Train Simulator External Interface API

Introduction
The External Interface API (El hereafter) enables external applications and hardware to interact with
Train Simulator during runtime, both to find out what is happening and also to make changes.

The primary usage of this API is to enable external hardware vendors to be able to create hardware
with gauges, indicator lights and panels as well as levers, buttons and switches to provide input.

It is also important to note that the full functionality that was provided originally by the interface is
still present and can be used.

Access

For legacy compatibility reasons, the filename of the interface is “raildriver.dll”. Import this in to your
application code and you will then be able to access a range of functions that will use the DLL file to
communicate with the game at runtime.



Applications

Lights

Trains have a wide range of lights such as PZB and LZB indicators, Wheel Slip and Sanding indicators
and a number of forms of cab signalling.

In addition, there is a capability to determine if the player train is inside a tunnel, this could be used
to switch off the lights in the room when the player plunges in to a dark tunnel, adding greatly to the
immersion. Further, with access to the current time of day, applications can dim or brighten room
lights automatically for the time of day of the scenario.

Gauges

Most trains have a variety of fairly standard gauges such as speedometer, various types of brake-
related gauges, fuel levels, ammeters, rpm counters and numerous gauges related to steam
locomotives such as boiler pressure and steam chest pressure.

Panels

Part of the El allows external hardware to access the current rotation and pitch of the player
locomotive as well as its longitude and latitude in the world. This information could be used to plot a
path via an external system such as Google Earth.

Levers
With regulators, reversers, brakes and numerous other levers, there are a number of opportunities
for control of these levers with external hardware.

Buttons

There are some common buttons in many locomotives, particularly regional, such as the DSD foot
pedal, AWS Acknowledge button, SIFA Acknowledge button and the three PZB buttons. These are all
great candidates for being exposed via external hardware and allowing a much more responsive feel.

Switches
Lights and wipers are two common switches but there are many more.



API Function Reference

string GetLocoName ()

This function returns the Provider, Product and Engine name of the engine being driven at the
moment. This is in the form “PROVIDER.:.PRODUCT.:.ENGINENAME". This allows application
developers to accurately determine what locomotive is being driven and adapt accordingly.

string GetControllerList ()

This function returns a list of every controller in the current locomotive. Each one is separated by
two colons (::). This list is later used for indexing so the first entry in this list should be considered
controller 0 and the next controller 1 etc. This is something like
“Alerter::VirtualThrottle::Regulator::TrainBrake” etc. This would usually be the same list as seen in
the Control State Dialog.

float GetControllerValue (int controllerId, int getType)

This function queries the value of a controller and returns it.

getType should be 0 to get the current value, 1 to get the minimum value of this controller and 2 to
get the maximum value of this controller.

It is important to use the controllerld within the context of the values returned by GetControllerList
as it cannot be assumed that a particular controller is always at the same ID on different loco’s, in
fact it quite often won't be.

void SetControllerValue (int controllerId, float wvalue)

Set the new current value of the controller specified to the value provided.

In addition to the controllers that are returned via GetControllerList() there are some additional
“virtual” controllers that are provided by the El itself, these are:

Controller ID | Purpose

400 Latitude of Train
401 Longitude of Train
402 Fuel Level

403 Isin a Tunnel?

404 Gradient

405 Heading

406 Time of day hours
407 Time of day minutes
408 Time of day seconds




Implementation Guide

It is expected that applications will frequently call GetLocoName to determine if the locomotive has
changed. If it does change, then the application should call GetControllerList and then determine if it
needs to adjust how it’s interacting with the current locomotive.

If the application is trying to be more generic in how it interacts with different types of locomotives,
it may be important to call the GetControllerValue function on initialisation to request the Min and
Max of each controller that the application might want to set - this would then allow the application
to scale its values from 0 to 100% accordingly, rather than assuming that all controls are perhaps 0.0
to 1.0 (which maybe the case generally but will leave edge cases not working).

Operationally, the application would then use the GetControllerValue to retrieve values and
SetControllerValue to set them. Note that note all controllers can have their values set - the same
rules as for LUA Engine scripts apply (e.g. you can’t set the boiler pressure). All controls can be read
from.



	Train Simulator External Interface API
	Introduction
	Access
	Applications
	Lights
	Gauges
	Panels
	Levers
	Buttons
	Switches

	API Function Reference

	Implementation Guide

