
Bringing Magics weather maps to
Matplotlib

Alish Dipani

[1] Problem Statement & Summary
ECMWF’s Magics [1] is a meteorologically oriented graphical library that can visualise data
coded on GRIB and NetCDF on different projections of the globe. This library makes the
visualisation of the most common meteorological parameters convenient by defining a set of
predefined visual definitions. While in Python, the library does not fully take advantage of the
most popular visualisation library, Matplotlib [2], and the syntax and conventions are not highly
pythonic. Combining the library with Matplotlib would allow the users to combine meteorological
data with various plots like scatter plots, heatmaps, etc., available in Matplotlib. And updating
the syntax would make the library more user-friendly. ECMWF created a new library, Magpye
[3], which is currently in the Beta phase to tackle these issues. This project aims to continue the
development of the Magpye library and work towards the following goals:

1. Making the syntax and conventions more pythonic.
2. Combining the functionality of Matplotlib with Magics.
3. Making the plots more customisable.

[2] Approach
Magpye library acts as a python interface to Magics. It allows users to load meteorological data
and plot it on predefined geographical areas (such as Africa, Europe, Global, etc.) using
predefined styles for lines and shading. Magpye takes in the data and passes it to Magics
macro module, which plots the data. This final plot is in Magics’s own binary format and can be
decoded into Matplotlib Axes using the binary module. The main components of the Magpye
library are shown in Figure 1.

In Magpye, users can define a GeoMap object with one of the predefined geographical areas.
Then, data is loaded and added to the map in the form of line contours or filled contours, which
have various predefined styles available. Various features can then be added to the
geographical area such as rivers, coastlines and gridlines. Finally, users can save this figure in,
either a PDF format or PNG format, and can also display this in Jupyter Notebooks.

Now, this plot is saved in Magics’s binary format and the binary module can be used to convert
this into Matplotlib axes. We can then manipulate these axes to customise the plot, make it
interactive or even add Matplotlib graphs on top of the map.

Figure 1. Major components of the library Magpye.

A Proof of Concept (with outputs) of this is as follows:

1. First, we create the map using Magpye:

Importing Libraries

from magpye import GeoMap

Defining the GeoMap object

fig = GeoMap(area_name='europe')

Loading the data as shaded contour and predefined style

fig.contour_shaded("t850.grib", style="rainbow_temperature1")

Adding gridlines, coastlines and rivers to the map

fig.coastlines(resolution="medium")

fig.gridlines()

fig.rivers(line_thickness=3, resolution="high")

fig.show()

2. Then, we save the figure and convert it into matplotlib axes using Magics’s binary
module:

Save the figure

mgb = "magics-binary.mgb"

fig.save(mgb)

Load the figure and decode using binary module

from Magics import binary

%matplotlib widget

Plot the figure as matplotlib axes

from matplotlib.pyplot import figure

figure(figsize=(15, 10), dpi=80)

binary.plot_mgb(mgb)

3. Finally, we add a matplotlib scatter plot over the map to mark various points:

Importing matplotlib

import matplotlib.pyplot as plt

Define data to be plotted

This data can be python arrays or numpy arrays

x = [150, 200, 250, 350, 600]

y = [75, 350, 275, 150, 225]

Create a scatter plot with the following properties:

- upper filled triangle markers

- marker size of 500 points

- Black marker color

plt.scatter(x, y, s=500, marker='^', c='k')

Show the plot

plt.show()

This proof of concept shows that the plot can be converted to matplotlib axes and can be
manipulated and customised. But, the interface for this customisation and adding graphs are
missing. A solution to this would be introducing a new module in Magpye, which would allow
such manipulations and pretty plots.

[3] Key Milestones and Deliverables
I plan a four-phase timeline for achieving the objectives of this project:

- Phase A: Improving upon the current codebase by documenting the Magics and
Magpye libraries and planning the features to add to the Magpye library.

- Phase B: Improving the plots by modifying and adding several features to customise the
plots, such as handling of axes, fonts, font sizes, aspect ratio, etc.

- Phase C: Adding the feature of plotting matplotlib graphs upon the maps.
- Phase D: Documenting the Magpye library and creating example notebooks and

tutorials, and quick-start guides for users.

Each phase will be followed by a code/documentation review.

Phase-wise deliverables are as follows:
- Phase A: Documentation of Magics and Magpye libraries
- Phase B: Improvement in plots and adding features to customise the plots
- Phase C: Adding matplotlib graphs upon the plots
- Phase D: Documentation of Magpye library and tutorials for Magpye library.

The plan and timeline for each phase are given in the next section.

[4] Timeline
A tentative timeline is as follows:

Week Objective

Phase A

Week 1 - 2
[2nd May - 15th May]

- Discussing specific features to
implement

- Documenting Magics library

Week 3 - 4
[16th May - 29th May]

- Planning feature implementations and
improving Magpye to accommodate

those features
- Documenting Magpye library

Code Review & Documentation Review

Phase B

Week 5 - 7
[30th May - 19th June]

- Implementing and improving the
handling of the fonts and axes,

- Implementing and improving the
thickness of the lines

- Understanding the warnings
- Implementing and improving the

aspect ratio and georeferencement

Week 8 - 10
[20th June - 10th July]

- Implementing and improving more
features

- Improving Documentation of Magpye
library

Code Review & Documentation Review

Phase C

Week 11 - 14
[11th July - 7th August]

- Implementing adding matplotlib plots
to Magpye plots

Code Review & Documentation Review

Phase D

Week 15 - 17
[8th August - 31st August]

- Improving the documentation of
Magpye library

- Creating example notebooks and
tutorials

- Creating installation and quick start
guides

Code Review & Documentation Review

Changes in timelines are possible upon recommendations of the mentors.

[5] Progress Updates and Contact with mentors
I plan to communicate with the mentors regularly (in weekly / bi-weekly meetings) to
discuss the project's progress. These meetings can be held over mail or video-conferencing.

[6] Maintainability, Extensibility & Reproducibility
I plan to implement the libraries (Magics and Magpye) in Python with standard libraries like
Numpy and Matplotlib. I plan to make the code fairly easy to use and extend through code
reviews and documentation.

I plan to follow the standard Yahoo Reproducibility Guidelines [4] and the practical guidelines
specified in the Facebook Reproducibility Checklist [5] to ensure reproducibility in the
implementations.

[7] About Me
I am an incoming PhD (starting September 2022) student at the Department of Psychology at
Northeastern University, Boston, USA. I currently work (based in India) as a Research Assistant
at Northeastern University and as a Project Assistant at National Brain Research Centre, India.
My work is on the intersection of Vision Science, Neuroscience and Machine Learning with
various scientific and clinical applications. Before these positions, I was a Machine Learning
Engineer at Baylor College of Medicine, USA and a Research Intern at TCS Research, India
and Institute of Molecular Genetics at Montpellier, CNRS, France.

I have a Bachelor’s of Engineering in Computer Science from BITS Pilani, Goa Campus
(Graduated in December 2019). Through these academic and industrial experiences and my
formal background, I am highly trained in programming in various languages, including C++,
Python and Ruby. I have also published multiple papers involving Neuroscience and Deep
Learning. One of them, titled “AvaTr: One-Shot Speaker Extraction with Transformers”, was
published at InterSpeech 2021.

I am also highly interested in Open Source Development, especially building libraries for data
visualisation. I was the lead developer for the library Rubyplot [6]
(https://github.com/alishdipani/rubyplot/wiki), which aimed to be the defacto plotting library for
the programming language Ruby, inspired by Matplotlib. My efforts in the same were supported
by Google (through Google Summer of Code 2019 [7]) and The Ruby Association, Japan
(through the Ruby Association Grant 2019 [8]). Through this experience, I have a high familiarity
with the internal workings of Matplotlib as I have successfully replicated various parts of it to
Rubyplot.

More details are as follows:
- Name: Alish Dipani
- Email: alish.dipani@gmail.com
- Website: https://alishdipani.github.io/
- CV: Alish_Dipani_CV.pdf
- Github: https://github.com/alishdipani
- Google Scholar: https://scholar.google.com/citations?user=i028n20AAAAJ&hl=en
- LinkedIn: https://www.linkedin.com/in/alish-dipani/
- Twitter: https://twitter.com/alu57202

[8] References
1. Magics: https://github.com/ecmwf/magics-python
2. Matplotlib: https://github.com/matplotlib/matplotlib
3. Magpye: https://github.com/ecmwf/magpye
4. Yahoo Reproducibility Guidelines: https://github.com/yahoo/ml-reproducibility-guidelines
5. Facebook Reproducibility Checklist:

https://ai.facebook.com/blog/how-the-ai-community-can-get-serious-about-reproducibility
6. Rubyplot: https://github.com/alishdipani/rubyplot
7. GSoC 2019 project:

https://summerofcode.withgoogle.com/archive/2019/projects/6622714041729024
8. The Ruby Association Grant 2019 announcement:

https://www.ruby.or.jp/en/news/20191031

https://drive.google.com/file/d/1qSLwNRHp0uGyrPDYPRteDlYZpPczjw-d/view?usp=sharing
https://github.com/alishdipani/rubyplot/wiki
mailto:alish.dipani@gmail.com
https://alishdipani.github.io/
https://github.com/alishdipani
https://scholar.google.com/citations?user=i028n20AAAAJ&hl=en
https://www.linkedin.com/in/alish-dipani/
https://twitter.com/alu57202
https://github.com/ecmwf/magics-python
https://github.com/matplotlib/matplotlib
https://github.com/ecmwf/magpye
https://github.com/yahoo/ml-reproducibility-guidelines
https://ai.facebook.com/blog/how-the-ai-community-can-get-serious-about-reproducibility
https://github.com/alishdipani/rubyplot
https://summerofcode.withgoogle.com/archive/2019/projects/6622714041729024
https://www.ruby.or.jp/en/news/20191031

