|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from sklearn.datasets import load_boston\n", |
| 10 | + "boston = load_boston()" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 4, |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [], |
| 18 | + "source": [ |
| 19 | + "import sklearn.model_selection as skm" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": null, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": 5, |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "import numpy as np\n", |
| 36 | + "X_train,X_test,y_train,y_test =skm.train_test_split(boston.data,\n", |
| 37 | + " boston.target,\n", |
| 38 | + " test_size=0.25,\n", |
| 39 | + " random_state=33)" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 8, |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [ |
| 47 | + { |
| 48 | + "data": { |
| 49 | + "text/plain": [ |
| 50 | + "array([33.8, 20.3, 10.2, 22. , 21.2, 24.2, 29. , 22.7, 21.8, 34.9, 25.2,\n", |
| 51 | + " 20.9, 19.4, 20. , 14. , 30.1, 33.1, 20.6, 22.6, 33.4, 20.1, 10.5,\n", |
| 52 | + " 15.6, 16.8, 22.6, 34.6, 19.8, 17.8, 22. , 17.4, 15.4, 16.7, 22.6,\n", |
| 53 | + " 15.1, 21.4, 15.3, 7.4, 13.9, 17.6, 25. , 46.7, 17.1, 23.1, 18.7,\n", |
| 54 | + " 21.9, 18.9, 26.7, 22.3, 25. , 14.6, 42.8, 17.3, 22.2, 36.5, 22.8,\n", |
| 55 | + " 19.9, 36.2, 50. , 25. , 22.2, 17.5, 23.9, 19.6, 24.7, 28.4, 8.7,\n", |
| 56 | + " 21.7, 20. , 19.9, 24.5, 15. , 7. , 15.2, 20.4, 8.5, 17.1, 30.1,\n", |
| 57 | + " 15. , 19.4, 23.2, 17. , 18.9, 50. , 25. , 46. , 7.2, 17.8, 35.1,\n", |
| 58 | + " 24.3, 5. , 16.6, 21.8, 28.5, 22. , 20.3, 21.7, 26.4, 30.7, 50. ,\n", |
| 59 | + " 17.2, 26.6, 21. , 23.4, 19.5, 20.7, 23.3, 48.8, 15.6, 19.6, 17.4,\n", |
| 60 | + " 21.7, 14.6, 37.9, 9.7, 17.8, 12.1, 20.1, 29.9, 26.4, 18.8, 32.5,\n", |
| 61 | + " 15.7, 13.4, 21.7, 23.6, 11.9, 13.8, 22.2, 13. , 33.2, 50. , 22.3,\n", |
| 62 | + " 22.4, 23.8, 29.1, 20.8, 23.7, 19.8, 13.9, 28.4, 45.4, 23.7, 50. ,\n", |
| 63 | + " 18. , 17.1, 18.9, 10.4, 24.7, 23.9, 23. , 20.2, 8.5, 14.2, 20.3,\n", |
| 64 | + " 18.5, 12. , 19.3, 20.6, 16.1, 12.3, 23.1, 22.7, 20.3, 16.7, 27.9,\n", |
| 65 | + " 21.4, 8.1, 37.6, 15.6, 29.6, 22.9, 24.8, 24.4, 50. , 28.7, 50. ,\n", |
| 66 | + " 16.5, 18.2, 50. , 16.2, 14.1, 21.2, 18.4, 25. , 50. , 21.2, 20.4,\n", |
| 67 | + " 15.2, 22. , 19.8, 22.1, 23.9, 24.6, 23.9, 21.7, 44.8, 7.2, 18.5,\n", |
| 68 | + " 20.1, 23.3, 19.2, 29.1, 31. , 22.9, 27.5, 39.8, 22. , 22.8, 22.9,\n", |
| 69 | + " 14.3, 14.5, 22.4, 19.3, 32. , 20.1, 18.3, 24.5, 18.4, 23.1, 22.6,\n", |
| 70 | + " 20.2, 17.8, 31.6, 43.5, 36.4, 11.3, 20.5, 23.2, 29.8, 20.6, 24.3,\n", |
| 71 | + " 18.1, 19.1, 21.4, 31.5, 19.2, 14.3, 24.8, 21.1, 18.2, 48.3, 19.4,\n", |
| 72 | + " 21.2, 10.9, 27.5, 34.7, 14.4, 22.8, 17.8, 50. , 24.4, 12.8, 30.8,\n", |
| 73 | + " 28.2, 25. , 33.1, 27.5, 12.7, 43.1, 13.4, 21.5, 33.4, 23.8, 21. ,\n", |
| 74 | + " 26.6, 18.5, 23. , 24.1, 20.5, 32.2, 14.4, 11.8, 19.5, 23.7, 13.2,\n", |
| 75 | + " 29. , 18.2, 18.6, 23. , 42.3, 17.2, 16.2, 20. , 30.3, 20.9, 20.4,\n", |
| 76 | + " 24.8, 18.7, 16.8, 22.5, 18.8, 23.7, 23.8, 19.6, 20.4, 16.1, 44. ,\n", |
| 77 | + " 19.3, 17.4, 10.2, 11.7, 37.2, 11. , 23.6, 22.8, 15. , 34.9, 17.9,\n", |
| 78 | + " 24.4, 24.5, 6.3, 29.4, 10.4, 38.7, 20. , 19.4, 37. , 50. , 18.7,\n", |
| 79 | + " 48.5, 35.4, 23.4, 7. , 50. , 20.7, 35.4, 9.6, 25.1, 16.1, 27. ,\n", |
| 80 | + " 16.6, 13.3, 25. , 24. , 19.6, 29.6, 21.7, 19.1, 22. , 13.3, 27.1,\n", |
| 81 | + " 22.9, 33.2, 13.5, 14.5, 8.3, 41.7, 31.2, 23.9, 23.1, 24.3, 18.3,\n", |
| 82 | + " 20.8, 28. , 19.5, 21.5, 13.1, 12.5, 31.7, 13.1, 23.1, 14.5, 22.2,\n", |
| 83 | + " 13.1, 37.3, 22. , 10.2, 5. , 19.3, 16. , 18.6, 50. , 31.6, 24.1,\n", |
| 84 | + " 15.6, 19.4, 23.3, 23.2, 13.6])" |
| 85 | + ] |
| 86 | + }, |
| 87 | + "execution_count": 8, |
| 88 | + "metadata": {}, |
| 89 | + "output_type": "execute_result" |
| 90 | + } |
| 91 | + ], |
| 92 | + "source": [ |
| 93 | + "X_train\n", |
| 94 | + "y_train" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": null, |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [] |
| 103 | + } |
| 104 | + ], |
| 105 | + "metadata": { |
| 106 | + "kernelspec": { |
| 107 | + "display_name": "Python 3", |
| 108 | + "language": "python", |
| 109 | + "name": "python3" |
| 110 | + }, |
| 111 | + "language_info": { |
| 112 | + "codemirror_mode": { |
| 113 | + "name": "ipython", |
| 114 | + "version": 3 |
| 115 | + }, |
| 116 | + "file_extension": ".py", |
| 117 | + "mimetype": "text/x-python", |
| 118 | + "name": "python", |
| 119 | + "nbconvert_exporter": "python", |
| 120 | + "pygments_lexer": "ipython3", |
| 121 | + "version": "3.6.6" |
| 122 | + } |
| 123 | + }, |
| 124 | + "nbformat": 4, |
| 125 | + "nbformat_minor": 2 |
| 126 | +} |
0 commit comments