Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dawnbench Inference on Imagenet

Summary

The inference speed of ResNet26-based model is improved through PAI-Blade. PAI-Blade is the framework for high-efficiency model deployment developed by AliCloud PAI: PAI-Blade. The BBS (Blade Benchmark Suite) can be accessed: BBS. In addition, optimized INT8 conv2d operators are generated through TVM TensorCore AutoCodeGen.

Run inference

  1. Clone this repo.
  2. Put Imagenet validation set (50000 images) in imagenet/val_data/.
./imagenet/val_data/
├── ILSVRC2012_val_00000001.JPEG
├── ILSVRC2012_val_00000002.JPEG
├── ILSVRC2012_val_00000003.JPEG
├── ILSVRC2012_val_00000004.JPEG
├── ILSVRC2012_val_00000005.JPEG
├── ILSVRC2012_val_00000006.JPEG
...
  1. Pull nvcr.io/nvidia/tensorrt:19.09-py3 from NGC.
  2. Start nvcr.io/nvidia/tensorrt:19.09-py3 container, and install dependencies:
# start docker container
sh run.sh

# Install TensorFlow
pip install tensorflow==1.13.1
  1. Set environment in host:
sh set_env.sh
  1. In the container workspace, run cmd as below:
# Assuming the workspace is mounted as /app
cd /app

# Run for inference
sh eval.sh

About

Dawnbench Inference on Imagenet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published