11d (rF) 1 (U F) 1 (V F) 1 (W F)t ]x ]y ]z

] ] ]
n11 n11 n11 n115 F d r 1 U 1 V 1 W 1 W gt1 2]x ]y ]z

n115 W g. (66)

Thus, the transformation from the potential energy to
the internal energy should be expressed as

n 11C 5 2W g.PI (67)

As for the transformation term CKI, the exact con-
servation is not satisfied since the discretization is not
complete as shown below. When each of the velocity
components are chosen as the prognostic variables, the
change in the kinetic energy is derived from the dis-
cretized equations of momentum. Actually, the equation
of kinetic energy (61) is given by the inner product of
the equations of momentum (2) and the velocity vector
using the equation of density (1). By using a formula,

Ad B 1 Bd A 5 d (AB),t t t (68)

we have the discretized relation for the change in kinetic
energy:

2ud U 1 y d V 1 wd W 2 (v /2)d Rt t t t

5 d K 2 (V 2 r v) · d v, (69)t t

where the kinetic energy is defined by

n 2 n 2 n 2(u ) 1 (y ) 1 (w )
n nK 5 r

2
n 2 n 2 n 21 (U ) 1 (V ) 1 (W )

5 . (70)
nr 2

The second term on the right-hand side of Eq. (69) is a
discretization error. From Eqs. (28), (29), (30), and (31),
the discretized equation of kinetic energy is given by

n n n11]P ]P ]P
n11d K 5 2u 2 y 2 w 1 R gt 1 2]x ]y ]z

n n n1 uG 1 y G 1 wGU V W

n112v ]U ]V ]W
1 1 11 22 ]x ]y ]z

1 (V 2 r v) · d v. (71)t

The corresponding discretized form of the transforma-
tion term is

n n n11]P ]P ]P
n11C 5 u 1 y 1 w 1 R g , (72)KI 1 2]x ]y ]z

which is introduced in Eq. (47).
It is clear from Eq. (71) that the conservation of ki-

netic energy is not exactly satisfied, since is timer
dependent and the last term on the right-hand side of
Eq. (71) remains as a discretization error. The other
difficulty comes from the advection of the momentum.
The advection of kinetic energy in the third line on the
right-hand side of Eq. (71) is not be rewritten as a flux
form, since the velocities of the nth and (n 1 1)th step
values are contaminated. In general, when the equation
of kinetic energy is constructed from the equations of
momentum, the advection of kinetic energy is not ex-
pressed in the flux form; this will be another source of
the change in total energy. As for the incompressible
fluid, for instance, Morinishi et al. (1998) have proposed
a tactful discretization of the advection of momentum
so that the advection of kinetic energy is written in the
flux form. It is widely believed, however, that the con-
tribution of the advection of kinetic energy is small in
the budget of total energy. In the numerical scheme
presented in section 2d, therefore, the total energy is
approximately conserved in the case that the contri-
bution of density change and the advection of kinetic
energy are negligible.

b. Integration of the sum of internal energy and
kinetic energy

As a totally different approach to the exact conser-
vation of total energy, one could choose the sum of
internal energy and kinetic energy as a prognostic var-
iable. We have implicitly solved for the variables R, W,
and P from Eqs. (42), (43), and (44) for the vertical
propagation of sound waves. In general, the internal
energy E obtained by the following method does not
satisfy the relation (36) with P. Nevertheless, as in the
same thought of using Eq. (47) for the prediction of E,
the following method may be used as an iterative pro-
cess, if the difference of E obtained by the two methods
is small.

From Eqs. (61) and (63), the change in the sum of
internal energy and kinetic energy is written as
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2 2] v v
r e 1 1 = · rv h 11 2 1 2[ ] [ ]]t 2 2

]
5 2rwg 2 = · q 1 (y s ), (73)i ij]xj

where Eq. (6) is used. The discretized form may be
given as

n2v
n11 n11d (E 1 K ) 5 2= · V h 1 2 W gt 1 2[ ]2

]
n n2 = · q 1 (y s ) . (74)i ij]xj

In the advection term, the (n 1 1)th step velocity Vn11

is used; it is required from the stability of the propa-
gation of sound waves. The transformation term with
the potential energy is expressed by using Eq. (67).
Since Kn11 is already given from the (n 1 1)th step
values of U, V, W, and R, En11 is given by subtracting
Kn11 from (E 1 K)n11, which is integrated by the
above equation.

c. Integration of entropy

In the last part of this section, we comment on the
conservation of entropy in comparison to the conser-
vation of energy. In many nonhydrostatic models, the
potential temperature is used as a prognostic variable.
For instance, Ooyama (1990) argues that the choice of
entropy as a prognostic variable is preferable. Klemp et
al. (2000) follows the argument of Ooyama in their flux
form equations. The formulation of Ooyama (1990),
however, is based on the adiabatic process, so that his
form is insufficient for the cases that the energy input
is important as in the climate modeling. The change in
potential temperature is written as

] u
(ru) 1 = · (rvu) 5 Q. (75)

]t C Tp

The diabatic heating Q is given by Eq. (6). For the
climate modeling, the convergence of the heat flux
2= ·q has an important contribution. If one uses the
equation of the internal energy (5), the domain integral
of the source term # Q dV leaves only the boundary
values of the heat flux, for example, the sensible heat
flux from the surface and the radiative fluxes at the top
and the bottom boundaries of the atmosphere. On the
other hand, if one uses the equation of potential tem-
perature based on a discretized form of Eq. (75), the
change in the domain integral of total energy is generally
different from energy input from the boundaries, since
temperature is diagnostically calculated form potential
temperature. This will cause an error of the energy bud-
get. As for the discretization of general circulation mod-
els, for instance, the conservation of energy is formu-
lated based on the change in enthalpy as described by

Arakawa and Lamb (1977) and Arakawa and Suarez
(1983). They use an additional requirement that the do-
main integral of potential temperature remains constant
under the adiabatic condition to eliminate an arbitrary
choice of the vertical discretization. We also follow the
Arakawa’s concept that the first principle is the con-
servation of energy, that is, internal energy or enthalpy,
but not the conservation of entropy.

The similar approach is adopted by Taylor (1984) who
followed Arakawa and Lamb (1977) and devised the
vertical discretization scheme using the height z as the
vertical coordinate. Taylor uses the equation of enthalpy
as a prognostic equation, and guarantees the conser-
vations of potential temperature and entropy by appro-
priate vertical interpolations of thermodynamic vari-
ables. If we use such a vertical discretization as Taylor’s,
potential temperature and entropy will be also conserved
even when the internal energy is chosen as a prognostic
variable.

4. Model and results

a. Model

We show some results for simple simulations using
the numerical scheme described in sections 2 and 3. We
have proposed three methods of the energy integration.
The first method is based on Eq. (44), from which En11

is given by multiplication of Cy /Rd to Pn11: this is re-
ferred to as the ‘‘noncorrection’’ method. The second
is based on Eq. (47) where the correction is made to
the transformation terms of energies: this method is re-
ferred to as the ‘‘correction’’ method. In the third meth-
od, the conservation of the total energy is guaranteed
based on Eq. (74): this will be called the ‘‘conservative’’
method. The results of using these methods are com-
pared in some of the following experiments.

The model is developed in the three-dimensional Car-
tesian coordinate, but only the results for the two-di-
mensional calculations are shown here. The definition
points of the variables are based on the Arakawa C grid;
R, E, and P are defined at the same points, and U, V,
and W are defined at the staggered points shifted half
point in the x, y, and z directions, respectively. The
Lorenz grid is used in the vertical direction. Rigid walls
are placed at the bottom and the top of boundaries and
free slip and insulating conditions are used at the bound-
aries. Periodicity is assumed at the lateral boundaries.
The time integration of sound waves is based on the
forward–backward scheme; the horizontally explicit and
vertically implicit scheme as described in section 2d.
The model is constructed following the time splitting
method (Klemp and Wilhelmson 1978; Skamarock and
Klemp 1992), but we simply set the small time step
equal to the large time step. The large time step is in-
tegrated with the leapfrog scheme with the time filter
to suppress the computational mode. We denote the time
step of the leapfrog scheme as 2Dt, where 2Dt is equal
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FIG. 1. Vertical profiles of perturbations of pressure p9 for the
experiments of the vertical propagation of sound waves at (a) t 5
10, (b) 20, and (c) 30 s. The initial state is shown by the dotted curve
and the experiments with Dt 5 0.1, 1.0, and 10.0 s are shown by the
solid, dashed, and dashed–dotted curves, respectively.

FIG. 2. The same as in Fig. 1 but for the vertical velocity w.

to the time step of the forward–backward scheme of
sound waves. We use a simple second-order centered-
in-space scheme for the advections.

b. One-dimensional vertical propagation of sound
waves

First, we calculate vertically propagating sound
waves to see the stability of the scheme. A perturbation
of pressure is given in a layer at the initial state under

a horizontally uniform condition. The initial state is uni-
form temperature 250 K at rest in the hydrostatic balance
except for the perturbation of pressure p9 5 100 hPa
between the heights 2.5 and 5 km. The top of the at-
mosphere is zT 5 15 km, and the layer difference is
uniform with Dz 5 500 m. No numerical smoothing
such as numerical diffusion, Rayleigh damping, or the
time filter is introduced in this case. Note that, however,
the fully implicit scheme has a damping characteristic
(see the appendix).

First, we use the correction method for the energy
integration. Figures 1 and 2 show the vertical distri-
butions of pressure and vertical velocity, respectively,
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FIG. 3. Time sequences of energies for the experiments of the vertical propagation of sound waves with Dt 5 1 s. (a) Internal energy re
(solid), potential energy rF (dashed), and available potential energy r(e 1 F) (dotted). (b), (c), (d) Kinetic energy rw2/2 (solid), available
potential energy r(e 1 F) (dashed), and total energy retot (dotted). (a), (b) The noncorrection method, (c) the correction method, and (d)
the conservative method (see text). Values of the energies are the differences from the initial values and averaged for a unit volume: the
dimension is J m23.

at t 5 10, 20, and 30 s. We compare the profiles with
the time step Dt 5 0.1, 1, and 10 s. It can be confirmed
that the case with Dt 5 10 s, which is larger than the
Courant–Friedrichs–Lewy (CFL) criterion for the sound
wave, is stably integrated. Since the fully implicit
scheme is used for the vertical propagation of sound
waves, the amplitude of pressure perturbation rapidly
decreases as Dt becomes larger (see the appendix). The
characteristics of these figures are almost the same for
the three methods of the energy integration. The dif-
ference between the methods is shown if the energy
budget is examined.

The conservation properties are investigated for the
case Dt 5 1 s. The total mass should be constant as
long as no coding error is introduced. In the present
calculation, the change in the mean density is within
10215 kg m23 until t 5 1000 s, which comes from the
numerical round-off errors. Figure 3 shows time se-
quences of energies until t 5 100 s: internal energy re,
potential energy rF, and kinetic energy rw2/2. Here,
we define the total energy etot and the available potential
energy eavail:

availe 5 e 1 F, (76)
tot 2 avail 2e 5 e 1 F 1 v /2 5 e 1 v /2. (77)

We use the name ‘‘available energy’’ since we will con-
sider only the time change in the volume integral of

eavail ; the change in eavail must be canceled out with the
change in kinetic energy in the analytic form. In these
figures, the differences of the volume-averaged values
from those initial values are shown. Figure 3a shows
that the change in re is almost balanced by the change
in rF. The change in the potential energy is due to the
change in the height of the center of gravity. The small
difference between re and rF is reflected in the avail-
able potential energy reavail , which is transformed with
the kinetic energy rw2/2. In this set up, the total energy
is analytically conserved since there is no energy input.
The conservation of total energy in the numerical
scheme is not guaranteed, however, unless the trans-
formation between kinetic energy and available poten-
tial energy is taken care of. The changes in the total
energy for the three methods of the energy integration
are compared in Figs. 3b,c, and 3d. In the case of the
noncorrection method, in which no special care is taken
for the transformation, the change in the kinetic energy
is very different from the change in the available po-
tential energy (Fig. 3b). In the case of the correction
method and the conservative method, on the other hand,
the change in the kinetic energy is almost canceled out
by the change in the available potential energy and the
total energy is almost conserved (Figs. 3c and 3d), al-
though the change in the total energy of the correction
method is slightly different from zero. This result im-
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FIG. 4. Distributions of perturbations of potential temperature for
the experiment of the horizontal propagation of gravity waves at (a)
the initial state and (b) t 5 3000 s. The contour intervals are (a) 1023

K and (b) 0.5 3 1023 K. The solid curves are positive, the dashed
curves are negative, and the dotted curves are zero.

FIG. 5. The same as Figs. 3a and 3b but for the experiment of the
horizontal propagation of gravity waves. In (b), the total kinetic en-
ergy r(u2 1 w2)/2 (solid), ru2/2 and rw2/2 (dashed–dotted) are added.

plies that the noncorrection method is inappropriate in
terms of the conservation of the total energy. Since the
nonlinear advection terms are not important in this ex-
periment, the results of the correction method and the
conservative method are almost similar.

c. Horizontal propagation of gravity waves

Second, we calculate horizontal propagation of grav-
ity waves by giving potential temperature perturbations
initially. The purpose of this experiment is to examine
whether the propagation of gravity waves is properly
calculated in our scheme in which the buoyancy term
is implicitly treated. The experimental condition is the
same as that given by Skamarock and Klemp (1994).
The top of atmosphere is zT 5 10 km, and the horizontal
domain size is 300 km in the x direction. The grid in-
terval is Dx 5 Dz 5 1 km and the time step is Dt 5
1 s. The coefficient of the time filter is 0.05. We do not
introduce divergence damping or any other numerical
smoothing. The correction method is used for the energy
integration. The initial thermal state has a constant
Brunt–Väisälä frequency with N 2 5 1024 s22. The tem-
perature at the bottom of the atmosphere is 300 K. The

initial profile of potential temperature perturbation is
given by

sin(pz/z )Tu9 5 Du , (78)0 2 21 1 (x 2 x ) /xm r

where Du0 5 0.01 K, xm 5 100 km, and xr 5 5 km.
The uniform horizontal wind 20 m s21 is given. Note
that this experiment is different from that given by Ska-
marock and Klemp (1994) where vertical variation of
density is not considered, whereas we are using the ideal
gas. The similar experiment with the ideal gas is shown
by Bonaventura (2000).

Figure 4 shows the distributions of potential temper-
ature at the initial state and t 5 3000 s. Although a
slight asymmetry emerges in the vertical direction, the
horizontal propagation of the gravity waves almost
agrees with the analytic solution shown by Skamarock
and Klemp (1994).

Figure 5 shows time sequences of the volume-aver-
aged values of energies. The differences from the initial
values are shown. Similar to Fig. 3, the conservation of
total energy is well satisfied. In particular, as shown by
Fig. 5b, the transformation between the kinetic energy
and the available energy is appropriately calculated. The
change in mass is negligibly small though the mass is
increasing due to the round-off error: the change in the
mean density is below 10213 kg m23.



MAY 2002 1239S A T O H

FIG. 6. Distributions of perturbations of (a) horizontal velocity and
(b) vertical velocity for the experiment of the finite amplitude to-
pographic waves at t 5 3000 s. The contour intervals are (a) 6 and
(b) 0.6 m s21. The solid curves are positive, the dashed curves are
negative, and the dotted curves are zero.

FIG. 7. The same as Figs. 3a and 3b but for the experiment of the
finite amplitude topographic waves. In (b), energy change due to the
damping terms ER (dashed–dotted) and the difference between total
energy retot and ER (dotted) are added.

d. Topographic waves

Next, in order to examine the conservative property
in the terrain following coordinate, we perform simu-
lations of propagation of topographic waves induced by
a surface topography in a uniform zonal wind field. The
configuration of topography is given by

2ha
z 5 . (79)s 2 2x 1 a

Durran and Klemp (1983) give the maximum height h
5 1 m to show an almost linear response. We also have
calculated the same condition with h 5 1 m and con-
firmed that our result is almost the same as Durran and
Klemp (figures are not shown here). We also simulate
the case with a finite amplitude h 5 1000 m in order
to examine how the energy is conserved. The horizontal
length of the mountain is a 5 10 km. The top of the
model domain is zT 5 16 km, and the horizontal domain
length is 180 km. The terrain-following coordinate j
given by (48) is used. The grid intervals are Dx 5 2
km and Dj 5 200 m. Initially, temperature is constant
250 K, and the zonal wind is uniform 5 20 m s21.u
In the layers above j 5 8 km, we introduce damping

terms that relax velocities and temperature to those of
the basic initial fields. Similar to Durran and Klemp
(1983), the relaxation rate of the damping has a cosine
profile in the vertical. The damping time takes its short-
est value 20Dt at the top of the model domain. The
energy integration is based on the correction method.
We will show results for a time step Dt 5 1 s below.
Note that we found that the time step can be extended
as Dt 5 3 s (the leapfrog time step is 6 s), which gives
a sufficiently large Courant number for the vertical prop-
agation of sound wave.

Figure 6 shows the structure of the perturbation of
horizontal velocity u9 and the vertical velocity w at t 5
3000 s. The amplitudes of the velocities are about 1000
times larger than those of the analytic solution shown
by Durran and Klemp (1983, their Figs. 1 and 2). At
this time t 5 3000 s ( t/a 5 6), the flow is not yet inu
the steady state. However, the further integration shows
that turbulence develops due to the nonlinearity since
this is the finite amplitude calculation; numerical dif-
fusions are required to continue a stable calculation.

Figure 7 shows time sequences of energies. Since the
damping terms are included above j 5 8 km, the change
in the total energy should be equal to the accumulation
of the energy sinks due to the damping terms. In Fig.
7b, the accumulated energy change due to the damping
terms is shown by the dashed–dotted curve ER. It is
found that ER is almost explained by the damping term
due to temperature perturbations (not shown). Figure 7b
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FIG. 8. Distributions of perturbations of potential temperature for the cold-bubble experiment with the grid interval Dx 5 Dz 5 50 m at
(a) the initial state, (b) t 5 300, (c) 600, and (d) 900 s. The contour intervals are 1 K.

shows the difference between the change in the total
energy and ER by the dotted curve. It is confirmed that
the change in the total energy is almost equal to ER.
Since this simulation is essentially linear, the energy
conservation is well satisfied if the correction method
is used. The mass is also almost conserved; the change
in the mean density is about 10214 kg m23 for the 3000-
s integration. This comes from the round-off errors.

e. Cold-bubble simulation

As a final example, we simulate the finite amplitude
density current induced by a cold bubble given at the
initial state. This experiment is suggested as a benchmark
simulation of a nonlinear density current by Straka et al.
(1993), and also used by Gallus and Rančić (1996). The
basic thermal state is neutral and the initial perturbation
of temperature, that is, a cold bubble, is given by

2T9 5 DT cos (pr*/2), (80)0

2 2 1/2x 2 x z 2 zm mr* 5 min 1, 1 , (81)5 1 2 1 2 6[ ]x zr r

where DT0 5 215.0 K, xr 5 4.0 km, zr 5 2.0 km, and
zm 5 3.0 km. The domain size is 51.2 km in the hori-
zontal, and 6.4 km in the vertical. We have tested the

simulations for the grid intervals with Dx 5 Dz 5 50,
100, and 200 m. The corresponding time step is Dt 5
0.05, 0.1, and 0.2 s, respectively. The second-order dif-
fusion is applied to the velocity and the temperature
fields with the diffusion coefficient 75 m2 s21. Note that
the energy change due to the diffusion terms are almost
negligible in this calculation.

The distributions of the perturbation of potential tem-
perature at t 5 0, 300, 600, and 900 s are shown in Fig.
8 for the 50-m grid simulation. The gravity current is
propagating along the lower boundary and three rotors
associated with the Kelvin–Helmholtz shear instability
are well captured. The distribution of potential temper-
ature at t 5 900 s is comparable to the corresponding
resolution experiment shown by Straka et al. (1993).
Figure 9 compares the distributions of the perturbation
of potential temperature at t 5 900 s in the cases with
the coarser resolutions 100 and 200 m. Since we only
use the second-order centered-in-space scheme for the
advection, the internal structure of vortices are not well
simulated particularly in the case with the 200-m grid.
However, as the resolution becomes finer, the represen-
tation of the rotors becomes better; this results indicate
the confidence of the present scheme. The maximum
and minimum values of perturbation of potential tem-
perature at t 5 900 s is 0.007000 K, 212.1084 K for
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FIG. 9. The same as Fig. 8d but for the grid interval with (a) 100
and (b) 200 m.

FIG. 10. The same as Figs. 3a and 3b but for the cold-bubble
experiment. (a), (b) The correction method, and (c) the conservative
method (see text).

the 50-m grid, 0.2178 K, 216.9435 K for the 100-m
grid, and 2.2038 K, 221.6496 K for the 200-m grid.
These values tend to converge to those of the reference
solution presented by Straka et al. (1993).

Time sequences of energies for the simulation with
the 50-m grid are displayed in Fig. 10. The nonlinear
advective terms play important roles in this simulation.
Strictly, the conservation of total energy is not satisfied
in the correction scheme, if the advection of the kinetic
energy is important. Reflecting this fact, the total energy
is decreased by 5.12 J m23 for the 900-s calculation as
shown by Fig. 10b.

Gallus and Rančić (1996) developed a nonhydrostatic
model with an energy conserving scheme using the pres-
sure in the hydrostatic balance as a vertical coordinate.
Gallus and Rančić (1996) have considered only the
transformation term due to the pressure gradient force
between the internal energy and the kinetic energy.
Their scheme does not guarantee the exact conservation
of total energy, hence it has the same limitation with
the correction method. They also have shown the result
of the cold-bubble experiment by using a grid interval
of 100 m. In their calculation, their total energy is de-
fined as the sum of the internal energy and the kinetic
energy [Eq. (A.5) of Gallus and Rančić]. They stated
that the change in the total energy is about 0.05% for
the 40 000 iterations in the 900-s integration. In our

calculation, since the initial value of the internal energy
is 175 868 J m23, the corresponding change in the en-
ergy is 0.003% in the 18 000 steps integration. It may
be said our result is superior to that of Gallus and Rančić
in terms of the conservation of total energy.

As an alternative approach, we have performed the
similar calculation of the cold-bubble experiment based
on the conservative method. We found that the simu-
lation is successfully performed without any instability.
Figure 10c shows time sequences of energies, which are
compared with Fig. 10b. The change in the total energy
during 900 s is only 20.005 428 J m23 for the 50-m
grid, 20.010 84 J m23 for the 100-m grid, and 20.025
28 J m23 for the 200-m grid; the conservation is much
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improved. This result suggests that the use of the con-
servation method is very encouraging.

5. Summary and discussions

We have devised a new dynamical scheme with the
conservative forms of the nonhydrostatic models. It is
aimed to apply to a global climate model for long time
integrations in the future. In contrast to the past models
based on the pressure and potential temperature as prog-
nostic variables, the density and the internal energy are
integrated in the flux forms. As a result, the conservation
of total mass is satisfied within round-off errors. The
conservation of total energy is approximately satisfied
by considering the discretized forms of the major trans-
formation terms of energy, though the exact conser-
vation is not guaranteed since the inconsistency in the
transformation of the nonlinear terms of the kinetic en-
ergy. We also argue about an alternative method in
which the sum of internal energy and kinetic energy is
used as a prognostic variable and the exact conservation
of total energy is satisfied. We incorporated these
schemes into a nonhydrostatic model with the horizon-
tally explicit and vertically implicit time integration
scheme for sound waves and performed various nu-
merical experiments for the dry atmosphere. The nu-
merical results show that the performance is compara-
tive to that of the past studies, and that the proposed
scheme is promising. In particular, the conservation of
mass is confirmed with a great accuracy. The conser-
vation of total energy is also demonstrated for the ver-
tical propagation of sound waves, the horizontal prop-
agation of gravity waves, and the finite amplitude to-
pographic waves. The density current induced by an
initial cold bubble is also calculated, which shows the
approximate conservation of total energy. The propa-
gation of the density current is successfully simulated
if the sum of internal energy and kinetic energy is used
as a prognostic variable. In this case, the conservation
of total energy is much improved.

Recently, Klemp et al. (2000) take a similar approach
to us by using the flux form equations for the conser-
vation of variables. We summarize the differences be-
tween their scheme and ours. First, they have chosen
density and potential temperature Q 5 ru as prognostic
variables; the choice of the density is similar to us but
the use of the potential temperature may cause a problem
in the climate modeling, as argued in section 3c. When
Q is integrated in the flux form, even if the domain
integral of potential temperature is conserved, the
change in the domain integral of total energy is not equal
to the energy input from the boundaries, since temper-
ature is diagnostically calculated. It may suffer from an
artificial source other than the fluxes at the boundaries.
By choosing Q as a prognostic variable, the pressure
gradient force term should be rewritten by using Q. The
pressure gradient is replaced by

=p 5 gR p=Q.d (82)

If the right-hand side is discretized, a domain integral
of momentum change is not equal to the difference be-
tween lateral boundary values of pressure; this implies
that the conservation of momentum is incomplete,
though the error might be small if this form is used only
in the small step integration.

As another difference, they use rw* instead of W 5
rw for the implicit calculation of the terrain following
coordinate [Eq. (58)]. As shown by Eq. (58), the hor-
izontal velocity components u and y are needed to cal-
culate w*. We solve for rw but not for rw* in the im-
plicit calculation; the vertical velocity is given by w 5
Jxu 1 Jyy at the bottom boundary. In the integration of
density, the convergence term associated with the ver-
tical velocity is divided into two terms, one with Jxu 1
Jyy and the other with w; this division might introduce
relatively larger round-off errors. But the errors are
small, and we think the choice of rw is not a critical
for the model performance.

When the time splitting method is introduced in the
time integration, Klemp et al. (2000) propose that the
advection term of energy should be split into the slow
mode and the fast mode. They argue that the advection
in the small time step is the deviation of the total ad-
vection from the advection related to the slow mode,
and that sophisticated advection schemes such as semi-
Lagrangian schemes should be incorporated into the dis-
cretization of the slow mode. Although we did not use
any elaborated advection scheme and did not split the
fast mode and the slow mode in the present simulations,
introduction of the splitting of the advection term is
worth considering for efficient calculations. We have
done some preliminary tests of the time splitting for
various experiments including horizontally propagating
sound waves with basic winds. We have confirmed that
the numerical calculation is stable even when the large
time step is 10 times larger than the small time step.

In the present study, we only performed the simu-
lations in the dry atmosphere. The properties of the
conservations should be further examined in the case
with the important hydrodynamic processes related to
latent heat release. We will calculate the radiative–con-
vective equilibrium in the two- or three-dimensional do-
mains for the long time integrations such as several days
(e.g., Held et al. 1993; Tompkins and Craig 1998b,
1999) and examine the conservations of the mass and
the energy. We are planning to extend this dynamical
model framework to the sphere and develop a global
nonhydrostatic model for the climate modeling.
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APPENDIX

Stability Analysis of the Implicit Scheme

In the scheme presented in section 2, the buoyancy
term is also counted as an implicit term. This is for the
consistency of the deformation of sound waves due to
the stratification. In this appendix, we show the stability
of the implicit scheme for sound and gravity waves in
the isothermal atmosphere.

Before examination of the numerical scheme, we first
derive the dispersion relations of sound waves and grav-
ity waves in the horizontal–vertical two-dimensional
isothermal atmosphere without diabatic and friction
terms. The unperturbed state is in the hydrostatic bal-
ance (7) with the temperature Ts 5 constant. We start
from the two-dimensional equations of (23), (24), (26),
and (27) omitting the nonlinear terms and the heating
and friction terms:

] ] ]
R 1 U 1 W 5 0, (A1)

]t ]x ]z

] ]
U 1 P 5 0, (A2)

]t ]x

] ]
W 1 P 1 Rg 5 0, (A3)

]t ]z

] ] ] R gd2 2P 1 c U 1 c W 1 W 5 0, (A4)s s]t ]x ]z Cy

where we have used the relations ]E/]t 5 (Cy /Rd)]P/]t
and (Rd/Cy )h 5 5 gRdTs [see Eq. (36)]. Introducing2cs

the following variables

ˆ ˆR 5 r9/Ïr 5 R /Ïr , P 5 p9/Ïr 5 P /Ïr ,s s s s

ˆ ˆU 5 Ïr u 5 U/Ïr , W 5 Ïr w 5 W/Ïr ,s s s s

we rewrite Eqs. (A1)–(A4) as

] ] 1ˆ ˆR 1 2 W 5 0, (A5)1 2]t ]z 2H

] ]ˆ ˆU 1 P 5 0, (A6)
]t ]x

] ] 1ˆ ˆ ˆW 1 2 P 1 Rg 5 0, (A7)1 2]t ]z 2H

2 2] ] 1 c Ns2ˆ ˆ ˆP 1 c 2 W 1 W 5 0, (A8)s 1 2]t ]z 2H g

where H 5 2((1/rs)]rs/]z)21 5 RdTs/g and N2 5 g2/(CpTs)
in the isothermal atmosphere. Assuming that R̂, P̂, Û, and

Ŵ are proportional to exp[i(kx 1 mz 2 vt)], we have the
dispersion relation:

4 2 2 2 2 2 2 2v 2 c (k 1 m )v 1 k c N 5 0, (A9)s H s

where 5 m2 1 1/(4H 2). In particular, the dispersion2mH

relations of sound waves and gravity waves are ap-
proximated given in the limit N 2 → 0 and → `: v22cs

5 (k2 1 ) and v2 5 k2N 2/(k2 1 ), respectively.2 2 2c m ms H H

Next, we step to the stability analysis of the time
discretized equations. The spatial structure is the same
as the analytic forms: (R̂, Û, Ŵ, P̂) 5 (R, U, W, P)
exp[i(kx 1 mz)], and the discretization is introduced
only in the time integration. We replace the time deriv-
atives in Eqs. (A5)–(A8) by the discrete form dt, where
dtA 5 (An11 2 An)/Dt and introduce m̃ 5 m 1 i/2H.
We explicitly discretize the horizontal pressure gradient
and implicitly discretize the other terms:

n11 n11 nd R 5 2ikU 2 im̃[aW 1 (1 2 a)W ], (A10)t

nd U 5 2ikP , (A11)t

n11 nd W 5 2im̃[aP 1 (1 2 a)P ]t

n11 n2 g[aR 1 (1 2 a)R ], (A12)
2 n11d P 5 2ikc Ut s

2 2 n11 n2 c (im̃ 1 N /g)[aW 1 (1 2 a)W ], (A13)s

where a is an implicit factor of the vertical propagation
of sound wave. Here a represents the weight between
the implicit and the explicit scheme: a 5 0 is for the
explicit scheme, and a 5 1 is for the fully implicit
scheme.

The above equations can be written as AXn11 5 BXn,
where X 5 [R, U, W, P] t. The growth rate l is the
eigenvalue of the matrix A21B, and must satisfy det(B
2 lA) 5 0. From Eqs. (A10)–(A13), we have

0 5 det(B 2 lA)
45 (1 2 l)

2 2 2 2 2 21 Dt c {k l 1 m [(1 2 a) 1 la] }(1 2 l)s H

2 4 2 2 21 k Dt c N l[(1 2 a) 1 la] .s (A14)

For the nearly vertically propagating sound waves with
k2 K , the dispersion relation is approximated as2mH

2 2 2 2 2(1 2 l) 1 Dt c m [(1 2 a) 1 la] 5 0. (A15)s H

From this, the growth rate is given by
2 21 1 (1 2 a) n

2|l | 5 , (A16)
2 21 1 a n

where n2 [ Dt2 is the Courant number. The scheme2 2c ms H

is stable | l | 2 # 1 irrespective of n as long as a $ ½.
Figure A1 shows the dependency of | l | on n. The
dispersion relation (A9) and the growth rate (A16) be-
come those of the simple sound waves without strati-
fication as H → `. Even when the buoyancy term is
treated implicitly, therefore, the proposed numerical
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FIG. A1. Dependencies of the growth rate | l | on the Courant
number n and the implicit factor a.

scheme has the same stability condition as the usual
implicit scheme for the sound waves.

For the quasi-horizontally propagating sound waves
with k2 k and N 2 ø 0, the growth rate satisfies2mH

2 2 2 2(1 2 l) 1 Dt c k l 5 0.s (A17)

From this, the scheme is neutral | l | 5 1 if Dt2 k2 #2cs

1 is satisfied.
The growth rate for gravity waves is approximately

given in the limit cs → ` in Eq. (A14). In the case with
k2 k , we have2mH

2 2 2 2(1 2 l) 1 Dt N [(1 2 a) 1 la] 5 0, (A18)

from which the growth rate is
2 2 21 1 (1 2 a) Dt N

2|l | 5 , (A19)
2 2 21 1 a Dt N

Thus, the scheme is stable when a $ ½. The dependency
of the growth rate is the same as Fig. A1 but for n 5
NDt. In the case with k2 K , on the other hand, we2mH

have
2 2 2 2 2m (1 2 l) 1 k Dt N l 5 0.H (A20)

From this, the scheme is neutral | l | 5 1 as long as the
time step satisfies Dt2N 2 # /k2, which is a less re-2mH

strictive condition.
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