CISSP Notes

CIA Triad

- Confidentiality
 - Resources should be protected from unauthorized access
 - Prioritized by governments
 - Concepts
 - Sensitivity
 - How harmful is disclosure
 - Discretion
 - Controlled disclosure to prevent damage
 - Criticality
 - How essential the information is to the organization?
 - Concealment
 - Hiding information (e.g. obfuscation)
 - Secrecy
 - Keeping something a secret
 - Privacy
 - Keeping personal information secret
 - Seclusion
 - Storing data in out-of-the-way locations
 - Isolation
 - Keeping data separate
- Integrity
 - Resources should be protected from unauthorized modification
 - Resources should maintain semantic consistency
- Availability
 - Resource should be accessible to authorized parties
 - Prioritized by businesses

AAA

- Required to hold a subject accountable for actions
- Identification
 - o Subject identifies themselves
- Authentication
 - Subject proves their identity
- Authorization

- Subject is allowed/disallowed to perform an action
- What can the subject do and not do?
- Auditing
 - Subject's actions are logged
- Accounting
 - Subject's logs are reviewed for violations
 - o Subject is held accountable for their actions
 - Legally Defensible Security
 - Required to hold subjects accountable
 - You need to prove:
 - Efforts were made to prevent the crime
 - Log files are accurate
 - All laws and regulations were followed
 - Warning and notifications were posted
 - Electronic evidence is decisive
 - Non-repudiation
 - Subjects cannot deny performing an action

Protection Mechanism

- Layering/Defense-in-Depth
 - o Use of multiple controls in a series
 - Uses series vs. parallel
 - Series
 - Useful for security
 - Data passes through multiple filters
 - Airport with multiple gates
 - Parallel
 - Useful for performance
 - Data can pass any filter
 - Mall with multiple entrances
- Abstraction
 - Generalizes a group of objects and subject
 - Defines object and subject templates
 - E.g. "Employee" can be used to describe "Linda", "Mark", etc.
- Data Hiding
 - Places data in location not seen by subject
 - Prevents data from being accessed by unauthorized subjects
- Encryption
 - o Hides intent of data rather than hiding the data itself

o Makes data unreadable to unauthorized subjects

Security Governance

- Administration of an organization's security program
- Business Case
 - Justifies starting a new project
- Approaches
 - o Top-down
 - Upper management makes security policies
 - Lower professionals flesh out security policies
 - o Bottom-up
 - IT staff makes security decisions
 - Problematic
- Autonomous InfoSec Team
 - Led by the CSO
 - o Reports directly to senior management
- Security Policy
 - Requires support of senior management to succeed
 - Evidence of due care and due diligence

Security Management Plans

- Strategic Plan
 - o Long-term plan
 - o Defines security purpose of organization
 - Lifetime: 5 years
- Tactical Plan
 - Mid-term plan
 - Contains TASKS to achieve Strategic Plan
 - Examples
 - Project plans
 - Acquisition plans
 - Hiring plans
 - Budget plans
 - o Lifetime: 1 year
- Operation Plan
 - Short-term plan
 - Contains STEPS to achieve Tactical Plan

- o Examples
 - Training plans
 - System deployment plans
 - Product design plans
- Lifetime: 1 month/1 quarter

Change Management

- Changes can lead to security issues
- Purpose
 - Prevents compromise after change
- Goals
 - o Monitor change
 - Test change
 - Allow rollback of change
 - Inform users of change
 - Analyze effects of change
 - Minimize negative impact of change
 - Allow review of change by Change Approval Board (CAB)

Data Classification

- Identify which data need to be prioritized for protection
- Identify which controls is needed for which data
- Benefits
 - Demonstrates commitment to protection of data
 - Identifies critical assets
 - Justifies selection of controls
 - Required for regulations
 - Defines proper access, declassification, and destruction method
 - Helps with data life-cycle management
- Classification Criteria's
 - o Usefulness
 - o Timeliness
 - o Value
 - o Age
 - o Lifetime
 - Relationship with subjects

- o Sensitivity
- Criticality
- National Security Implications
- Storage method
- Ownership
- Implementing Classification
 - Identify custodian
 - Determine evaluation criteria
 - Classify resources
 - Determine exceptions
 - Determine security controls
 - Determine declassification procedure
 - Staff awareness/training
- Classification Schemes
 - Government/Military
 - Classified
 - Top Secret
 - Secret
 - Confidential
 - Unclassified
 - Sensitive
 - Unclassified
 - Private/Business
 - Confidential/Private
 - Confidential/Proprietary: Related to business
 - Private: Related to personnel
 - Sensitive
 - Public

Security Roles and Responsibilities

- Roles and Responsibilities
 - o Senior Manager
 - Signs off on policy issues
 - Liable for security solution
 - Security Professional
 - Designs and implements security solutions
 - o Data Owner
 - Classifies data
 - o Data Custodian

- Implements controls to protect data
- Protects data based on classification
- o User
 - Accesses the system
 - Complies with security policies
- \circ Auditor
 - Checks for compliance to security policy
 - Checks effectiveness of security policy
- Training vs Education
 - Training
 - So users can comply with security policies
 - \circ Education
 - Users lean more than what they need to know

Control Frameworks

- For planning IT security of an organization
- Control Objectives for Information and Related Technology (COBIT)
 - o By ISACA
 - Principles
 - Meeting Stakeholder Needs
 - Covering the Enterprise End-to-End
 - Applying a Single Integrated Framework
 - Enabling a Holistic Approach
 - Separating Governance from Management

Due Care and Due Diligence

- Due Care
 - Required effort to protect data
 - Compliance to legal regulations
 - Legal duty of company
 - Failure will result in negligence
- Due Diligence
 - Maintaining due care
 - Continuous improvement of security
 - Penetration tests, vulnerability assessments, etc.
- Operational Security
 - Ongoing maintenance of due care and due diligence

Components of Security Policies

- Should be kept as separate documents
 - Only changed materials need to be redistributed
 - Not all users are concerned with all documents
- Security Policy
 - o Generalization of security needs, goals, and practices
 - Broad overview of security
 - o Strategic plan
 - Proof of due care
 - Compulsory
 - Responsibilities must be roles-based, not individual-based
 - o Types
 - Organizational
 - Issue-specific
 - Network Service
 - Department
 - System-specific
 - Categories

- Regulatory
 - Required by law
 - Advisory
 - Required by senior management
 - Acceptable Use Policy
 - Assigns security roles
 - Assigns responsibilities to roles
 - Contains expected behavior
- Informative
 - Not required
 - Provides background information to issues
- Standard
 - Describes uniform implementation of technology
 - Tactical documents
- Baselines
 - o Describes a secure state for a system
 - System-specific
- Guideline
 - o Recommendations and suggested actions for compliance
 - o Describes controls rather than products
 - Not compulsory

- Procedure
 - Step-by-step instruction on how to implement a security control
 - Specific to a system or product
 - Ensures compliance to standard

Threat Modeling

- Approaches
 - Proactive
 - Performed before and while the system is being implemented
 - Predicting threats and designing defenses in advance
 - More cost effective and more successful
 - Security Development Lifecycle
 - Reduce number of coding defects
 - Reduce severity of remaining defects
 - Reactive
 - Performed after the system has been implemented
 - Less effective but more cost effective than redesign
 - E.g. penetration testing, source code review, fuzz testing
 - Fuzz Testing
 - Random invalid input is fed to a program
 - Attempts to find previously undetected flaws

• Steps

- o Threat Identification
 - Approaches

.

- Focused on Assets
 - Protect valuable assets
- Focused on Attackers
 - Protect the things that attackers want to attack
 - Focused on Software
 - Protect the software
- Individual Threats
 - Be cautious of
 - Contractors
 - Trusted Partners
- Threat Categorization
 - STRIDE
 - Spoofing
 - Falsifying information to gain access
 - Tampering
 - Making unauthorized changes

- Repudiation
 - Denying having done an action
- Information Disclosure
 - Revelation of controlled information
- Denial-of-Service
 - Prevents the use of an asset
- Escalation of Privilege
 - Elevates capability of under privileged account
- Determining Potential Attacks
 - Data Flow Diagrams
 - Entities
 - Technologies
 - Transactions
 - Attacks vs each element
- Reduction Analysis

- Decomposing system/process/environment
 - Modules
 - Functions
 - Protocols
 - etc.
- Identify the Following
 - Trust Boundaries
 - Data Flow Paths
 - Input Points
 - Privileged Operations
 - Security Approach
- Prioritization and Response
 - Probability x Damage Potential
 - High/Medium/Low
 - DREAD
 - Discoverability
 - Reproducibility
 - Exploitability
 - Affected Users
 - Damage Potential

Acquisition Security

- Select software with integrated security
- Evaluate 3rd party service provider

- On-Site Assessment
 - Observe their operating habits
- Document Exchange and Review
 - Investigate data exchange process
- Process/Policy Review
 - Review their security policy
- Review Service Level Agreements

Personnel Security

- People
 - Weakest link in security chain
- Hiring Process
 - Job Description
 - Concepts
 - Separation of Duties
 - Least Privilege
 - Job Responsibilities
 - Job Rotation
 - Cross-training
 - Maintain throughout organization lifecycle
 - Job Classification
 - Employee Screening
 - Background checks, etc.
 - Hiring and Training
 - Non-disclosure Agreement
 - Non-compete Agreement
 - o Termination
 - Notify employee
 - Request return of company equipment
 - Disable electronic access
 - Exit interview and NDA review
 - Escort off premises
- Separation of Duties
 - Work tasks divided among administrators
 - Applies to administrators instead of users
 - Prevents collusion
- Least Privilege
 - Users should only have privileges that they require
 - Applies to users instead of admins

- Job Responsibilities
 - o Work tasks that an employee is required to perform
 - o Defines required objects, resources, and services
- Job Rotation
 - Provides knowledge redundancy
 - Less downtime
 - Reduces risk of fraud via peer auditing
 - Protects against collusion
- Cross-training
 - Alternative to job rotation
 - Employees are trained for other jobs
 - Workers are not rotated through different job
- Collusion
 - When people work together to commit a crime
- Non-disclosure Agreement (NDA)
 - Protects confidential information within an organization
- Non-compete Agreement (NCA)
 - Prevents employees from jumping to a competitor
 - Has time limit
 - Allows company to keep competitive edge
 - Difficult to enforce
 - Deters violation of NDA
- Mandatory Vacations
 - Used to audit employees
- Termination Best Practices
 - Have one witness
 - Escort off premises
 - Escort required when in work area
 - o Return employee identification and equipment
 - o Disable network user account at same time of termination
 - Notify HR to issue final paychecks
 - Inform security personnel of termination
 - Terminate at end of shift in middle of week
 - Perform exit interview
- Exit Interview
 - Review liabilities and restrictions
 - Review NDA and other agreements
- Third-party Controls
 - Service Level Agreements
 - Defines expected level of service from third-party

- Put in place for network connections and services
- Includes remedies if not met
- Common SLA Issues
 - System uptime
 - Maximum consecutive downtime
 - Peak load
 - Average load
 - Responsibility for diagnostics
 - Failover time
- Compliance
 - o Adherence to regulations
 - Employees need to follow polices, etc.
- Privacy
 - Secrecy of personal information
 - Prevention of unauthorized access to PII
 - Freedom from being monitored without knowledge
 - For employees, site visitors, customers, suppliers, and contractors
- Personally Identifiable Information
 - Information that can be traced back to a person
 - o Includes
 - Phone
 - Email
 - Address
 - SSN
 - Name
 - o Excludes
 - MAC Address
 - IP Address
 - OS Type

Security Governance

- Directing the security efforts of an organization
- Third-party Governance
 - Employment of external auditors
 - External auditors review your security
 - o Compliance of external providers
 - Providers must comply with your security policies
 - Documentation Review

- On-site assessments
- Documentation review
 - Exchanging materials
 - Reading and verifying them against expectations
 - Required before preforming on-site assessments
- On-site assessments
 - First hand exposure to security mechanisms
 - Auditors should follow COBIT
- Authorization to Operate (ATO)
 - For government contractors
 - Required when complying with government security policies

Risk Management

- Risk
 - Possibility that assets could be damaged or disclosed
- Risk Management
 - Actions to reduce risk to an acceptable level
 - o Steps
 - Risk Analysis
 - Identify
 - Evaluate
 - Countermeasures
 - Risk Responses
 - Mitigate
 - Using countermeasures to reduce risk
 - Transfer
 - Transferring risk to another organization
 - Purchasing insurance
 - Outsourcing business processes
 - Accept
 - When countermeasure costs more than risk cost
 - Organization absorbs risk cost
 - Signed off by management
 - Reject
 - Ignoring the existence of the risk
 - Not prudent due-care responses to risk
 - Countermeasure Selection and Implementation
 - Rules
 - Countermeasure Cost < Asset Value

- Countermeasure Cost < Countermeasure Benefit
- Benefit of Attack < Cost of Attack
- Secure by design
- Benefit should be testable and verifiable
- Monitoring and Measurement
- Continuous Improvement
- Risk Analysis
 - Process of achieving risk management goals
 - o Steps
 - Identifying risk
 - Evaluating risk
 - Likelihood
 - Damage Potential
 - Risk Rating
 - Determining countermeasures
 - Cost/benefit analysis
 - o Types
 - Quantitative
 - Qualitative
 - Hybrid
 - Quantitative Risk Analysis
 - Assigning dollar value to risks
 - Steps
 - Identify assets and value (AV)
 - Identify threats against assets and exposure factor (EF)
 - Determine single loss expectancy (SLE)
 - Identify annual rate of occurrence (ARO)
 - Determine annual loss expectancy (ALE)
 - Identify countermeasures and changes to ARO and ALE if applied
 - Determine countermeasure cost and benefit (Raw ALE Controlled ALE - Annual Control Cost)
 - Values
 - Asset Value (AV)
 - The value of an asset
 - Exposure Factor (EF)
 - Percentage of loss to an asset if a risk to it is realized
 - Single Loss Expectancy (SLE)
 - Cost if a risk is realized
 - SLE = AV * EF
 - Annualized Rate of Occurrence (ARO)

- Number of times a risk is realized per year
- Historical records, statistical analysis, guesswork
- Determined through Probability Determination
- ARO = Threat Sources * Single Likelihood
- Annualized Loss Expectancy (ALE)
 - Expected yearly cost of a risk
 - ALE = ARO * SLE
- Annualized Loss Expectancy with Safeguard (ALE)
 - When safeguard is applied, ARO and EF changes
 - Recalculate ALE with modified ARO
 - ALE = ARO * SLE
- Annualized Cost of Safeguard (ACS)
 - Yearly cost to implement safeguard
 - Safeguard cost should be less than asset value
 - If asset value is less than safeguard, just accept the risk
- Safeguard Benefit
 - The amount of money saved by implementing the safeguard
 - Benefit = ALE w/o safeguard ALE w/ safeguard ACS
- Qualitative Risk Analysis
 - Scenario-based
 - Uses threat-ranking
 - Techniques
 - Delphi Technique
 - Brainstorming
 - Surveys
 - etc.
 - Scenarios
 - One page description of a threat
 - Contains
 - Threat Vectors
 - Impact
 - Safeguards
 - Threat Level
 - Delphi Technique
 - Anonymous feedback-response process
 - For reaching a consensus
 - For honest feedback from participants
- Risk Terminology
 - o Asset
 - Items that have value to the organization

- Items that will damage of organization of disclosed
- Any item that needs to be protected
- Asset Valuation
 - Monetary or intangible value of asset
 - Can be based on cost to develop or replace, market value, etc.
- o Threats
 - Undesirable occurrences that can damage assets
- Threat Agents
 - Sources of threats
- o Exposure
 - Possibility of threat realization
 - Exposure is equivalent to risk
- o Risk
 - Possibility of threat realization
 - risk = threat * vulnerability
- Safeguards / Countermeasure
 - Things or acts that reduce a threat or vulnerability
 - Safeguard
 - Pro-active controls
 - Countermeasure
 - Reactive controls
- o Attack
 - Exploitation of vulnerability by threat agent
 - Intentional attempt to exploit
- o Breach
 - Occurrence of security mechanism bypass
- Penetration
 - State where threat agent has access to organization's infrastructure
- o Total Risk
 - Risk that organization faces without safeguards
 - Total Risk = Threat * Vulnerabilities
- Residual Risk
 - Risk that remains after countermeasures are implemented
 - Risk that management has chosen to accept
 - Residual Risk = Total Risk Control Gap
 - Control Gap: Amount of risk reduced by controls
- Risk Elements
 - Threat exploits...
 - Vulnerability, resulting in...
 - Exposure, which is...

- Risk, which is mitigated by...
- Safeguards which protected...
- Assets which are endangered by...
- Identifying Threats
 - Listing down all threat agents and events
 - Should involve various departments
 - Employment of external consultants
- Countermeasure Selection and Implementation
 - Categories
 - Technical
 - Hardware or software mechanisms
 - Firewalls, IDSs, etc.
 - Administrative
 - Policies and procedures
 - Management controls
 - Physical
 - Physically tangible
 - Guards, fences, CCTV, etc.
 - o Types
 - Deterrent
 - Discourages violation of security policy
 - Fences, trainings, guards, etc.
 - Preventive
 - Stops violations of security policies
 - Firewalls, IPS, mantraps, etc.
 - Detective
 - Discovers violations of security policies
 - CCTV, audit trails, motion detectors, etc.
 - Compensating
 - Added in addition to other security controls
 - Encryption of PII at rest and in transit
 - Corrective
 - Return system to secure state after violation of policy
 - Terminating malicious activity, patching software, etc.
 - Recovery
 - Extension of corrective controls, but more advanced
 - Backups, fault tolerance, shadowing, clustering, etc.
 - Directive
 - Directs the actions of subjects
 - Notifications, escape route signs, procedures, etc.

- Asset Valuation
 - Assigning dollar value to assets
 - Factors
 - Acquisition/Development Cost
 - Management Cost
 - Maintenance Cost
 - Cost to Protect
 - Value to Owners and Users
 - Value to Competitors
 - Intellectual Property
 - Market Value
 - Replacement Cost
 - Productivity Enhancement
 - Operational Cost
 - Liability of Asset Loss
 - Usefulness
- Risk Management Framework (NIST 800-37)
 - o Categorize
 - Categorize information system elements
 - Based on impact analysis
 - o Select
 - Select initial security controls
 - o Implement
 - Implement selected security controls
 - o Asses
 - Check if controls are appropriate
 - Check if controls are implemented correctly
 - o Authorize
 - Authorize operation of information system
 - Acceptance of risks
 - o Monitor
 - Monitor effectiveness of controls

Education, Awareness, and Training

- Humans are weakest element in security
- Awareness
 - Make users recognize security
 - Prerequisite to training

- Posters, memos, courses, etc.
- Training
 - Teaching how to perform work tasks
 - o Sometimes required before access to network is allowed
 - Provided in-house
- Education
 - o Students learn more than what they need to know
 - For people pursuing certification or promotion
 - For personnel seeking security positions

Business Continuity Planning

- Project Scope and Planning
 - Business Organization Analysis
 - Who are the stakeholders to BCP planning?
 - Senior management
 - Operational departments
 - Critical support services
 - o BCP Team Selection
 - Departmental representatives
 - Legal representatives
 - IT and Security representatives
 - Senior management
 - Approval of Senior Management
 - Explain benefits of BCP
 - Cost of disaster
 - Regulatory requirements
 - Legal consequences
 - Loss of customer trust
 - o Resource Requirements
 - BCP Development
 - Manpower
 - BCP Testing, Training, and Maintenance
 - Manpower and some material costs
 - BCP Implementation
 - Manpower and large material costs
 - Business Impact Assessment
 - Determine Recovery Goals
 - Approaches
 - Quantitative

- Qualitative
- o Steps
 - Identify Priorities
 - Critical Processes
 - Maximum Tolerable Downtime
 - Recovery Time Objective
 - Risk Analysis

•

- Risk Identification
- Likelihood Assessment
- Impact Assessment
- Resource Prioritization
- Continuity Planning
 - Minimize impact of risks
 - o Steps
 - Strategy Development
 - Know risks which require mitigation
 - Know resources to be allocated
 - Provisions and Processes
 - Risk mitigation mechanisms
 - Categories
 - People
 - Most valuable asset
 - Takes priority over everything else
 - Must be provided equipment
 - Food and shelter if must stay for extended time
 - Facilities
 - Hardening
 - Alternate Site
 - Infrastructure
 - Hardening
 - Alternate Systems
 - Plan Approval
 - Senior management must approve
 - Approval gives BCP authority and weight
 - Plan Implementation
 - Schedule implementation
 - Utilize resources to achieve goals
 - Training and Education
 - Education about the plan
 - BCP Team
 - BCP Task Training

- BCP Backup
 - BCP Task Training
- Everyone Else
 - Plan Overview
- BCP Documentation
 - Goals
 - Provide reference if BCP members are absent
 - Track BCP history
 - Allows review of BCP plan
 - Contains

- Continuity Planning Goals
 - Continue business in an emergency
 - MTD and RTO goals
- Statement of Importance
 - Says why BCP plan is important
 - Signed by senior management
- Statement of Priorities
 - List of critical activities
 - Arranged from most critical to least critical
 - Statement of Organizational Responsibility
 - "Business continuity is everyone's responsibility"
 - Expectation from employees to help in continuity
 - Statement of Urgency and Timing
 - Expresses criticality of BCP
 - Timetable of implementation
- Risk Assessment
 - Documented results of risk assessment
 - AV, EF, ARO, SLE, ALE
- Risk Actions (Acceptance/Mitigation)
 - Reason for risk acceptance
 - Provisions for mitigated risks
- Vital Records Program
 - Vital Records
 - Critical business records
 - Records that need to be present when rebuilding the business
 - Identify, find, and secure vital records
- Emergency Response Guidelines
 - Immediate response procedures
 - Individuals that should be notified
 - Secondary response procedures until BCP team arrives

- Maintenance
 - Revise and improve the plan
 - Do not disband BCP team
 - Keep track of changes
 - Add to job descriptions
- Testing and Exercises
 - Perform exercises to test BCP process

Laws Regulations and Compliance

- Categories
 - Criminal Law
 - To keep peace and order
 - Punishes acts against society
 - Prosecuted by federal and state governments
 - Civil Law
 - To settle matters between entities
 - Enforcement of contracts
 - Not prosecuted unless a party sues another
 - Administrative Law
 - Regulation of government agencies
 - Granted to executive branch
 - Must comply with civil and criminal law
 - Religious Law
- Laws
 - Comprehensive Crime Control Act 1984 (CCCA)
 - Coverage
 - Federal computers
 - Offending interstate computers
 - Provisions
 - Unauthorized access to systems or information
 - Fraud using federal systems
 - Damaging federal systems exceeding \$1000
 - Modify medical records impairing medical care of individual
 - Trafficking passwords affecting interstate commerce
 - Computer Fraud and Abuse Act 1986 (CFAA)
 - Amends CCCA 1984
 - Coverage
 - CCCA 1984
 - Federal interest computers

- Government computers
- Financial institution computers
- Provisions
 - Same as CCCA 1984
- Computer Fraud and Abuse Act 1994 (CFAA)
 - Amends CFAA 1986
 - Coverage
 - CFAA 1986
 - Interstate commerce computers
 - Provisions
 - Same as CFAA 1986
 - Creation of malware
 - Imprisonment of offenders
 - Authority for victims to sue
- Computer Security Act of 1987 (CSA)
 - Federal system security baselines
 - Provisions
 - Gives NIST authority to develop standards
 - For non-classified federal systems
 - NIST still gets advice from NSA
 - NSA retains authority for classified systems
 - Enacts said standards and guidelines
 - Security plans must be established
 - Mandatory periodic training
- Federal Sentencing Guidelines 1991 (FSG)
 - Punishment guidelines for computer crime
 - Provisions
 - Requires due care from executives
 - Due diligence reduces punishment
 - Burdens of proof for negligence
 - Accused must have legal obligation
 - Accused failed to comply to standards
 - Causal relationship between negligence and damages
- National Information Infrastructure Protection Act of 1996 (NIIPA)
 - Extends CFAA 1994 to include infrastructure systems
 - Coverage
 - CFAA 1994
 - National infrastructure computing systems
- Paperwork Reduction Act of 1995 (PRA)
 - Request for information from public requires OMB approval

- OMB: Office of Management and Budget
- Includes
 - Forms
 - Interviews
 - Record-keeping requirements
- Government Information Security Reform Act of 2000 (GISRA)
 - Amends PRA 1995
 - Required government agencies to implement an InfoSec programs
 - Created "mission-critical system" category
 - A national security system
 - Protected by classified information procedures
 - Breach would result in debilitating impact of an agency
 - Agency leaders responsible for information system security
- Federal Information Security Management Act 2002 (FISMA)
 - Replaces GISRA
 - Required government agencies to implement an InfoSec programs
 - Include activities of contractors in security management programs
 - NIST is responsible for FISMA guidelines
 - Requirements
 - Periodic risk assessment
 - Policies and procedures based on risk assessment
 - Security Awareness Trainings
 - Testing of Policies and Procedures
 - Remediation plans
 - Incident response plan
 - Continuity of operations plan
- Digital Millennium Copyright Act (DMCA)
 - Prohibits attempts to circumvent copyright protection mechanisms
 - Limits liability of ISPs for transitory activities
 - Transmission initiated by person other than provider
 - Transmission must be automated without selection of material by ISP
 - ISP does not determine recipient
 - Intermediate copies not accessible to anyone and not retained
 - Material transmitted without modification to content
 - Service providers must respond promptly to remove copyrighted materials
 - Allows backup of backup copies of software
 - Must be deleted when no longer needed
 - Applies copyright law to content published on internet
- Economic Espionage Act of 1996

- Protects U.S. trade secrets
- Stealing trade secrets to benefit foreign agent
 - \$500,000 fine
 - 15 years in prison
- Stealing trade secrets in general
 - \$250,000 fine
 - 10 years in prison
- Uniform Computer Information Transactions Act (UCITA)
 - Regulates computer business transactions
 - Addresses software licensing
 - Backs validity of shrink-wrap and click-wrap licensing
 - Allows users to reject agreements and get refunds
- Fourth Amendment
 - Prevents unreasonable searches and seizures of houses
 - Requires probable cause before search is conducted
- Privacy Act of 1974 (PA)
 - Agencies must have consent of person before disclosing their info to others
 - Agencies must only maintain necessary records
 - Agencies must destroy records no longer needed
- Electronic Communication Privacy Act 1986 (ECPA)
 - Protects electronic privacy of individuals
 - Prohibits interception of electronic communications
 - Prohibits unauthorized disclosure of communications
- Communications Assistance for Law Enforcement Act 1994 (CALEA)
 - Requires all carriers to make wiretaps possible for law enforcement
 - Requires a court order
- Economic Protection of Proprietary Information Act of 1996 (EPPIA)
 - Extends definition of property to include proprietary economic information
 - Theft no longer restricted by physical constraints
- Health Insurance Portability and Accountability Act of 1996 (HIPAA)
 - Governs health insurance and health maintenance organizations
 - Privacy and security regulations for organizations storing patient information
 - Defines the rights of individuals subject to medical records
- Health Information Technology for Economic and Clinical Health Act of 2009 (HITECH)
 - Updates HIPAA's privacy and security requirements
 - Business associates of organizations under the scope of HIPAA must comply with it as well
 - Requires business associate agreement
 - Added data breach notification requirement

- o SB 1386
 - California law requiring disclosure of breach to affected individuals
 - Breach includes disclosure of unencrypted copies of:
 - SSN
 - Driver's License Number
 - State Identification Card Number
 - Credit or Debit Card Number
 - Bank Account Number + Security Code
 - Medical Records
 - Health Insurance Information
- Children's Online Privacy Protection Act of 1998 (COPPA)
 - Applies to websites that caters to children
 - Requires privacy notice
 - States type of collected information
 - Which information is disclosed to 3rd parties
 - Parents must be able to review and delete children's information
 - Parental consent required for info collection on children younger than 13
- Gramm-Leach-Bliley Act of 1999 (GLBA)
 - Relaxed restrictions on information sharing between financial organizations
 - Still provides limitations on what sort of information could be exchanged
 - Institutions required to provide privacy notice to all customers
- USA PATRIOT Act of 2001
 - Expanded power of law enforcement to monitor electronic communications
 - Police can now obtain blanket wiretapping warrants
 - ISPs can voluntarily provider government with detailed information
 - Government can obtain detailed information on user activity with a subpoena
 - Amends CFAA and adds more severe penalties
- Family Educational Rights and Privacy Act (FERPA)
 - For educational institutions receiving funding from government
 - Parents and students given right to inspect educational records
 - Parents and students given right to request correction of records
 - Schools may not release personal information from student records without written consent
- o Identity Theft and Assumption Deterrence Act of 1998
 - Before: defrauded creditors were the only victims of identity theft
 - Now: the person with stolen identity is also the victim
 - Provides severe penalties of 15 years and \$250,000
- European Union Privacy Law of 1995
 - Requires that personal data processing meet one of the following criteria
 - Consent

- Contract
- Legal obligation
- Vital interest of the data subject
- Balance between interest of data holder and subject
- Outlines rights of data subjects
 - Right to access data
 - Right to know data source
 - Right to correct inaccurate data
 - Right to not consent to data processing
 - Right of legal action if rights are violated
- Organizations that want to operate in the EU must comply to these
- Department of Commerce certifies "safe harbor" businesses
- Requirements for "safe harbor"
 - Notice
 - Subjects must know which info is collected from them
 - Choice
 - Opt-out policy required for data shared with 3rd parties
 - Opt-in policy required for sensitive information
 - Onward Transfer
 - Data can only be shared with other safe harbor organizations
 - Access
 - Data subjects must be able to access the data stored about them
 - Security
 - Data must be secure from loss, misuse, and disclosure
 - Data Integrity
 - Reliability of data must be maintained
 - Enforcement
 - Dispute process must be available to subjects
- o Sarbanes-Oxley Act Of 2002
 - Protect investors from fraudulent accounting activities by corporations
- Intellectual Property
 - Copyright
 - Original works of authorship
 - For art and software
 - Protects expression rather than idea
 - Automatically granted to creator
 - Can be work for hire as well
 - Protected until 70 years after death of last author
 - Protected until 95 years of publication for anonymous works

- Indicated by (c) symbol
- o Trademark
 - Brand name, logos, slogans, etc.
 - Avoids confusion in marketplace
 - Does not have to be registered
 - Indicated by TM symbol if not registered
 - Can also be registered
 - Indicated by (R) symbol if registered
 - Renewed for unlimited successive 10-year periods
 - Requirements
 - Must not be similar to another trademark
 - Must not describe the product
- o Patent

- For inventions, hardware, and manufacturing processes
- Not all software can be patented
- Protects expressions rather than idea
- Requirements
 - Inventions must be new and original
 - Must be useful and must actually work
 - Must not be obvious (e.g. collection rainwater with a cup)
- Trade Secret
 - Business-critical intellectual property
 - Not disclosed to competitors or anyone
 - Applying for copyright or patent would require disclosure
 - Anyone who has access to it needs a Non-Disclosure Agreement
- Licensing
 - Contractual License
 - Written contract
 - Signing = acceptance
 - Active consent
 - Shrink-wrap License
 - Written on software packaging
 - Braking package = acceptance
 - No active consent
 - Click-through License
 - Written on software box or documentation
 - Clicking "I Agree" = acceptance
 - Active consent
 - Cloud Service License
 - Agreement flashed on the screen

- Clicking "I Agree" = acceptance
- Active consent
- Import/Export
 - Computer Export Controls
 - No high-performance computing exports to countries:
 - Posing a threat to nuclear proliferation
 - Sponsoring terrorism
 - Includes
 - India
 - Pakistan
 - Afghanistan
 - Cuba
 - North Korea
 - Sudan
 - Syria
 - Encryption Export Controls
 - Export used to be banned
 - Export now possible
 - Requires Commerce Department review
- Privacy
 - Right to privacy not in constitution
 - Still upheld by numerous courts
 - U.S. Privacy Laws
 - Fourth Amendment
 - Privacy Act of 1974
 - Electronic Communication Privacy Act 1986
 - Communications Assistance for Law Enforcement Act 1994
 - Economic Protection of Proprietary Information Act of 1996
 - Health Insurance Portability and Accountability Act 1996
 - Health Information Technology for Economic and Clinical Health Act of 2009
 - Children's Online Privacy Protection Act of 1998
 - Gramm-Leach-Bliley Act of 1999
 - USA PATRIOT Act of 2201
 - Family Educational Rights and Privacy Act
 - Identity Theft and Assumption Deterrence Act of 1998
 - Privacy in Workplace
 - There is no reasonable expectation of privacy when using employer equipment
 - Make sure there is no implied expectation of privacy in the office:
 - State it in the employment contracts

- State it in corporate acceptable use and privacy policies
- State it in logon banners
- State it on warning labels in telephones and computers
- Data Breach Notification
 - Health Information Technology for Economic and Clinical Health Act of 2009
 - SB 1386
- Compliance
 - Payment Card Industry Data Security Standard (PCI DSS)
 - For entities that accept, store, and process credit cards
 - Requirements
 - Install firewall
 - Do not use default passwords
 - Protect cardholder data
 - Encrypt transmission of cardholder data
 - Protect systems against malware by updating antivirus programs
 - Develop secure systems and applications
 - Restrict access to cardholder data by business need-to-know
 - Authenticate access to system
 - Restrict physical access to cardholder data
 - Track and monitor all access to network resources and cardholder data
 - Regularly test security systems and processes
 - Maintain a policy that addresses information security for all personnel
 - Might also require external auditors to report to regulators
- Contracting and Procurement
 - Make sure to review vendor security policies
 - Questions to ask
 - Information stored, processed, and transmitted?
 - Information protection controls?
 - How information is segregated from other clients?
 - Encryption algorithms and key management?
 - Types of security audits performed?
 - Third parties used by the vendor?
 - Location of data storage, processing, and transmission?
 - Incident response process?
 - How is integrity ensured?

Asset Classification

- Sensitive Data
 - Personally Identifiable Information
 - Can be used to distinguish an individual's identity
 - Information linkable to an individual
 - Personal Health Information
 - Processed by health organizations, schools, employer
 - Relates to past, present, or future health condition of individual
 - Relates to past, present, or future payment for healthcare
 - Proprietary Data
 - Helps maintain competitive edge of organization
- Sensitive Data Management
 - o Marking
 - Applying classification labels
 - Digital Labels
 - Headers and Footers
 - Watermarks
 - Metadata
 - Background Colors
 - Physical Labels
 - Hardware Color
 - Text Label
 - Label unclassified assets as well
 - Prevents omission
 - Identify downgrade procedures
 - Purging, etc.
 - Usually prohibited
 - Destruction and repurchasing is safer
 - Handling
 - Secure use and transport of data based on classification
 - Backup should be as protected as production data
 - Log, monitor, and audit to ensure compliance and accountability
 - Storage
 - Apply appropriate controls based on classification
 - Encryption

.

- AES256
- Physical Security
 - Safes
 - Secure Rooms

- Cabinets
- HVAC
- Data is more valuable than the media
 - Buy high quality media
 - Buy media with built-in security
- o Destruction
 - Data disposal requirements based on classification
 - Prevents unauthorized disclosure
 - Data Remanence
 - Magnetic Media
 - Residual magnetic footprint of data on hard drive
 - Can be recovered even if data was overwritten
 - Use a degausser to remove it
 - Solid State Drives
 - No reliable way to destroy data
 - Has built-in erase commands, but ineffective
 - Physical destruction is best solution
 - Terms
 - Erasing
 - Normal delete operation
 - Frees file space but doesn't remove data
 - Data *might* be overwritten eventually
 - Clearing
 - Overwriting, essentially
 - Write a single character, its complement, and then random data
 - Bad and spare sectors are not overwritten
 - Might still be recoverable
 - Purging
 - Prepares media for less secure environments
 - Involves both clearing and degaussing
 - Declassification
 - Involves purging and changing media classification
 - Not recommended; destruction is better
 - Organization risks an undiscovered recovery technique
 - Sanitation
 - Umbrella term referring to removal of sensitive data from media
 - Can involve purging, or destruction, etc.
 - Degaussing
 - Using strong magnets to erase data on media

- Destroys media electronics sometimes
- Does not affect CDs, DVDs, or SSDs
- Destruction
 - Physical destruction, basically
 - Crushing, shredding, incineration, chemicals, etc.,
 - Most secure data destruction method
- o Retention
 - Data retention requirements based on classification
 - Can reduce liabilities
 - Record Retention
 - Retaining important information as needed
 - Timeframe identified by regulation or organization policy
 - Media/Hardware Retention
 - Retaining hardware until it has to be replaced
 - Personnel Retention
 - Retaining personnel knowledge
 - Ensuring personnel don't violate NDA
- Data Classifications
 - Allows appropriate controls to be implemented for assets
 - o Government
 - Focuses on value to national security
 - Classified
 - Top Secret (Class 3)
 - Disclosure = exceptionally grave damage
 - Secret (Class 2)
 - Disclosure = serious damage
 - Confidential (Class 1)
 - Disclosure = damage
 - Unclassified
 - Sensitive
 - Unclassified (Class 0)
 - Disclosure = no damage
 - Available via FOI request
 - o Private
 - Focuses on value to organization
 - Proprietary (Class 3)
 - Disclosure = exceptionally grave damage
 - Keeps the organization competitive
 - Business depends on secrecy of this data
 - E.g. unreleased Sony movies, trade secrets, etc.
 - Private (Class 2)

- Disclosure = serious damage
- Personal information of staff, customers, and contractors
- E.g. salary information
- Sensitive (Class 1)
 - Disclosure = damage
 - Sensitive information that is not proprietary or private
 - E.g. company records, emails, etc.
- Public (Class 0)
 - Disclosure = no damage
 - Meant for public consumption
 - Only integrity and availability is protected
 - E.g. brochures, websites, etc.
- Data States
 - o Data at Rest
 - Stored on media
 - E.g. data stored in hard drive
 - Controls
 - Symmetric Encryption
 - AES
 - Triple DES
 - Blowfish (basis for bcrypt)
 - Data in Motion
 - Moving across a network
 - E.g. data moving across wired or wireless connection
 - Controls
 - Transport Encryption
 - HTTPS
 - Encrypts HTTP Data
 - TLS/SSL
 - SSL Vulnerable to POODLE (do not use)
 - Encrypts data between sockets
 - IPSec
 - Encrypts data between two networks
 - Allows VPN solutions
 - Modes
 - Authentication Header
 - Provides Integrity
 - Encapsulating Security Payload
 - Provides Confidentiality
 - SSH/SCP/SFTP
 - Encrypted terminal sessions with file transfers

- o Data In Use
 - Data in temporary storage buffer while being used
 - E.g. data in RAM, registers, etc.
 - Controls
 - Purging after use

• Data Roles

- o Data Owner
 - Ultimately responsible for the data
 - Liable for negligence
 - Identifies data classification
 - Roles
 - Determine acceptable use policy
 - Determine security controls policy
 - Determine access and privilege policy
 - e.g. President, CEO, etc.
- System Owner
 - Owns the system that processes data
 - Roles
 - Craft system security plan w/ data owner
 - Manage system security plan
 - Train users and personnel on acceptable use policy
 - Implement system security plan
 - e.g. IT department
- Business/Mission Owner
 - Owns a business process that leverages systems
 - Leverages on systems to provide value to organization
 - Goals may sometimes conflict with system owners
 - e.g. Sales department
- o Data Processor
 - Processes data for a data controller (business/mission owner?)
 - Must not use data for anything else aside from intended purpose
 - e.g. 3rd party payroll processor
- o Administrator
 - Grants access to personnel
 - Follows principle of least privilege
 - Uses role-based access control model
 - Adds and removes users from roles
- Data Custodian
 - Implements data security controls
 - Implements safe backup and storage of data based on policy

- e.g. IT department
- o User
 - Accesses data to accomplish work tasks
 - e.g. employees, end users
- Protecting Privacy
 - Security Baselines
 - List of security controls
 - Image of a secure system
 - Scoping and Tailoring
 - Revising a standard/baseline to meet your requirements
 - e.g. removing WAF when you have no web application
 - e.g. not complying with safe harbor if you don't do business in EU
 - Selecting Standards
 - Determine which regulations apply to your service
 - e.g. PCI DSS, HIPAA, Safe Harbor

Cryptography

- History
 - Caesar Cipher
 - Used by Julius Caesar
 - ROT 3
 - Defeated by frequency analysis
 - o Engigma
 - Used by Germans
 - Defeated by project Ultra
 - Purple Machine
 - Used by Japanese
- Goals
 - Confidentiality
 - Date at Rest
 - Data in Motion
 - Integrity
 - Authentication
 - Non-repudiation
- Concepts
 - Kerchoff Principle
 - Cryptosystem must be secure even if mechanism disclosed
 - Key is the only thing that needs to be a secret
 - Security by design instead of obscurity

- Cryptography
 - Methods to keep information secret
- Cryptanalysis
 - Art of defeating cryptography
- Cryptology
 - Cryptography + Cryptanalysis
- o Codes
 - Representation of words or messages
 - e.g. 10-4 = "Acknowledged"
 - Not always meant to provide confidentiality
- o Ciphers
 - Hides true meaning of messages
 - Always meant to provide confidentiality
- o Confusion
 - Disassociation of relationship between plain text and key
- o Diffusion
 - Slight change in plain text changes the whole cipher text
- Frequency Analysis
 - Examination of recurring data
 - E.g. some letters of the alphabet occur more than the others
- Period Analysis
 - Frequency examination based on repeated use of key
- o Block Ciphers
 - Encryption occurs per chunk
- Stream Ciphers
 - Encryption occurs per bit or byte
- Mathematics
 - o Boolean Mathematics
 - AND
 - OR
 - NOT
 - XOR
 - One-way Functions
 - Producing output is easy
 - Deriving input is hard
 - E.g. factoring very large numbers
 - o Nonce
 - Initialization Vector
 - Adds randomness to encryption process
 - Zero Knowledge Proof
 - Proving knowledge of fact without revealing fact itself

- E.g. providing password hash instead of password
- E.g. answering to an authentication challenge
- Split Knowledge
 - Key Escrow
 - Parts of key sent to different escrow providers
 - M of N Control
 - M of N individuals must be present to perform high security task
- Work Function
 - Amount of work to brute force an encryption system
 - Key length is primary factor to determining work function
- Ciphers
 - Transposition Ciphers
 - Rearrangement of data/characters
 - Example: Columnar Transposition
 - Message is split into len(key) blocks/rows
 - Each letter of the key is associated with a column
 - Columns are arranged based on the value of the key letter associated with them
 - Columns are converted into strings and concatenated
 - Substitution Ciphers
 - Replacement of data/characters (ROT3)
 - Example: Vignere Cipher
 - Have a matrix of the alphabet where the letters of each row is increment by 1
 - Have columns and rows in total
 - Ci = Matrix[Ki][Pi]
 - One-Time Pads
 - Key as large as message itself
 - Each message letter is padded by each key letter
 - Unbreakable encryption scheme
 - Requirements
 - Key must be random
 - Protection of key from disclosure
 - Keys must only be used once
 - Key must be as long as message
 - Running Key Ciphers
 - AKA book cipher
 - One-time pad, except you get the key from a book
 - E.g. using a specific chapter and paragraph of Moby Dick

Modern Cryptography

- Symmetric Key Algorithms
 - Single shared key is used to encrypt and decrypt
 - AKA private key cryptography
 - Provides
 - Confidentiality
 - Advantages
 Verv
 - Very fast
 - 1000 times faster than asymmetric cryptography
 - o Disadvantages
 - Key distribution is hard
 - A secure channel must be established first before key is communicated
 - No non-repudiation mechanism
 - No way to prove an encrypted message came from someone since many people know the key
 - Not scalable
 - Each two-party communication in a large group requires a unique key
 - Frequent key regeneration
 - When someone leaves the group, key needs to be regenerated
- Asymmetric Key Algorithms
 - Private and public key decrypt message encrypted with the other
 - AKA public key algorithms
 - Private key must be kept private by a user
 - Public key must be known by everyone
 - Provides
 - Confidentiality
 - Integrity
 - Authentication
 - Non-repudiation
 - Advantages
 - Key distribution is simple
 - No secure channel required to start communication
 - Supports Non-repudiation mechanism
 - Since only the person knows their private key
 - Allows digital signatures to be generated
 - Hash of a message encrypted with a private key
 - Verification involves decryption using public key and crosschecking hashes
 - Scalable

- No new key needs to be generated for each pair of communicating parties
- New users only require generation one key pair
- Infrequent key regeneration
 - Required only if private key is compromised
 - Key can easily be invalidated when user leaves system
- o Disadvantages
 - Very slow
 - 1000 times slower than symmetric cryptography
- Hashing
 - Production of message digest
 - One-way function
 - Summary of message's content

Symmetric Cryptography

- Key Management
 - Creation and Distribution
 - Offline Distribution
 - Sheet of paper or storage media is physically transported
 - Interception might occur via mail
 - Telephones can be wiretapped
 - Papers might get thrown in the trash
 - Public Key Cryptography
 - Requires public key infrastructure
 - Diffie-Hellman
 - No public key infrastructure is required
 - Steps
 - Parties agree on two large prime numbers
 - p and g
 - 1 < g < p</p>
 - Each party chooses a random integer and performs
 - gi mod p
 - Results are sent to each other
 - Each party multiplies their origin random integer with received number
 - They end up with same value
 - Storage and Destruction of Symmetric Keys
 - Don't store key and data in same system
 - Provide two different individuals half the key (split knowledge)

- Key must be regenerated when someone who knows the key leaves the organization
- Key Escrow and Recovery
 - Allows government to get copy of key upon court order
 - Fair Cryptosystems
 - Key is divided and sent to multiple third parties
 - Court provides evidence of court order to third parties in order to retrieve key
 - Escrowed Encryption Standard
 - Provides government with technological means to decrypt ciphertext
 - Uses skipjack algorithm
- Cryptographic Life Cycle
 - o Computers get faster all the time
 - Encryption algorithms will eventually get obsoleted
 - Appropriate algorithm must be used depending on how long data needs to be retained
 - Algorithm Governance Controls
 - Specifying acceptable cryptographic algorithms
 - Identifying acceptable key lengths
 - Enumerating transport protocols that may be used
- Algorithms
 - Data Encryption Standard (DES)
 - Old standard required for government communications
 - Insecure and deprecated; replaced by AES
 - Key size: 56 bits (technically 64, but 8 bits is used for parity)
 - Modes
 - ECB (Electronic Code Book)
 - Each block is encrypted separately
 - Generates the same ciphertext for the same plaintext
 - Vulnerable to cryptanalysis
 - CBC (Cipher Block Chaining)
 - Plaintext block is XORed with previous ciphertext
 - Difference from CFB: Splits messages into block before encrypting
 - Requires an Initialization Vector
 - Destroys patterns
 - Allows errors to propagate
 - CFB (Cipher Feedback Mode)
 - Streaming version of CBC
 - Difference from CBC: Encrypts once a buffer is filled
 - Requires an Initialization Vector

- Destroys patterns
- Allows errors to propagate
- OFB (Output Feedback Mode)
 - Plaintext is XORed with DES-encrypted seed value
 - Seed value is re-encrypted for every block
 - Requires an Initialization Vector
 - Destroys patterns
 - Errors do not propagate
- CTR (Counter Mode)
 - Like OFB but incrementing counter is used rather than DES of previous seed value
 - Requires an Initialization Vector
 - Destroys patterns
 - Errors do not propagate
- Triple DES (3DES)
 - Three passes of DES algorithm
 - Produces a more secure encryption
 - Uses 3 or 2 keys depending on the mode
 - Variants

- EEE3 (three keys)
 - E(K1,E(K2,E(K3,P)))
 - Total key length: 168
- EDE3
 - E(K1,D(K2,E(K3,P)))
 - Total key length: 168
- EEE2
 - E(K1,E(K2,E(K1,P)))
 - Total key length: 112
- EDE2
 - E(K1,D(K2,E(K1,P)))
 - Total key length: 112
- International Data Encryption Algorithm (IDEA)
 - Patented by Swiss developers
 - Used in PGP
 - Block size: 64
 - Key size: 128 (divided into 52 16-bit keys)
 - Has same modes as DES
- o Blowfish
 - Basis of bcrypt
 - Used in SSH

- No license required
- Faster than DES an IDEA
- Block size: 64
- Key size: 32-448
- o Skipjack
 - Escrowed Encryption Standard (EES)
 - Supports escrow of encryption keys
 - Not adopted by the public
 - Block size: 64
 - Key size: 80
- Rivest Cipher 5 (RC5)
 - By Rivest, Shamir, and Adleman
 - Block size: 32, 64, 128
 - Key Sizes: 0-2048
- o Two-Fish
 - AES finalist
 - Includes pre-whitening and post-whitening
 - Prewhitening
 - Before first round of encryption
 - XORing plaintext with separate subkey
 - Postwhitening
 - After 16th round of encryption
 - XORing plaintext with separate subkey
 - Block size: 128
 - Key size: 256
- o Rijndael
 - Block sizes: 128, 192, 256
 - Key sizes: 128, 192, 256
 - Chosen as AES
- Advanced Encryption Standard (AES)
 - Meant to replace DES
 - Rijndael with 128 block size
 - Key sizes: 128, 192, 256

Asymmetric Cryptography

- Private and Public Keys
 - Decrypts each other
 - Private Key

- Kept private
- Used to generate digital signatures
- Used to decrypt confidential messages
- Public Key
 - Published
 - Used to verify digital signatures
 - Used to encrypt confidential messages
- Algorithms
 - o Rivest Shamir Adlement (RSA)
 - Key Length: 1024
 - n = p * q
 - select random e where e < n and e and (p-1)(q-1) is relatively prime
 - Find d such that (ed-1)mod(p-1)(q-1) = 1
 - e and n are public keys
 - d is private key
 - Encryption: C = Pe mod n
 - Decryption: P = Cd mod n
 - Merkle-Hellman Knapsack
 - Like RSA but relies on super-increasing sets
 - Proven ineffective in 1984
 - o El Gamal
 - Based on Diffie-Hellman
 - Not patented
 - Doubles length of data it encrypts
 - o Elliptic Curve
 - Key Length: 160
 - Uses elliptic curve mathematics
 - Elliptic curve definition:
 - y2 = x3 + ax + b
 - Elliptic Curve Group
 - Points that lie on the elliptic curve
 - O = located at infinity
 - Two points can be added: P + Q
 - Can be multiplied: Q = xP (Q is multiple of P)
 - It's extremely difficult to find X
 - 160-bit key is just as strong as 1024 RSA key
- Key Management
 - Use publicly-vetted encryption system
 - Select appropriate length keys

- o Ensure that private key is secret
- Retire keys after they're no longer useful
- Keep backups of your key

Hash Functions

- Facts
 - \circ $\;$ Converts messages into fixed length outputs $\;$
 - o Generated value is called a Message Digest
 - Used to ensure message integrity
 - Used as a component of Digital Signatures
- Requirements (According to RSA)
 - \circ Input can be any length
 - o Output has fixed length
 - Easy to compute for any input
 - o Is one-way
 - Collision-free
- Algorithms
 - o SHA
 - Facts
 - Stands for Secure Hash Algorithm
 - Developed by NIST
 - Part of Secure Hash Standard
 - Algorithms
 - SHA-1
 - Block Size: 512
 - Output Size: 160
 - SHA-2
 - SHA-256
 - Block Size: 512
 - Output Size: 256
 - SHA-192
 - Block Size: 512
 - Output Size: 192
 - Truncated SHA-256
 - SHA-512
 - Block Size: 1024
 - Output Size: 512
 - SHA-384
 - Block Size: 1024

- Output Size: 384
- Truncated SHA-512
- SHA-3
 - Keccak Algorithm
 - Not yet published
- o MD Series
 - Facts
 - Developed by Ronald Rivest
 - Algorithms
 - MD2
 - Block Size: 16
 - Output Size: 128
 - Facts
 - Proved to be reversible
 - MD4
 - Block Size: 512
 - Output Size: 128
 - Facts
 - Uses 3 rounds
 - Block data must be 64 bits less than 512
 - MD5
 - Block Size: 512
 - Output Size: 128
 - Facts
 - Uses 4 rounds
 - Block data must be 64 bits less than 512
 - Subject to collisions
 - HAVAL
 - Hash of variable length
 - MD5 variant

Digital Signatures

- Facts
 - Ensures non-repudiation
 - Message digest encrypted with a private key
 - Verified using the public key
 - Does not provide ny privacy
- Achieves
 - Non-repudiation

- Authentication
- o Integrity
- Generation
 - Message is hashed
 - Hash is encrypted with sender private key
 - Encrypted hash is attached to the message
 - Message with signature is sent
- Verification
 - Signature is decrypted with sender public key
 - Message is hashed
 - Decrypted hash is compared to hash of message
 - If same, signature is valid
- Hashed Message Authentication Code (HMAC)
 - o Facts
 - Just like Digital Signatures, but uses a symmetric algorithm
 - Provides no non-repudiation
 - Operates more efficiently
- Digital Signature Standard
 - Acceptable Digital Signature Algorithms
 - Digital Signature Algorithm (DSA)
 - Rivest, Shamir, Adleman (RSA)
 - Elliptic Curve DSA (ECDSA)
 - Acceptable Hashing Algorithms
 - SHA-2

Public Key Infrastructure

- Allows communications between previously unknown parties
- Components
 - Certificates
 - Endorsed copies of public key
 - E.g. Public key digitally signed by Certificate Authority
 - Information Contained (X.509 Certificate)
 - X.509 Version
 - Serial Number
 - Signature Algorithm Identifier
 - Issuer Name
 - Validity Period
 - Subject's Name

- Subject's Public Key
- Used to establish SSL connections
- Certificate Authorities
 - Notarizes digital certificates
 - People trust them and they trust various organizations
 - You prove your identity to CA and they vouch for you
 - Examples
 - Symantec
 - Thawte
 - GeoTrust
 - GoDaddy
 - Comodo Limited
 - DigiCert
 - etc.
 - Default trusted CAs are built-into the browser
- Registration Authorities
 - Assist CA with verifying user identities
- Certificate Path Validation
 - Verification of the chain of trust from the root down to the client
- Certificate Generation and Destruction
 - o Enrollment
 - Registration to a Certificate Authority
 - Steps
 - Providing documents / physically appearing, etc.
 - User provides CA with public key
 - CA creates X.509 digital certificate
 - CA digital signs the certificate
 - CA provides user signed copy of certificate
 - Verification
 - Steps
 - Verify digital signature of certificate
 - Verify that the CA is trusted
 - Check if the certificate is not in a CRL
 - Check if certificate contains data that us trusted (e.g. email/domain)
 - Revocation
 - Reasons
 - Compromise of private key
 - Incorrectly issued certificate
 - Certificate details changed
 - Security association changed (e.g. subject no longer employed)

- Verification
 - Certificate Revocation List (CRL)
 - List of revoked certificate serial numbers
 - Has to be downloaded and cross-checked
 - May have some latency issues
 - Online Certificate Status Protocol (OCSP)
 - Allows lookup of certificate status without downloading CRL
 - Allows real-time verification
 - Return status
 - Valid
 - Invalid
 - Unknown

Applied Cryptography

- Portable Devices
 - Disk/Volume Encryption
 - Trusted Platform Modules
- Email
 - Pretty Good Privacy
 - By Phil Zimmerman
 - Uses web of trust
 - Decide which users to trust
 - Transitive trust takes effect
 - Commercial Version
 - Key Exchange: RSA
 - Encryption: IDEA
 - Message Digest: MD5
 - Freeware Version
 - Key Exchange: Diffie-Hellman
 - Encryption: CAST
 - Message Digest: SHA-1
 - o S/MIME
 - De facto standard for encrypted email
 - Key Exchange: X.509 Certificates
 - Public Key Protocol: RSA
 - Symmetric Encryption: AES and 3DES
 - Supported by desktop mail clients
 - Not supported by web clients
- Web Applications

- SSL/TLS/HTTPS
 - Originally by Netscape, adopted by Microsoft
 - Steps
 - Browser retrieves website certificate
 - Browser extracts public key from certificate
 - Browser generates random symmetric key
 - Public key is used to encrypt random symmetric key
 - Encrypted key is sent to webserver
 - Server decrypts symmetric key using its private key
 - All future messages are encrypted using the symmetric key
 - POODLE Attack
 - Makes TLS fallback to SSL 3.0
 - Organizations now just drop support for SSL
- Steganography and Watermarking
 - Embedding secret messages within other files
 - May be used to add digital watermarks to assets
 - Can be used to protect intellectual property
 - Watermark can be traced back to original copy
- Digital Rights Management
 - o Music
 - o Movie
 - Content Scrambling System
 - Enforces playback and region restrictions on DVDs
 - Broken with release of DeCSS tool
 - Advanced Access Content System (AACS)
 - Protects content stored on Blu-Ray and HD DVD
 - AACS encryption keys have been retrieved and posted online
 - o E-Book
 - Most successful type of DRM
 - Adobe Digital Experience Protection
 - DRM for e-books
 - Encrypted with AES
 - RSA to protect AES key
 - Used by a variety of e-readers
 - o Video Game
 - Make video games dependent on internet to verify the game license
 - Document
 - Prevents actions from being performed on a document
 - Examples
 - Reading a file

- Modifying a file
- Removing watermarks
- Downloading/saving
- Printing
- Taking screenshots

Networking

- Circuit Encryption
 - Link Encryption
 - Encrypts communication between two network locations
 - Entire packets are encrypted
 - Slower but less susceptible to sniffing
 - Done beneath transport layer
 - E.g. two office networks
 - End-to-end Encryption
 - Encrypts communication between two hosts
 - Only data is encrypted
 - Faster but more susceptible to sniffing
 - Done in transport layer or above
 - E.g. client and webserver
- o IPSec
 - IETF standard for setting up secure comms channel
 - Parties can be two gateways, two systems, etc.
 - Uses public key cryptography
 - Modes
 - Transport Mode
 - Between two gateways
 - Uses L2TP (layer 2 tunneling protocol)
 - Tunnel Mode
 - Between two hosts (peer-to-peer)
 - Components
 - Authentication Header
 - Uses public keys(?)
 - Authentication
 - Access Control
 - Integrity
 - Non-repudiation
 - Prevents replay attacks
 - Encapsulating Security Payload
 - Uses symmetric keys(?)
 - Encryption

- Some authentication
- Prevents replay attacks
- Sometimes used without AH
- Security Association
 - Represents communication session
 - Records configuration status about connection
 - Represents a one-way connection
 - Additional SA must be setup per direction and IPSec component
- Internet Security Association Key Management Protocol (ISAKMP)
 - Establishes, modifies, and deletes Security Associations
 - Requirements for ISAKMP
 - Authenticate communicating peers
 - Create and management security associations
 - Provide key generation mechanisms
 - Protect against threats (DOS, replay attacks, etc.)
- Wireless Networking
 - Wired Equivalent Privacy
 - Not secure do not use
 - 64 and 128-bit encryption
 - Wi-Fi Protected Access
 - WPA
 - Adds TKIP to the mix
 - Temporal Key Integrity Protocol
 - Secure IV generation
 - WPA2
 - Uses CCMP instead of TKIP
 - Uses AES instead of RC4
 - 802.1X
 - For network authentication
 - Clients that connect to a network are authenticated
 - Client runs a supplicant application
 - Supplicant communicates with Authentication Server

Cryptographic Attacks

- Analytic Attack
 - Reduces complexity of the algorithm
- Implementation Attack
 - Attacks specific implementations
- Statistical Attack

- Exploits statistical weaknesses
 - Inability to produce random numbers
 - Floating-point errors
- Brute Force
 - Trying every possible key
 - Time to break depends on length of key
 - Approaches
 - Rainbow table
 - Table of hashes and corresponding values
 - Makes brute force attacks faster
 - Prevented by salting passwords
 - Adding a random nonce before hashing a password
 - Salt is stored alongside password hash
 - Salt is added to any new string that needs to be compared w/ password
 - This increases the difficulty of brute force attacks
 - Specialized computing hardware
- Ciphertext Only / Frequency Analysis
 - Only ciphertext is available to cryptanalyst
 - One can perform a frequency analysis attack
 - E T O A I are the most frequent letters of the alphabet
 - If these letters are also the most common, expect a transposition cipher
 - If other letters are more common, expect a substitution cipher
- Known Plaintext
 - Attacker knows plaintext and corresponding ciphertext
- Chosen Plaintext Attack
 - \circ $\;$ Attack can encrypt any plaintext of his choosing $\;$
- Chosen Ciphertext
 - Attacker has ability to decrypt certain portions of ciphertext
- Meet in the Middle
 - Defeats algorithms that use two rounds of encryption
 - This is what broke 2DES
 - Process
 - Have specific plaintext
 - Encrypt it with every possible key
 - Each ciphertext is decrypted with all possible keys
 - When match is found, the pair of keys represent both portions of double encryption
 - Key strength is only 2ⁿ rather than 2ⁿ * 2ⁿ
 - Only adds minimal amount of protection

- Man in the Middle
 - Interception of communications
 - Key is intercepted and replaced
 - A different secure session is started by MIT between the 2 hosts
 - o 2 hosts don't know they're not communicating with each other
- Birthday Attack
 - o AKA collision attack / reverse hash matching
 - Attacker replaces signed communication with another message w/c has the same hash
- Replay Attack
 - Used against algorithms w/c do not use temporal protections
 - E.g. algorithms without initialization vectors, etc.
 - Captured messages can simply be resent in order to trigger some action

Secure Design Principles

- Objects and Subjects
 - Subject
 - User/process trying to access a resource
 - o Object
 - A resource a user/process wants to access
- Closed and Open Systems
 - Open System
 - System built on agreed-upon industry standards
 - Easy to integrate with other systems
 - More likely to be targeted
 - o Closed System
 - Works with narrow range of other systems
 - Usually proprietary
 - Less likely to be targeted
- Open Source and Closed Source
 - o Open Source
 - Source code is exposed to the public
 - Depends on public scrutiny to evaluate and secure
 - Closed Source
 - Source code is hidden from the public
 - Depends on vendor to evaluate and secure
 - Also called "commercial"
 - Can still be an open system
- Ensuring CIA

- Confinement
 - Restricting program to a specific memory and resource space
 - Also called "sandboxing"
 - Implemented by the operating system
- o Bounds
 - The range of memory and resources that a program can operate in
 - Enforced by the operating system
 - Physical Bounding
 - Processes can be required to run on a range that is physically separated from other processes
 - Logical Bounding
 - Process can be allowed to run on a range that is in the same physical range of other processes
- o Isolation
 - The state of being confined
 - Program is prevented from accessing memory of another processes
 - OS provides resource sharing capabilities instead
- Controls
 - o Control
 - Limits subject access to an object
 - Mandatory Access Control
 - Subjects and objects have static labels
 - Labels determine access right
 - Rules Based Access Control
 - Uses rules to determine access right
 - Rules grant access rights to objects
 - Discretionary Access Control
 - Subjects define access rules to objects
 - If they have the authority to, that is
- Trust and Assurance
 - o Trusted System
 - One which protects data for many types of users
 - o Assurance
 - Degree of confidence in satisfaction of security needs
 - Needs to be maintained
 - Changes decrease assurance, hence, reevaluation is needed

Security Models

Concepts

- Security Model
 - Maps abstract statements into a security policy
 - Used to measure system support of security policy
- Tokens, Capabilities, and Labels
 - Tokens
 - Separate object associated with a resource
 - Describes resource's security attributes
 - Capabilities
 - A list of capabilities for each object
 - Not very flexible but faster
 - Labels
 - Attached to a resource and is a part of it
 - Cannot be altered
- Models
 - Trusted Computing Base
 - Set of computing components which enforces security policy
 - Foundation of most security models
 - Restrict activities of components outside the TCB
 - Concepts
 - Security Perimeter
 - Bounds between TCB and rest of system
 - Prevents insecure communications between TCB and rest of system
 - Trusted Path
 - Used by TCB to communicate with rest of system
 - Adheres to strict standards to prevent compromise of TCB
 - Reference Monitor
 - Validates access to every resource
 - Grants access to resources
 - Stands between subject and object
 - Just a theory, not an actual thing
 - Security Kernel
 - TCB components that implement the reference monitor
 - Launches components that enforce reference monitor
 - Uses trusted paths to communicate with subjects
 - Mediates all resource access
 - State Machine Model
 - Describes a system that is always secure
 - All valid states are secure
 - All valid state transitions are secure

- Also called Secure State Machine
- Basis for other security models
- Based on Finite State Machine
- Information Flow Model
 - Only valid information flows may be allowed
 - Prevents insecure information flows
 - Addresses covert channels
 - Focuses on flow of information
 - **Composition Theories**
 - Describes information flow between systems
 - Theories
 - Cascading
 - Input of one system comes from output of another
 - Example: Web server with database backend
 - A -> B -> C : Chaining
 - Feedback
 - System receives input and responds with output
 - Example: HTTP Request and Response
 - A -> B : Request
 - A <- B : Response
 - Hookup
 - System sends input to one system and sends copy to another
 - Example: CC and BCC in email
 - A -> B : To Destination
 - A -> C : To Hookup
 - Based on State Machine Model
- Noninterference Model
 - High privileged actions should not affect lower privileged subjects
 - Unauthorized parties should not be affected by information flows
 - Prevents inference attacks and covert channels
 - Based on the Information Flow Model
- Take-Grant Model
 - Describes how rights can be passed/taken from subject to subject/objects
 - Allows you to track where rights can change
 - Allows you to track where leakage can occur
 - Rules
 - Take Rule
 - Allows subjects to take rights over an object
 - Grant Rule

- Allows a subject to grant rights over an object
- Create Rule
 - Allows a subject to create new rights
- Remove Rule
 - Allows a subject to remove rights it has
- Access Control Matrix
 - A matrix of subjects an objects
 - Indicates the rights each subject has over each object
 - Parts
 - Row
 - Subjects
 - Capabilities List
 - Each row shows capability of each subject
 - List of rights a subject has for every object
 - Columns
 - Objects
 - Access Control Lists
 - Each column shows subjects that have rights to object
 - List of subject that has rights to an object
 - Cells
- Access Rights
 - Access rights of a subject to an object
- Lattice-Based Access Control
 - Subject are assigned position in a lattice
 - Positions fall between security labels
 - Subjects only access objects that are within "range"
 - Example
 - A subject between Private and Sensitive
 - Can only access an object within those two labels
- Bell-LaPadula Model
 - Prevents information flow to lower sensitivity levels
 - Protects Confidentiality
 - Does not address integrity or availability
 - Used by military organizations
 - Properties
 - Simple Security Property
 - No Read Up
 - Subjects can't read objects with higher sensitivity labels
 - (*) Security Property
 - No Write Down
 - Subjects can't write to objects with lower sensitivity labels

- Unless performing declassification, which is a valid operation
- Discretionary Security Property
 - An access matrix is used to enforce discretionary access control
- Trusted Subject
 - Exception to * Security Property
 - Can declassify objects
- Based on State Machine and Information Flow Model
- Biba Model
 - Prevents information flow to higher integrity levels
 - Protects Integrity
 - Prevent unauthorized modification of objects
 - Protects object consistency
 - Does not address confidentiality or availability
 - Used by commercial organizations
 - Properties
 - Simple Integrity Property
 - No Read Down
 - Subjects can't read objects at lower integrity levels
 - (*) Integrity Property
 - No Write Up
 - Subjects can't write objects at higher integrity levels
 - Based on Bell-LaPadula Model
 - Based on State Machine and Information Flow Model
- Clark-Wilson Model
 - Access to subject must be mediated through a program
 - Program enforces well-formed transactions
 - Protects
 - Confidentiality
 - Integrity
 - Constrained Interface
 - Enforces well-formed transactions
 - Enforces separation of duties
 - Authorizes transactions
 - Access Control Triple
 - Subject
 - Object
 - Program/Transaction/Interface
 - Constrained Data Item
 - Data items protected by the model

- Can only be modified by transformation procedures
- Unconstrained Data Item
 - Data not controlled by the model
 - Input and output data
- Integrity Verification Procedure
 - Determines integrity of data items
- Transformation Procedures
 - Used to modify a constrained data item
 - The only thing that can
 - Essentially the backbone of the model
 - Example: Store Procedure in Database
- Restricted Interface Model
 - Provides subjects authorized information and functions
 - Subjects at different levels see different set of data
 - Like a webapp that shows you only the info and features you can access
 - Enforces separation of duties in effect
- Brewer and Nash Model / Chinese Wall
 - Focused on confidentiality
 - Uses security domains / conflict classes
 - Prevents conflict of interests
 - Based on a user's previous actions
 - Security domains are not predetermined
 - Examples
 - Separate conflict classes for accessing data of two competing companies
 - Preventing access to data irrelevant to a current operation
- Goguen-Meseguer Model
 - Focused on integrity
 - Basis for non-interference model
 - Security domains are predetermined
 - List of objects a subject can access is predetermined
 - List of operations a subject can perform is predetermined as well
- Sutherland Model
 - Focused on integrity
 - A non-interference model
 - A state machine model
 - Defines a set of system states, and transitions
 - Integrity is maintained if the defined states and transitions are used
- Graham-Denning Model

- Focused on secure creation and deletion of objects
 - Specifies how to securely:
 - Create

- Object
- Subject
- Delete
 - Object
 - Subject
- Provide Right
 - Read
 - Grant
 - Delete
 - Transfer

Systems Security Evaluation Models

- Evaluation Steps
 - Certification
 - Notes
 - Initiated by a vendor
 - Test system security capabilities
 - Compare design, security criteria, and actual capabilities
 - Auditors decided if security criteria is met
 - Security criteria is based on intended use (commercial, health, etc)
 - Usually performed by a 3rd party
 - Steps
 - Choose security criteria (TCSEC/ITSEC/CC)
 - Analyze each system component based on criteria
 - Evaluate deployment environment
 - Determine level of security
 - o Accreditation
 - Recognition of the certification
 - Performed by an adopting organization/customer
 - o Maintenance
 - Ensuring that the security criteria is up to date
 - Ensuring that the system still meets security criteria
- Rainbow Series
 - Orange Trusted Computer System Evaluation
 - o Green DoD Password Management Guidelines
 - Yellow TCSEC in Specific Environments

- o Tan Audit in Trusted Systems
- o Bright Blue Trusted Product Evaluation for Vendors
- Light Blue PC Security Considerations
- Neon Orange Discretionary Access Controls
- Aqua Computer Security Terms
- o Red Trusted Network Interpretation
- Amber Configuration Management
- Burgundy Design Documentation
- Lavender Trusted Distribution
- Venice Blue Computer Security Subsystem Interpretation
- Evaluation Models
 - TCSEC Orange Book
 - Categories
 - D Minimal Protection
 - Do not meet the requirement to belong to any other category
 - C Discretionary Protection
 - C1 Discretionary Protection
 - Access is controlled using users and groups
 - C2 Controlled Access Protection
 - Meets requirements of C1
 - Strict logon procedures
 - Enforces media cleansing
 - B Mandatory Protection
 - B1 Labeled Security
 - Access is controlled using subject and object labels
 - B2 Structured Protection
 - Meets requirements of B1
 - Ensures that no covert channels exists
 - Operator and administrators are separated
 - Enforces process isolation
 - B3 Security Domains
 - Meets requirements of B2
 - Administrators are separated from other users
 - Reduce exposure to vulnerabilities
 - A Verified Protection

.

- A1 Verified Protection
 - Meets requirements of B3
 - Each step of implementation is documented
- Limitations
 - Doesn't control what users do with information once granted

- Focused on confidentiality and doesn't work in commercial contexts
- No physical, personnel, procedural provisions
- Doesn't deal with networked systems
- TNI-TCSEC Red Book
 - TCSEC with Networking Considered
 - Includes
 - CIA Rating
 - Communications Integrity
 - DoS protection
 - Intrusion prevention
 - Rating Level
 - None
 - C1 Minimum
 - C2 Fair
 - B2 Good
 - Restrictions
 - Centralized networks
 - Single accreditation authority
- o ITSEC
 - European security evaluation criteria
 - Corresponds to TCSEC categories
 - Categories
 - F0: F-D Minimal Protection
 - F1: F-C1 Discretionary Protection
 - F2: F-C2 Controlled Access Protection
 - F3: F-B1 Labeled Security
 - F4: F-B2 Structured Access Protection
 - F5: F-B3 Security Domains
 - Difference from TCSEC
 - Change doesn't require re-evaluation of a system
 - Also considers integrity
 - Doesn't require a TCB
- Common Criteria
 - A product evaluation model
 - Does not ensure that a system has no vulnerabilities
 - Helps buyers purchase products
 - An official ISO standard: ISO 15408
 - Goals
 - Add to buyer confidence in purchasing products

- Eliminates duplicate evaluations
- To make security evaluations more cost effective
- To evaluation functionality and assurance of TOE/target of evaluation
- Elements
 - Protection Profiles
 - Specify security demands of customers
 - "What I want" from customers
 - Security Targets
 - Security claims of a vendor about their system
 - "I will provide" from a vendor
 - A target that a vendor sets for itself
 - Customers compare their requirements to this
 - Package
 - Additional security components provided by the vendor
 - Can be added and removed
- Process
 - Customer compares their protection profile to security targets of various vendors
 - Customer chooses product with closest security target based on published assurance levels
- Structure
 - Introduction and General Model
 - Explains the security evaluation process
 - Security Function Requirements
 - Specifies requirements for each function that needs evaluation
 - Security Assurance
 - Specifies how systems are designed, checked, and tested
- Categories
 - EAL1 Functionally Tested
 - TCSEC: D
 - For non-serious threats to security
 - Requirements
 - Features are working as intended
 - EAL2 Structurally Tested
 - TCSEC: C1
 - For low to moderate assurance requirements
 - Requirements
 - EAL1 is passed
 - Design information is evaluated
 - EAL3 Methodically Tested and Checked

- TCSEC: C2
- For moderate assurance requirements
- Requirements
 - EAL2 is passed
 - Security is engineered since design stage
- EAL4 Methodically Designed, Reviewed, and Tested
 - TCSEC: B1
 - For moderate assurance requirements
 - Requirements
 - EAL3 is passed
 - Security and commercial best practices are followed
- EAL5 Semi-Formally Designed and Tested
 - TCSEC: B2
 - For high assurance requirements
 - Requirements
 - EAL4 requirements
 - Specialist security engineering techniques are followed
- EAL6 Semi-Formally Verified, Designed, and Tested
 - TCSEC: B3
 - For high risk situations
 - Requirements
 - EAL5 requirements
 - Specialist security engineering techniques are used at all phases of design
- EAL7 Formally Verified, Designed, and Tested
 - TCSEC: A1
 - For highest-risk situations
 - Requirements
 - EAL6 requirements
- Certification and Accreditation Systems
 - o Standards
 - Department of Defense
 - RMF Risk Management Framework (Current)
 - DIACAP DoD Information Assurance Certification and Accreditation Process
 - DITSCAP Defense Information Technology Security Certification and Accreditation Process
 - Executive Branch
 - CNSSP Committee on National Security Systems Policy (Current)

- NIACAP National Information Assurance Certification and Accreditation Process
- Phases of Current Standards
 - Definition
 - Assign personnel
 - Document mission need
 - Registration and negotiation
 - Creation of System Security Authorization Agreement
 - Verification
 - Refinement of SSAA
 - Development activities
 - Certification analysis
 - Validation
 - Further refinement of SSAA
 - Certification evaluation
 - Recommendation development
 - Accreditation decision
 - Post Accreditation
 - Maintenance of SSAA
 - System operation
 - Change management
 - Compliance validation

Capabilities of Information Systems

- Memory Protection
 - Prevents processes from interacting with memory locations not allocated to them
- Virtualization
 - Allows multiple operating systems to run on the same set of hardware
- Hardware Security Module
 - Hardware cryptoprocessors
 - Used to store keys
 - Used by banks and authorities to store certificates
- Trusted Platform Module
 - Specs for a cryptoprocessor chip
 - A type of a hardware security module (HSM)
 - Provides
 - Key storage
 - Hardware encryption
 - Hard drive encryption

- More secure
- Key is stored in TPM so TPM is required to decrypt the hard drive
- Hard drive can't be decrypted when put in a separate system
- Interfaces
 - Provides users access to the data
 - Must be constrained based on user privileges
 - Through hiding, if permission is not granted to a user
 - Implementation of Clark-Wilson model
- Fault Tolerance
 - o Ability of a system to continue to operate when experiencing a fault
 - Achieved by adding redundant components
 - Essential element of security design

Security Vulnerabilities

- Hardware
 - Processor
 - Execution Types
 - Multitasking
 - Single processor, multiple tasks
 - Multiprocessing
 - Multiple processors, multiple tasks
 - Types
 - SMP Symmetric Multiprocessing
 - Single OS distributes task to processors
 - Multiple processors treated equally
 - Good for simple operations
 - MMP Massive Multiprocessing
 - Multiple OS environment
 - Tasks assigned to coordinating processors
 - Coordinating processors assign tasks to other processors
 - Good for complex operations
 - Multiprogramming
 - Single processor, one task at a time
 - Switch to different task when one waits
 - Needs to be specially written
 - Multithreading
 - Multiple tasks in a single process

- Processing Types
 - Single State
 - Processors handle only one security level
 - The system only handles one security level
 - Access is controlled via policy
 - Cheaper
 - Multistate
 - Processors handle multiple security levels
 - The system handles multiple security levels
 - Access is controlled via technical protection mechanisms
 - More expensive
- Protection Mechanisms
 - Protection Rings
 - Lower rings, higher privilege
 - Multics has six rings, modern OSes has 4 rings
 - Rings
 - Ring 0 Kernel
 - Ring 1 OS Components
 - Ring 2 Drivers
 - Ring 3 User Programs
 - Mediated Access Model
 - Process communicate to lower ring via interfaces
 - System Call
 - Request to resources on lower level ring
 - Usually a programming interface
 - Lower ring must authorize requester
 - Process States / Operational States
 - Ready

- Process is ready to be given a time slice
- Initial state of a process
- Transitions to Running State
- Waiting / Blocking
 - Process is waiting on a resource
 - Transitions to Running State
- Running
 - Process is currently in execution
 - Ends upon termination or end of time slice
 - Also called Problem State as errors can occur
 - Transitions to Ready, Waiting, or Stopped State

- Supervisory
 - Process is performing privileged operation
 - States other than this is user mode
- Stopped
 - Process is finished or must be terminated
- Security Modes
 - Requirements
 - MAC Environment
 - Physical control of system and room
 - Modes
 - Dedicated Mode
 - Right to know everything in system
 - Permission to access everything in the system
 - Need to know everything in system
 - System High Mode
 - Right to know everything in system
 - Permission to access everything in the system
 - Need to know some things in the system
 - Compartmented Mode
 - Right to know everything in the system
 - Permission to access some things in the system
 - Need to know things to be accessed in the system
 - Multilevel Mode
 - Right to know some things in the system
 - Permission to access some things in the system
 - Need to know things to be accessed in the system
- Operating (System) Modes
 - User Mode / Problem State
 - Ring 3
 - When user applications are being executed
 - Prevents accidental damage to system
 - User programs are executed in a sandbox
 - Also called a Virtual Machine
 - Kernel Mode / Privileged Mode / System Mode
 - Ring 0 to 2

- Allows OS to perform full range of CPU instructions
- o Memory
 - ROM Read Only Memory
 - Types
 - ROM Read Only Memory
 - Contents are written at factory
 - Can't be modified
 - PROM Programmable Read Only Memory
 - Unwritten ROM
 - Users can write once
 - Example: CDs
 - EPROM Erasable Programmable Read Only Memory
 - Can be erased using chemicals or UV light
 - EEPROM Electronically Erasable Programmable Read-Only Memory
 - Can be erased electronically
 - All contents must be erased
 - Flash Memory
 - Can be erased electronically
 - Allows erasure of individual blocks
 - Example: NAND Flash, SSDs, Flash Drives
 - Issues
 - Data retention
 - RAM Random Access Memory
 - Types
 - Real Memory
 - Main memory
 - Made up of Dynamic RAM
 - Cache RAM
 - Attached to a processor
 - Contains RAM data that is accessed frequently
 - Levels
 - Level 1 Cache
 - Attached to processor chip
 - Level 2 Cache
 - On a separate chip
 - Peripherals also have RAM caches
 - Printers have RAM caches which can load an entire job
 - Dynamic RAM
 - Loses charge over time even if power is supplied

- Must be refreshed by CPU
- Made up of capacitors
- Cheaper but slower than static RAM
- Static RAM
 - Does not lose charge over time if power is supplied
 - Does not need to be refreshed by CPU
 - Made up of flip flops
 - More expensive but faster than dynamic RAM
- Issues
 - Pilferable
 - Data retention
 - Cold boot attack
- Registers
 - Limited amount of onboard CPU memory
 - ALU Arithmetic Logic Unit
 - Perform arithmetic operations
 - Can directly access registers
 - Values to process must be loaded to registers first
- Addressing
 - Register Addressing
 - Value to process is in a register
 - Register address is provided by instruction
 - Immediate Addressing
 - Value to process is in the instruction
 - Provided value is used in operation
 - Direct Addressing
 - Value to process is in memory
 - Memory address of value is provided by instruction
 - Indirect Addressing
 - Address of value to process is in memory
 - Memory address of value's address is provided by instruction
 - Base + Offset Addressing
 - Address of value to process is in a register
 - Register address and offset is provided by instruction
- Secondary memory
 - Storage devices; non-volatile
 - Example: optical disk, hard drive, etc.
 - Cheaper but slower than primary memory
- Virtual Memory / Paging
 - Used to extend main memory

- Stores overflowing contents onto secondary memory
- Pages from main memory are "swapped" into secondary memory
- Non-used parts of main memory are stored in page file
- They are restored into main memory when they need to be used
- Storage
 - Primary and Secondary

.

- Primary
 - RAM
 - Data is readily available to CPU
- Secondary
 - SSDs, CDs, hard drives
 - Data not readily available to CPU
- Volatile and Non-volatile
 - Volatile
 - Not designed to retain data
 - Non-volatile
 - Designed to retain data
- Random and Sequential
 - Random
 - Any memory location can be accessed immediately
 - Faster but more expensive; for shorter term storage
 - Examples: Hard Drives, RAM, CDs, DVDs
 - Sequential

- Data prior to desired location must be read
- Slower but cheaper; for long term storage
- Examples: Magnetic Tape
- Issues
 - Data Remanence
 - Files can be recovered after deletion
 - SSD blocks may retain information even after wiping
 - Some blocks might hold a copy of data when copied to lower leveled blocks
 - Theft
 - May disclose confidential information
 - Removable media are pilferable
- IO Devices
 - Types
 - Monitors
 - Van Eck radiation
 - Electronic emanations coming from monitors
 - Can be read via TEMPEST program

- Also called Van Eck phreaking
- CRT are more vulnerable than LCDs
- Printers
 - Print outs can be taken if not secured
 - Printers store data locally
- Keyboards/Mice
 - Vulnerable to TEMPEST attacks
 - Keyboards are vulnerable to keyloggers
 - Signal interception if wireless
- Modems
 - Uncontrolled entry points into the network
 - Can establish external connections by themselves
 - Needs a telephone line
- Structures
 - Memory-Mapped IO
 - Memory space is reserved for input and output communication with device
 - CPU reads from those memory locations to read input from device
 - CPU writes to those memory locations to write output to device
 - CPU facilitates transfer of data to and from device (synchronously)
 - IRQ Interrupt Request
 - Specific signal lines are used for CPU and device communication
 - Signal lines are identified via IRQ number
 - IRQ numbers range from 8 to 16
 - OS assigns IRQ to devices
 - Interrupt conflict happens when two devices share the same IRQ
 - DMA Direct Memory Access
 - Like memory-mapped IO but data transfer is done asynchronously
 - CPU not needed to facilitate data transfer between memory and device
 - Steps
 - DMQ DMA Request
 - Device requests to access memory location
 - CPU locks target memory for device
 - Device access the memory location

- CPU continues with other tasks
- DACK DMA Acknowledgement
 - Device finishes accessing memory location
 - Device tells CPU that it can now access the memory location
 - CPU accesses data on shared memory location

- Firmware
 - Hard-coded software
 - Software stored on a ROM chip

- Not changed frequently
- Types
 - BIOS
 - Starts up the operating system from the disk
 - Stored on an EEPROM chip
 - Phlashing: Malicious BIOS is flashed onto the ROM
 - Device Firmware
 - Mini operating systems onboard devices
 - Stored on EEPROM chip
- Client-Based Systems
 - o Applets
 - Client executes code sent by the server
 - Self-contained mini programs
 - Processing burden is shifted to client
 - Privacy advantage as data is never sent to server
 - Applets can be trojans though
 - Examples

- Java Applets
 - By Sun Microsystems
 - Sandboxed Java programs; requires JVM
 - Can run on different operating systems
 - Widely exploited
 - ActiveX Controls
 - By Microsoft
 - Non-sandboxed VB, C, C++, and Java programs
 - Has full access to Windows operating system
 - Can run on Microsoft browsers only
 - Widely exploited; usually prohibited altogether
- Local Caches
 - ARP Cache (Poisoning)
 - Spoofed ARP replies

- Spoofed ARP reply is used to populate ARP table
- ARP: translates IP to MAC address
- Spoofing: Wrong machine associated with an IP address
- Allows man in the middle attack
- ARP Poisoning: Static ARP Entries
 - Malicious ARP entries manually configured in the operating system
 - Must be modified locally on the machine
 - Attack Vector: Using a trojan or social engineering attack
 - Allows man in the middle attack
- DNS Cache (Poisoning)

.

- HOSTS File Poisoning
 - Malicious entries added to hosts file
 - HOSTS File: local configuration file used to translate names to IPs
 - Attack Vector: Using trojan or social engineering attack
 - Allows impersonation of intended server with malicious dummy
- Authorized DNS Server Attacks
 - Attacking DNS records stored on authoritative DNS servers
 - Affects the entire internet and gets noticed pretty quickly
 - Allows impersonation of intended server with malicious dummy
- Caching DNS Server Attacks
 - Attacking DNS records on cache servers
 - These are provided by ISP and companies
 - Watched by less people and can occur without notice for some time
 - Allows impersonation of intended server with malicious dummy
- DNS Lookup Address Changing
 - Changing the DNS server used by a system to a malicious one
 - Attack Vectors: intercepting DHCP responses or local system attacks vis trojans
 - Allows impersonation of intended server with malicious dummy
- DNS Query Spoofing
 - Intercepting DNS responses and changes substitutes it with false information
 - Allows impersonation of intended server with malicious dummy

- Temporary Internet Files
 - Contains cached website content
 - Can be poisoned to contain malicious content (client sid scripts, etc.)
 - Malicious content is invoked when cached items are accessed
- Other Considerations
 - Emails, Phishing, and Trojans
 - Upload and Downloads
 - System Access Control
 - User Interfaces
 - System Encryption
 - Process Isolation
 - Protection Domains
 - Data and Media Labels
 - Data Backups
 - Awareness Trainings
 - Physical Protections
 - Disaster Recovery Procedures
 - Secure Coding, Configuration, and Updates
- Server-Based Systems
 - o Database
 - Aggregation
 - Combining multiple instances of data
 - Produces useful information that may be classified
 - Examples: Sum, Average, Max, Min, etc.
 - Individual records might not be classified
 - Sum/Average/Max/Min of data might be classified
 - Example: record for 1 soldier and total number of troops
 - Inference
 - Deducing classified information from available information
 - Example
 - Clerk knows total salary expenses of entire company
 - A new person gets hired
 - Total salaries increase
 - The increase in salary expenses is the salary of new person
 - Data Warehousing
 - Stores large amounts of information
 - For use with specialized analysis techniques
 - Data Dictionary
 - Stores usage and access rights of data

- Data Mining
 - Process of analyzing data warehouses
 - Search for patterns in large data sets
 - Produces metadata
- Metadata
 - Data about data
 - Can be representation of data
 - Can be aggregation(?)
 - Something that describes the bulk of data in the warehouse
 - Examples:
 - Security incident report
 - Sales trends report
 - May be more valuable than the bulk data
- Data Analytics
 - Examination of bulk data to extract useful information
- Large-Scale Parallel Data Systems
 - Performs simultaneous calculations / Multiprocessing
 - Breaking down tasks into subtasks and distributing the load
- Distributed Systems
 - Cloud Computing
 - Computing is outsourced to a service provider
 - Service is accessible via the internet

•

- Types
 - SaaS Software-as-a-Service
 - Provider manages:
 - Networking
 - Storage
 - Virtualization
 - Operating System
 - Middleware
 - Applications
 - Customer uses the application
 - Examples
 - Gmail
 - Google Docs
 - PaaS Platform-as-a-Service
 - Provider manages:
 - Networking
 - Storage
 - Virtualization

- Operating System
- Middleware
- Customer manages:
 - Applications
- Examples:

- Heroku
- IaaS Infrastructure-as-a-Service
 - Provider manages:
 - Networking
 - Storage
 - Virtualization
 - Customer manages:
 - Operating System
 - Middleware
 - Applications
 - Examples:
 - Amazon Web Services EC2
- Grid Computing
 - Computing tasks are distributed to clients
 - Clients return result to central server
 - Similar to asymmetric multiprocessing
 - Clients are able to view the data that they are handling
 - Clients are not guaranteed to return results
 - Returned results need to be validated to ensure integrity
- Peer-to-Peer
 - No central server
 - Clients connect directly to each other
 - Examples
 - VoIP
 - Skype
 - BitTorrent
 - Same security concerns as grid computing
- Industrial Control Systems
 - DCS Distributed Control Systems
 - Each piece of equipment have their own control system
 - Remotely accessed and managed from a central location
 - Keyword: Central Management
 - PLC Programmable Logic Controllers
 - Single-purpose computers
 - E.g. displaying signs, marquees, etc.

- Keyword: Single-purpose
- SCADA Supervisory Control and Data Acquisition
 - Standalone device networked with each other
 - Keyword: Stand-alone; Peer-to-Peer
- Web-Based Systems
 - Security Association Markup Language
 - Used to provide web-based SSO
 - Open Web Application Security Project
- Mobile Systems

- Operating Systems
 - Android
 - Based on Linux
 - Open Source Apache License
 - Made by Google
 - App Store: Google Play
 - Can be rooted
 - iOS
 - Made by Apple
 - Closed Source
 - App Store: Apple App Store
 - Can be jailbroken
- o Issues
 - Easy to hide
 - Can be used to steal data
 - Contains sensitive info
 - Eavesdropping
- Device Security
 - Full Device Encryption
 - Storage and voice encryption
 - Prevents reading of data
 - Remote Wiping
 - Delete entire phone data remotely
 - Can be blocked
 - Deleted data may still be recovered
 - Lockout
 - Disable access if unlock attempts fail
 - Requires a pre-configured screen lock
 - Gets longer with every failure
 - Screen Locks
 - Prevents access to unauthorized users

- Doesn't prevent access via network or USB
- Triggered if phone is left idle
- Examples: PIN, patterns, biometrics, etc.
- GPS
 - Receives GPS signals
 - Apps can record GPS locations
 - Allows tracking of movement
- Application Control
 - Limits installable applications
 - Enforces application settings
- Storage Segmentation
 - Compartmentalizes various data in storage
 - Used to separate device apps from user apps
 - Can separate company data from user data
- Asset Tracking
 - Checks in at office
 - Location tracking
 - Verifies if device is still with user
- Inventory Control
 - Using mobile device to track hardware
 - Devices can read RFID, bar codes, etc.
- Mobile Device Management
 - Controls and monitors a device remotely
- Device Access Control
 - Lock screens, etc.
 - Device should be unlocked to access USB / Bluetooth
- Removable Storage
 - Devices support microSD cards
 - Can also support external storage
 - Sometimes Bluetooth and Wi-Fi based storage too
- Disabling Unused Features
 - Lessens the chance of exploitation
- Application Security
 - Key Management
 - Key generation
 - Mobile devices have poor RNGs
 - Key storage
 - Use Trusted Platform Module
 - Use Removable Hardware
 - Credential Management

- Password managers with multifactor authentication
- Authentication
 - Methods
 - Patterns
 - PINs
 - Biometrics
 - RFID
 - Encryption when locked
- Geotagging
 - Embedding of location and data time on photos
 - Can disclose your location when photo is uploaded
- Encryption
 - Prevents access to data in storage or transit
 - Natively available on devices
 - Can also be implemented via apps
- Application Whitelisting
 - Allows only a specific list of apps to be installed
 - Implicit deny
- BYOD Concerns
 - Devices can access the company network
 - They need to comply with security policies
- Data Ownership
 - Personal and company data might be mixed in the device
 - They should be segmented
 - Policy should define who owns what data
- Support Ownership
 - Responsibility for repair and maintenance
- Patch Management
 - Responsibility for installing updates
 - How are updates to be installed
 - How frequent are updates to be installed
- Antivirus Management
 - What antivirus solution to use
 - Should an antivirus be used
- Forensics
 - Involvement of a device in investigations
- Privacy
 - Workers might be tracked when they are out of work
 - Contents of device may be monitored by the company
- On-boarding/Off-boarding

- On-boarding
 - Installing security/management apps
 - Secure configuration
- Off-boarding
 - Wiping business data
 - Full reset?
- Adherence to Corporate Policies
 - Personal mobile devices still need to comply with BYOD policies
- User Acceptance
 - BYOD policy details should be explained well to user
 - User must accept BYOD policy so they can be held accountable
- Architecture/Infrastructure Considerations
 - Allowing BYOD devices might cause more network load
 - Might require more IP addresses
 - Might require new hardware to be installed (access points)
- Legal Concerns
 - BYOD increases burden of liability
- Acceptable Use Policy
 - BYOD opens up inappropriate use of mobile devices
 - Risk of information disclosure is also increased
- On-board Camera/Video
 - Allows employees to take picture of company premises
 - Pictures of confidential information may be taken
- Cyber-Physical Systems
 - Limited functionality
 - May be part of a larger system/product
 - Examples
 - Static Systems
 - Does not change
 - Can't install new apps on it
 - Can't be configured
 - Network Enabled Devices
 - Devices that can communicate via networks
 - Wi-Fi, Ethernet, Bluetooth
 - Cyber Physical Systems
 - Can control physical components programmatically
 - Robots, doors, HVACs, self-driving cars, IoT, etc.
 - Mainframes
 - Usually designed around a single task
 - Might be considered static systems

- Able to operate for decades
- Game Consoles
 - OS is fixed and changed only when vendor releases a system upgrade
 - Focused on playing games and media
- Methods of Securing
 - Network Segmentation
 - Isolate Cyber-Physical Systems in a separate VLAN
 - Prevents remote exploits
 - Security Layers
 - Isolating high security systems from lower security ones
 - Implementations
 - Physical Isolation
 - Network Isolation
 - etc.
 - Application Firewalls
 - Prevents application specific attacks
 - A server-side firewall
 - Use a network firewall as well
 - Manual Updates and Firmware Version Control
 - Ensures that updates are tested
 - Automatic updates allow for untested versions
 - This might lead to reduction in security
 - Wrappers
 - Encapsulates a solution or environment
 - Restricts and controls changes to an environment
 - Ensures that only valid and secure updates are applied
 - Control Redundancy and Diversity
 - Use multiple and redundant security controls
 - Fulfills defense in depth

Essential Security Protection Mechanisms

- Technical Mechanisms
 - Layering
 - Levels vs. Rings
 - Layering: Highest layer is most privileged
 - Rings: Lower ring is most privileged
 - Processes in different layers communicate via interfaces
 - Security policy set by higher privileged layers take precedence
 - Abstraction

- Generalizing a bunch of objects
- Hiding implementation details
- Only giving information on interfaces and attributes
- Allows setting of policies to groups of generalized objects
- Data Hiding
 - Put objects in different container from subject
 - Ensure that object can only be accessed via a legal way
 - Hide data from processes running at different levels
 - Hide data from those who don't need to know and are unauthorized
- Process Isolation
 - Each processes have their own memory spaces
 - Processes shouldn't be able to read each other's memory spaces
 - Prevents unauthorized data access
 - Protects integrity of a process as it can't be modified by another process without its consent
 - Implemented via sandboxing processes
- Hardware Segmentation
 - Process isolation but uses hardware implementations for separation
 - Rare; used for national security concerns
- Policy Mechanisms
 - Least Privilege
 - Only give processes the privileges they need
 - Processes should run in user as much as possible
 - Use APIs to communicate with kernel mode processes instead
 - Separation of Privilege
 - Minimize the number of privileged operations a process can do
 - Basically, principle of least privilege for administrators
 - Compartmentalize responsibilities of processes
 - Prevents conflict of interest
 - Accountability
 - Record who does what
 - Requires authentication and authorization to associate activity with user
 - Allows users to be held accountable for their actions

Common Architecture Flaws

- Covert Channels
 - Allows unauthorized transmission of information
 - Detected by analyzing log files

- o Types
 - Covert Timing Channel
 - Modifies system's behavior to generate timing regularities
 - Observing system can then extract information by watching it
 - Covert Storage Channel
 - Writing data to a common storage area
- Coding Flaw Attacks
 - Initialization and Failure States
 - Security controls get unloaded when a system crashes
 - System crashes while it's in privileged mode, giving attacker access
 - Input and Parameter Checking
 - Buffer Overflows: Length checking
 - Injection Attacks: Input sanitation and validation
 - Maintenance Hooks and Privileged Programs
 - Allows unauthorized privileged access
 - Allows bypassing of security controls
 - o Incremental Attacks

- Data Diddling
 - Making small random incremental changes to data
 - Difficult to detect
- Salami Attack
 - Small whittling at assets like a salami
 - Transferring small amounts of cash from a compromised bank account over time
- Time of Check to Time of Use
 - Race condition
 - Object verified might be different from the one used
 - TOC Time of Check
 - Process checks if the object is available and valid
 - Attack replaces object after the program checks it
 - TOU Time of Use
 - Process then uses the object placed by attacked
 - Example:
 - Process: Check length of file
 - Attacker: Replace file with bigger one
 - Process: Reserves memory as large as the file that was read
 - Process: Leading the actual file into memory causes a buffer overflow
- Technology and Process Integration
 - Systems are being implemented via SOA
 - SOA integrates separate service applications into a single solution
 - Pay attention to Single Points of Failure

- Electromagnetic Radiation
 - EM leaks create a possible covert channel
 - Faraday Cage
 - Prevents radiation from going in and out of a bounded area
 - Jamming / Noise Generation
 - Creates meaningless radiation to prevent disclosure of information
 - Control Zones
 - Zone protected by jammers and faraday cages
 - A zone where not EM disclosure can occur

Physical Security Design

- There is no security without physical security
- Secure Facility Plan
 - Critical Path Analysis
 - Identifying mission critical assets/processes
 - Results in a list of items to secure
 - Technology Convergence must be considered
 - Technology Convergence
 - Tendency for technologies to merge over time
 - Results in single points of failure
 - Examples
 - Voice, Video, Fax, and Data uses single connection
 - Integrated Routers, Switches, and Firewalls
 - Example: E-Commerce Server
 - Internet Connection
 - Computer Hardware
 - Electricity
 - Temperature Control
 - Storage Faculty
 - Site Selection
 - Considerations
 - Visibility
 - Terrain
 - Visibility of Approaching Parties
 - Crime
 - Riots
 - Vandalism
 - Break-ins
 - Natural Disasters

- Fault Lines
- Tornadoes
- Hurricanes
- Flooding
- Surrounding Businesses
 - Too Many Visitors
 - Noise
 - Vibrations
 - Dangerous Materials
- Utilities
 - Fire Department
 - Medical
 - Police
- Faculty Design
- Considerations
 - Required Security Level
 - Forced Intrusions
 - Emergency Access
 - Resistance to Entry
 - Direction of Entries and Exits
 - Alarms
 - Conductivity
 - Safety
 - Fire Rating
 - Construction Materials
 - Load Rating
 - Access Control
 - Walls
 - Doors
 - Ceilings
 - Flooring
 - Utilities
 - HAVC
 - Power
 - Water
 - Sewage
 - Gas
- Secure Architecture
 - CPTED Crime Prevention Through Environmental Design

Physical Security Implementation

- Categories of Physical Controls
 - o Administrative
 - Facility Construction and Selection
 - Site Management
 - Personnel Controls
 - Awareness Training
 - Emergency Response and Procedures
 - Technical
 - Access Controls
 - Intrusion Detection
 - Alarms
 - CCTV
 - Monitoring
 - Heating
 - Ventilating
 - Air Conditioning
 - Physical
 - Fencing
 - Lighting
 - Locks
 - Construction Materials
 - Mantraps
 - Dogs
 - Guards
- Corporate v. Personal Property
 - Security controls should be placed where company assets are involved
 - Company is not responsible for safekeeping employee property
 - Company can be responsible for safekeeping key personnel and their property
- Functional Order of Controls
 - o Deterrence
 - Make attackers think attacking is a bad idea
 - Example: Fencing
 - o Denial
 - Prevent attackers from making an intrusion
 - o Example: Vault Doors
 - o Detection
 - o Detect when an attacker has made an intrusion

- Example: Motion Sensors
- o Delay
- Make extraction of asset more difficult
- Example: Cable Lock
- Equipment Failure
 - Considerations
 - Replacement part vendor
 - Transport and storage
 - Pre-purchasing
 - Installation and restoration skills
 - Scheduling maintenance and replacements
 - SLA Service Level Agreement
 - Required response time from vendor to deliver a service
 - Includes repair, internet, hosting, etc.
 - Must be established with vendor for critical assets
 - MTTF Mean Time to Failure
 - Time before a device fails
 - Expected lifetime of a device
 - Devices should be replaced before MTTF expires
 - MTTR Mean Time to Repair
 - Time it takes to repair a device
 - MTBF Mean Time Between Failures
 - Time between subsequent failures
 - Usually same with MTTF
- Wiring Closets
 - o AKA, Premises Wire Distribution Room
 - Connects floor/building cables to essential equipment
 - o Building management must be notified of wiring closet policies
 - Multiple wiring closets may exist for large buildings
 - To work around the maximum run length
 - Maximum run length is 100 meters
 - Run length is reduced in noisy environments
 - Houses wiring for other utilities as well:
 - Alarm systems
 - Circuit breakers
 - Telephone punch down blocks
 - Wireless access points
 - Security cameras
 - o Rules
 - Do not use as storage area

- Have adequate locks
- Keep area tidy
- Remove flammable items
- Video surveillance
- Door open sensor
- Regular physical inspections
- Include in environmental controls plan
- Server Rooms
 - Houses mission critical servers
 - Human Incompatibility
 - Fill room with halon substitutes
 - Low temperature
 - Little or no lighting
 - Equipment stacked with little room to maneuver
 - Location
 - At the center of the building
 - Away from sewage lines, water, and gas
 - o Walls
 - One hour minimum fire rating
- Media Storage Facilities
 - o Stores blank and reusable media
 - o Threats
 - Theft
 - Restrict Access to Media
 - Asset Tracking (RFID/NFC)
 - Malware Planting
 - Sanitize Returned Media
 - Restrict Access to Media
 - Data Remnant Recovery
 - Secure Data Wiping
 - Restrict Access to Media
 - Destruction
 - Fire
 - Flood
 - Electromagnetic Field
 - Temperature Monitoring
 - o Data Remnants
 - Remaining data on storage left over after deletion
 - Deletion only removes file record
 - Doesn't remove actual file data from disk

- Can be recovered using un-delete utilities
- Restricting Access to Media
 - Use a locked cabinet or safe
 - Check in and check out procedure
 - Have a custodian who manages access
- Evidence Storage
 - Stores evidence after breach
 - Requirements
 - Dedicated storage system/network
 - Keeping storage system offline
 - Block internet connectivity
 - Tracking all activities on system
 - Calculating hashes for all datasets within
 - Limiting access to security administrator
 - Encrypting all datasets stored within
- Work Area Security
 - o Controls
 - Separate work areas and visitor areas
 - Escort requirements for visitors
 - Require badges and RFID tags
 - More restrictive access to more sensitive areas
 - Sensitive areas should be in the center of facility protection
 - Universal access to essential facilities (e.g. restrooms)
 - Work area sensitivity classifications
 - Walls / Partitions
 - Prevents shoulder surfing or eavesdropping
 - Walls should cut off false ceilings
 - For separating areas with different sensitivity
- Data Center Security
 - Usually the same as server rooms
 - Same policies as server rooms
 - Might be a separate building or remote location
 - Might be leased
 - Technical Controls
 - Smartcards
 - Types
 - Magnetic Strip
 - Bar Code
 - Integrated Circuit Chip
 - Threats

- Social Engineering
- Theft
- Should come with 2-factor authentication (e.g. PIN)
 - Examples: Memory Cards
 - Machine readable ID cards with magnetic strip
- Proximity Readers
 - Passive
 - Alters reader EM field
 - No electronics
 - Just a small magnet
 - Field Powered
 - Uses reader EM field for power
 - Must be waved near reader
 - Transponder
 - Self-powered
 - Transmits signal received by reader
 - Occurs consistently or at press of button
- Intrusion Detection Systems
 - Detects attempted intrusions
 - Used to raise an alarm
 - Points of Failure
 - Power
 - Lack of power prevents the system from operating
 - Communication
 - Lack of communication prevents alarm from being raised
 - Controls
 - Heart Beat Sensor
 - Periodically tests connectivity between alarm and IDS
 - Alarm is raised if heartbeat signal fails
- Access Abuses
 - Examples
 - Opening Secured Doors
 - Bypassing Locks and Access
 - Masquerading
 - Using someone else's security ID
 - Piggybacking
 - Following someone through a secured gate
 - Controls

- Audit Trails
 - Can be manually or automatically generated

- Emanation Security
 - Sources
 - Wireless Networking Equipment
 - Mobile Phones
 - TEMPEST
 - Government research
 - For protecting equipment against EMP
 - Expanded to monitoring emanations
 - Controls
 - Faraday Cage
 - Box fully surrounded by a wire mesh
 - Prevents EM signals from entering an existing enclosure
 - White Noise
 - False traffic to hide presence of real emanations
 - Real signal from another source can be used
 - Used around the perimeter of an area
 - Control Zone
 - A zone protected by a Faraday cage or white noise
 - Can be a room, floor, or building
- Utilities and HVAC
 - Power Issues
 - Terms
 - Fault
 - Momentary loss of power
 - Blackout
 - Prolonged loss of power
 - Sag
 - Momentary low voltage
 - Brownout
 - Prolonged low voltage
 - Spike
 - Momentary high voltage
 - Surge
 - Prolonged high voltage
 - Inrush
 - Initial surge of power when connecting to source
 - Transient
 - Momentary power fluctuation
 - Noise
 - Prolonged power fluctuation
 - Clean

- Non fluctuating power
- Ground
 - The wire in a circuit that is grounded
- Controls
 - UPS Uninterruptable Power Supply
 - Sanitizes power
 - Provides power for a few minutes
 - Power Strips + Surge Protectors
 - Fuse blows when damaging power levels occurs
 - Power Generators
 - Provides power until main power comes back on
- Noise Issues
 - Generated by electric current
 - Affects quality of communications
 - EMI Electromagnetic Interference
 - Common Mode Noise
 - From difference in power between hot and ground wires
 - Traverse Mode Noise
 - From difference in power between hot and neutral wires
 - RFI Radio Frequency Interference
 - Generated by common electrical appliances
 - Microwaves, lights, heaters, computers
 - Controls
 - Shielding
 - Grounding
 - Power Conditioning
 - Limiting RFI and EMI exposure
- Temperature, Humidity, and Static
 - Temperature
 - 60F to 70F
 - 15C to 23C
 - Humidity
 - 40% to 60%
 - Too Much: Corrosion
 - Too Low: Static
- Water Issues
 - Threats
 - Leakage
 - Flooding
 - Electrocution
 - Controls

- Monitor plumbing for leaks
- Ensure water is away from electricity
- Ensure servers are away from water
- Ensure the facility is away from flooding areas
- Fire Prevention, Detection, and Suppression
 - Fire Triangle

- Heat
- Oxygen
- Fuel
- Chemical Reaction
- Stages of Fire
 - Incipient
 - Air ionization; No smoke
 - Smoke
 - Smoke is visible from point of ignition
 - Flame
 - Flame can be seen with naked eye
 - Heat
 - Heat buildup and fire spreads
- Suppression Mediums
 - Water
 - Suppresses heat
 - Soda Acid / Dry Powders
 - Suppresses fuel
 - CO2
 - Suppresses oxygen
 - Halon Substitutes / Nonflammable Gases
 - Suppresses reaction
- Controls
 - Training
 - Emergency Shutdown Procedures
 - Rendezvous Location
 - Safety Verification Mechanism
- Fire Extinguishers
 - A Wood/Paper Water, Soda Acid
 - B Oils/Liquids CO2/Halon/Soda Acid
 - Splashes when doused
 - C Electrical CO2/Halon
 - Electrocution
 - D Metal Dry Powder
 - Produces own oxygen

- Detection Systems
 - Types
 - Fixed Temperature
 - Metal/plastic which melts at a temperature
 - Rate-of-Rise
 - Monitors speed of temperature change
 - Flame-Actuated Systems
 - Monitors infrared energy
 - Smoke-Actuated Systems
 - Photoelectric / radioactive ionization
- Suppression
 - Water Suppression
 - For human friendly environments
 - Types
 - Wet Pipe / Closed Head
 - Pipe is always full of water
 - Dry Pipe
 - Water is filled with gas and is discharged
 - Deluge
 - Large pipes; large volumes of water
 - Preaction
 - Dry pipe until fire is detected
 - Has a secondary trigger which releases water
 - Allows fire to be dealt with before activating
 - Good for areas with electronics and humans
 - Gas Discharge Systems
 - For human incompatible environments
 - Degrades into toxic gas
 - Halon is now banned by the EPA
 - Types
 - Halon
 - FM-200 (HFC-227ea)
 - CEA-410 / CEA-308
 - NAF-S-III (HCFC Blend A)
 - FE-13 (HCFC-23)
 - Argon (IG55) or Aragonite (IG01)
 - Intergern (IG541)
 - Low Pressure Water Mists
- Damage
 - Smoke
 - Smoke from a fire can damage storage devices

- Heat
 - Heat from a fire can damage storage tapes and hardware
- Suppression
 - Suppression mechanism can damage equipment
 - Water and soda acid damages computers
 - Can cause short circuits and corrosion
- Fire Department
 - May damage equipment and walls using axes
 - May damage using chosen fire suppression

Physical Security Management

- Perimeter
 - Accessibility
 - Entrances
 - Single Entrance
 - For security
 - Multiple Entrances
 - For emergencies
 - Roads and Transportation
 - Constrained by perimeter security
 - o Controls
 - Fence
 - Defines a security perimeter
 - Deterrent levels

- Vs. Casual Trespassers
 - 3 to 4 feet
- Vs. Most Trespassers
 - 6 to 7 feet
- Vs. Determined Trespassers
 - 8 feet or more
 - With barbed wire
- Gate
 - Controlled entry and exit point
 - Must match deterrent level of fence
 - Must be hardened vs tampering/removal/destruction
 - Must not offer access when closed
 - Number must be kept to a minimum
 - Must be protected by guards or CCTV
- Turnstile

- Prevents tailgating
- Allows one person at a time
- Allows movement in 1 direction
- Used for entry rather than exit
- Mantrap
 - Double set of doors
 - Protected by a guard
 - Prevents piggybacking or tailgating (e.g. weight measurement)
 - Immobilizes a subject until authenticated
 - If unauthenticated, subject is locked until authorities respond
- Lighting
 - Discourages casual intruders
 - Not a strong deterrent
 - Should not show positions of detection controls
 - Should not cause glare to detection controls
 - Should illuminate critical areas w/ 2 candle feet of power
 - Should be placed apart as their illumination diameter
- Guards and Dogs
 - Advantages
 - Can adjust to changing environment
 - Can detect and respond to threats
 - Acts as a deterrent
 - Disadvantages
 - Cannot be posted in human incompatible locations
 - No guarantees of reliability
 - Can be subject to injury or sickness
 - Vulnerable to social engineering
 - Protection stops when life is endangered
 - Not aware of the scope of operations of facility
 - Expensive
- Internal Security
 - Controls
 - Visitor Control
 - Escorts
 - Monitoring
 - Locks
 - Key / Preset Locks
 - Vulnerable to picking / shimming
 - Key can be lost
 - Combination

- Combination can be forgotten
- Can include electronic controls
- Can include multiple valid combinations
- Badges
 - Identification cards
 - Can be visual/smartcard/both
 - Can be used to authenticate to facility
 - Authenticated by security guards or scanning devices
 - May require other authentication factors
- Motion Detectors
 - Detects movement or sound in an area
 - Types
 - Infrared
 - Detects changes in infrared lighting
 - Heat-based
 - Detects changes in heat levels
 - Wave-pattern
 - Transmits signal into area
 - Detects changes in reflected pattern
 - Capacitance
 - Detects changes in electrical field
 - Photoelectric
 - Detects changes in visible light patterns
 - Passive Audio
 - Detects abnormal sound in area
- Intrusion Alarms
 - Triggered by a sensor
 - By Mechanism
 - Deterrent Alarm
 - Engages additional locks or shuts down doors
 - Makes attack more difficult
 - Repellant Alarm
 - Triggers siren and lights
 - Meant to discourage attackers
 - Forces them off premises
 - Notification Alarm
 - Sends a notification to guards
 - Usually silent
 - Allows security to capture intruder
 - By Location
 - Local Alarm

- Audible alarm
- Can be heard for 400 feet
- Locally positioned guards must be able to respond
 - Must be protected from tampering
- Central Station Systems

.

- Notifies a central station
- Locally silent
- Usually well-known security companies
- Examples: Residential security systems
- Proprietary System
 - Central station system used by private companies
- Auxiliary Station
 - Alarm which notifies emergency services
 - E.g. police/fire/medical
 - Can be added to local alarms and central station systems
- Secondary Verification
 - Used to verify if alarm was valid
 - Examples
 - Multiple Sensor Systems
 - Must be triggered in quick succession
 - CCTV
 - Allows guards to manually verify area

- Safety
 - o Life
 - Protecting human life is the first priority of security
 - Includes providing them with means to survive during disasters
 - E.g. food, water, etc.
 - o Environment
 - Ensuring that environment remains safe during disaster
 - Deals with flooding, fires, toxic gas, etc.
 - Occupant Emergency Plans
 - Sustains personnel safety in the wake of a disaster
 - How to minimize threats to life and prevent injury
 - Does not address IT issues
- Privacy and Legal
 - o Privacy
 - Protecting personal information from disclosure
 - Personal information includes:
 - Name

- Address
- Phone
- Race
- Religion
- Age
- Regulatory Requirements
 - Depends on industry
 - Regulatory requirements must be considered a baseline for security