-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfeatures.py
435 lines (368 loc) · 19.2 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import numpy as np
import datetime
import re
from collections import Counter
from s2search.text import find_query_ngrams_in_text, fix_text, STOPWORDS
from s2search.text import extract_from_between_quotations, fix_author_text
from s2search.text import standardize_whitespace_length
now = datetime.datetime.now()
def nanwrapper(f, x):
"""numpy freaks out if you pass an empty arrays
to many of its functions (like min or max).
This wrapper just returns a nan in that case.
"""
if len(x) == 0:
return np.nan
else:
return f(x)
def remove_unigrams(s, st):
return ' '.join([i for i in s.split(' ') if i not in st])
def make_feature_names_and_constraints():
feats = [
'abstract_is_available',
'paper_year_is_in_query'
]
# for lightgbm, 1 means positively monotonic, -1 means negatively monotonic and 0 means non-constraint
constraints = ['1', '1']
# features just for title, abstract, venue
for field in ['title', 'abstract', 'venue']:
feats.extend([
f'{field}_frac_of_query_matched_in_text', # total fraction of the query that was matched in text
f'{field}_mean_of_log_probs', # statistics of the log-probs
f'{field}_sum_of_log_probs*match_lens',
])
constraints.extend([
'1',
'-1',
'-1',
])
# features for author field only
feats.extend([
'sum_matched_authors_len_divided_by_query_len', # total amount of (fractional wrt query) matched authors
'max_matched_authors_len_divided_by_query_len', # largest (fractional wrt query) author match
'author_match_distance_from_ends', # how far the author matches are from the front/back of the author list
])
constraints.extend([
'1',
'1',
'-1',
])
feats.extend([
'paper_oldness',
'paper_n_citations', # no need for log due to decision trees
'paper_n_key_citations',
'paper_n_citations_divided_by_oldness'
])
# note: DO NOT change the paper_oldness constraint to -1
# if you do, then seminal papers will stop being on top.
constraints.extend(['0', '1', '1', '1'])
feats.extend([
'fraction_of_unquoted_query_matched_across_all_fields',
'sum_log_prob_of_unquoted_unmatched_unigrams',
'fraction_of_quoted_query_matched_across_all_fields',
'sum_log_prob_of_quoted_unmatched_unigrams',
])
constraints.extend(['1', '1', '1', '1'])
return np.array(feats), ','.join(constraints)
def make_features(query, result_paper, lms, max_q_len=128, max_field_len=1024):
# the language model should have the beginning and end of sentences turned off
lm_tiab, lm_auth, lm_venu = lms
lm_dict = {
'title_abstract': lambda s: lm_tiab.score(s, eos=False, bos=False),
'author': lambda s: lm_auth.score(s, eos=False, bos=False),
'venue': lambda s: lm_venu.score(s, eos=False, bos=False)
}
# apply the language model in the field as necessary
def lm_score(s, which_lm='title'):
if 'title' in which_lm or 'abstract' in which_lm:
return lm_dict['title_abstract'](s)
elif 'venue' in which_lm:
return lm_dict['venue'](s)
elif 'author' in which_lm:
return lm_dict['author'](s)
elif 'max' in which_lm:
return np.max([lm_dict['title_abstract'](s), lm_dict['venue'](s), lm_dict['author'](s)])
try:
year = int(result_paper['paper_year'])
year = np.minimum(now.year, year) # papers can't be from the future.
except:
year = np.nan
if result_paper['author_name'] is None:
authors = []
else:
authors = result_paper['author_name']
# fix the text and separate out quoted and unquoted
query = str(query)
q = fix_text(query)[:max_q_len]
q_quoted = [i for i in extract_from_between_quotations(q) if len(i) > 0]
q_split_on_quotes = [i.strip() for i in q.split('"') if len(i.strip()) > 0]
q_unquoted = [i.strip() for i in q_split_on_quotes if i not in q_quoted and len(i.strip()) > 0]
q_unquoted_split_set = set(' '.join(q_unquoted).split())
q_quoted_split_set = set(' '.join(q_quoted).split())
q_split_set = q_unquoted_split_set | q_quoted_split_set
q_split_set -= STOPWORDS
# we will find out how much of a match we have *across* fields
unquoted_matched_across_fields = []
quoted_matched_across_fields = []
# overall features for the paper and query
q_quoted_len = np.sum([len(i) for i in q_quoted]) # total length of quoted snippets
q_unquoted_len = np.sum([len(i) for i in q_unquoted]) # total length of non-quoted snippets
q_len = q_unquoted_len + q_quoted_len
# if there's no query left at this point, we return NaNs
# which the model natively supports
if q_len == 0:
return [np.nan] * len(FEATURE_NAMES)
# testing whether a year is somewhere in the query and making year-based features
if re.search('\d{4}', q): # if year is in query, the feature is whether the paper year appears in the query
year_feat = (str(year) in q_split_set)
else: # if year isn't in the query, we don't care about matching
year_feat = np.nan
feats = [
result_paper['paper_abstract_cleaned'] is not None and len(result_paper['paper_abstract_cleaned']) > 1,
year_feat, # whether the year appears anywhere in the (split) query
]
# if year is matched, add it to the matched_across_all_fields but remove from query
# so it doesn't get matched in author/title/venue/abstract later
if np.any([str(year) in i for i in q_quoted]):
quoted_matched_across_fields.append(str(year))
if np.any([str(year) in i for i in q_unquoted]):
unquoted_matched_across_fields.append(str(year))
# if year is matched, we don't need to match it again, so removing
if year_feat is True and len(q_split_set) > 1:
q_split_set.remove(str(year))
# later we will filter some features based on nonsensical unigrams in the query
# this is the log probability lower-bound for sensible unigrams
log_prob_nonsense = lm_score('qwertyuiop', 'max')
# features title, abstract, venue
title_and_venue_matches = set()
title_and_abstract_matches = set()
for field in ['paper_title_cleaned', 'paper_abstract_cleaned', 'paper_venue_cleaned']:
if result_paper[field] is not None:
text = result_paper[field][:max_field_len]
else:
text = ''
text_len = len(text)
# unquoted matches
unquoted_match_spans, unquoted_match_text, unquoted_longest_starting_ngram = find_query_ngrams_in_text(q_unquoted, text, quotes=False)
unquoted_matched_across_fields.extend(unquoted_match_text)
unquoted_match_len = len(unquoted_match_spans)
# quoted matches
quoted_match_spans, quoted_match_text, quoted_longest_starting_ngram = find_query_ngrams_in_text(q_quoted, text, quotes=True)
quoted_matched_across_fields.extend(quoted_match_text)
quoted_match_len = len(quoted_match_text)
# now we (a) combine the quoted and unquoted results
match_spans = unquoted_match_spans + quoted_match_spans
match_text = unquoted_match_text + quoted_match_text
# and (b) take the set of the results
# while excluding sub-ngrams if longer ngrams are found
# e.g. if we already have 'sentiment analysis', then 'sentiment' is excluded
match_spans_set = []
match_text_set = []
for t, s in sorted(zip(match_text, match_spans), key=lambda s: len(s[0]))[::-1]:
if t not in match_text_set and ~np.any([t in i for i in match_text_set]):
match_spans_set.append(s)
match_text_set.append(t)
# remove venue results if they already entirely appeared
if 'venue' in field:
text_unigram_len = len(text.split(' '))
match_spans_set_filtered = []
match_text_set_filtered = []
for sp, tx in zip(match_spans_set, match_text_set):
tx_unigrams = set(tx.split(' '))
# already matched all of these unigrams in title or abstract
condition_1 = (tx_unigrams.intersection(title_and_abstract_matches) == tx_unigrams)
# and matched too little of the venue text
condition_2 = len(tx_unigrams) / text_unigram_len <= 2/3
if not (condition_1 and condition_2):
match_spans_set_filtered.append(sp)
match_text_set_filtered.append(tx)
match_spans_set = match_spans_set_filtered
match_text_set = match_text_set_filtered
# match_text_set but unigrams
matched_text_unigrams = set()
for i in match_text_set:
i_split = i.split()
matched_text_unigrams.update(i_split)
if 'title' in field or 'venue' in field:
title_and_venue_matches.update(i_split)
if 'title' in field or 'abstract' in field:
title_and_abstract_matches.update(i_split)
if len(match_text_set) > 0 and text_len > 0: # if any matches and the text has any length
# log probabilities of the scores
if 'venue' in field:
lm_probs = [lm_score(match, 'venue') for match in match_text_set]
else:
lm_probs = [lm_score(match, 'max') for match in match_text_set]
# match character lengths
match_lens = [len(i) for i in match_text_set]
# match word lens
match_word_lens = [len(i.split()) for i in match_text_set]
# we have one feature that takes into account repetition of matches
match_text_counter = Counter(match_text)
match_spans_len_normed = np.log1p(list(match_text_counter.values())).sum()
# remove stopwords from unigrams
matched_text_unigrams -= STOPWORDS
feats.extend([
len(q_split_set.intersection(matched_text_unigrams)) / np.maximum(len(q_split_set), 1), # total fraction of the query that was matched in text
np.nanmean(lm_probs), # average log-prob of the matches
np.nansum(np.array(lm_probs) * np.array(match_word_lens)), # sum of log-prob of matches times word-lengths
])
else:
# if we have no matches, then the features are deterministically 0
feats.extend([0, 0, 0])
# features for author field only
# note: we aren't using citation info
# because we don't know which author we are matching
# in the case of multiple authors with the same name
q_auth = fix_author_text(query)[:max_q_len]
q_quoted_auth = extract_from_between_quotations(q_auth)
q_split_on_quotes = [i.strip() for i in q_auth.split('"') if len(i.strip()) > 0]
q_unquoted_auth = [i for i in q_split_on_quotes if i not in q_quoted_auth]
# remove any unigrams that we already matched in title or venue
# but not abstract since citations are included there
# note: not sure if this make sense for quotes, but keeping it for those now
q_quoted_auth = [remove_unigrams(i, title_and_venue_matches) for i in q_quoted_auth]
q_unquoted_auth = [remove_unigrams(i, title_and_venue_matches) for i in q_unquoted_auth]
unquoted_match_lens = [] # normalized author matches
quoted_match_lens = [] # quoted author matches
match_fracs = []
for paper_author in authors:
len_author = len(paper_author)
if len_author > 0:
# higher weight for the last name
paper_author_weights = np.ones(len_author)
len_last_name = len(paper_author.split(' ')[-1])
paper_author_weights[-len_last_name:] *= 10 # last name is ten times more important to match
paper_author_weights /= paper_author_weights.sum()
#
for quotes_flag, q_loop in zip([False, True], [q_unquoted_auth, q_quoted_auth]):
matched_spans, match_text, _ = find_query_ngrams_in_text(
q_loop,
paper_author,
quotes=quotes_flag,
len_filter=0,
remove_stopwords=True, # only removes entire matches that are stopwords. too bad for people named 'the' or 'less'
use_word_boundaries=False
)
if len(matched_spans) > 0:
matched_text_joined = ' '.join(match_text)
# edge case: single character matches are not good
if len(matched_text_joined) == 1:
matched_text_joined = ''
weight = np.sum([paper_author_weights[i:j].sum() for i, j in matched_spans])
match_frac = np.minimum((len(matched_text_joined) / q_len), 1)
match_fracs.append(match_frac)
if quotes_flag:
quoted_match_lens.append(match_frac * weight)
quoted_matched_across_fields.append(matched_text_joined)
else:
unquoted_match_lens.append(match_frac * weight)
unquoted_matched_across_fields.append(matched_text_joined)
else:
if quotes_flag:
quoted_match_lens.append(0)
else:
unquoted_match_lens.append(0)
# since we ran this separately (per author) for quoted and uquoted, we want to avoid potential double counting
match_lens_max = np.maximum(unquoted_match_lens, quoted_match_lens)
nonzero_inds = np.flatnonzero(match_lens_max)
# the closest index to the ends of author lists
if len(nonzero_inds) == 0:
author_ind_feature = np.nan
else:
author_ind_feature = np.minimum(nonzero_inds[0], len(authors) - 1 - nonzero_inds[-1])
feats.extend([
np.nansum(match_lens_max), # total amount of (weighted) matched authors
nanwrapper(np.nanmax, match_lens_max), # largest (weighted) author match
author_ind_feature, # penalizing matches that are far away from ends of author list
])
# oldness and citations
feats.extend([
now.year - year, # oldness (could be nan if year is missing)
result_paper['n_citations'], # no need for log due to decision trees
result_paper['n_key_citations'],
np.nan if np.isnan(year) else result_paper['n_citations'] / (now.year - year + 1)
])
# special features for how much of the unquoted query was matched/unmatched across all fields
q_unquoted_split_set -= STOPWORDS
if len(q_unquoted_split_set) > 0:
matched_split_set = set()
for i in unquoted_matched_across_fields:
matched_split_set.update(i.split())
# making sure stopwords aren't an issue
matched_split_set -= STOPWORDS
# fraction of the unquery matched
numerator = len(q_unquoted_split_set.intersection(matched_split_set))
feats.append(numerator / np.maximum(len(q_unquoted_split_set), 1))
# the log-prob of the unmatched unquotes
unmatched_unquoted = q_unquoted_split_set - matched_split_set
log_probs_unmatched_unquoted = [lm_score(i, 'max') for i in unmatched_unquoted]
feats.append(np.nansum([i for i in log_probs_unmatched_unquoted if i > log_prob_nonsense]))
else:
feats.extend([np.nan, np.nan])
# special features for how much of the quoted query was matched/unmatched across all fields
if len(q_quoted) > 0:
numerator = len(set(' '.join(quoted_matched_across_fields).split()))
feats.append(numerator / len(q_quoted_split_set))
# the log-prob of the unmatched quotes
unmatched_quoted = set(q_quoted) - set(quoted_matched_across_fields)
feats.append(np.nansum([lm_score(i, 'max') for i in unmatched_quoted]))
else:
feats.extend([np.nan, np.nan])
return feats
# globals to use for posthoc_score_adjust
FEATURE_NAMES, FEATURE_CONSTRAINTS = make_feature_names_and_constraints()
feature_names = list(FEATURE_NAMES)
quotes_feat_ind = feature_names.index('fraction_of_quoted_query_matched_across_all_fields')
year_match_ind = feature_names.index('paper_year_is_in_query')
author_match_ind = feature_names.index('max_matched_authors_len_divided_by_query_len')
matched_all_ind = feature_names.index('fraction_of_unquoted_query_matched_across_all_fields')
title_match_ind = feature_names.index('title_frac_of_query_matched_in_text')
abstract_match_ind = feature_names.index('abstract_frac_of_query_matched_in_text')
venue_match_ind = feature_names.index('venue_frac_of_query_matched_in_text')
def posthoc_score_adjust(scores, X, query=None):
if query is None:
query_len = 100
else:
query_len = len(str(query).split(' '))
# need to modify scores if there are any quote matches
# this ensures quoted-matching results are on top
quotes_frac_found = X[:, quotes_feat_ind]
has_quotes_to_match = ~np.isnan(quotes_frac_found)
scores[has_quotes_to_match] += 1000 * quotes_frac_found[has_quotes_to_match]
# if there is a year match, we want to boost that a lot
year_match = np.isclose(X[:, year_match_ind], 1.0)
scores += 100 * year_match
# full author matches if the query is long enough
if query_len > 1:
full_author_match = np.isclose(X[:, author_match_ind], 1.0)
scores += 100 * full_author_match
# then those with all ngrams matched anywhere
matched_all_flag = np.isclose(X[:, matched_all_ind], 1.0)
scores += 10 * matched_all_flag
# need to heavily penalize those with 0 percent ngram match
matched_none_flag = np.isclose(X[:, matched_all_ind], 0.0)
scores -= 10 * matched_none_flag
# find the most common match appearance pattern and upweight those
if query_len > 1:
if '"' in query:
qualifying_for_cutoff = np.isclose(X[:, quotes_feat_ind], 1.0) & matched_all_flag
else:
qualifying_for_cutoff = matched_all_flag
scores_argsort = np.argsort(scores)[::-1]
where_zeros = np.where(qualifying_for_cutoff[scores_argsort] == 0)
if len(where_zeros[0]) > 0:
top_cutoff = where_zeros[0][0]
if top_cutoff > 1:
top_inds = scores_argsort[:top_cutoff]
pattern_of_matches = 1000 * ((X[top_inds, title_match_ind] > 0) | (X[top_inds, abstract_match_ind] > 0)) + \
100 * (X[top_inds, author_match_ind] > 0) + \
10 * (X[top_inds, venue_match_ind] > 0) + \
year_match[top_inds]
most_common_pattern = Counter(pattern_of_matches).most_common()[0][0]
# don't do this if title/abstract matches are the most common
# because usually the error is usually not irrelevant matches in author/venue
# but usually irrelevant matches in title + abstract
if most_common_pattern != 1000:
scores[top_inds[pattern_of_matches == most_common_pattern]] += 10000
return scores