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Abstract

In this paper, an equilibrium model of a competitive supply chain network is developed. Such a model is
sufficiently general to handle many decision-makers and their independent behaviors. The network struc-
ture of the supply chain is identified and equilibrium conditions are derived. A finite-dimensional varia-
tional inequality formulation is established. Qualitative properties of the equilibrium model and numerical
examples are given. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The topic of supply chain analysis is interdisciplinary by nature since it involves manufacturing,
transportation and logistics, as well as retailing/marketing. It has been the subject of a growing
body of literature (cf. Stadtler and Kilger, 2000 and the references therein) with the associated
research being both conceptual in nature (see, e.g., Poirier, 1996, 1999; Mentzer, 2000; Bovet,
2000), due to the complexity of the problem and the numerous agents such as manufacturers,
retailers, and consumers involved in the transactions, as well as analytical (cf. Federgruen and
Zipkin, 1986; Federgruen, 1993; Slats et al., 1995; Bramel and Simchi-Levi, 1997; Miller, 2001;
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Hensher et al., 2001 and the references therein). See Ereng€uuc� et al. (1999) for a recent survey on
supply chains.

Lee and Billington (1993) expressed the need for decentralized models that allow for a gen-
eralized network structure and simplicity in the study of supply chains. Anupindi and Bassok
(1996), in turn, addressed the challenges of formulating systems consisting of decentralized re-
tailers with information sharing. Lederer and Li (1997), on the other hand, studied competition
among firms that produce goods or services for customers who are sensitive to delay time. Corbett
and Karmarkar (2001) were concerned with the equilibrium number of firms in oligopolistic
competition in a supply chain. In order to allow for the closed form determination of the equi-
librium number of firms they assumed that the firms in the same tier were characterized by
identical linear production cost functions. Equilibrium models have a long tradition in trans-
portation modeling (cf. Florian and Hearn, 1995) as well as in economics (cf. Arrow and In-
trilligator, 1982) and in finance (see Nagurney and Siokos, 1997).

Many researchers, in addition to, practitioners, have described the various networks that un-
derlie supply chain analysis and management with the goal being primarily that of optimization. In
this paper, in contrast, we develop an equilibrium model of competitive supply chain networks.
Such a model at our level of generality has not appeared heretofore in the literature. It provides a
benchmark against which one can evaluate both price and product flows. The equilibrium model
captures both the independent behavior of the various decision-makers as well as the effect of their
interactions. Finally, it provides the foundation for developing dynamic models for the study of
the evolution of supply chains.

The equilibrium model is drawn from economics and, in particular, from network economics
(cf. Nagurney, 1999). Manufacturers are assumed to be involved in the production of a homo-
geneous product which is then shipped to the retailers. Manufacturers obtain a price for the
product (which is endogenous) and seek to determine their optimal production and shipment
quantities, given the production costs as well as the transaction costs associated with conducting
business with the different retailers.

Retailers, in turn, must agree with the manufacturers as to the volume of shipments since they
are faced with the handling cost associated with having the product in their retail outlet. In ad-
dition, they seek to maximize their profits with the price that the consumers are willing to pay for
the product being endogenous. Consumers determine their optimal consumption levels from the
various retailers subject both to the prices charged for the product as well as the cost of con-
ducting the transaction (which, of course, may include the cost of transportation associated with
obtaining the product from the retailer).

The paper is organized as follows. In Section 2, we present the competitive supply chain net-
work model, derive optimality conditions for its decision-makers, and then present the governing
equilibrium conditions. We also derive the finite-dimensional variational inequality formulation
of the problem. In Section 3, we provide qualitative properties of the equilibrium pattern and
establish the properties needed for proving convergence of the algorithm. In Section 4, we describe
the computational procedure, along with convergence results. The algorithm resolves the net-
work problem into subproblems, each of which can be solved exactly and in closed form. In
Section 5, we apply the algorithm to numerical examples to determine the equilibrium product
flows and prices and also provide a discussion of the model and results. We conclude the paper
with Section 6.
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2. The supply chain network model with decentralized decision-makers

In this section, we develop the supply chain network model with manufacturers, retailers, and
consumers. The supply chain network structure, at equilibrium, which we establish in this section,
is as depicted in Fig. 1. Specifically, we consider m manufacturers who are involved in the pro-
duction of a product, which can then be purchased by n retailers, who, in turn, make the product
available to consumers located at o demand markets. We denote a typical manufacturer by i, a
typical retailer by j, and a typical demand market by k. Note that the manufacturing firms are
located at the top tier of nodes in the network in Fig. 1; the retailers are located at the middle tier,
whereas the demand markets are located at the third or bottom tier. The links in the supply chain
network denote transportation/transaction links.

We first focus on the manufacturers. We then turn to the retailers and, subsequently, to the
consumers. The complete equilibrium model is then constructed along with the variational in-
equality formulation of the governing equilibrium conditions.

2.1. The behavior of the manufacturers and their optimality conditions

Let qi denote the nonnegative production output of the product by manufacturer i. We group
the production outputs of all manufacturers into the column vector q 2 Rm

þ. We assume that each
manufacturer i is faced with a production cost function fi, which can depend, in general, on the
entire vector of production outputs, that is,

fi ¼ fiðqÞ 8i: ð1Þ
A manufacturer may ship the product to the retailers, with the amount of the product shipped

(or transacted) between manufacturer i and retailer j denoted by qij. We associate with each
manufacturer and retailer pair ði; jÞ a transaction cost denoted by cij. The transaction cost includes
the cost of shipping the product. We group the product shipments between the manufacturers and

Fig. 1. The network structure of the supply chain at equilibrium.
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the retailers into the mn-dimensional column vector Q1. We consider the situation in which the
transaction cost between a manufacturer and retail pair is given by

cij ¼ cijðqijÞ 8i; j: ð2Þ
To help fix ideas (cf. Fig. 2), and in order to facilitate the ultimate construction of the supply

chain network in equilibrium, we depict the manufacturers and retailers as nodes and the
transactions between a manufacturer i and the retailers j, j ¼ 1; . . . ; n, as links.

The quantity produced by manufacturer i must satisfy the following conservation of flow
equation:

qi ¼
Xn
j¼1

qij; ð3Þ

which states that the quantity produced by manufacturer i is equal to the sum of the quantities
shipped from the manufacturer to all retailers.

The total costs incurred by a manufacturer i, thus, are equal to the sum of his production cost
plus the total transaction costs. His revenue, in turn, is equal to the price that the manufacturer
charges for the product (and the retailers are willing to pay) times the total quantity obtained/
purchased of the product from the manufacturer by all the retail outlets. If we let q�

1ij denote the
price charged for the product by manufacturer i to retailer j (i.e., the supply price), and note the
conservation of flow equations (3), we can express the criterion of profit maximization for
manufacturer i as

Maximize
Xn
j¼1

q�
1ijqij � fiðQ1Þ �

Xn
j¼1

cijðqijÞ; ð4Þ

subject to qij P 0 for all j.
We assume that the manufacturers compete in a noncooperative fashion. Also, we assume that

the production cost functions and the transaction cost functions for each manufacturer are
continuous and convex. Given that the governing optimization/equilibrium concept underlying
noncooperative behavior is that of Cournot (1838), Nash (1950, 1951), which states that each
manufacturer will determine his optimal production quantity and shipments, given the optimal
ones of the competitors, the optimality conditions for all manufacturers simultaneously can be

Fig. 2. Network structure of manufacturer i’s transactions with retailers.
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expressed as the following variational inequality (cf. Bazaraa et al., 1993, Gabay and Moulin,
1980; see also Dafermos and Nagurney, 1987; Nagurney, 1999): Determine Q1� 2 Rmn

þ satisfyingXm
i¼1

Xn
j¼1

ofiðQ1�Þ
oqij

�
þ
ocijðq�ijÞ
oqij

� q�
1ij

�
	 qij
h

� q�ij
i
P 0 8Q1 2 Rmn

þ : ð5Þ

The optimality conditions as expressed by (5) have a nice economic interpretation, which is
that a manufacturer will ship a positive amount of the product to a retailer (and the flow on the
corresponding link will be positive) if the price that the retailer is willing to pay for the product is
precisely equal to the manufacturer’s marginal production and transaction costs associated with
that retailer. If the manufacturer’s marginal production and transaction costs exceed what the
retailer is willing to pay for the product, then the flow on the link will be zero.

2.2. The behavior of the retailers and their optimality conditions

The retailers, in turn, are involved in transactions both with the manufacturers since they wish
to obtain the product for their retail outlets, as well as with the consumers, who are the ultimate
purchasers of the product. Hence, the network structure of retailer j’s transactions is as depicted in
Fig. 3. Thus, a retailer conducts transactions both with the manufacturers as well as with the
consumers at the demand markets. Note that Fig. 3, as did Fig. 2, only depicts the network
structure of the transactions involved. Later, we will also associate flows with the links as well as
prices with the nodes.

A retailer j is faced with what we term a handling cost, which may include, for example, the
display and storage cost associated with the product. We denote this cost by cj and, in the simplest
case, we would have that cj is a function of

Pm
i¼1 qij, that is, the holding cost of a retailer is a function

of howmuch of the product he has obtained from the various manufacturers. However, for the sake
of generality, and to enhance the modeling of competition, we allow the function to, in general,
depend also on the amounts of the product held by other retailers and, therefore, we may write

cj ¼ cjðQ1Þ 8j: ð6Þ

Fig. 3. Network structure of retailer j’s transactions.
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The retailers associate a price with the product at their retail outlet, which is denoted by q�
2j, for

retailer j. This price, as we will show, will also be endogenously determined in the model. As-
suming, as mentioned in Section 1, that the retailers are also profit-maximizers, the optimization
problem of a retailer j is given by

Maximize q�
2j

Xo
k¼1

qjk � cjðQ1Þ �
Xm
i¼1

q�
1ijqij ð7Þ

subject to:Xo
k¼1

qjk 6
Xm
i¼1

qij; ð8Þ

and the nonnegativity constraints: qij P 0 and qjk P 0 for all i and k. Objective function (7) ex-
presses that the difference between the revenues minus the handling cost and the payout to the
manufacturers should be maximized. Constraint (8) simply expresses that consumers cannot
purchase more from a retailer than is held in stock.

We now consider the optimality conditions of the retailers assuming that each retailer is faced
with the optimization problem (7) subject to (8), and the nonnegativity assumption on the vari-
ables. Here, we also assume that the retailers compete in a noncooperative manner so that each
maximizes his profits, given the actions of the other retailers. Note that, at this point, we consider
that retailers seek to determine not only the optimal amounts purchased by the consumers from
their specific retail outlet but, also, the amount that they wish to obtain from the manufacturers.
In equilibrium, all the shipments between the tiers of network agents will have to coincide.

Assuming that the handling cost for each retailer is continuous and convex, the optimality
conditions for all the retailers coincide with the solution of the variational inequality: Determine
ðQ1� ;Q2� ; c�Þ 2 Rmnþnoþn

þ satisfying

Xm
i¼1

Xn
j¼1

ocjðQ1�Þ
oqij

�
þ q�

1ij � c�j

�
	 qij
h

� q�ij
i
þ
Xn
j¼1

Xo
k¼1

h
� q�

2j þ c�j
i
	 qjk
h

� q�jk
i

þ
Xn
j¼1

Xm
i¼1

q�ij

"
�
Xo
k¼1

q�jk

#
	 cj
h

� c�j
i
P 0 8ðQ1;Q2; cÞ 2 Rmnþnoþn

þ ; ð9Þ

where the term cj is the Lagrange multiplier associated with constraint (8) for retailer j, c the
n-dimensional column vector of all the multipliers, and Q2 denotes the no-dimensional vector of
product flows between the retailers and the demand markets. For further background on such a
derivation, see Bertsekas and Tsitsiklis (1989). In this derivation, as in the derivation of inequality
(5), we have not had the prices charged be variables. They become endogenous variables in the
complete equilibrium model.

We now highlight the economic interpretation of the retailers’ optimality conditions. From the
second term in inequality (9), we have that, if consumers at demand market k purchase the
product from a particular retailer j, that is, if the q�jk is positive, then the price charged by retailer j,
q�
2j, is precisely equal to c�j , which, from the third term in the inequality, serves as the price to clear

the market from retailer j. Also, note that, from the second term, we see that if no product is sold
by a particular retailer, then the price associated with holding the product can exceed the price
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charged to the consumers. Furthermore, from the first term in inequality (9), we can infer that, if a
manufacturer transacts with a retailer resulting in a positive flow of the product between the two,
then the price c�j is precisely equal to the retailer j’s payment to the manufacturer, q�

1ij, plus its
marginal cost of handling the product from the retailer.

2.3. The consumers at the demand markets and the equilibrium conditions

We now describe the consumers located at the demand markets. The consumers take into
account in making their consumption decisions not only the price charged for the product by the
retailers but also the transaction cost to obtain the product. We let cjk denote the transaction cost
associated with obtaining the product by consumers at demand market k from retailer j and recall
that qjk denotes the amount of the product purchased (or flowing) between retailer j and con-
sumers at demand market k. We assume that the transaction cost is continuous, positive, and of
the general form

cjk ¼ cjkðQ2Þ 8j; k; ð10Þ
where recall that Q2 is the no-dimensional column vector of product flows between the retailers
and the demand markets.

In Fig. 4, the network of transactions between the retailers and the consumers at demand
market k is depicted. Each demand market is represented by a node and the transactions, as
previously, by links.

Let now q3k denote the price of the product at demand market k. Further, denote the demand
for the product at demand market k by dk and assume, as given, the continuous demand functions

dk ¼ dkðq3Þ 8k; ð11Þ
where q3 is the o-dimensional column vector of demand market prices. Hence, according to (11),
the demand for consumers for the product at a demand market depends, in general, not only on
the price of the product at that demand market but also on the prices of the product at the other
demand markets. Thus, consumers at a demand market, in a sense, also compete with consumers
at other demand markets.

The consumers take the price charged by the retailers for the product, whose, recall was de-
noted by q�

2j for retailer j, plus the transaction cost associated with obtaining the product, in
making their consumption decisions.

Fig. 4. Network structure of consumers’ transactions at demand market k.
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The equilibrium conditions for consumers at demand market k, hence, take the form: For all
retailers j, j ¼ 1; . . . ; n,

q�
2j þ cjkðQ2�Þ ¼ q�

3k if q�jk > 0;
P q�

3k if q�jk ¼ 0

	
ð12Þ

and

dkðq�
3Þ

¼
Pn

j¼1 q
�
jk if q�

3k > 0;

6
Pn

j¼1 q
�
jk if q�

3k ¼ 0:

(
ð13Þ

Conditions (12) state that, in equilibrium, if the consumers at demand market k purchase the
product from retailer j, then the price charged by the retailer for the product plus the transaction
cost does not exceed the price that the consumers are willing to pay for the product. Conditions
(13) state, in turn, that if the equilibrium price the consumers are willing to pay for the product at
the demand market is positive, then the quantities purchased of the product from the retailers will
be precisely equal to the demand for that product at the demand market. These conditions cor-
respond to the well-known spatial price equilibrium conditions (cf. Samuelson, 1952; Takayama
and Judge, 1971; Nagurney, 1999 and the references therein).

In equilibrium, conditions (12) and (13) will have to hold for all demand markets k, and these,
in turn, can also be expressed as a variational inequality problem (see, e.g., Nagurney, 1999), akin
to (5) and (9), and given by: Determine ðQ2� ; q�

3Þ 2 Rnoþn
þ such that

Xn
j¼1

Xo
k¼1

q�
2j

h
þ cjkðQ2�Þ � q�

3k

i
	 qjk
h

� q�jk
i
þ
Xo
k¼1

Xn
j¼1

q�jk

"
� dkðq�

3Þ
#
	 q3k

�
� q�

3k

�
P 0

8ðQ2� ; q�
3Þ 2 Rnoþo

þ : ð14Þ
Observe that, in the context of the consumption decisions, we have utilized demand functions,

rather than utility functions, as was the case for the manufacturers and the retailers, who were
assumed to be faced with profit functions, which correspond to utility functions. Of course, de-
mand functions can be derived from utility functions (cf. Arrow and Intrilligator, 1982). Since we
expect the number of consumers to be much greater than that of the manufacturers and the re-
tailers we believe that the above formulation is the more natural and tractable one.

2.4. The equilibrium conditions of the supply chain

In equilibrium, the shipments of the product that the manufacturers ship to the retailers must
be equal to the shipments that the retailers accept from the manufacturers. In addition, the
amounts of the product purchased by the consumers at the demand markets must be equal to
the amounts sold by the retailers. Furthermore, the equilibrium shipment and price pattern in
the supply chain must satisfy the sum of inequalities (5), (9), and (14), in order to formalize the
agreements between the tiers. We now state this explicitly in the following definition:

Definition 1 (Supply chain network equilibrium). The equilibrium state of the supply chain is one
where the product flows between the distinct tiers of the decision-makers coincide and the product
flows and prices satisfy the sum of the optimality conditions (5) and (9) and conditions (14).
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We now establish the following:

Theorem 1 (Variational inequality formulation). The equilibrium conditions governing the supply
chain model with competition are equivalent to the solution of the variational inequality problem
given by: Determine ðQ1� ;Q2� ; c�; q�

3Þ 2 K satisfyingXm
i¼1

Xn
j¼1

ofiðQ1�Þ
oqij

�
þ
ocijðq�ijÞ
oqij

þ ocjðQ1�Þ
oqij

� c�j

�
	 qij
h

� q�ij
i

þ
Xn
j¼1

Xo
k¼1

cjkðQ2�Þ
h

þ c�j � q�
3k

i
	 qjk
h

� q�jk
i
þ
Xn
j¼1

Xm
i¼1

q�ij

"
�
Xo
k¼1

q�jk

#
	 cj
h

� c�j
i

þ
Xo
k¼1

Xn
j¼1

q�jk

"
� dkðq�

3Þ
#
	 q3k

�
� q�

3k

�
P 0 8ðQ1;Q2; c; q3Þ 2 K; ð15Þ

where K 
 fðQ1;Q2; c; q3Þ j ðQ1;Q2; c; q3Þ 2 Rmnþnoþnþo
þ g.

Proof.We first establish that the equilibrium conditions imply variational inequality (15). Indeed,
the summation of (5), (9), and (14), yields, after algebraic simplification, inequality (15).

We now establish the converse, that is, that a solution to variational inequality (15) satisfies the
sum of inequalities (5), (9), and (14), and is, hence, an equilibrium according to Definition 1. To
inequality (15) add the term �q�

1ij þ q�
1ij to the term in the first set of brackets preceding the

multiplication sign and add the term �q�
2j þ q�

2j to the term preceding the second multiplication
sign. Such ‘‘terms’’ do not change the value of the inequality since they are identically equal to
zero, with the resulting inequality of the formXm

i¼1

Xn
j¼1

ofiðQ1�Þ
oqij

�
þ
ocijðq�ijÞ
oqij

þ ocjðQ1�Þ
oqij

� c�j � q�
1ij þ q�

1ij

�
	 qij
h

� q�ij
i

þ
Xn
j¼1

Xo
k¼1

cjkðQ2�Þ
h

þ c�j � q�
3k � q�

2j þ q�
2j

i
	 qjk
h

� q�jk
i
þ
Xn
j¼1

Xm
i¼1

q�ij

"
�
Xo
k¼1

q�jk

#
	 cj
h

� c�j
i

þ
Xo
k¼1

Xn
j¼1

q�jk

"
� dkðq�

3Þ
#
	 q3k

�
� q�

3k

�
P 0 8ðQ1;Q2; c; q3Þ 2 K; ð16Þ

which, in turn, can be rewritten as

Xm
i¼1

Xn
j¼1

ofiðQ1�Þ
oqij

�
þ
ocijðq�ijÞ
oqij

� q�
1ij

�
	 qij
h

� q�ij
iXm

i¼1

Xn
j¼1

ocjðQ1�Þ
oqij

�
þ q�

1ij � c�j

�
	 qij
h

� q�ij
i

þ
Xn
j¼1

Xo
k¼1

h
� q�

2j þ c�j
i
	 qjk
h

� q�jk
i
þ
Xn
j¼1

Xm
i¼1

q�ij

"
�
Xo
k¼1

q�jk

#
	 cj
h

� c�j
i

þ
Xn
j¼1

Xo
k¼1

q�
2j

h
þ cjkðQ2�Þ � q�

3k

i
	 qjk
h

� q�jk
iXo

k¼1

Xn
j¼1

q�jk

"
� dkðq�

3Þ
#
	 q3k

�
� q�

3k

�
P 0

8ðQ1;Q2; c; q3Þ 2 K: ð17Þ
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But inequality (17) is equivalent to the price and shipment pattern satisfying the sum of (5), (9),
and (14). The proof is completed. �

For easy reference in the subsequent sections, variational inequality problem (15) can be re-
written in standard variational inequality form (cf. Nagurney, 1999) as follows: Determine
X � 2 K satisfying

hF ðX �Þ;X � X �iP 0 8X 2 K; ð18Þ
where X 
 ðQ1;Q2; c;q3Þ, F ðX Þ 
 ðFij; Fjk; Fj; FkÞi¼1;...;m;j¼1;...;n;k¼1;...;o, and the specific components of
F are given by the functional terms preceding the multiplication signs in (15). The term h�; �i
denotes the inner product in N-dimensional Euclidean space.

The variables in the variational inequality problem are: the product shipments from the
manufacturers to the retailers, Q1 (from which one can then recover also the production outputs
through (3)), the product flows from the retailers to the demand markets, Q2, the prices associated
with handling the product by the retailers, c, and the demand market prices, q3. The solution of
the variational inequality problem (15), in turn, is given by ðQ1� ;Q2� ; c�;q�

3Þ.
We now discuss how to recover the equilibrium manufacturers’ prices, q�

1ij, for all i; j, and the
retailers’ equilibrium prices, q�

2j, for all j, from the solution of variational inequality (15). (In
Section 4 we describe an algorithm for computing the solution.) Recall that, in the preceding
discussions, we have noted that if q�jk > 0 for some k and j, then q�

2j is precisely equal to c�j , which
can be obtained from the solution of (15). The prices q�

1ij, in turn (cf. also (5)), can be obtained by
finding a q�ij > 0, and then setting

q�
1ij ¼

of ðQ1�Þ
oqij

�
þ
ocijðq�ijÞ
oqij

�
:

We now construct the supply chain network in equilibrium (cf. Fig. 1), using, as building
blocks, the previously drawn networks in Figs. 2–4 corresponding, respectively, to the transac-
tions of a typical manufacturer, a typical retailer, and the consumers at a typical demand market.
First, however, we need to establish the result that, in equilibrium, the sum of the product
shipments to each retailer is equal to the sum of the product shipments out. This means that each
retailer, assuming profit-maximization, only purchases from the manufacturers the amount of the
product that is actually consumed at the demand markets. In order to establish this result, we
utilize variational inequality (15). Clearly, we know that, if c�j > 0, then the ‘‘market clears’’ for
that retailer, that is,

Pm
i¼1 q

�
ij ¼

Po
k¼1 q

�
jk. Let us now consider the case where c�j ¼ 0 for some

retailer j. From the first term in inequality (15), since the production cost functions, and the
transaction cost functions and handling cost functions have been assumed to be convex and,
assuming, which is not unreasonable, that either the marginal production cost or the marginal
transaction cost or the marginal handling cost for each manufacturer/retailer pair is strictly
positive at equilibrium, then we know that

ofiðQ1�Þ
oqij

þ
ocijðq�ijÞ
oqij

þ ocjðQ1�Þ
oqij

> 0;

which implies that q�ij ¼ 0, and this holds for all i; j. (Note that we could set Q2 ¼ Q2� , c ¼ c�, and
q3 ¼ q�

3 in (15) to observe this.) It follows then from the third term in (15) that
Po

k¼1 q
�
jk ¼ 0, and,
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hence, the market clears also in this case since the flow into a retailer is equal to the flow out and
equal to zero. We have thus established the following:

Corollary 1. The market for the product clears for each retailer in the supply chain network equi-
librium.

In Fig. 1, we depict the structure of the supply chain network in equilibrium consisting of all the
manufacturers, all the retailers, and all the demand markets. Hence, we replicate Fig. 2 for all
manufacturers, Fig. 3, for all retailers, and Fig. 4 for all demand markets. These resulting net-
works represent the possible transactions of all the economic agents. In addition, since there must
be agreement between/among the transactors at equilibrium, the analogous links (and equilibrium
flows on them) must coincide, yielding the network structure given in Fig. 1.

The equilibrium product shipments between the manufacturers and the retailers are given by
the components of the vector Q1� and flow on the links connecting the top tier of nodes with the
middle tier of nodes in Fig. 1. The equilibrium product shipments between the retailers and the
demand markets are given by the components of the vector Q2� and flow on the links connecting
the middle tier of nodes with the bottom tier of nodes in Fig. 1. The equilibrium prices associated
with the demand markets are associated with the bottom tier nodes in Fig. 1 and are given by the
components of the vector q�

3. The equilibrium prices associated with the middle tier of nodes in
Fig. 1 corresponding to the retailers are given by the q�

2j’s and c�j ’s. Finally, the equilibrium prices
associated with the manufacturers at the top tier of nodes in Fig. 1 are given by the q�

1ij’s for all i; j.

3. Qualitative properties

In this section, we provide some qualitative properties of the solution to variational inequality
(15). In particular, we derive the existence and uniqueness results. We also investigate properties
of the function F (cf. (18)).

Since the feasible set underlying the variational inequality problem (15) is not compact we
cannot derive existence of a solution simply from the assumption of continuity of the functions.
Nevertheless, we can impose a rather weak condition to guarantee the existence of a solution
pattern. Let

Kb ¼ fðQ1;Q2; c; q3Þ j06Q1
6 b1; 06Q2

6 b2; 06 c6 b3; 06 q3 6 b4g; ð19Þ

where b ¼ ðb1; b2; b3; b4ÞP 0 and Q1
6 b1;Q2

6 b2; c6 b3;q3 6 b4 means that qij 6 b1, qjk 6 b2,
cj 6 b3, and q3k 6 b4 for all i; j; k. Then Kb is a bounded, closed convex subset of Rmnþnoþnþo. Thus,
the following variational inequality:

hF ðXbÞ;X � XbiP 0 8Xb 2 Kb ð20Þ

admits at least one solution Xb 2 Kb, from the standard theory of variational inequalities, since
Kb is compact and F is continuous. Following Kinderlehrer and Stampacchia (1980) (see also
Theorem 1.5 in Nagurney, 1999), we then have:
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Lemma 1. Variational inequality (18) admits a solution if and only if there exists a b > 0 such that
variational inequality (20) admits a solution in Kb with

Q1b < b1; Q2b < b2; cb < b3; qb
3 < b4: ð21Þ

Under the conditions in Theorem 2 below it is possible to construct b1, b2, b3, and b4 large
enough so that the restricted variational inequality (20) will satisfy the boundedness condition (21)
and, thus, existence of a solution to the original variational inequality problem according to
Lemma 1 will hold.

Theorem 2 (Existence). Suppose that there exist positive constants M ;N ;R with R > 0 such that:

ofiðQ1Þ
oqij

þ ocijðqijÞ
oqij

þ ocjðQ1Þ
oqij

PM 8Q1 with qij PN ; 8i; j; ð22Þ

cjkðQ2ÞPM 8Q2 with qjk PN ; 8j; k;
dkðq3Þ6N 8q3 with q3k > R; 8j:

ð23Þ

Then variational inequality (15) admits at least one solution.

Proof. Follows from Lemma 1. See also the proof of existence for Proposition 1 in Nagurney and
Zhao (1993) and the existence proof in Nagurney et al. (2001). �

Assumptions (22) and (23) are reasonable from an economics perspective, since when the
product shipment between a manufacturer and retail pair is large, we can expect the marginal
production cost plus the marginal transaction cost plus the marginal handling cost to exceed a
positive lower bound. Also, when the product flow between a retail and demand market pair is
high, we can expect the transaction cost associated with that pair to be nonnegative and to exceed
a lower bound. Moreover, in the case where the demand market price at a demand market is high,
we can expect that the demand for the product to be low at that demand market.

We now recall the definition of an additive production cost functions introduced in Zhang and
Nagurney (1996) for establishing certain qualitative properties in dynamic network oligopoly
problems. Such cost functions will be assumed here in order to obtain certain monotonicity
properties of the function F in variational inequality (18).

Definition 2 (Additive production cost). Suppose that for each manufacturer i the production cost
fi is additive, that is,

fiðqÞ ¼ f 1
i ðqiÞ þ f 2

i ð�qqiÞ; ð24Þ

where f 1
i ðqiÞ is the internal production cost that depends solely on the manufacturer’s own output

level qi, which may include the production operation and the facility maintenance, etc., and f 2
i ð�qqiÞ

is the interdependent part of the production cost that is a function of all the other manufacturers’
output levels �qqi ¼ ðq1; . . . ; qi�1; qiþ1; . . . ; qmÞ and reflects the impact of the other manufacturers’
production patterns on manufacturer i’s cost. This interdependent part of the production cost may
describe the competition for the resources, consumption of the homogeneous raw materials, etc.
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We now establish additional qualitative properties both of the function F that enters the
variational inequality problem, as well as uniqueness of the equilibrium pattern. Monotonicity
and Lipschitz continuity of F will be utilized in the subsequent section for proving convergence of
the algorithmic scheme.

Lemma 2 (Monotonicity). Suppose that the production cost functions fi, i ¼ 1; . . . ;m, are additive,
as defined in Definition 2, and f 1

i , i ¼ 1; . . . ;m, are convex functions. If the cij and cj functions are
convex, the cjk functions are monotone increasing, and the dk functions are monotone decreasing
functions of the generalized prices, for all i; j; k, then the vector function F that enters the variational
inequality (18) is monotone, that is,

hF ðX 0Þ � F ðX 00Þ;X 0 � X 00iP 0 8X 0;X 00 2 K: ð25Þ

Proof. Let X 0 ¼ ðQ10;Q20; c0;q0
3Þ, X 00 ¼ ðQ100;Q200; c00; q00

3Þ with X 0 2 K and X 00 2 K. Then, inequality
(25) can been seen in the following deduction:

hF ðX 1Þ � F ðX 2Þ;X 1 � X 2i ¼
Xm
i¼1

Xn
j¼1

ofiðQ10Þ
oqij

�
� ofiðQ100Þ

oqij

�
	 q0ij
h

� q00ij
i

þ
Xm
i¼1

Xn
j¼1

ocjðQ10Þ
oqij

�
� ocjðQ100Þ

oqij

�
	 q0ij
h

� q00ij
i

þ
Xm
i¼1

Xn
j¼1

ocijðq0ijÞ
oqij

"
�
ocijðq00ijÞ
oqij

#
	 q0ij
h

� q00ij
i

þ
Xn
j¼1

Xo
k¼1

cjkðQ20Þ
�

� cjkðQ200Þ
�
	 q0jk
h

� q00jk
i

þ
Xo
k¼1

�
� dkðq0

3Þ þ dkðq00
3Þ
�
	 q0

3k

�
� q00

3k

�
¼ ðIÞ þ ðIIÞ þ ðIIIÞ þ ðIV Þ þ ðV Þ: ð26Þ

Since fi, i ¼ 1; . . . ;m, are additive, and f 1
i , i ¼ 1; . . . ;m, are convex functions, one has

ðIÞ ¼
Xm
i¼1

Xn
j¼1

of 1
i ðQ10Þ
oqij

�
� of 1

i ðQ100Þ
oqij

�
	 q0ij
h

� q00ij
i
P 0: ð27Þ

The convexity of cj, for all j, and cij, for all i; j, gives, respectively,

ðIIÞ ¼
Xm
i¼1

Xn
j¼1

ocjðQ10Þ
oqij

�
� ocjðQ100Þ

oqij

�
	 q0ij
h

� q00ij
i
P 0 ð28Þ

and

ðIIIÞ ¼
Xm
i¼1

Xn
j¼1

ocijðq0ijÞ
oqij

"
�
ocijðq00ijÞ
oqij

#
	 q0ij
h

� q00ij
i
P 0: ð29Þ
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Since cjk, for all j; k, are assumed to be monotone increasing, and dk, for all k, are assumed to be
monotone decreasing, we have

ðIV Þ ¼
Xn
j¼1

Xo
k¼1

cjkðQ20Þ
�

� cjkðQ200Þ
�
	 q0jk
h

� q00jk
i
P 0 ð30Þ

and

ðV Þ ¼
Xo
k¼1

�
� dkðq0

3Þ þ dkðq00
3Þ
�
	 q0

3k

�
� q00

3k

�
P 0: ð31Þ

Bringing (27)–(31) into the right-hand side of (26), we conclude that (26) is nonnegative. The
proof is completed. �

Lemma 3 (Strict monotonicity). Assume all the conditions of Lemma 2. In addition, suppose that
one of the three families of convex functions f 1

i , i ¼ 1; . . . ;m; cij, i ¼ 1; . . . ; n; j ¼ 1; . . . ; n, and cj,
j ¼ 1; . . . ; n, is a family of strictly convex functions. Suppose that cjk, j ¼ 1; . . . ; n; k ¼ 1; . . . ; o, and
dk, k ¼ 1; . . . ; o, are strictly monotone. Then, the vector function F that enters the variational in-
equality (18) is strictly monotone, with respect to ðQ1;Q2; q3Þ, that is, for any two X 0;X 00 2 K with
ðQ10;Q20; q0

3Þ 6¼ ðQ100;Q200;q00
3Þ:

hF ðX 0Þ � F ðX 00Þ;X 0 � X 00i > 0: ð32Þ

Proof. For any two distinct ðQ10;Q20;q0
3Þ, ðQ100;Q200;q00

3Þ, we must have at least one of the following
three cases:

(i) Q10 6¼ Q100,
(ii) Q20 6¼ Q200,
(iii) q0

3 6¼ q00
3.

Under the condition of the theorem, if (i) holds true, then, at the right-hand side of (26), at least
one of (I), (II) and (II) is positive. If (ii) is true, then (IV) is positive. In case of (iii), (V) is positive.
Hence, we can conclude that the right-hand side of (26) is greater than zero. The proof is com-
pleted. �

Lemma 3 has an important implication for the uniqueness of product shipments, Q1, the re-
tailer shipments, Q2, and the prices at the demand markets, q3, at the equilibrium. We note also
that no guarantee of a unique cj, j ¼ 1; . . . ; n, can be generally expected at the equilibrium.

Theorem 3 (Uniqueness). Under the conditions of Lemma 3, there is a unique product shipment
pattern Q1�, a unique retail shipment (consumption) pattern Q2�, and a unique demand price vector q�

3

satisfying the equilibrium conditions of the supply chain. In other words, if the variational inequality
(18) admits a solution, that should be the only solution in Q1, Q2, and q3.

Proof. Under the strict monotonicity result of Lemma 3, uniqueness follows from the standard
variational inequality theory (cf. e.g., Kinderlehrer and Stampacchia, 1980). �
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Lemma 4 (Lipschitz continuity). The function that enters the variational inequality problem (18) is
Lipschitz continuous, that is,

kF ðX 0Þ � F ðX 00Þk6 LkX 0 � X 00k 8X 0;X 00 2 K; ð33Þ
under the following conditions:

(i) Each fi, i ¼ 1; . . . ;m, is additive and has a bounded second-order derivative;
(ii) cij and cj have bounded second-order derivatives for all i; j;
(iii) cjk and dk have bounded first-order derivatives for all j; k.

Proof. The result is direct by applying a mid-value theorem from calculus to the vector function F
that enters the variational inequality problem (18). �

4. The algorithm

In this section, an algorithm is presented which can be applied to solve any variational in-
equality problem in standard form (see (18)). The algorithm is the modified projection method of
Korpelevich (1977) and is guaranteed to converge provided that the function F that enters the
variational inequality is monotone and Lipschitz continuous (and that a solution exists). The
realization of the algorithm (for further details see also Nagurney, 1999) for the supply chain
network model is as follows, where T denotes an iteration counter:

Modified projection method for the solution of variational inequality (15)

Step 0. Initialization

Set ðQ10;Q20; c0;q0
3Þ 2 K. Let T ¼ 1 and set a such that 0 < a6 1=L, where L is the Lipschitz

constant (cf. (33)) for the problem.

Step 1. Computation

Compute ð�QQ1T ; �QQ2T ; �ccT; �qqT
3 Þ 2 K by solving the variational inequality

Xm
i¼1

Xn
j¼1

�qqTij

"
þ a

ofiðQ1T�1Þ
oqij

 
þ
ocijðqT�1

ij Þ
oqij

þ ocjðQ1T�1Þ
oqij

� cT�1
j

!
� qT�1

ij

#
	 qij
h

� �qqTij
i

þ
Xn
j¼1

Xo
k¼1

�qqTjk
h

þ a cjkðQ2T�1Þ
�

þ cT�1
j � qT�1

3k

�
� qT�1

jk

i
	 qjk
h

� �qqTjk
i

þ
Xn
j¼1

�ccTj

"
þ a

Xm
i¼1

qT�1
ij

 
�
Xo
k¼1

qT�1
jk

!
� cT�1

j

#
	 cj
h

� �ccTj
i

þ
Xo
k¼1

�qqT
3k

"
þ a

Xn
j¼1

qT�1
jk

 
� dk qT�1

3

� �!
� qT�1

3k

#
	 q3k

h
� �qqT

3k

i
P 0 8ðQ1;Q2; c; q3Þ 2 K:

ð34Þ
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Step 2. Adaptation

Compute ðQ1T ;Q2T ; cT; qT
3 Þ 2 K by solving the variational inequality

Xm
i¼1

Xn
j¼1

qTij

2
4 þ a

ofið�QQ1TÞ
oqij

0
@ þ

ocijð�qqTij Þ
oqij

þ ocjð�QQ1TÞ

oqij
� �ccTj

1
A� qT�1

ij

3
5	 qij

h
� qTij

i

þ
Xn
j¼1

Xo
k¼1

qTjk

�
þ a cjkð�QQ2TÞ
�

þ �ccTj � �qqT
3k

�
� qT�1

jk

�
	 qjk
h

� qTjk
i

þ
Xn
j¼1

cTj

"
þ a

Xm
i¼1

qT�1
ij

 
�
Xo
k¼1

qTjk

!
� cT�1

j

#
	 cj
h

� cTj
i

þ
Xo
k¼1

qT
3k

"
þ a

Xn
j¼1

�qqTjk

 
� dkð�qqT

3 Þ
!

� qT�1
3k

#
	 q3k

�
� qT

3k

�
P 0 8ðQ1;Q2; c;q3Þ 2 K:

ð35Þ
Step 3. Convergence verification

If jqTij � qT�1
ij j6 �, jqTjk � qT�1

jk j6 �, jcTj � cT�1
j j6 �, jqT

3k � qT�1
3k j6 � for all i ¼ 1; . . . ;m,

j ¼ 1; . . . ; n, k ¼ 1; . . . ; o, with � > 0, a pre-specified tolerance, then stop; otherwise, set
T :¼ Tþ 1, and go to Step 1.

Note that the variational inequality subproblems (34) and (35) can be solved explicitly and in
closed form since the feasible set is that of the nonnegative orthant. Indeed, they yield sub-
problems in the qij, qjk, cj and q3k variables for all i; j; k.

We now state the convergence result for the modified projection method for this model.

Theorem 4 (Convergence). Assume that the function that enters the variational inequality (15) (or
(18)) satisfies the conditions in Theorem 2 and Lemmas 2 and 4. Then the modified projection method
described above converges to the solution of the variational inequality (15) or (18).

Proof. According to Korpelevich (1977), the modified projection method converges to the solution
of the variational inequality problem of the form (18), provided that the function F that enters the
variational inequality is monotone and Lipschitz continuous and that a solution exists. Existence
of a solution follows from Theorem 2. Monotonicity follows Lemma 2. Lipschitz continuity, in
turn, follows from Lemma 4. The proof is completed. �

5. Numerical examples and discussion

In this section, we apply the modified projection method to four numerical examples and also
provide a discussion of the results. Section 5.1 describes the numerical examples and their solu-
tions whereas Section 5.2 discusses more fully the model in the context of the examples solved.
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5.1. Numerical examples

The algorithm was implemented in FORTRAN and the computer system used was a DEC
Alpha system located at the University of Massachusetts at Amherst. The convergence criterion
used was that the absolute value of the flows and prices between two successive iterations differed
by no more than 10�4.

Example 1. The first numerical example, depicted in Fig. 5, consisted of two manufacturers, two
retailers, and two demand markets.

The data for this example were constructed for easy interpretation purposes. The production
cost functions for the manufacturers were given by

f1ðqÞ ¼ 2:5q21 þ q1q2 þ 2q1; f2ðqÞ ¼ 2:5q22 þ q1q2 þ 2q2:

The transaction cost functions faced by the manufacturers and associated with transacting with
the retailers were given by

c11ðq11Þ ¼ :5q211 þ 3:5q11; c12ðq12Þ ¼ :5q212 þ 3:5q12; c21ðq21Þ ¼ :5q221 þ 3:5q21;

c22ðq22Þ ¼ :5q222 þ 3:5q22:

The handling costs of the retailers, in turn, were given by

c1ðQ1Þ ¼ :5
X2
i¼1

qi1

 !2

; c2ðQ1Þ ¼ :5
X2
i¼1

qi2

 !2

:

The demand functions at the demand markets were

d1ðq3Þ ¼ �2q31 � 1:5q32 þ 1000; d2ðq3Þ ¼ �2q32 � 1:5q31 þ 1000;

and the transaction costs between the retailers and the consumers at the demand markets were
given by

Fig. 5. Supply chain network for numerical examples 1 and 2.
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c11ðQ2Þ ¼ q11 þ 5; c12ðQ2Þ ¼ q12 þ 5; c21ðQ2Þ ¼ q21 þ 5; c22ðQ2Þ ¼ q22 þ 5:

The parameter a in the modified projection method was set to :05 for both Examples 1 and 2.
The modified projection method converged in 257 iterations and yielded the following equilibrium
pattern: the product shipments between the two manufacturers and the two retailers were Q1� :
q�11 ¼ q�12 ¼ q�21 ¼ q�22 ¼ 16:608, the product shipments (consumption volumes) between the two
retailers and the two demand markets were Q2� : q�11 ¼ q�12 ¼ q�21 ¼ q�22 ¼ 16:608, the vector c�,
which was equal to the prices charged by the retailers q�

2, had components c�1 ¼ c�2 ¼ 254:617, and
the demand prices at the demand markets were q�

31 ¼ q�
32 ¼ 276:224.

It is easy to verify that the optimality/equilibrium conditions were satisfied with good accuracy.

Example 2. We then modified Example 1 as follows: The production cost function for manu-
facturer 1 was now given by

f1ðqÞ ¼ 2:5q21 þ q1q2 þ 12q1;

whereas the transaction costs for manufacturer 1 were now given by

c11ðq11Þ ¼ q211 þ 3:5q11; c12ðq12Þ ¼ q212 þ 3:5q12:

The remainder of the data was as in Example 1. Hence, both the production costs and the
transaction costs increased for manufacturer 1.

The modified projection method converged in 258 iterations and yielded the following equi-
librium pattern: the product shipments between the two manufacturers and the two retailers were
now Q1� : q�11 ¼ q�12 ¼ 14:507; q�21 ¼ q�22 ¼ 17:230, the product shipments (consumption amounts)
between the two retailers and the two demand markets were now Q2� : q�11 ¼ q�12 ¼ q�21 ¼
q�22 ¼ 15:869, the vector c� was now equal to c�1 ¼ c�2 ¼ 255:780, and the demand prices at the
demand markets were q�

31 ¼ q�
32 ¼ 276:646.

Hence, manufacturer 1 now produced less than it did in Example 1, whereas manufacturer 2
increased his production output. The price charged by the retailers to the consumers increased, as
did the demand price at the demand markets, with a decrease in the incurred demand.

Example 3. The third supply chain network problem consisted of two manufacturers, three re-
tailers, and two demand markets, as depicted in Fig. 6.

The data were constructed from Example 2, but we added data for the manufacturers’ trans-
action costs associated with the third retailer; handling cost data for the third retailer, as well as
the transaction cost data between the new retailer and the demand markets. Hence, the complete
data for this example were given by:

The production cost functions for the manufacturers were given by

f1ðqÞ ¼ 2:5q21 þ q1q2 þ 2q1; f2ðqÞ ¼ 2:5q22 þ q1q2 þ 12q2:

The transaction cost functions faced by the two manufacturers and associated with transacting
with the three retailers were given by

c11ðq11Þ ¼ q211 þ 3:5q11; c12ðq12Þ ¼ q212 þ 3:5q12; c13ðq13Þ ¼ :5q213 þ 5q13;
c21ðq21Þ ¼ :5q221 þ 3:5q21; c22ðq22Þ ¼ :5q222 þ 3:5q22; c23ðq23Þ ¼ :5q223 þ 5q23:
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The handling costs of the retailers, in turn, were given by

c1ðQ1Þ ¼ :5
X2
i¼1

qi1

 !2

; c2ðQ1Þ ¼ :5
X2
i¼1

qi2

 !2

; c3ðQ1Þ ¼ :5
X2
i¼1

qi3

 !2

:

The demand functions at the demand markets, again, were

d1ðq3Þ ¼ �2q31 � 1:5q32 þ 1000; d2ðq3Þ ¼ �2q32 � 1:5q31 þ 1000;

and the transaction costs between the retailers and the consumers at the demand markets were
given by

c11ðQ2Þ ¼ q11 þ 5; c12ðQ2Þ ¼ q12 þ 5;

c21ðQ2Þ ¼ q21 þ 5; c22ðQ2Þ ¼ q22 þ 5;

c31ðQ2Þ ¼ q31 þ 5; c32ðQ2Þ ¼ q32 þ 5:

The a parameter in the modified projection method was now set to :03. The modified projection
method converged in 361 iterations and yielded the following equilibrium pattern: the product
shipments between the two manufacturers and the three retailers were Q1� : q�11 ¼ q�12 ¼ 9:243,
q�13 ¼ 14:645, q�21 ¼ q�22 ¼ 13:567, q�23 ¼ 9:726, the product shipments between the three retailers
and the two demand markets were Q2� : q�11 ¼ q�12 ¼ q�21 ¼ q�22 ¼ 11:404, q�31 ¼ q�32 ¼ 12:184. The
vector c� had components c�1 ¼ c�2 ¼ 259:310, c�3 ¼ 258:530, and the demand prices at the demand
markets were q�

31 ¼ q�
32 ¼ 275:717.

Note that the demand prices at the demand markets were now lower than in Example 2, since
there is now an additional retailer and, hence, increased competition. The incurred demand also
increased at both demand markets, as did the production outputs of both manufacturers. Since
the retailers now handled a greater volume of product flows, the prices charged for the product at
the retail outlets, nevertheless, increased due to increased handling cost.

Fig. 6. Supply chain network for Example 3.
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Example 4. The fourth numerical example consisted of three manufacturers, two retailers, and
three demand markets. Hence, the supply chain network, in equilibrium, was as depicted in Fig. 7.

The data for this example were constructed from the data for Example 1, but we added the
necessary functions for the third manufacturer and the third demand market resulting in the
following functions:

The production cost functions for the manufacturers were given by

f1ðqÞ ¼ 2:5q21 þ q1q2 þ 2q1; f2ðqÞ ¼ 2:5q22 þ q1q2 þ 2q2; f3ðqÞ ¼ :5q23 þ :5q1q3 þ 2q3:

The transaction cost functions faced by the manufacturers and associated with transacting with
the retailers were given by

c11ðq11Þ ¼ :5q211 þ 3:5q11; c12ðq12Þ ¼ :5q212 þ 3:5q12; c21ðq21Þ ¼ :5q221 þ 3:5q21;

c22ðq22Þ ¼ :5q222 þ 3:5q22; c31ðq31Þ ¼ :5q231 þ 2q31; c32ðq32Þ ¼ :5q232 þ 2q32:

The handling costs of the retailers, in turn, were given by

c1ðQ1Þ ¼ :5
X2
i¼1

qi1

 !2

; c2ðQ1Þ ¼ :5
X2
i¼1

qi2

 !2

:

The demand functions at the demand markets were

d1ðq3Þ ¼ �2q31 � 1:5q32 þ 1000; d2ðq3Þ ¼ �2q32 � 1:5q31 þ 1000;

d3ðq3Þ ¼ �2q33 � 1:5q31 þ 1000;

and the transaction costs between the retailers and the consumers at the demand markets were
given by

c11ðQ2Þ ¼ q11 þ 5; c12ðQ2Þ ¼ q12 þ 5; c13ðQ2Þ ¼ q13 þ 5;

c21ðQ2Þ ¼ q21 þ 5; c22ðQ2Þ ¼ q22 þ 5; c23ðQ2Þ ¼ q23 þ 5:

Fig. 7. Supply chain network for numerical example 4.
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The parameter a in the modified projection method was set to :05 for this example. The
modified projection method converged in 230 iterations and yielded the following equilibrium
pattern: the product shipments between the three manufacturers and the two retailers were Q1� :
q�11 ¼ q�12 ¼ q�21 ¼ q�22 ¼ 12:395; q�31 ¼ q�32 ¼ 50:078. The product shipments (consumption levels)
between the two retailers and the three demand markets were computed as Q2� : q�11 ¼ q�12 ¼ q�13 ¼
q�21 ¼ q�22 ¼ q�23 ¼ 24:956, whereas the vector c� was now equal to c�1 ¼ c�2 ¼ 241:496, and the de-
mand prices at the three demand markets were q�

31 ¼ q�
32 ¼ q�

33 ¼ 271:454.
Note that, in comparison to the results in Example 1, with the addition of a new manufacturer,

the price charged at the retailer outlets was now lower due to the competition, and the increased
supply of the product. The consumers at the three demand markets benefited, as well, with a
decrease in the demand market prices and an increased demand.

5.2. Discussion

The preceding examples demonstrate the type of supply chain network problems that can be
solved using the modified projection method given in Section 4. We note that these examples had
nonlinear production costs associated with the manufacturers, nonlinear handling costs associ-
ated with the retailers, and nonlinear transaction costs between the manufacturers and the re-
tailers. Moreover, the demand functions at the demand markets were not separable as was the
case in the oligopolistic supply chain problems studied in a game theoretic framework by Corbett
and Karmarkar (2001). Furthermore, we established convergence of the modified projection
method in Theorem 4. That theorem characterizes the types of functions in the supply chain
network model which guarantee convergence of the computational method to the equilibrium
price and product flow pattern. Of course, the algorithm may, nevertheless, converge for supply
chain network problems in which the function F entering the variational inequality problem (18) is
no longer monotone and Lipschitz continuous and, if it converges, it converges to the equilibrium
pattern.

6. Conclusion

This paper has developed an equilibrium model of competitive supply chain networks. Prices
associated with manufacturers, retailers, and consumers are endogenous, as are the product
shipment and consumption flows. An equilibrium framework provides a benchmark against
which existing product shipments and prices can be compared. Moreover, it provides the foun-
dation for the development of dynamic supply chain network models and their evolution.

Qualitative properties of the equilibrium pattern were established, notably, the existence of a
solution, as well as uniqueness, under reasonable assumptions on the underlying functions. The
modified projection method was proposed for the computation of the equilibrium prices and
product shipments. Several illustrative supply chain network examples were considered in the
computations.

This work demonstrates both theoretically and empirically that solutions to supply chain
network equilibrium problems with nonlinear and nonseparable functions can be computed using
the modified projection method. The convergence of the method is guaranteed under reasonable
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assumptions underlying the various production, handling, and transaction costs, and demand
functions, which were given in this paper.

For future research, the model should be adapted to include distribution centers and raw
material suppliers. The authors plan to extend the model to include the disequilibrium dynamics
associated with supply chains.
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