Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tree: 2a679c3101
Fetching contributors…

Cannot retrieve contributors at this time

executable file 3283 lines (2986 sloc) 118.366 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
require "GD"
require 'rdata'

class Rchart
SCALE_NORMAL = 1
SCALE_ADDALL = 2
SCALE_START0 = 3
SCALE_ADDALLSTART0 = 4
PIE_PERCENTAGE = 1
PIE_LABELS = 2
PIE_NOLABEL = 3
PIE_PERCENTAGE_LABEL = 4
TARGET_GRAPHAREA = 1
TARGET_BACKGROUND = 2
ALIGN_TOP_LEFT = 1
ALIGN_TOP_CENTER = 2
ALIGN_TOP_RIGHT = 3
ALIGN_LEFT = 4
ALIGN_CENTER = 5
ALIGN_RIGHT = 6
ALIGN_BOTTOM_LEFT = 7
ALIGN_BOTTOM_CENTER = 8
ALIGN_BOTTOM_RIGHT = 9
FONT_PATH = File.expand_path(File.join(File.dirname(__FILE__),"..","fonts"))
attr_accessor :antialias_quality,:picture
# This function create a new chart object.
# This object will be used during all the steps of the graph creation.
# This object will embed all the pChart functions.

def initialize(x_size,y_size,options={})
# Initialize variables
# q raise ArgumentError if (options[:x_size].nil? && options[:y_size].nil?)
# Error management
@error_reporting = false
@error_interface = "cli"
@errors = []
@error_font_name = "#{FONT_PATH}/pf_arma_five.ttf"
@error_font_size = 6
@x_size = x_size
@antialias_quality=0
@y_size = y_size
@error_reporting = false
@error_font_name = "#{FONT_PATH}/pf_arma_five.ttf"
@error_font_size = 6
@currency = "Rs."
@date_format = "%d/%m/%Y"
@line_width = 1
@line_dot_size = 0
@anti_alias_quality = 0
@shadow_active = false
@shadow_x_distance = 1
@shadow_y_distance = 1
@shadow_r_color = 60
@shadow_g_color = 60
@shadow_b_color = 60
@shadow_alpha = 50
@shadow_blur = 0
@tmp_dir = '/tmp'
@font_size =8
@font_name = "#{FONT_PATH}/tahoma.ttf"
@divisions= 0

@division_count = 0
@division_height = 0
@x_division_ratio =0
@x_division_count = 0
@x_division_height = 0
@x_division_ratio = 0
@palette = []
@layers = []
@g_area_x_offset =0
@division_width = 0
@vmin = nil
@vmax = nil
@v_x_min =nil
@v_x_max=nil

@x_divisions=0
@data_count=nil
@g_area_x1 = 0
@g_area_y1 = 0
@g_area_x2 = 0
@g_area_y2 = 0
@image_map = []
# /* Image Map settings */
@build_map=false
@map_function = nil
@tmp_folder = "tmp/"
@map_id = nil

@palette =[{"r"=>188,"g"=>224,"b"=>46},
{"r"=>224,"g"=>100,"b"=>46},
{"r"=>224,"g"=>214,"b"=>46},
{"r"=>46,"g"=>151,"b"=>224},
{"r"=>176,"g"=>46,"b"=>224},
{"r"=>224,"g"=>46,"b"=>117},
{"r"=>92,"g"=>224,"b"=>46},
{"r"=>224,"g"=>176,"b"=>46}]
@picture = GD::Image.newTrueColor(@x_size, @y_size)
@c_white = @picture.colorAllocate(255,255,255)
image_filled_rectangle(@picture, 0, 0, @x_size, @y_size, 255,255,255)
#image_color_transparent(@picture, 255,255,255)
self.set_font_properties("tahoma.ttf",8)
end
# Use this function to enable error reporting during the chart rendering.
# By default messages are redirected to the console while using the render command and using GD while using the stroke command.
# You can force the errors to be redirected to either cli or gd specifying it as parameter.
def report_warnings(interface="cli")
@error_reporting = true
@error_interface = interface
end

# Set font Properties font_name,font_size
# font_name is
# * GeosansLight.ttf,
# * MankSans.ttf,
# * pf_arma_five.ttf,
# * Silkscreen.ttf,
# * tahoma.ttf
def set_font_properties(font_name, font_size)
@font_size = font_size
@font_name = "#{FONT_PATH}/#{font_name}"
end


#Use this function to set shadow properties.
def set_shadow_properties(x_distance=1,y_distance=1,r=60,g=60,b=60,alpha=50,blur=0)
@shadow_active = true
@shadow_x_distance = x_distance
@shadow_y_distance = y_distance
@shadow_r_color = r
@shadow_g_color = g
@shadow_b_color = b
@shadow_alpha = alpha
@shadow_blur = blur
end

# Use this function to deactivate the shadow options.
# Drawing shadows is time and CPU intensive.
def clear_shadow
@shadow_active = false
end

def validate_color(b, g, r)
r = 0 if ( r < 0 )
r = 255 if ( r > 255 )
g = 0 if ( g < 0 )
g = 255 if ( g > 255 )
b = 0 if ( b < 0 )
b = 255 if ( b > 255 )
return b, g, r
end

# This function can be used to change the color of one series.
# series id are starting at 0 for associated data serie #1.
# You must provide an rgb color.
def set_color_palette(id,r,g,b)
b,g,r=validate_color(b, g, r)
@palette[id]["r"] = r
@palette[id]["g"] = g
@palette[id]["b"] = b
end

# Create a color palette shading from one color to another
# This function will fill the color palette with 10 shades between the two RGB colors 0,0,0 and 100,100,100.This will produce grey shades. (Palette id 0-9 will be filled)
def create_color_gradient_palette(r1,g1,b1,r2,g2,b2,shades)
r_factor = (r2-r1)/shades
g_factor = (g2-g1)/shades
b_factor = (b2-b1)/shades
i= 0
while(i<= shades-1)
@palette[i]["r"] = r1+r_factor*i
@palette[i]["g"] = g1+g_factor*i
@palette[i]["b"] = b1+b_factor*i
i = i+1
end
end

# This function will load the color scheme from a text file.
# This file must be formated with three values per line ( r,g,b ).
# By default the delimiter is a coma but you can specify it.
def load_color_palette_from_file(file_name)
color_id = 0
File.open(file_name,"r") do |infile|
while (line = infile.gets)
values = line.split(",")
if ( values.length == 3 )
@palette[color_id]["r"] = values[0].to_i
@palette[color_id]["g"] = values[1].to_i
@palette[color_id]["b"] = values[2].to_i
color_id+=1
end
end
end
end

# Load palette from array [[r,g,b],[r1,g1,b1]]
def load_color_palette(color_palette)
color_id = 0
color_palette.each do |palette|
if palette.length == 3
@palette[color_id]["r"] = palette[0].to_i
@palette[color_id]["g"] = palette[1].to_i
@palette[color_id]["b"] = palette[2].to_i
color_id+=1
end
end
end

# This function allow you to customise the way lines are drawn in charts.
# This function only applies during chart drawing calls ( line charts,.. ).
# You can specify the width of the lines & if they are dotted.
def set_line_style(width=1,dot_size=0)
@line_width = width
@line_dot_size = dot_size
end

# Set currency symbol
def set_currency(currency)
@currency = currency
end

# A call to this function is mandatory when creating a graph.
# The upper left and bottom right border positions are used as arguments.
# This area will be used to draw graphs, grid, axis & more.
# Calling this function will not draw anything this will only set the graph area boundaries.
def set_graph_area(x1,y1,x2,y2)
@g_area_x1 = x1
@g_area_y1 = y1
@g_area_x2 = x2
@g_area_y2 = y2
end

# Prepare the graph area
def draw_graph_area(r,g,b,stripe=false)
self.draw_filled_rectangle(@g_area_x1,@g_area_y1,@g_area_x2,@g_area_y2,r,g,b,false)
self.draw_rectangle(@g_area_x1,@g_area_y1,@g_area_x2,@g_area_y2,r-40,g-40,b-40)
i=0
if stripe
r2 = r-15
r2 = 0 if r2<0
g2 = r-15
g2 = 0 if g2 < 0
b2 = r-15
b2 = 0 if b2 < 0
line_color = allocate_color(@picture,r2,g2,b2)
skew_width = @g_area_y2-@g_area_y1-1

i = @g_area_x1-skew_width

while i.to_f<=@g_area_x2.to_f
x1 = i
y1 = @g_area_y2
x2 = i+skew_width
y2 = @g_area_y1
if ( x1 < @g_area_x1 )
x1 = @g_area_x1
y1 = @g_area_y1 + x2 - @g_area_x1 + 1
end
if ( x2 >= @g_area_x2 )
y2 = @g_area_y1 + x2 - @g_area_x2 +1
x2 = @g_area_x2 - 1
end
image_line(@picture,x1,y1,x2,y2+1,r2,g2,b2)
i = i+4
end

end
end

# Allow you to clear the scale : used if drawing multiple charts
# You'll need to call this function only if you're planning to draw a second chart in the rendered picture.
# Calling this function will clear the current scaling parameters thus you'll need to call again the draw_scale function before drawing any new chart.
def clear_scale
@vmin = nil
@vmax = nil
@v_x_min = nil
@v_x_max = nil
@divisions = 0
@x_divisions = 0
end

# Allow you to fix the scale, use this to bypass the automatic scaling
# You can use this function to skip the automatic scaling.
# vmin and vmax will be used to render the graph.
def set_fixed_scale(v_min,v_max,divisions=5,v_x_min=0,v_x_max=0,x_divisions=5)
@vmin = v_min.to_f
@vmax = v_max.to_f
@divisions = divisions.to_f

if (!v_x_min == 0 )
@v_x_min = v_x_min.to_f
@v_x_max = v_x_max.to_f
@x_divisions = x_divisions.to_f
end
end

# Wrapper to the draw_scale function allowing a second scale to be drawn
# It takes the same parameters of the draw_scale function.
# The scale values will be written on the right side of the graph area.
def draw_right_scale(data,data_description,scale_mode,r,g,b,draw_ticks=true,angle=0,decimals=1,with_margin=false,skip_labels=1)
self. draw_scale(data, data_description, scale_mode, r, g, b,draw_ticks,angle,decimals,with_margin,skip_labels,true)
end

# This function will draw both axis and write values on it. You can disable the labelling of the axis setting draw_ticks to false. angle can be used to rotate the vertical ticks labels.
# decimal specify the number of decimal values we want to keep. Setting draw_ticks to false will not draw vertical & horizontal ticks on the axis ( labels will also not be written ).
# There is four way of computing scales :
# * Getting Max & Min values per serie : scale_mode = Rchart::SCALE_NORMAL
# * Like the previous one but setting the min value to 0 : scale_mode = Rchart::SCALE_START0
# * Getting the series cumulative Max & Min values : scale_mode = Rchart::SCALE_ADDALL
# * Like the previous one but setting the min value to 0 : scale_mode = Rchart::SCALE_ADDALLSTART0
# This will depends on the kind of graph you are drawing, Drawing graphs were you want to fix the min value to 0 you must use the Rchart::SCALE_START0 option.
# You can display only one x label every xi labels using the skip_labels parameter.
# Keeping with_margin to false will make the chart use all the width of the graph area. For most graphs the rendering will be better. In some circumstances you'll have to set it to true ( introducing left & right margin ) : bar charts will require it.
def draw_scale(data,data_description,scale_mode,r,g,b,draw_ticks=true,angle=0,decimals=1,with_margin=false,skip_labels=1,right_scale=false)
# Validate the Data and DataDescription array
data = self.validate_data("draw_scale",data)
c_text_color = allocate_color(@picture,r,g,b)
self.draw_line(@g_area_x1,@g_area_y1,@g_area_x1,@g_area_y2,r,g,b)
self.draw_line(@g_area_x1,@g_area_y2,@g_area_x2,@g_area_y2,r,g,b)
scale =0
divisions =0
if(@vmin.nil? && @vmax.nil?)
if (!data_description["values"][0].nil?)
#My hack TODO for LINE GRAPH
if data_description["values"].is_a?(Array)
@vmin =data[0][data_description["values"][0]]
@vmax =data[0][data_description["values"][0]]
else
@vmin =data[0][data_description["values"][0]]
@vmax =data[0][data_description["values"]]
end

else
@vmin = 2147483647
@vmax = -2147483647
end
# /* Compute Min and Max values */
if(scale_mode == SCALE_NORMAL || scale_mode == SCALE_START0)
@vmin = 0 if (scale_mode == SCALE_START0 )

data.each do |key|
data_description["values"].each do |col_name|
if(!key[col_name].nil?)
value = key[col_name]
if (value.is_a?(Numeric))
@vmax = value if ( @vmax < value)
@vmin = value if ( @vmin > value)
end
end
end
end
elsif ( scale_mode == SCALE_ADDALL || scale_mode == SCALE_ADDALLSTART0 ) # Experimental
@vmin = 0 if (scale_mode == SCALE_ADDALLSTART0)
data.each do |key|
sum = 0
data_description["values"].each do|col_name|
if (!key[col_name].nil?)
value =key[col_name]
sum += value if ((value).is_a?(Numeric))
end
end
@vmax = sum if (@vmax < sum)
@vmin = sum if (@vmin > sum)
end

end

if(@vmax.is_a?(String))
@vmax = @vmax.gsub(/\.[0-9]+/,'')+1 if (@vmax > @vmax.gsub(/\.[0-9]+/,'') )
end
# If all values are the same */
if ( @vmax == @vmin )
if ( @vmax >= 0 )
@vmax = @vmax+1
else
@vmin = @vmin-1
end
end

data_range = @vmax - @vmin
data_range = 0.1 if (data_range == 0 )

#Compute automatic scaling */
scale_ok = false
factor = 1
min_div_height = 25
max_divs = (@g_area_y2 - @g_area_y1)*1.0 / min_div_height

if (@vmin == 0 && @vmax == 0 )
@vmin = 0
@vmax = 2
scale = 1
divisions = 2
elsif (max_divs > 1)
while(!scale_ok)
scale1 = ( @vmax - @vmin )*1.0 / factor
scale2 = ( @vmax - @vmin )*1.0 /factor / 2
scale4 = ( @vmax - @vmin )*1.0 / factor / 4
if ( scale1 > 1 && scale1 <= max_divs && !scale_ok)
scale_ok = true
divisions = (scale1).floor
scale = 1
end
if (scale2 > 1 && scale2 <= max_divs && !scale_ok)
scale_ok = true
divisions = (scale2).floor
scale = 2
end
if (!scale_ok)
factor = factor * 10 if ( scale2 > 1 )
factor = factor / 10 if ( scale2 < 1 )
end
end # while end
if ((((@vmax*1.0 / scale) / factor)).floor != ((@vmax*1.0 / scale) / factor))
grid_id = ( @vmax*1.0 / scale / factor).floor + 1
@vmax = grid_id * scale * factor
divisions = divisions+1
end

if (((@vmin*1.0 / scale) / factor).floor != ((@vmin*1.0 / scale) / factor))

grid_id = ( @vmin*1.0 / scale / factor).floor
@vmin = grid_id * scale * factor*1.0
divisions = divisions+1
end

else #/* Can occurs for small graphs */
scale = 1
end
divisions = 2 if ( divisions.nil? )

divisions = divisions-1 if (scale == 1 && divisions%2 == 1)

else
divisions = @divisions
end

@division_count = divisions
data_range = @vmax - @vmin
data_range = 0.1 if (data_range == 0 )
@division_height = ( @g_area_y2 - @g_area_y1 )*1.0 / divisions
@division_ratio = ( @g_area_y2 - @g_area_y1 )*1.0 /data_range
@g_area_x_offset = 0
if ( data.count > 1 )
if ( with_margin == false)
@division_width = ( @g_area_x2 - @g_area_x1 )*1.0 / ((data).count-1)
else
@division_width = ( @g_area_x2 - @g_area_x1 ) *1.0/ (data).count
@g_area_x_offset = @division_width*1.0 / 2
end
else
@division_width = (@g_area_x2 - @g_area_x1)*1.0
@g_area_x_offset = @division_width*1.0 / 2
end

@data_count = (data).count
return(0) if (draw_ticks == false )
ypos = @g_area_y2
xmin = nil
i =1

while(i<= divisions+1)
if (right_scale )
self.draw_line(@g_area_x2,ypos,@g_area_x2+5,ypos,r,g,b)
else
self.draw_line(@g_area_x1,ypos,@g_area_x1-5,ypos,r,g,b)
end
value = @vmin*1.0 + (i-1) * (( @vmax - @vmin ) / divisions)
value = (round_of(value * (10**decimals),2)) / (10**decimals)
value= value.round if value.floor == value.ceil
value = "#{value} #{data_description['unit']['y']}" if ( data_description["format"]["y"]== "number")
value = self.to_time(value) if ( data_description["format"]["y"] == "time" )
value = self.to_date(value) if ( data_description["format"]["y"] == "date" )
value = self.to_metric(value) if ( data_description["format"]["Y"] == "metric" )
value = self.to_currency(value) if ( data_description["format"]["Y"] == "currency" )
position = image_ftb_box(@font_size,0,@font_name,value)
text_width =position[2]-position[0]
if ( right_scale )
image_ttf_text(@picture,@font_size,0,@g_area_x2+10,ypos+(@font_size/2),c_text_color,@font_name,value)
xmin = @g_area_x2+15+text_width if (xmin.nil? || xmin < @g_area_x2+15+text_width )
else
image_ttf_text(@picture,@font_size,0,@g_area_x1-10-text_width,ypos+(@font_size/2),c_text_color,@font_name,value)
xmin = @g_area_x1-10-text_width if ( xmin.nil? || xmin > @g_area_x1-10-text_width)
end
ypos = ypos - @division_height
i = i+1
end
# Write the Y Axis caption if set */

if (!data_description["axis"].nil? && !data_description["axis"]["y"].nil? )
position = image_ftb_box(@font_size,90,@font_name,data_description["axis"]["y"])
text_height = (position[1]).abs+(position[3]).abs
text_top = ((@g_area_y2 - @g_area_y1) / 2) + @g_area_y1 + (text_height/2)

if (right_scale )
image_ttf_text(@picture,@font_size,90,xmin+@font_size,text_top,c_text_color,@font_name,data_description["axis"]["y"])
else
image_ttf_text(@picture,@font_size,90,xmin-@font_size,text_top,c_text_color,@font_name,data_description["axis"]["y"])
end
end
# Horizontal Axis */
xpos = @g_area_x1 + @g_area_x_offset
id = 1
ymax = nil
data.each do |key|
if ( id % skip_labels == 0 )
self.draw_line((xpos).floor,@g_area_y2,(xpos).floor,@g_area_y2+5,r,g,b)
value =key[data_description["position"]]
value = "#{value} #{data_description['unit']['x']}" if ( data_description["format"]["x"] == "number" )
value = self.to_time(value) if ( data_description["format"]["x"] == "time" )
value = self.to_date(value) if ( data_description["format"]["x"] == "date" )
value = self.to_metric(value) if ( data_description["format"]["x"] == "metric" )
value = self.to_currency(value) if ( data_description["format"]["x"] == "currency" )
position = image_ftb_box(@font_size,angle,@font_name,value.to_s)
text_width = (position[2]).abs+(position[0]).abs
text_height = (position[1]).abs+(position[3]).abs
if ( angle == 0 )
ypos = @g_area_y2+18
image_ttf_text(@picture,@font_size,angle,(xpos).floor-(text_width/2).floor,ypos,c_text_color,@font_name,value.to_s)
else
ypos = @g_area_y2+10+text_height
if ( angle <= 90 )
image_ttf_text(@picture,@font_size,angle,(xpos).floor-text_width+5,ypos,c_text_color,@font_name,value.to_s)
else
image_ttf_text(@picture,@font_size,angle,(xpos).floor+text_width+5,ypos,c_text_color,@font_name,value.to_s)
end
end
ymax = ypos if (ymax.nil? ||(!ymax.nil? && ymax < ypos))
end
xpos = xpos + @division_width
id = id+1
end #loop ended
#Write the X Axis caption if set */

if ((!data_description["axis"].nil? && !data_description["axis"]["x"].nil?) )
position = image_ftb_box(@font_size,90,@font_name,data_description["axis"]["x"])
text_width = (position[2]).abs+(position[0]).abs
text_left = ((@g_area_x2 - @g_area_x1) / 2) + @g_area_x1 + (text_width/2)
image_ttf_text(@picture,@font_size,0,text_left,ymax+@font_size+5,c_text_color,@font_name,data_description["axis"]["x"].to_s)
end

end

# This function is used by scatter charts.
# It will compute everything needed to draw the associated line and plot charts.
# You must specify the name of the two series that will be used as X and Y data. By default this function will compute the min & max values of both series, anyway you can override the automatic scaling by calling first the setFixedScale function.
def draw_xy_scale(data,data_description,y_serie_name,x_serie_name,r,g,b,with_margin=0,angle=0,decimals=1)

self.validate_data("draw_xy_scale",data)
c_text_color = allocate_color(@picture,r,g,b)
self.draw_line(@g_area_x1,@g_area_y1,@g_area_x1,@g_area_y2,r,g,b)
self.draw_line(@g_area_x1,@g_area_y2,@g_area_x2,@g_area_y2,r,g,b)

# Process Y scale */
if(@vmin.nil? && @vmax.nil?)
@vmin = data[0][y_serie_name]
@vmax = data[0][y_serie_name]
data.each do |key|
if !key[y_serie_name].nil?
value = key[y_serie_name]
if (value.is_a?(Numeric))
@vmax = value if ( @vmax < value)
@vmin = value if ( @vmin > value)
end
end
end

if(@vmax.is_a?(String))
@vmax = @vmax.gsub(/\.[0-9]+/,'')+1 if (@vmax > @vmax.gsub(/\.[0-9]+/,'') )
end
data_range = @vmax - @vmin
data_range = 0.1 if (data_range == 0 )

#Compute automatic scaling
scale_ok = false
factor = 1
min_div_height = 25
max_divs = (@g_area_y2 - @g_area_y1)*1.0 / min_div_height
if (@vmin == 0 && @vmax == 0 )
@vmin = 0
@vmax = 2
scale = 1
divisions = 2
elsif (max_divs > 1)
while(!scale_ok)
scale1 = ( @vmax - @vmin )*1.0 / factor
scale2 = ( @vmax - @vmin )*1.0 /factor / 2
# scale4 = ( @vmax - @vmin )*1.0 / factor / 4

if ( scale1 > 1 && scale1 <= max_divs && !scale_ok)
scale_ok = true
divisions = (scale1).floor
scale = 1
end
if ( scale2 > 1 && scale2 <= max_divs && !scale_ok)
scale_ok = true
divisions = (scale2).floor
scale = 2
end
if (!scale_ok)
factor = factor * 10 if ( scale2 > 1 )
factor = factor / 10 if ( scale2 < 1 )
end
end
if ((((@vmax*1.0 / scale) / factor)).floor != ((@vmax*1.0 / scale) / factor))
grid_id = ( @vmax*1.0 / scale / factor).floor + 1
@vmax = grid_id * scale * factor
divisions = divisions+1
end

if (((@vmin*1.0 / scale) / factor).floor != ((@vmin*1.0 / scale) / factor))

grid_id = ( @vmin*1.0 / scale / factor).floor
@vmin = grid_id * scale * factor*1.0
divisions = divisions+1
end

else #/* Can occurs for small graphs */
scale = 1
end
divisions = 2 if ( divisions.nil? )

if ( is_real_int((@vmax-@vmin)/(divisions-1)))
divisions-=1
elsif ( is_real_int((@vmax-@vmin)/(divisions+1)))
divisions+=1
end
else
divisions =@divisions
end
@division_count = divisions

data_range = @vmax - @vmin
data_range = 0.1 if (data_range == 0 )
@division_height = ( @g_area_y2 - @g_area_y1 )*1.0 / divisions
@division_ratio = ( @g_area_y2 - @g_area_y1 )*1.0 /data_range
ypos = @g_area_y2
xmin = nil
i =1

while(i<= divisions+1)
self.draw_line(@g_area_x1,ypos,@g_area_x1-5,ypos,r,g,b)
value = @vmin*1.0 + (i-1) * (( @vmax - @vmin ) / divisions)
value = (round_of(value * (10**decimals),2)) / (10**decimals)
value= value.round if value.floor == value.ceil
value = "#{value} #{data_description['unit']['y']}" if ( data_description["format"]["y"]== "number")
value = self.to_time(value) if ( data_description["format"]["y"] == "time" )
value = self.to_date(value) if ( data_description["format"]["y"] == "date" )
value = self.to_metric(value) if ( data_description["format"]["Y"] == "metric" )
value = self.to_currency(value) if ( data_description["format"]["Y"] == "currency" )

position = image_ftb_box(@font_size,0,@font_name,value)
text_width =position[2]-position[0]
image_ttf_text(@picture,@font_size,0,@g_area_x1-10-text_width,ypos+(@font_size/2),c_text_color,@font_name,value)
xmin = @g_area_x1-10-text_width if ( xmin.nil? || xmin > @g_area_x1-10-text_width)
ypos = ypos - @division_height
i = i+1

end

# Process X scale */
if(@v_x_min.nil? && @v_x_max.nil?)

@v_x_min =data[0][x_serie_name]
@v_x_max =data[0][x_serie_name]
data.each do |key|

if !key[x_serie_name].nil?
value = key[x_serie_name]
if (value.is_a?(Numeric))

@v_x_max = value if ( @v_x_max < value)
@v_x_min = value if ( @v_x_min > value)
end
end
end

if (@v_x_max.is_a?(String))
@v_x_max = @v_x_max.gsub(/\.[0-9]+/,'')+1 if (@v_x_max > @v_x_max.gsub(/\.[0-9]+/,'') )
end

data_range = @vmax - @vmin
data_range = 0.1 if (data_range.to_f == 0.0)

# Compute automatic scaling
scale_ok = false
factor = 1
min_div_width = 25
max_divs = (@g_area_x2 - @g_area_x1) / min_div_width

if ( @v_x_min == 0 && @v_x_max == 0 )
@v_x_min = 0
@v_x_max = 2
scale = 1
x_divisions = 2
elsif (max_divs > 1)

while(!scale_ok)
scale1 = ( @v_x_max - @v_x_min ) / factor
scale2 = ( @v_x_max - @v_x_min ) / factor / 2
scale4 = ( @v_x_max - @v_x_min ) / factor / 4
if ( scale1 > 1 && scale1 <= max_divs && !scale_ok)
scale_ok = true
x_divisions = (scale1).floor
scale = 1
end

if ( scale2 > 1 && scale2 <= max_divs && !scale_ok)
scale_ok = true
x_divisions = (scale2).floor

scale = 2
end
if (!scale_ok)
factor = factor * 10 if ( scale2 > 1 )
factor = factor / 10 if ( scale2 < 1 )
end
end

if ( (@v_x_max*1.0 / scale / factor).floor != @v_x_max / scale / factor)
grid_id = ( @v_x_max*1.0 / scale / factor).floor + 1
@v_x_max = grid_id * scale * factor
x_divisions+=1
end

if ( (@v_x_min*1.0 / scale / factor).floor != @v_x_min / scale / factor)
grid_id = ( @v_x_min / scale / factor).floor
@v_x_min = grid_id * scale * factor
x_divisions+=1
end
else #/* Can occurs for small graphs */
scale = 1;
end
x_divisions = 2 if ( x_divisions.nil? )

if ( is_real_int((@v_x_max-@v_x_min)/(x_divisions-1)))
x_divisions-=1
elsif ( is_real_int((@v_x_max-@v_x_min)/(x_divisions+1)))
x_divisions+=1
end
else

x_divisions = @x_divisions
end

@x_division_count = divisions
@data_count = divisions + 2

x_data_range = @v_x_max - @v_x_min
x_data_range = 0.1 if ( x_data_range == 0 )

@division_width = ( @g_area_x2 - @g_area_x1 ) / x_divisions
@x_division_ratio = ( @g_area_x2 - @g_area_x1 ) / x_data_range
xpos = @g_area_x1
ymax =nil
i=1

while(i<= x_divisions+1)
self.draw_line(xpos,@g_area_y2,xpos,@g_area_y2+5,r,g,b)
value = @v_x_min + (i-1) * (( @v_x_max - @v_x_min ) / x_divisions)
value = (round_of(value * (10**decimals),2)) / (10**decimals)
value= value.round if value.floor == value.ceil
value = "#{value}#{data_description['unit']['y']}" if ( data_description["format"]["y"]== "number")
value = self.to_time(value) if ( data_description["format"]["y"] == "time" )
value = self.to_date(value) if ( data_description["format"]["y"] == "date" )
value = self.to_metric(value) if ( data_description["format"]["Y"] == "metric" )
value = self.to_currency(value) if ( data_description["format"]["Y"] == "currency" )
position = image_ftb_box(@font_size,angle,@font_name,value)
text_width =position[2].abs+position[0].abs
text_height = position[1].abs+position[3].abs

if ( angle == 0 )
ypos = @g_area_y2+18
image_ttf_text(@picture,@font_size,angle,(xpos).floor-(text_width/2).floor,ypos,c_text_color,@font_name,value)
else

ypos = @g_area_y2+10+text_height
if ( angle <= 90 )
image_ttf_text(@picture,@font_size,angle,(xpos).floor-text_width+5,ypos,c_text_color,@font_name,value)
else
image_ttf_text(@picture,@font_size,angle,(xpos).floor+text_width+5,ypos,c_text_color,@font_name,value)
end

end

ymax = ypos if (ymax.nil? || ymax < ypos)
i=i+1
xpos = xpos + @division_width
end
# Write the Y Axis caption if set
if ((!data_description["axis"].nil? && !data_description["axis"]["y"].nil?) )
position = image_ftb_box(@font_size,90,@font_name,data_description["axis"]["y"])
# text_height = (position[1]).abs+(position[3]).abs
text_top = ((@g_area_y2 - @g_area_y1) / 2) + @g_area_y1 + (text_width/2)
image_ttf_text(@picture,@font_size,90,xmin-@font_size,text_top,c_text_color,@font_name,data_description["axis"]["y"].to_s)
end
if ((!data_description["axis"].nil? && !data_description["axis"]["x"].nil?) )
position = image_ftb_box(@font_size,90,@font_name,data_description["axis"]["x"])
text_width = (position[2]).abs+(position[0]).abs
text_left = ((@g_area_x2 - @g_area_x1) / 2) + @g_area_x1 + (text_width/2)
image_ttf_text(@picture,@font_size,0,text_left,ymax+@font_size+5,c_text_color,@font_name,data_description["axis"]["x"].to_s)
end

end

# This function will draw a grid over the graph area.
# line_width will be passed to the draw_dotted_line function.
# The r,g,b 3 parameters are used to set the grid color.
# Setting mosaic to true will draw grey area between two lines.
# You can define the transparency factor of the mosaic area playing with the alpha parameter.

def draw_grid(line_width,mosaic=true,r=220,g=220,b=220,alpha=100)
# Draw mosaic */
if (mosaic)
layer_width = @g_area_x2-@g_area_x1
layer_height = @g_area_y2-@g_area_y1

@layers[0] = image_create_true_color(layer_width,layer_height)
#c_white = allocate_color(@layers[0],255,255,255);
image_filled_rectangle(@layers[0],0,0,layer_width,layer_height,255,255,255)
image_color_transparent(@layers[0],255,255,255)

#c_rectangle =allocate_color(@layers[0],250,250,250);

y_pos = layer_height #@g_area_y2-1
last_y = y_pos
i =0
while(i<=@division_count)
last_y= y_pos
y_pos = y_pos - @division_height
y_pos = 1 if ( y_pos <= 0 )
image_filled_rectangle(@layers[0],1, y_pos,layer_width-1,last_y,250,250,250) if ( i % 2 == 0 )
i = i+1
end
image_copy_merge(@layers[0],@picture,@g_area_x1,@g_area_y1,0,0,layer_width,layer_height,alpha);
@layers[0].destroy
end

#Horizontal lines
y_pos = @g_area_y2 - @division_height
i=1
while(i<=@division_count)
self.draw_dotted_line(@g_area_x1,y_pos,@g_area_x2,y_pos,line_width,r,g,b) if ( y_pos > @g_area_y1 && y_pos < @g_area_y2 )
y_pos = y_pos - @division_height
i = i+1
end
# Vertical lines
if (@g_area_x_offset == 0 )
x_pos = @g_area_x1 + (@division_width) +@g_area_x_offset
col_count = (@data_count.to_f-2).floor
else

x_pos = @g_area_x1 +@g_area_x_offset
col_count = ( (@g_area_x2 - @g_area_x1) / @division_width )
end
i= 1

while (i<=col_count)
if ( x_pos > @g_area_x1 && x_pos < @g_area_x2 )
self.draw_dotted_line((x_pos).floor,@g_area_y1,(x_pos).floor,@g_area_y2,line_width,r,g,b)
end
x_pos = x_pos + @division_width
i= i+1
end
end


# This function evaluate the width and height of the box generated by the draw_legend.
# This will help you to calculate dynamicaly the position where you want to print it (eg top-right).
# You must provide the data_description array as only parameter.
# This function will return and array containing in the first row the width of the box and in the second row the height of the box.

def get_legend_box_size(data_description)
return(-1) if data_description["description"].nil?
# <-10->[8]<-4->Text<-10->
max_width = 0
max_height = 8
data_description["description"].each do |key,value|
position = image_ftb_box(@font_size,0,@font_name,value)
text_width = position[2]-position[0]
text_height = position[1]-position[7]
max_width = text_width if (text_width > max_width)
max_height = max_height + text_height + 4
end
max_height = max_height - 3
max_width = max_width + 32

[max_width,max_height]
end
# This function will draw the legend of the graph ( serie color & serie name ) at the specified position.
# The r,g,bparameters are used to set the background color. You can optionally provide the shadow color using the rs,gs,bs parameters.
# You can also customize the text color using the rt,gt,bt.
# Setting Border to false remove the surrounding box.

def draw_legend(x_pos,y_pos,data_description,r,g,b,rs=-1,gs=-1,bs=-1,rt=0,gt=0,bt=0,border=true)
#Validate the Data and data_description array
data_description = self.validate_data_description("draw_legend",data_description)
return(-1) if (data_description["description"].nil?)
c_text_color = allocate_color(@picture, rt, gt, bt)
# <-10->[8]<-4->Text<-10->
max_width = 0
max_height = 8
data_description["description"].each do |key,value|
position = image_ftb_box(@font_size,0,@font_name,value)
text_width = position[2]-position[6].abs
text_height = position[1]-position[7]
max_width = text_width if ( text_width > max_width)
max_height = max_height + text_height + 4
end
max_height = max_height - 5
max_width = max_width + 32
if ( rs == -1 || gs == -1 || bs == -1 )
rs = r-30
gs = g-30
bs = b-30
    end

if ( border )

self.draw_filled_rounded_rectangle(x_pos+1,y_pos+1,x_pos+max_width+1,y_pos+max_height+1,5,rs,gs,bs)
self.draw_filled_rounded_rectangle(x_pos,y_pos,x_pos+max_width,y_pos+max_height,5,r,g,b)
end
y_offset = 4 + @font_size
id = 0

data_description["description"].each do |key,value|
self.draw_filled_rounded_rectangle(x_pos+10,y_pos+y_offset-4 , x_pos+14, y_pos+y_offset-4, 2, @palette[id]["r"], @palette[id]["g"], @palette[id]["b"])
image_ttf_text(@picture, @font_size,0, x_pos+22, y_pos+y_offset, c_text_color, @font_name, value)
position = image_ftb_box(@font_size,0,@font_name,value);
text_height = position[1]-position[7]
y_offset = y_offset + text_height + 4
id=id+1
end
end

# This function will draw the legend of a pie graph ( serie color & value name ).
# Be carrefull, dataset used for pie chart are not the same than for other line / curve / plot graphs.
# You can specify the position of the legend box and the background color.
def draw_pie_legend(x_pos,y_pos,data,data_description,r,g,b)
data_description = self.validate_data_description("draw_pie_legend",data_description,false)
self.validate_data("draw_pie_legend",data)
return(-1) if (data_description["position"].nil?)
c_text_color = allocate_color(@picture,0,0,0)

# <-10->[8]<-4->Text<-10-> */
max_width = 0
max_height = 8
data.each do |key|
value = key[data_description["position"]]
position = image_ftb_box(@font_size,0,@font_name,value)
text_width = position[2]-position[0]
text_height = position[1]-position[7]
max_width = text_width if ( text_width > max_width)
max_height = max_height + text_height + 4
end
max_height = max_height - 3
max_width = max_width + 32
self.draw_filled_rounded_rectangle(x_pos+1,y_pos+1,x_pos+max_width+1,y_pos+max_height+1,5,r-30,g-30,b-30)
self.draw_filled_rounded_rectangle(x_pos,y_pos,x_pos+max_width,y_pos+max_height,5,r,g,b)
y_offset = 4 + @font_size
id = 0
data.each do |key|
value = key[data_description["position"]]
position = image_ftb_box(@font_size,0,@font_name,value);
text_height = position[1]-position[7]
self.draw_filled_rectangle(x_pos+10,y_pos+y_offset-6,x_pos+14,y_pos+y_offset-2,@palette[id]["r"],@palette[id]["g"],@palette[id]["b"]);
image_ttf_text(@picture,@font_size,0,x_pos+22,y_pos+y_offset,c_text_color,@font_name,value)
y_offset = y_offset + text_height + 4
id= id+1
end
end

# This function is used to write the graph title.
# Used with default parameters you must specify the bottom left position of the text.
# if you are specifying x2 and y2 the text will be centered horizontaly and verticaly in the box of coordinates (x1,y1)-(x2,y2).
# value correspond to the text that will be written on the graph.
# r, g and b are used to set the text color.
# Setting shadow to true will makes a shadow behind the text.
def draw_title(x_pos,y_pos,value,r,g,b,x_pos2=-1,y_pos2=-1,shadow=false)
c_text_color = allocate_color(@picture, r, g, b)
if ( x_pos2 != -1 )
position = image_ftb_box(@font_size,0,@font_name,value)
text_width = position[2]-position[0]
x_pos =(( x_pos2 - x_pos -text_width ) / 2 ).floor + x_pos
end
if ( y_pos2 != -1 )
position = image_ftb_box(@font_size,0,@font_name,value)
text_height = position[5]-position[3]
y_pos =(( y_pos2 - y_pos - text_height ) / 2 ).floor + y_pos
end
if ( shadow )
c_shadow_color = allocate_color(@picture,@shadow_r_color,@shadow_g_color,@shadow_b_color)
image_ttf_text(@picture,@font_size,0,x_pos+@shadow_x_distance,y_pos+@shadow_y_distance, c_shadow_color ,@font_name,value)
end
image_ttf_text(@picture,@font_size,0,x_pos,y_pos,c_text_color,@font_name,value);
end

# Use this function to write text over the picture.
# You must specify the coordinate of the box where the text will be written using the (x1,y1)-(x2,y2) parameters, the text angle and the text color with the r,g,b parameters.
# You can choose how the text will be aligned with the align parameter :
# * Rchart:: ALIGN_TOP_LEFT Use the box top left corner.
# * Rchart:: ALIGN_TOP_CENTER Use the box top center corner.
# * Rchart:: ALIGN_TOP_RIGHT Use the box top right corner.
# * Rchart:: ALIGN_LEFT Use the center left.
# * Rchart:: ALIGN_CENTER Use the center.
# * Rchart:: ALIGN_RIGHT Use the center right.
# * Rchart:: ALIGN_BOTTOM_LEFT Use the box bottom left corner.
# * Rchart:: ALIGN_BOTTOM_CENTER Use the box bottom center corner.
# * Rchart:: ALIGN_BOTTOM_RIGHT Use the box bottom right corner.

def draw_text_box(x1,y1,x2,y2,text,angle=0,r=255,g=255,b=255,align=ALIGN_LEFT,shadow=true,bgr=-1,bgg=-1,bgb=-1,alpha=100)
position = image_ftb_box(@font_size,angle,@font_name,text)
text_width = position[2]-position[0]
text_height = position[5]-position[3]
area_width = x2 - x1
area_height = y2 - y1
x =nil
y = nil

if ( bgr != -1 && bgg != -1 && bgb != -1 )
self.draw_filled_rectangle(x1,y1,x2,y2,bgr,bgg,bgb,false,alpha)
end

if ( align == ALIGN_TOP_LEFT )
x = x1+1
y = y1+@font_size+1
end

if ( align == ALIGN_TOP_CENTER )
x = x1+(area_width/2)-(text_width/2)
y = y1+@font_size+1
end

if ( align == ALIGN_TOP_RIGHT )
x = x2-text_width-1
y = y1+@font_size+1
end
if ( align == ALIGN_LEFT )
x = x1+1
y = y1+(area_height/2)-(text_height/2)
end
if ( align == ALIGN_CENTER )
x = x1+(area_width/2)-(text_width/2)
y = y1+(area_height/2)-(text_height/2)
end
if ( align == ALIGN_RIGHT )
x = x2-text_width-1
y = y1+(area_height/2)-(text_height/2)
end
if ( align == ALIGN_BOTTOM_LEFT )
x = x1+1
y = y2-1
end
if ( align == ALIGN_BOTTOM_CENTER )
x = x1+(area_width/2)-(text_width/2)
y = y2-1
end
if ( align == ALIGN_BOTTOM_RIGHT )
x = x2-text_width-1
y = y2-1
end
c_text_color =allocate_color(@picture,r,g,b)
c_shadow_color =allocate_color(@picture,0,0,0)
if ( shadow )
image_ttf_text(@picture,@font_size,angle,x+1,y+1,c_shadow_color,@font_name,text)
end

image_ttf_text(@picture,@font_size,angle,x,y,c_text_color,@font_name,text)
end

# This function will draw an horizontal treshold ( this is an easy way to draw the 0 line ).
# If show_label is set to true, the value of the treshold will be written over the graph.
# If show_on_right is set to true, the value will be written on the right side of the graph.
# r, g and b are used to set the line and text color.
# Use tick_width to set the width of the ticks, if set to 0 this will draw a solid line.
# You can optionnaly provide the caption of the treshold (by default the treshold value is used)

def draw_treshold(value,r,g,b,show_label=false,show_on_right=false,tick_width=4,free_text=nil)
b, g, r = validate_color(b, g, r)

c_text_color =allocate_color(@picture,r,g,b)
# c_text_color = GD2::Color.new(r,g,b)
y = @g_area_y2 - (value - @vmin.to_f) * @division_ratio.to_f

return(-1) if ( y <= @g_area_y1 || y >= @g_area_y2 )
if ( tick_width == 0 )
self.draw_line(@g_area_x1,y,@g_area_x2,y,r,g,b)
else
self.draw_dotted_line(@g_area_x1,y,@g_area_x2,y,tick_width,r,g,b)
end
if (show_label )
if ( free_text.nil? )
label = value
else
label = free_text
end

if ( show_on_right )
image_ttf_text(@picture,@font_size,0,@g_area_x2+2,y+(@font_size/2),c_text_color,@font_name,label.to_s)
else
image_ttf_text(@picture,@font_size,0,@g_area_x1+2,y-(@font_size/2),c_text_color,@font_name,label.to_s)
end
end
end

# This function will draw a label over the graph.
# You must specify the data & data_description structures, the serie name ( "Serie1" by default if only one ),
# the x position of the value in the data array (will be numeric starting at 0 if no abscise_label are defined or the value of the selected abscise serie if specified), the caption that will displayed and optionally the color of the label

def set_label(data,data_description,serie_name,value_name,caption,r=210,g=210,b=210)
data_description = self.validate_data_description("set_label",data_description)
self.validate_data("set_label",data)
shadow_factor = 100
c_label =allocate_color(@picture,r,g,b)
c_shadow =allocate_color(@picture,r-shadow_factor,g-shadow_factor,b-shadow_factor)
c_text_color =allocate_color(@picture,0,0,0)
cp = 0
found = false
numerical_value = 0
data.each do |key|
if key[data_description["position"]].to_s == value_name.to_s
numerical_value = key[serie_name]
found = true
end
cp +=1 if !found
end

xpos = @g_area_x1 + @g_area_x_offset + ( @division_width * cp ) + 2
ypos = @g_area_y2 - (numerical_value - @vmin) *@division_ratio
position = image_ftb_box(@font_size,0,@font_name,caption)
text_height = position[3] - position[5]
text_width = position[2]-position[0] + 2
text_offset = (text_height/2).floor
# Shadow
poly = [xpos+1,ypos+1,xpos + 9,ypos - text_offset,xpos + 8,ypos + text_offset + 2]
image_filled_polygon(@picture,poly,r-shadow_factor,g-shadow_factor,b-shadow_factor,3)
self.draw_line(xpos,ypos+1,xpos + 9,ypos - text_offset - 0.2,r-shadow_factor,g-shadow_factor,b-shadow_factor)
self.draw_line(xpos,ypos+1,xpos + 9,ypos + text_offset + 2.2,r-shadow_factor,g-shadow_factor,b-shadow_factor)
self.draw_filled_rectangle(xpos + 9,ypos - text_offset-0.2,xpos + 13 + text_width,ypos + text_offset + 2.2,r-shadow_factor,g-shadow_factor,b-shadow_factor)

#Label background
poly = [xpos,ypos,xpos + 8,ypos - text_offset - 1,xpos + 8,ypos + text_offset + 1]
image_filled_polygon(@picture,poly,r,g,b,3)
self.draw_line(xpos-1,ypos,xpos + 8,ypos - text_offset - 1.2,r,g,b)
self.draw_line(xpos-1,ypos,xpos + 8,ypos + text_offset + 1.2,r,g,b)
self.draw_filled_rectangle(xpos + 8,ypos - text_offset - 1.2,xpos + 12 + text_width,ypos + text_offset + 1.2,r,g,b)

image_ttf_text(@picture,@font_size,0,xpos + 10,ypos + text_offset,c_text_color,@font_name,caption)
end

# This function will draw a plot graph using all the registered series.
# Giving only the data & data_description structure will draw the basic plot graph,
# You can specify the radius ( external & internal ) of the plots.
# You can also specify the color of the points ( will be unique in case of multiple series ).
# Setting Shadow to true will draw a shadow under the plots.

def draw_plot_graph(data,data_description,big_radius=5,small_radius=2,r2=-1,g2=-1,b2=-1,shadow=false)
#/* Validate the Data and data_description array */
data_description = self.validate_data_description("draw_plot_graph",data_description)
self.validate_data("draw_plot_graph",data)
graph_id = 0
ro = r2
go = g2
bo = b2
id =0
color_id =0
data_description["values"].each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
r = @palette[color_id]["r"];
g = @palette[color_id]["g"];
b = @palette[color_id]["b"];
r2 = ro
g2 = go
b2 = bo
#TODO convert this function

if ( !data_description["symbol"].nil? && !data_description["symbol"][col_name].nil?)
is_alpha = false # ((ord ( file_get_contents (data_description["symbol"][col_name], false, NULL, 25, 1)) & 6) & 4) == 4;
im_symbol = image_create_from_png(data_description["symbol"][col_name])
infos = get_image_size(im_symbol)
image_width = infos[0]
image_height = infos[1]
#
end

x_pos = @g_area_x1 + @g_area_x_offset
h_size = (big_radius/2).round
r3 = -1
g3 = -1
b3 = -1
data.each do |key|
value= key[col_name]
if value.is_a?(Numeric)
y_pos = @g_area_y2 - ((value-@vmin) * @division_ratio)
else
y_pos = @g_area_y2 - ((0-@vmin) * @division_ratio)
end


# Save point into the image map if option activated
if ( @build_map )
#add_to_image_map(x_pos-h_size,y_pos-h_size,x_pos+1+h_size,y_pos+h_size+1,data_description["description"][col_name],key[col_name].data_description["unit"]["y"],"Plot");
end

if(value.is_a?(Numeric))
#MY Hack
if (data_description["symbol"].nil? || data_description["symbol"][col_name].nil? )
if ( shadow )
if ( r3 !=-1 && g3 !=-1 && b3 !=-1 )
self.draw_filled_circle(x_pos+2,y_pos+2,big_radius,r3,g3,b3)
else
r3 = @palette[color_id]["r"]-20
r3 = 0 if ( r3 < 0 )
g3 = @palette[color_id]["g"]-20
g3 = 0 if ( g3 < 0 )
b3 = @palette[color_id]["b"]-20
b3 = 0 if ( b3 < 0 )
self.draw_filled_circle(x_pos+2,y_pos+2,big_radius,r3,g3,b3)
end
end
self.draw_filled_circle(x_pos+1,y_pos+1,big_radius,r,g,b)
if ( small_radius != 0 )
if ( r2 !=-1 && g2 !=-1 && b2 !=-1 )
self.draw_filled_circle(x_pos+1,y_pos+1,small_radius,r2,g2,b2);
else
r2 = @palette[color_id]["r"]-15
r2 = 0 if ( r2 < 0 )
g2 = @palette[color_id]["g"]-15
g2 = 0 if ( g2 < 0 )
b2 = @palette[color_id]["b"]-15
b2 = 0 if ( b2 < 0 )
self.draw_filled_circle(x_pos+1,y_pos+1,small_radius,r2,g2,b2)
end
end
else
image_copy_merge(im_symbol,@picture,x_pos+1-image_width/2,y_pos+1-image_height/2,0,0,image_width,image_height,100)
end
end
x_pos = x_pos + @division_width
end
graph_id+=1
end
end

# This function is very similar as the draw_plot_graph function.
# You must specify the name of the two series that will be used as x and y coordinates and the color id to use.

def draw_xy_plot_graph(data,data_description,y_serie_name,x_serie_name,palette_id=0,big_radius=5,small_radius=2,r2=-1,g2=-1,b2=-1,shadow=true)
r = @palette[palette_id]["r"]
    g = @palette[palette_id]["g"]
    b = @palette[palette_id]["b"]
    r3 = -1
    g3 = -1
    b3 = -1

    y_last = -1
    x_last = -1
    data.each do |key|
      next if (key[y_serie_name].nil? or key[x_serie_name].nil?)

      x = key[x_serie_name]
      y = key[y_serie_name]
      y = @g_area_y2 - ((y-@vmin) * @division_ratio)
      x = @g_area_x1 + ((x-@v_x_min) * @x_division_ratio)
      if ( shadow )
        if ( r3 !=-1 && g3 !=-1 && b3 !=-1 )
          self.draw_filled_circle(x+2,y+2,big_radius,r3,g3,b3)
        else
          r3 = @palette[palette_id]["r"]-20
          r = 0 if ( r < 0 )
          g3 = @palette[palette_id]["g"]-20
          g = 0 if ( g < 0 )
          b3 = @palette[palette_id]["b"]-20
          b = 0 if ( b < 0 )
          draw_filled_circle(x+2,y+2,big_radius,r3,g3,b3)
        end
      end
      draw_filled_circle(x+1,y+1,big_radius,r,g,b)

      if ( r2 !=-1 && g2 !=-1 && b2 !=-1 )
        draw_filled_circle(x+1,y+1,small_radius,r2,g2,b2)
      else
        r2 = @palette[palette_id]["r"]+20
        r = 255 if ( r > 255 )
        g2 = @palette[palette_id]["g"]+20
        g = 255 if ( g > 255 )
        b2 = @palette[palette_id]["b"]+20
        b = 255 if ( b > 255 )
        draw_filled_circle(x+1,y+1,small_radius,r2,g2,b2)
      end
    end
end

# This function will draw an area between two data series.
# extracting the minimum and maximum value for each X positions.
# You must specify the two series name and the area color.
# You can specify the transparency which is set to 50% by default.

def draw_area(data,serie1,serie2,r,g,b,alpha = 50)
self.validate_data("draw_area",data)
layer_width = @g_area_x2-@g_area_x1
layer_height = @g_area_y2-@g_area_y1

@layers[0] = image_create_true_color(layer_width,layer_height)
image_filled_rectangle(@layers[0],0,0,layer_width,layer_height,255,255,255)
image_color_transparent(@layers[0],255,255,255)

x_pos = @g_area_x_offset
last_x_pos = -1
last_y_pos1 = nil
last_y_pos2= nil
data.each do |key|
value1 = key[serie1]
value2 = key[serie2]
y_pos1 = layer_height - ((value1-@vmin) * @division_ratio)
y_pos2 = layer_height - ((value2-@vmin) * @division_ratio)

if ( last_x_pos != -1 )
points = []
points << last_x_pos
points << last_y_pos1
points << last_x_pos
points << last_y_pos2
points << x_pos
points << y_pos2
points << x_pos
points << y_pos1
image_filled_polygon(@layers[0],points,r,g,b,4)
end
last_y_pos1 = y_pos1
last_y_pos2 = y_pos2
last_x_pos = x_pos
x_pos= x_pos+ @division_width
end
image_copy_merge(@layers[0],@picture,@g_area_x1,@g_area_y1,0,0,layer_width,layer_height,alpha);
image_destroy(@layers[0])
end

# You can use this function to display the values contained in the series on top of the charts.
# It is possible to specify one or multiple series to display using and array.
def write_values(data,data_description,series)

data_description = self.validate_data_description("write_values",data_description)
self.validate_data("write_values",data)
series = [series] if ( !series.is_a?(Array))
id = 0
color_id =0
series.each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
xpos = @g_area_x1 + @g_area_x_offset
xlast = -1
data.each do |key|
if ((!key[col_name].nil?) && (key[col_name].is_a?(Numeric)))
value = key[col_name]
ypos = @g_area_y2 - ((value-@vmin) * @division_ratio)
positions = image_ftb_box(@font_size,0,@font_name,value.to_s)
width = positions[2] - positions[6]
x_offset = xpos - (width/2)
height = positions[3] - positions[7]
y_offset = ypos - 4

c_text_color = allocate_color(@picture,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"]);
image_ttf_text(@picture,@font_size,0,x_offset,y_offset,c_text_color,@font_name,value.to_s)
end
xpos = xpos + @division_width
end
end
end

# This function will draw a line graph using all the registered series.
def draw_line_graph(data,data_description,serie_name="")
data_description = self.validate_data_description("draw_line_graph",data_description)
self.validate_data("draw_line_graph",data)
graph_id = 0
color_id =0
id =0
data_description["values"].each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
if ( serie_name == "" || serie_name == col_name )
x_pos = @g_area_x1 + @g_area_x_offset
x_last = -1
y_last = -1
data.each do |key|
if(!key[col_name].nil?)
value = key[col_name]
if(value.is_a?(Numeric))
y_pos= @g_area_y2 - ((value-@vmin) * @division_ratio)
else
y_pos= @g_area_y2 - ((0-@vmin) * @division_ratio)
end
# /* Save point into the image map if option activated */
if ( @build_map )
#self.add_to_image_map(x_pos-3,y_pos-3,x_pos+3,y_pos+3,data_description["description"][col_name],data[key][col_name].data_description["unit"]["y"],"Line");
end
x_last = -1 if(!value.is_a?(Numeric))
if ( x_last != -1 )
self.draw_line(x_last,y_last,x_pos,y_pos,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],true)
end
x_last = x_pos
y_last = y_pos
x_last = -1 if(!value.is_a?(Numeric))
end
x_pos = x_pos + @division_width
end
graph_id+=1
end
end
end

# This function will draw a scatter line graph.
# You must specify the x and y series that will be used.
# You can optionnaly set the color index in the current palette.
def draw_xy_graph(data,data_description,y_serie_name,x_serie_name,palette_id=0)
y_last = -1
x_last = -1
data.each do |key|
if ( !key[y_serie_name].nil? && !key[x_serie_name].nil? )
x= key[x_serie_name]
y = key[y_serie_name]
y = @g_area_y2 - ((y-@vmin) * @division_ratio);
x= @g_area_x1 + ((x-@v_x_min) * @x_division_ratio);
if (x_last != -1 && y_last != -1)
self.draw_line(x_last,y_last,x,y,@palette[palette_id]["r"],@palette[palette_id]["g"],@palette[palette_id]["b"],true)
end
x_last = x
y_last = y
end
end
end

# This function will draw a curved line graph using all the registered series.
# This curve is using a cubic algorythm to process the average values between two points.
# You have to specify the accuracy between two points, typicaly a 0.1 value is acceptable. the smaller the value is, the longer it will take to process the graph.
def draw_cubic_curve(data,data_description,accuracy=0.1,serie_name="")

data_description = self.validate_data_description("draw_cubic_curve",data_description)
self.validate_data("draw_cubic_curve",data)
graph_id = 0
id = 0
color_id =0

data_description["values"].each do |col_name|
if ( serie_name == "" || serie_name == col_name )
x_in = []
y_in =[]
y_t = []
u = []
x_in[0] = 0
y_in[0] = 0

data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
index = 1
x_last = -1
missing = []
data.each do |key|
if(!key[col_name].nil?)
val = key[col_name]

x_in[index] = index
#y_in[index] = val
#my hack TODO "" convet missing values to zero
y_in[index] = val if ((val).is_a?(Numeric))
y_in[index] = 0 if (!(val).is_a?(Numeric))
######
missing[index]=true if (!(val).is_a?(Numeric))
index=index+1
end
end
index= index-1
y_t[0] = 0
y_t[1] = 0
u[0] = 0
u[1] = 0
i =2
y_last =0

while(i<=index-1)
sig = (x_in[i]-x_in[i-1])*1.0/(x_in[i+1]-x_in[i-1]) #rescue 0
p=sig*y_t[i-1]+2
y_t[i]=(sig-1)/p
u[i]=(y_in[i+1]-y_in[i])*1.0/(x_in[i+1]-x_in[i])-(y_in[i]-y_in[i-1])*1.0/(x_in[i]-x_in[i-1]) #rescue 0
u[i]=(6*u[i]/(x_in[i+1]-x_in[i-1])-sig*u[i-1])/p #rescue 0
i=i+1
end
qn = 0
un = 0
y_t[index] = (un - qn * u[index-1]) / (qn * y_t[index-1] + 1)
k = index-1
while k>=1
y_t[k]=y_t[k]* y_t[k+1]+u[k]
k=k-1
end
x_pos = @g_area_x1 + @g_area_x_offset
x =1
while x<=index
klo=1
khi=index
k = khi-klo
while k>1
k=khi-klo
if x_in[k]>=x
khi=k
else
klo=k
end
end
klo=khi-1
h = x_in[khi]-x_in[klo]
a = (x_in[khi]-x)/h rescue 1
b = (x-x_in[klo])/h rescue 1
value = a*y_in[klo]+b*y_in[khi]+((a*a*a-a)*y_t[klo]+(b*b*b-b)*y_t[khi])*(h*h)/6
y_pos = @g_area_y2-((value-@vmin)*@division_ratio)
#TODO Check(x_last!=-1 && !missing[x.floor].nil? && !missing[(x+1).floor].nil? )
#UPDATED
if (x_last!=-1 && missing[x.floor].nil? && missing[(x+1).floor].nil? )
self.draw_line(x_last,y_last,x_pos,y_pos, @palette[id]["r"],@palette[id]["g"],@palette[id]["b"],true)
end
x_last = x_pos
y_last = y_pos
x_pos = x_pos +@division_width*accuracy
x=x+accuracy
end
#Add potentialy missing values
x_pos = x_pos - @division_width * accuracy
if ( x_pos < (@g_area_x2 - @g_area_x_offset) )
y_pos = @g_area_y2 - ((y_in[index]-@vmin) * @division_ratio)
self.draw_line(x_last,y_last,@g_area_x2-@g_area_x_offset,y_pos,@palette[id]["r"],@palette[id]["g"],@palette[id]["b"],true)
end
graph_id += 1
end
end
end
# This function will draw a filled curved line graph using all the registered series.
# This curve is using a cubic algorythm to process the average values between two points.
# You have to specify the accuracy between two points, typicaly a 0.1 value is acceptable. the smaller the value is, the longer it will take to process the graph.
# You can provide the alpha value used when merging all series layers.
# If around_zero is set to true, the area drawn will be between the 0 axis and the line graph value.

def draw_filled_cubic_curve(data,data_description,accuracy=0.1,alpha=100,around_zero=false)
data_description = self.validate_data_description("draw_filled_cubic_curve",data_description)
self.validate_data("draw_filled_cubic_curve",data)
layer_width = @g_area_x2-@g_area_x1
layer_height = @g_area_y2-@g_area_y1
y_zero = layer_height - ((0-@vmin) * @division_ratio)
y_zero = layer_height if ( y_zero > layer_height )
graph_id = 0
id = 0
color_id =0
data_description["values"].each do |col_name|
x_in = []
y_in =[]
y_t = []
u = []
x_in[0] = 0
y_in[0] = 0
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
index = 1
x_last = -1
missing = []
data.each do |key|
if(!key[col_name].nil?)
val = key[col_name]
x_in[index] = index
y_in[index] = val
missing[index]=true if ((val).is_a?(Numeric))
index=index+1
end
end
index= index-1
y_t[0] = 0
y_t[1] = 0
u[1] = 0
i =2
y_last =0

while(i<index)
sig = (x_in[i]-x_in[i-1])*1.0/(x_in[i+1]-x_in[i-1]) #rescue 0
p=sig*y_t[i-1]+2
y_t[i]=(sig-1)/p
u[i]=(y_in[i+1]-y_in[i])*1.0/(x_in[i+1]-x_in[i])-(y_in[i]-y_in[i-1])*1.0/(x_in[i]-x_in[i-1]) #rescue 0
u[i]=(6*u[i]/(x_in[i+1]-x_in[i-1])-sig*u[i-1])/p #rescue 0
i=i+1
end
qn = 0
un = 0
y_t[index] = (un - qn * u[index-1]) / (qn * y_t[index-1] + 1)
k = index-1
while k>=1
y_t[k]=y_t[k]* y_t[k+1]+u[k]
k=k-1
end
points = []
points << @g_area_x_offset
points << layer_height
@layers[0] = image_create_true_color(layer_width,layer_height)
image_filled_rectangle(@layers[0],0,0,layer_width,layer_height, 255,255,255)
image_color_transparent(@layers[0], 255,255,255)
y_last = nil
x_pos = @g_area_x_offset
points_count= 2
x=1
while(x<=index)
klo=1
khi=index
k = khi-klo
while k>1
k=khi-klo
if x_in[k]>=x
khi=k
else
klo=k
end
end
klo=khi-1
h = x_in[khi]-x_in[klo]
a = (x_in[khi]-x)/h rescue 1
b = (x-x_in[klo])/h rescue 1
value = a*y_in[klo]+b*y_in[khi]+((a*a*a-a)*y_t[klo]+(b*b*b-b)*y_t[khi])*(h*h)/6
y_pos = layer_height - ((value-@vmin) * @division_ratio);

a_points = []
if ( !y_last.nil? && around_zero && (missing[x.floor].nil?) && (missing[(x+1).floor].nil?))

a_points << x_last
a_points << y_last
a_points << x_pos
a_points << y_pos
a_points << x_pos
a_points << y_zero
a_points << x_last
a_points << y_zero
#check No of points here 4 is pass check in image filled_polygon
image_filled_polygon(@layers[0], a_points, @palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],4)
end
if ( missing[(x.floor)].nil? || y_last.nil?)
points_count = points_count+1
points << x_pos
points << y_pos
else
points_count = points_count+1
points << x_last
points << y_last
end
y_last = y_pos
x_last = x_pos
x_pos = x_pos + @division_width * accuracy
x=x+accuracy
end

#// Add potentialy missing values
# a_points = []
x_pos = x_pos - @division_width * accuracy
if ( x_pos < (layer_width-@g_area_x_offset) )
y_pos = layer_height - ((y_in[index]-@vmin) * @division_ratio)
if ( !y_last.nil? && around_zero )
a_points << x_last
a_points << y_last
a_points << (layer_width-@g_area_x_offset)
a_points << y_pos
a_points << (layer_width-@g_area_x_offset)
a_points << y_zero
a_points << x_last
a_points << y_zero
# imagefilledpolygon(@layers[0],a_points,4,$C_Graph);
image_filled_polygon(@layers[0], a_points, @palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],4)
end

if ( y_in[klo] != "" && y_in[khi] != "" || y_last.nil? )

points_count +=1
points << (layer_width-@g_area_x_offset).floor
points << (y_pos).floor
end
end

points << (layer_width-@g_area_x_offset).floor
points << layer_height.floor

if ( !around_zero )
image_filled_polygon(@layers[0], points, @palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],points_count)
end

image_copy_merge(@layers[0],@picture,@g_area_x1,@g_area_y1,0,0,layer_width,layer_height,alpha);
image_destroy(@layers[0])

self. draw_cubic_curve(data, data_description,accuracy,col_name)
graph_id+=1
end
end

# This function will draw a filled line graph using all the registered series.
# You can provide the alpha value used when merging all series layers.
# If around_zero is set to true, the area drawn will be between the 0 axis and the line graph value.

def draw_filled_line_graph(data,data_description,alpha=100,around_zero=false)
empty = -2147483647
data_description = self.validate_data_description("draw_filled_line_graph",data_description)
self.validate_data("draw_filled_line_graph",data)
layer_width = @g_area_x2-@g_area_x1
layer_height = @g_area_y2-@g_area_y1
graph_id = 0
id =0
color_id =0
data_description["values"].each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end

a_points = []
a_points << @g_area_x_offset
a_points << layer_height
@layers[0] = image_create_true_color(layer_width,layer_height)
c_white = allocate_color(@layers[0],255,255,255)
image_filled_rectangle(@layers[0],0,0,layer_width,layer_height,255,255,255)
image_color_transparent(@layers[0],255,255,255)

xpos = @g_area_x_offset
xlast = -1
points_count = 2
y_zero = layer_height - ((0-@vmin) * @division_ratio)
y_zero = layer_height if ( y_zero > layer_height )
ylast = empty

data.each do |key|
value = key[col_name]
if key[col_name].is_a?(Numeric)
ypos = layer_height - ((value-@vmin) * @division_ratio)
else
ypos = layer_height - ((0-@vmin) * @division_ratio)
end
# Save point into the image map if option activated */
if ( @build_map )
#self.add_to_image_map(xpos-3,ypos-3,xpos+3,ypos+3,data_description["description"][col_name],key[col_name].data_description["unit"]["Y"],"FLine");
end
if ( !(value.is_a?(Numeric)))
points_count+=1
a_points << xlast
a_points << layer_height
ylast = empty
else
points_count+=1
if ( ylast != empty )
a_points << xpos
a_points << ypos
else
points_count+=1
a_points << xpos
a_points << layer_height
a_points << xpos
a_points << ypos
end

if (ylast !=empty && around_zero)
points = []
points << xlast
points << ylast
points << xpos
points << ypos
points << xpos
points << y_zero
points << xlast
points << y_zero
c_graph = allocate_color(@layers[0],@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"])
image_filled_polygon(@layers[0],points,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],4)
end
ylast = ypos
end
xlast = xpos;
xpos = xpos + @division_width
end

a_points << layer_width - @g_area_x_offset
a_points << layer_height;

if ( around_zero == false )
# c_graph = allocate_color(@layers[0],@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"])
image_filled_polygon(@layers[0],a_points,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],points_count);
end

image_copy_merge(@layers[0],@picture,@g_area_x1,@g_area_y1,0,0,layer_width,layer_height,alpha);
image_destroy(@layers[0])
graph_id+=1
self.draw_line_graph(data,data_description,col_name)
end

end
# This function will draw a bar graph using all the registered series.
# When creating a bar graph, don't forget to set the with_margin parameter of the draw_scale function to true.
# Setting shadow to true will draw a shadow behind each series, this will also slow down a bit the renderer engine.

def draw_bar_graph(data,data_description,shadow=false,alpha=100)
data_description = self.validate_data_description("drawBarGraph",data_description)
self.validate_data("drawBarGraph",data)

graph_id = 0
series = (data_description["values"]).count
series_width = @division_width / (series+1)
serie_x_offset = @division_width / 2 - series_width / 2

y_zero = @g_area_y2 - ((0-@vmin) * @division_ratio)
y_zero = @g_area_y2 if ( y_zero> @g_area_y2 )
serie_id = 0
color_id =0
id = 0
data_description["values"].each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
x_pos = @g_area_x1 + @g_area_x_offset - serie_x_offset + series_width * serie_id
x_last = -1
data.each do |key|
if ( !key[col_name].nil?)
if ( key[col_name].is_a?(Numeric) )
value = key[col_name]
y_pos = @g_area_y2 - ((value-@vmin) * @division_ratio)
# Save point into the image map if option activated */
if (@build_map )
#self.add_to_image_map(x_pos+1,[y_zero,y_pos].min,x_pos+series_width-1,[y_zero,y_pos].max,data_description["description"][col_name],data[key][col_name].data_description["unit"]["y"],"Bar");
end
if ( shadow && alpha == 100 )
self.draw_rectangle(x_pos+1,y_zero,x_pos+series_width-1,y_pos,25,25,25)
end
self.draw_filled_rectangle(x_pos+1,y_zero,x_pos+series_width-1,y_pos,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],true,alpha)
end
x_pos = x_pos + @division_width
end
end
serie_id = serie_id+1
end
end

# This function will draw a stacked bar graph using all the registered series.
# When creating a bar graph, don't forget to set the with_margin parameter of the draw_scale function to true.
# Don't forget to change the automatic scaling to Rchart::SCALE_ADDALL to have an accurate scaling mode.
# You can specify the transparency and if the bars must be contiguous or with space (default)
def draw_stacked_bar_graph(data,data_description,alpha=50,contiguous=false)
# /* Validate the Data and data_description array */
data_description = self.validate_data_description("draw_bar_graph",data_description)
self.validate_data("draw_bar_graph",data)
graph_id = 0
series = (data_description["values"].count)
if ( contiguous )
series_width = @division_width
else
series_width = @division_width * 0.8;
end
y_zero = @g_area_y2 - ((0-@vmin) * @division_ratio)
y_zero = @g_area_y2 if ( y_zero > @g_area_y2 )
series_id = 0
last_value = {}
id = 0
color_id = 0
data_description["values"].each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
x_pos = @g_area_x1 + @g_area_x_offset - series_width / 2
x_last = -1
data.each do |key|
if ( !key[col_name].nil?)
if ( key[col_name].is_a?(Numeric) )
value = key[col_name]
if (!last_value[key].nil?)
y_pos = @g_area_y2 - (((value+last_value[key])-@vmin) * @division_ratio)
y_bottom = @g_area_y2 - ((last_value[key]-@vmin) * @division_ratio)
last_value[key] += value
else
y_pos = @g_area_y2 - ((value-@vmin) * @division_ratio)
y_bottom = y_zero
last_value[key] = value
end
# Save point into the image map if option activated
if ( @build_map )
#self.add_to_image_map(x_pos+1,[y_bottom,y_pos].min,x_pos+series_width-1,[y_bottom,y_pos].max,data_description["description"][col_name],data[key][col_name].data_description["unit"]["y"],"sBar");
end
self.draw_filled_rectangle(x_pos+1,y_bottom,x_pos+series_width-1,y_pos,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],true,alpha)
end
end
x_pos = x_pos + @division_width
end
series_id+=1
end
end
# This function will draw a superposed bar graph using all the registered series.
# You can provide the alpha value used when merging all series layers.

def draw_overlay_bar_graph(data,data_description,alpha=50)
data_description = self.validate_data_description("draw_overlay_bar_graph",data_description)
self.validate_data("draw_overlay_bar_graph",data)
layer_width = @g_area_x2-@g_area_x1
layer_height = @g_area_y2-@g_area_y1
graph_id = 0
color_id =0
id =0
data_description["values"].each do |col_name|
data_description["description"].each do |key_i,value_i|
if ( key_i == col_name )
color_id = id
id = id+1
end
end
@layers[graph_id] = image_create_true_color(layer_width,layer_height)
image_filled_rectangle(@layers[graph_id],0,0,layer_width,layer_height,255,255,255)
image_color_transparent(@layers[graph_id],255,255,255)
x_width = @division_width / 4
x_pos = @g_area_x_offset
y_zero = layer_height - ((0-@vmin) * @division_ratio)
x_last = -1
points_count = 2
data.each do |key|
if(!key[col_name].nil?)
if(key[col_name].is_a?(Numeric))
value = key[col_name]
if (value.is_a?(Numeric) )
y_pos = layer_height - ((value-@vmin) * @division_ratio)
image_filled_rectangle(@layers[graph_id],x_pos-x_width,y_pos,x_pos+x_width,y_zero,@palette[graph_id]["r"],@palette[graph_id]["g"],@palette[graph_id]["b"])
x1 = (x_pos - x_width + @g_area_x1).floor
y1 = (y_pos+@g_area_y1).floor + 0.2
x2 = (x_pos + x_width + @g_area_x1).floor
y2 = @g_area_y2 - ((0-@vmin) * @division_ratio)
x1 = @g_area_x1 + 1 if ( x1 <= @g_area_x1 )
x2 = @g_area_x2 - 1 if ( x2 >= @g_area_x2 )

# Save point into the image map if option activated */
if ( @build_map )
#self.add_to_image_map(x1,[y1,y2].min,x2,[y1,y2].max,data_description["description"][col_name],data[key][col_name].data_description["unit"]["y"],"oBar");
end
self.draw_line(x1,y1,x2,y1,@palette[color_id]["r"],@palette[color_id]["g"],@palette[color_id]["b"],true)
end
end
end
x_pos = x_pos + @division_width
end
graph_id+=1
end
i=0
while (i<=(graph_id-1))
image_copy_merge(@layers[i],@picture,@g_area_x1,@g_area_y1,0,0,layer_width,layer_height,alpha)
image_destroy(@layers[i])
i=i+1
end
end

# This function will draw the minimum & maximum values for a specific point using all the registered series
# You can optionaly specify the vertical line color.

def draw_limits_graph(data,data_description,r=0,g=0,b=0)
data_description = self.validate_data_description("draw_limits_graph",data_description)
self.validate_data("draw_limits_graph",data)
x_width = @division_width / 4
xpos = @g_area_x1 + @g_area_x_offset
data.each do |key|
min = key[data_description["values"][0]]
max = key[data_description["values"][0]]
graph_id = 0
max_id = 0
min_id = 0
data_description["values"].each do |col_name|
if (!key[col_name].nil?)
if ( key[col_name] > max && key[col_name].is_a?(Numeric))
max = key[col_name]
max_id = graph_id
end
end
if ( !key[col_name].nil? && key[col_name].is_a?(Numeric))
if ( key[col_name] < min )
min = key[col_name]
min_id = graph_id
end
graph_id+=1
end
end

ypos = @g_area_y2 - ((max-@vmin) * @division_ratio)
x1 = (xpos - x_width).floor
y1 = (ypos).floor - 0.2
x2 = (xpos + x_width).floor
x1 = @g_area_x1 + 1 if ( x1 <= @g_area_x1 )
x2 = @g_area_x2 - 1 if ( x2 >= @g_area_x2 )
ypos = @g_area_y2 - ((min-@vmin) * @division_ratio)
y2 = ypos.floor + 0.2
self.draw_line(xpos.floor-0.2,y1+1,xpos.floor-0.2,y2-1,r,g,b,true)
self.draw_line(xpos.floor+0.2,y1+1,xpos.floor+0.2,y2-1,r,g,b,true)
self.draw_line(x1,y1,x2,y1,@palette[max_id]["r"],@palette[max_id]["g"],@palette[max_id]["b"],false)
self.draw_line(x1,y2,x2,y2,@palette[min_id]["r"],@palette[min_id]["g"],@palette[min_id]["b"],false)
xpos = xpos + @division_width
end
end

# This function will draw a classical non-exploded pie chart.
# * To do so you must specify the data & data_description array.Only one serie of data is allowed for pie graph.
# * You can associate a description of each value in another serie by marking it using the set_abscise_label_serie function.
# * You must specify the center position of the chart. You can also optionally specify the radius of the pie and if the percentage should be printed.
# * r,g,b can be used to set the color of the line that will surround each pie slices.
# * You can specify the number of decimals you want to be displayed in the labels (default is 0 )
# By default no labels are written around the pie chart. You can use the following modes for the draw_labels parameter
# * Rchart:: PIE_NOLABEL No labels displayed
# * Rchart:: PIE_PERCENTAGE Percentages are displayed
# * Rchart:: PIE_LABELS Series labels displayed
# * Rchart:: PIE_PERCENTAGE_LABEL Series labels & percentage displayed
# This will draw a pie graph centered at (150-150) with a radius of 100, no labels
# * chart.draw_basic_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150)
# This will draw a pie graph centered at (150-150) with a radius of 50 and percentages
# * chart.draw_basic_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,50,Rchart::PIE_PERCENTAGE)
# This will draw a pie graph centered at (150-150) with a radius of 100, captions and black borders
# * chart.draw_basic_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,100,Rchart::PIE_PERCENTAGE,0,0,0)
def draw_basic_pie_graph(data,data_description,x_pos,y_pos,radius=100,draw_labels=PIE_NOLABEL,r=255,g=255,b=255,decimals=0)
data_description = self.validate_data_description("draw_basic_pie_graph",data_description,false)
self.validate_data("drawBasicPieGraph",data)
# Determine pie sum
series = 0
pie_sum = 0
i_values = []
r_values = []
i_labels = []
data_description["values"].each do|col_name|
if (col_name != data_description["position"])
series = series+1
data.each do |key|
if (!key[col_name].nil?)
pie_sum = pie_sum + key[col_name]
i_values << key[col_name]
i_labels << key[data_description["position"]]
end
end
end
end


# Validate serie
if ( series != 1 )
raise_fatal("Pie chart can only accept one serie of data.");
end
splice_ratio = 360.0 / pie_sum
splice_percent = 100.0 / pie_sum

#Calculate all polygons
angle = 0
top_plots = []
i_values.each_with_index do |value,key|

top_plots[key]= [x_pos]
top_plots[key]<< y_pos
# Process labels position & size
caption = "";
if ( !(draw_labels == PIE_NOLABEL) )
t_angle = angle+(value*splice_ratio/2)
if (draw_labels == PIE_PERCENTAGE)
caption = ((value * (10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%"
elsif (draw_labels == PIE_LABELS)
caption = i_labels[key]
elsif (draw_labels == PIE_PERCENTAGE_LABEL)
caption = i_labels[key].to_s+"\r\n"+"."+((value * (10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%";
elsif (draw_labels == PIE_PERCENTAGE_LABEL)
caption = i_labels[key].to_s+"\r\n"+"."+((value * (10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%";
end
position = image_ftb_box(@font_size,0,@font_name,caption)
text_width = position[2]-position[0]
text_height = (position[1].abs)+(position[3].abs)

tx = Math.cos((t_angle) * Math::PI / 180 ) * (radius+10) + x_pos

if ( t_angle > 0 && t_angle < 180 )
ty = Math.sin((t_angle) * Math::PI / 180 ) * (radius+10) + y_pos + 4
else
ty = Math.sin((t_angle) * Math::PI / 180 ) * (radius+4) + y_pos - (text_height/2)
end
tx = tx - text_width if ( t_angle > 90 && t_angle < 270 )

c_text_color = allocate_color(@picture,70,70,70);
image_ttf_text(@picture,@font_size,0,tx,ty,c_text_color,@font_name,caption)
end
# Process pie slices
i_angle = angle
while(i_angle <=angle+value*splice_ratio)

top_x = (Math.cos(i_angle * Math::PI / 180 )) * radius + x_pos
top_y = (Math.sin(i_angle * Math::PI/ 180 )) * radius + y_pos
top_plots[key] << (top_x)
top_plots[key] <<(top_y)
i_angle = i_angle+0.5
end
top_plots[key]<< x_pos
top_plots[key] << y_pos
angle = i_angle
end
poly_plots = top_plots
# Draw Top polygons
poly_plots.each_with_index do |value,key|
image_filled_polygon(@picture, poly_plots[key], @palette[key]["r"],@palette[key]["g"],@palette[key]["b"])
end
self.draw_circle(x_pos-0.5,y_pos-0.5,radius,r,g,b)
self.draw_circle(x_pos-0.5,y_pos-0.5,radius+0.5,r,g,b)
# Draw Top polygons
top_plots.each_with_index do |value,key|
j = 0
while(j<=top_plots[key].count-4 )
self.draw_line(top_plots[key][j],top_plots[key][j+1],top_plots[key][j+2],top_plots[key][j+3],r,g,b);
j =j+2
end
end
end

# This function will draw a 3D pie graph.
# * To do so you must specify the data & data_description array.
# * Only one serie of data is allowed for pie graph.
# * You can associate a description of each value in another serie by marking it using the set_abscise_label_serie function. You must specify the center position of the chart.
# * You can also optionally specify the radius of the pie, if the percentage should be printed, the 3D skew factor and the height of all splices.
# * If enhance_colors is set to true, pie edges will be enhanced.
# * If splice_distance is greated than 0, the pie will be exploded.
# * You can specify the number of decimals you want to be displayed in the labels (default is 0 ).
# By default no labels are written around the pie chart. You can use the following modes for the draw_labels parameter:
# * Rchart:: PIE_NOLABEL No labels displayed
# * Rchart:: PIE_PERCENTAGE Percentages are displayed
# * Rchart:: PIE_LABELS Series labels displayed
# * Rchart:: PIE_PERCENTAGE_LABEL Series labels & percentage displayed
  # This will draw a pie graph centered at (150-150) with a radius of 100, no labels
  # * chart.draw_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150)
# This will draw a pie graph centered at (150-150) with a radius of 50 and percentages
# * chart.draw_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,50,Rchart::PIE_PERCENTAGE)
# This will draw a pie graph centered at (150-150) with a radius of 100, captions and a skew factor of 30
# * chart.draw_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,100,Rchart::PIE_PERCENTAGE,true,30)
# This will draw a pie graph (..) exploded
# * chart.draw_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,100,Rchart::PIE_PERCENTAGE,true,30,10,10)
def draw_pie_graph(data,data_description,x_pos,y_pos,radius=100,draw_labels=PIE_NOLABEL,enhance_colors=true,skew=60,splice_height=20,splice_distance=0,decimals=0)
data_description = self.validate_data_description("draw_pie_graph",data_description,false)
self.validate_data("draw_pie_graph",data)

#Determine pie sum
series = 0
pie_sum= 0
rpie_sum = 0
i_values = []
r_values = []
i_labels = []
series = 0

data_description["values"].each do|col_name|
if (col_name != data_description["position"])
series = series+1
data.each do |key|
if (!key[col_name].nil?)
if (key[col_name] == 0)
i_values << 0
r_values << 0
i_labels << 0
i_labels<< key[data_description["position"]]
else
pie_sum+= key[col_name]
i_values << key[col_name]
i_labels << key[data_description["position"]]
r_values << key[col_name]
rpie_sum += key[col_name]
end
end
end
end
end

# Validate serie

#RaiseFatal("Pie chart can only accept one serie of data.");
#puts "Error Pie chart can only accept one serie of data." if ( series != 1 )
splice_distance_ratio = splice_distance
skew_height = (radius * skew) / 100;
splice_ratio = ((360 - splice_distance_ratio *i_values.count*1.0) / pie_sum)
splice_percent = 100.0 / pie_sum
r_splice_percent = 100.0 / rpie_sum
#Calculate all polygons
angle = 0
c_dev = 5;
top_plots = []
bot_plots = []
atop_plots = []
abot_plots = []
i_values.each_with_index do |value,key|

x_cent_pos = Math.cos((angle-c_dev+(value*splice_ratio+splice_distance_ratio)/2) * 3.1418 / 180 ) * splice_distance + x_pos
y_cent_pos = Math.sin((angle-c_dev+(value*splice_ratio+splice_distance_ratio)/2) * 3.1418 / 180 ) * splice_distance + y_pos
x_cent_pos2 = Math.cos((angle+c_dev+(value*splice_ratio+splice_distance_ratio)/2) * 3.1418 / 180 ) * splice_distance + x_pos
y_cent_pos2 = Math.sin((angle+c_dev+(value*splice_ratio+splice_distance_ratio)/2) * 3.1418 / 180 ) * splice_distance + y_pos
top_plots[key] = [(x_cent_pos).round]
bot_plots[key] = [(x_cent_pos).round]
top_plots[key] << (y_cent_pos).round
bot_plots[key] << (y_cent_pos + splice_height).round
atop_plots[key] = [x_cent_pos]
abot_plots[key] = [x_cent_pos]
atop_plots[key] << y_cent_pos
abot_plots[key] << y_cent_pos + splice_height
# Process labels position & size
caption = ""
if ( !(draw_labels == PIE_NOLABEL) )

t_angle = angle+(value*splice_ratio/2)
if (draw_labels == PIE_PERCENTAGE)
caption = ((r_values[key] * (10**decimals) * r_splice_percent)/(10**decimals)).round.to_s+"%"
elsif (draw_labels == PIE_LABELS)
caption = i_labels[key]
elsif (draw_labels == PIE_PERCENTAGE_LABEL)
caption = i_labels[key].to_s+"\r\n"+(((value * 10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%"
end
position = image_ftb_box(@font_size,0,@font_name,caption)
text_width =position[2]-position[0]
text_height = ( position[1]).abs+(position[3]).abs

tx = Math.cos((t_angle) * Math::PI / 180 ) * (radius + 10)+ x_pos

if ( t_angle > 0 && t_angle < 180 )
ty = Math.sin((t_angle) * Math::PI / 180 ) * (skew_height + 10) + y_pos + splice_height + 4
else
ty = Math.sin((t_angle) * Math::PI / 180 ) * (skew_height + 4) + y_pos - (text_height/2)
end
if ( t_angle > 90 && t_angle < 270 )
tx = tx - text_width
end
#c_text_color = $this->AllocateColor(@picture,70,70,70);
c_text_color = allocate_color(@picture,70,70,70)
image_ttf_text(@picture,@font_size,0,tx,ty,c_text_color,@font_name,caption)
end

# Process pie slices

i_angle = angle
i_angle = i_angle.to_f

while(i_angle <=angle+value*splice_ratio)

top_x = (Math.cos(i_angle * Math::PI / 180 )) * radius + x_pos
top_y = (Math.sin(i_angle * Math::PI/ 180 )) * skew_height + y_pos

top_plots[key] << (top_x).round
bot_plots[key] <<(top_x).round
top_plots[key] <<(top_y).round
bot_plots[key] << (top_y + splice_height).round
atop_plots[key] << top_x
abot_plots[key] << top_x
atop_plots[key] << top_y
abot_plots[key] << top_y + splice_height
i_angle=i_angle+0.5
end
top_plots[key] << (x_cent_pos2).round
bot_plots[key] << (x_cent_pos2).round
top_plots[key] << (y_cent_pos2).round
bot_plots[key] << (y_cent_pos2 + splice_height).round
atop_plots[key] << x_cent_pos2
abot_plots[key] << x_cent_pos2
atop_plots[key] << y_cent_pos2
abot_plots[key] << y_cent_pos2 + splice_height
angle = i_angle + splice_distance_ratio
end

# Draw Bottom polygons
i_values.each_with_index do |val,key|
#c_graph_lo = allocate_color(@picture,@palette[key]["r"]-20,@palette[key]["g"]-20,@palette[key]["b"]-20)
image_filled_polygon(@picture,bot_plots[key],@palette[key]["r"]-20,@palette[key]["g"]-20,@palette[key]["b"]-20)
if (enhance_colors)
en = -10
else
en = 0
end
j =0
while(j<=(abot_plots[key].length)-4)
self.draw_line(abot_plots[key][j],abot_plots[key][j+1],abot_plots[key][j+2],abot_plots[key][j+3],@palette[key]["r"]+en,@palette[key]["g"]+en,@palette[key]["b"]+en);
j= j+2
end
end

# Draw pie layers
if ( enhance_colors )
color_ratio = 30 / splice_height
else
color_ratio = 25 / splice_height
end
i = splice_height-1
while(i>=1)
i_values.each_with_index do |val,key|
# c_graph_lo = allocate_color(@picture,@palette[key]["r"]-10,@palette[key]["g"]-10,@palette[key]["b"]-10)
plots =[]
plot = 0
top_plots[key].each_with_index do |value2,key2|
plot = plot+1
if ( plot % 2 == 1 )
plots << value2
else
plots << value2+i
end
end
image_filled_polygon(@picture,plots,@palette[key]["r"]-10,@palette[key]["g"]-10,@palette[key]["b"]-10)
index = (plots).count
if (enhance_colors )
color_factor = -20 + (splice_height - $i) * color_ratio
else
color_factor = 0
end

self.draw_antialias_pixel(plots[0],plots[1],@palette[key]["r"]+color_factor,@palette[key]["g"]+color_factor,@palette[key]["b"]+color_factor);
self.draw_antialias_pixel(plots[2],plots[3],@palette[key]["r"]+color_factor,@palette[key]["g"]+color_factor,@palette[key]["b"]+color_factor);
self.draw_antialias_pixel(plots[index-4],plots[index-3],@palette[key]["r"]+color_factor,@palette[key]["g"]+color_factor,@palette[key]["b"]+color_factor);
end
i = i-1
end
#Draw Top polygons
key = i_values.length-1
while(key>=0)
# c_graph_lo = allocate_color(@picture,@palette[key]["r"],@palette[key]["g"],@palette[key]["b"])
image_filled_polygon(@picture,top_plots[key],@palette[key]["r"],@palette[key]["g"],@palette[key]["b"])

if ( enhance_colors )
en = 10
else
en = 0
end
j = 0

while(j<=(atop_plots[key]).length-4)
self.draw_line(atop_plots[key][j],atop_plots[key][j+1],atop_plots[key][j+2],atop_plots[key][j+3],@palette[key]["r"]+en,@palette[key]["g"]+en,@palette[key]["b"]+en);
j = j+2
end
key = key -1
end
end
# This function is an alias of the draw_flat_pie_graph function.
def draw_flat_pie_graph_with_shadow(data,data_description,x_pos,y_pos,radius=100,draw_labels=PIE_NOLABEL,splice_distance=0,decimals=0)
self.draw_flat_pie_graph(data,data_description,x_pos+@shadow_x_distance,y_pos+@shadow_y_distance,radius,PIE_NOLABEL,splice_distance,decimals,true)
self.draw_flat_pie_graph(data,data_description,x_pos,y_pos,radius,draw_labels,splice_distance,decimals,false)
end

# This function will draw a flat 2D pie graph.
# To do so you must specify the data & data_description array.
# * Only one serie of data is allowed for pie graph.
# * You can associate a description of each value in another serie by marking it using the set_abscise_label_serie function. You must specify the center position of the chart.
# * You can also optionally specify the radius of the pie and if the percentage should be printed.
# * If splice_distance is greated than 0, the pie will be exploded.
# * You can specify the number of decimals you want to be displayed in the labels (default is 0 )
  # By default no labels are written around the pie chart. You can use the following modes for the draw_labels parameter:
# * Rchart:: PIE_NOLABEL No labels displayed
# * Rchart:: PIE_PERCENTAGE Percentages are displayed
# * Rchart:: PIE_LABELS Series labels displayed
# * Rchart:: PIE_PERCENTAGE_LABEL Series labels & percentage displayed
# This will draw a pie graph centered at (150-150) with a radius of 100, no labels
# * chart.draw_flat_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150);
# This will draw a pie graph centered at (150-150) with a radius of 50 and percentages
# * chart.draw_flat_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,50,Rchart::PIE_PERCENTAGE)
# This will draw a pie graph centered at (150-150) with a radius of 100, captions and slightly exploded
# * chart.draw_flat_pie_graph(chart_data.get_data,chart_data.get_data_description,150,150,100,Rchart::PIE_PERCENTAGE,4)

def draw_flat_pie_graph(data,data_description,x_pos,y_pos,radius=100,draw_labels=PIE_NOLABEL,splice_distance=0,decimals=0,all_black=false)
data_description = self.validate_data_description("draw_flat_pie_graph",data_description,false)
self.validate_data("draw_flat_pie_graph",data)
shadow_status = @shadow_active
@shadow_active = false
# Determine pie sum
series = 0
pie_sum = 0
i_values = []
r_values = []
i_labels = []
data_description["values"].each do|col_name|
if (col_name != data_description["position"])
series = series+1
data.each do |key|
if (!key[col_name].nil?)
pie_sum = pie_sum + key[col_name]
i_values << key[col_name]
i_labels << key[data_description["position"]]
end
end
end
end

#Validate serie
if ( series != 1 )
raise_fatal("Pie chart can only accept one serie of data.");
return -1
end

splice_ratio = 360.0 / pie_sum
splice_percent = 100.0 / pie_sum
# Calculate all polygons
angle = 0
top_plots = []
i_values.each_with_index do |value,key|

x_offset = Math.cos((angle+(value*1.0/2*splice_ratio)) * Math::PI / 180 ) * splice_distance
y_offset = Math.sin((angle+(value*1.0/2*splice_ratio)) * Math::PI / 180 ) * splice_distance

top_plots[key] = [(x_pos + x_offset).round]
top_plots[key] << (y_pos + y_offset).round
if ( all_black )
rc = @shadow_r_color
gc = @shadow_g_color
bc = @shadow_b_color
else
rc = @palette[key]["r"]
gc = @palette[key]["g"]
bc = @palette[key]["b"]
end
x_line_last = ""
y_line_last = ""
# Process labels position & size
caption = ""
if ( !(draw_labels == PIE_NOLABEL) )
t_angle = angle+(value*splice_ratio/2)
if (draw_labels == PIE_PERCENTAGE)
caption = ((value * (10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%"
elsif (draw_labels == PIE_LABELS)
caption = i_labels[key]
elsif (draw_labels == PIE_PERCENTAGE_LABEL)
caption = i_labels[key].to_s+".\r\n"+((value * (10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%"
elsif (draw_labels == PIE_PERCENTAGE_LABEL)
caption = i_labels[key].to_s+".\r\n"+((value * (10**decimals) * splice_percent)/(10**decimals)).round.to_s+"%"
end
position = image_ftb_box(@font_size,0,@font_name,caption)
text_width = position[2]-position[0]
text_height = (position[1].abs)+(position[3].abs)

tx = Math.cos((t_angle) * Math::PI / 180 ) * (radius+10+splice_distance) + x_pos
if ( t_angle > 0 && t_angle < 180 )
ty = Math.sin((t_angle) * Math::PI / 180 ) * (radius+10+splice_distance) + y_pos + 4
else
ty = Math.sin((t_angle) * Math::PI / 180 ) * (radius+splice_distance+4) + y_pos - (text_height*1.0/2)
end
tx = tx - text_width if ( t_angle > 90 && t_angle < 270 )
c_text_color = allocate_color(@picture,70,70,70)
image_ttf_text(@picture,@font_size,0,tx,ty,c_text_color,@font_name,caption)
end

# Process pie slices
if ( !all_black )
line_color =allocate_color(@picture,rc,gc,bc)
else
line_color = allocate_color(@picture,rc,gc,bc)
end
x_line_last = ""
y_line_last = ""
i_angle=angle
while(i_angle<=angle+value*splice_ratio)
pos_x = Math.cos(i_angle * Math::PI / 180 ) * radius + x_pos + x_offset
pos_y = Math.sin(i_angle * Math::PI / 180 ) * radius + y_pos + y_offset
top_plots[key]<< (pos_x).round
top_plots[key] << (pos_y).round
if ( i_angle == angle || i_angle == angle+value*splice_ratio || i_angle+0.5 > angle+value*splice_ratio)
self.draw_line(x_pos+x_offset,y_pos+y_offset,pos_x,pos_y,rc,gc,bc)
end
if ( x_line_last != "" )
self.draw_line(x_line_last,y_line_last,pos_x,pos_y,rc,gc,bc);
end
x_line_last = pos_x
y_line_last = pos_y
i_angle=i_angle+0.5
end

top_plots[key] << (x_pos + x_offset).round
top_plots[key]<< (y_pos + y_offset).round
angle = i_angle
end
poly_plots = top_plots
# Draw Top polygons
poly_plots.each_with_index do |value,key|
if ( !all_black )
image_filled_polygon(@picture,poly_plots[key],@palette[key]["r"],@palette[key]["g"],@palette[key]["b"])
else
image_filled_polygon(@picture,poly_plots[key],@shadow_r_color,@shadow_g_color,@shadow_b_color)
end
end
@shadow_active = shadow_status

end
# This function can be used to set the background color.
# The default graph background color is set to white.
def draw_background(r,g,b)
b,g,r= validate_color(b, g, r)
image_filled_rectangle(@picture,0,0,@x_size,@y_size,r,g,b)
end

# You can use this function to fill the background of the picture or of the graph area with a color gradient pattern.
# You must specify the starting color with its r,g,b values, the number of shades to apply with the decay parameter and optionnaly the target that can be :
# * Rchart:: TARGET_GRAPHAREA The currently defined graph area
# * Rchart:: TARGET_BACKGROUND The whole picture background
def draw_graph_area_gradient(r,g,b,decay,target=TARGET_GRAPHAREA)
b, g, r = validate_color(b, g, r)
x1,y1,x2,y2 = 0,0,0,0
if ( target == TARGET_GRAPHAREA )
x1 = @g_area_x1+1
x2 = @g_area_x2-1
y1 = @g_area_y1+1
y2 = @g_area_y2
end

if ( target == TARGET_BACKGROUND )
x1 = 0
x2 = @x_size
y1 = 0
y2 = @y_size
end
#Positive gradient
if ( decay > 0 )
y_step = (y2 - y1 - 2) / decay
i=0
while i<=decay
r-=1
g-=1
b-=1
yi1 = y1 + ( i * y_step );
yi2 = ( yi1 + ( i * y_step ) + y_step ).ceil
yi2 = y2-1 if ( yi2 >= yi2 )
image_filled_rectangle(@picture,x1,yi1,x2,yi2,r,g,b)
i=i+1
end
end
# Negative gradient
if ( decay < 0 )
y_step = (y2 - y1 - 2) / -decay
yi1 = y1
yi2 = y1+y_step
i= -decay
while i>=0
r+=1
g+=1
b+=1
image_filled_rectangle(@picture,x1,yi1,x2,yi2,r,g,b)
yi1+= y_step
yi2+= y_step
yi2 = y2-1 if ( yi2 >= yi2 )
i= i-1
end

end
end

# This function draw an aliased rectangle
# The upper left and bottom right border positions are used as first 4 arguments.
# The last 3 parameters are used to set the border color
def draw_rectangle(x1, y1, x2, y2, r, g, b)
b, g, r = validate_color(b, g, r)
c_rectangle = allocate_color(@picture,r, g, b)
x1=x1-0.2
y1=y1-0.2
x2=x2+0.2
y2=y2+0.2
self.draw_line(x1,y1,x2,y1,r,g,b)
self.draw_line(x2,y1,x2,y2,r,g,b)
self.draw_line(x2,y2,x1,y2,r,g,b)
self.draw_line(x1,y2,x1,y1,r,g,b)
end

# This function draw an aliased filled rectangle
# The upper left and bottom right border positions are used as first 4 arguments. The last R,G,B parameters are used to set the border color.
# You can specify if the aliased border will be drawn and the transparency.
def draw_filled_rectangle(x1, y1, x2, y2, r, g, b, draw_border=true, alpha=100,no_fall_back=false)
x1, x2 = x2, x1 if x2.to_f < x1.to_f
y1, y2 = y2, y1 if y2.to_f < y1.to_f
b,g,r=validate_color(b, g, r)

if(alpha == 100)
#Process shadows
if(@shadow_active && no_fall_back)
self.draw_filled_rectangle(x1+@shadow_x_distance,y1+@shadow_y_distance,x2+@shadow_x_distance,y2+@shadow_y_distance,@shadow_r_color,@shadow_g_color,@shadow_b_color,false,@shadow_alpha,true)
if(@shadow_blur != 0)
alpha_decay = (@shadow_alpha/ @shadow_blur)
i =1
while i<=@shadow_blur
self.draw_filled_rectangle(x1+@shadow_x_distance-i/2,y1+@shadow_y_distance-i/2,x2+@shadow_x_distance-i/2,y2+@shadow_y_distance-i/2,@shadow_r_color,@shadow_g_color,@shadow_b_color,false,@shadow_alpha-alpha_decay*i,true)
i = i+1
end
i = 1
while i<=@shadow_blur
self.draw_filled_rectangle(x1+@shadow_x_distance+i/2,y1+@shadow_y_distance+i/2,x2+@shadow_x_distance+i/2,y2+@shadow_y_distance+i/2,@shadow_r_color,@shadow_g_color,@shadow_b_color,false,@shadow_alpha-alpha_decay*i,true)
i = i+1
end
end
end
image_filled_rectangle(@picture,x1.to_f.round,y1.to_f.round,x2.to_f.round,y2.to_f.round,r,g,b)
else
layer_width = (x2-x1).abs+2
layer_height = (y2-y1).abs+2
@layers[0] = GD::Image.newTrueColor(layer_width,layer_height)
c_white = @layers[0].colorAllocate(255,255,255)
image_filled_rectangle(@layers[0],0,0,layer_width,layer_height,255,255,255)
@layers[0].transparent(c_white)
image_filled_rectangle(@layers[0],1.round,1.round,(layer_width-1).round,(layer_height-1).round,r,g,b)
image_copy_merge(@layers[0],@picture,([x1,x2].min-1).round,([y1,y2].min-1).round,0,0,layer_width,layer_height,alpha)
#TODO Find out equivalent method
@layers[0].destroy
end
if (draw_border )
shadow_settings = @shadow_active
@shadow_active = false
self.draw_rectangle(x1,y1,x2,y2,r,g,b)
@shadow_active = shadow_settings
end
end

# This function draw an aliased rectangle with rounded corners
# The upper left and bottom right border positions are used as first 4 arguments.
# Argument #5 represents the radius of the rounded corner.
# The last 3 parameters are used to set the border color.
def draw_rounded_rectangle(x1, y1, x2, y2, radius,r, g, b)
b, g, r = validate_color(b, g, r)

#c_rectangle = allocate_color(@picture,r,g,b)

step = 90 / ((3.1418 * radius)/2)
i=0
while i<=90
x = Math.cos((i+180)*3.1418/180) * radius + x1 + radius
y = Math.sin((i+180)*3.1418/180) * radius + y1 + radius
self.draw_antialias_pixel(x,y,r,g,b)

x = Math.cos((i-90)*3.1418/180) * radius + x2 - radius
y = Math.sin((i-90)*3.1418/180) * radius + y1 + radius
self.draw_antialias_pixel(x,y,r,g,b)

x = Math.cos((i)*3.1418/180) * radius + x2 - radius
y = Math.sin((i)*3.1418/180) * radius + y2 - radius
self.draw_antialias_pixel(x,y,r,g,b)

x = Math.cos((i+90)*3.1418/180) * radius + x1 + radius
y = Math.sin((i+90)*3.1418/180) * radius + y2 - radius
self.draw_antialias_pixel(x,y,r,g,b)
i=i+step
end

x1=x1-0.2
y1=y1-0.2
x2=x2+0.2
y2=y2+0.2
self.draw_line(x1+radius,y1,x2-radius,y1,r,g,b)
self.draw_line(x2,y1+radius,x2,y2-radius,r,g,b)
self.draw_line(x2-radius,y2,x1+radius,y2,r,g,b)
self.draw_line(x1,y2-radius,x1,y1+radius,r,g,b)
end
# This function draw an aliased filled rectangle with rounded corners
# The upper left and bottom right border positions are used as first 4 arguments.
# Argument #5 represents the radius of the rounded corner.
# The last 3 parameters are used to set the border color.
def draw_filled_rounded_rectangle(x1, y1, x2, y2, radius,r, g, b, draw_border=true, alpha=100)
b, g, r = validate_color(b, g, r)
c_rectangle = allocate_color(@picture,r,g,b)

step = 90 / ((3.1418 * radius)/2)
i=0
while i<=90
xi1 = Math.cos((i+180)*3.1418/180) * radius + x1 + radius
yi1 = Math.sin((i+180)*3.1418/180) * radius + y1 + radius

xi2 = Math.cos((i-90)*3.1418/180) * radius + x2 - radius
yi2 = Math.sin((i-90)*3.1418/180) * radius + y1 + radius

xi3 = Math.cos((i)*3.1418/180) * radius + x2 - radius
yi3 = Math.sin((i)*3.1418/180) * radius + y2 - radius

xi4 = Math.cos((i+90)*3.1418/180) * radius + x1 + radius
yi4 = Math.sin((i+90)*3.1418/180) * radius + y2 - radius

image_line(@picture,xi1,yi1,x1+radius,yi1,r,g,b)
image_line(@picture,x2-radius,yi2,xi2,yi2,r,g,b)
image_line(@picture,x2-radius,yi3,xi3,yi3,r,g,b)
image_line(@picture,xi4,yi4,x1+radius,yi4,r,g,b)

self.draw_antialias_pixel(xi1,yi1,r,g,b)
self.draw_antialias_pixel(xi2,yi2,r,g,b)
self.draw_antialias_pixel(xi3,yi3,r,g,b)
self.draw_antialias_pixel(xi4,yi4,r,g,b)
           
i=i+step
        end

image_filled_rectangle(@picture,x1,y1+radius,x2,y2-radius,r,g,b)

image_filled_rectangle(@picture,x1+radius,y1,x2-radius,y2,r,g,b)

x1=x1-0.2
y1=y1-0.2
x2=x2+0.2
y2=y2+0.2
self.draw_line(x1+radius,y1,x2-radius,y1,r,g,b)
self.draw_line(x2,y1+radius,x2,y2-radius,r,g,b)
self.draw_line(x2-radius,y2,x1+radius,y2,r,g,b)
self.draw_line(x1,y2-radius,x1,y1+radius,r,g,b)
end
# This function draw an aliased circle at position (xc,yc) with the specified radius.
# The last 3 parameters are used to set the border color.
# Width is used to draw ellipses.
def draw_circle(xc,yc,height,r,g,b,width=0)
width = height if ( width == 0 )
b, g, r = validate_color(b, g, r)
step = 360 / (2 * 3.1418 * [width,height].max)
i =0
while(i<=360)
x= Math.cos(i*3.1418/180) * height + xc
y = Math.sin(i*3.1418/180) * width + yc
self.draw_antialias_pixel(x,y,r,g,b)
i = i+step
end
end

# This function draw a filled aliased circle at position (xc,yc) with the specified radius.
# The last 3 parameters are used to set the border and filling color.
# Width is used to draw ellipses.
def draw_filled_circle(xc,yc,height,r,g,b,width=0)
width = height if ( width == 0 )
b, g, r = validate_color(b, g, r)
step = 360 / (2 * 3.1418 * [width,height].max)
i =90
while i<=270
x1 = Math.cos(i*3.1418/180) * height + xc
y1 = Math.sin(i*3.1418/180) * width + yc
x2 = Math.cos((180-i)*3.1418/180) * height + xc
y2 = Math.sin((180-i)*3.1418/180) * width + yc
self.draw_antialias_pixel(x1-1,y1-1,r,g,b)
self.draw_antialias_pixel(x2-1,y2-1,r,g,b)
image_line(@picture,x1,y1-1,x2-1,y2-1,r,g,b) if ( (y1-1) > yc - [width,height].max )
i= i+step
end
end

# This function draw an aliased ellipse at position (xc,yc) with the specified height and width.
# The last 3 parameters are used to set the border color.
def draw_ellipse(xc,yc,height,width,r,g,b)
self.draw_circle(xc,yc,height,r,g,b,width)
end


# This function draw a filled aliased ellipse at position (xc,yc) with the specified height and width.
# The last 3 parameters are used to set the border and filling color.
def draw_filled_ellipse(xc,yc,height,width,r,g,b)
self.draw_filled_circle(xc,yc,height,r,g,b,width)
end

# This function will draw an aliased line between points (x1,y1) and (x2,y2).
# The last 3 parameters are used to set the line color.
# The last optional parameter is used for internal calls made by graphing function.If set to true, only portions of line inside the graph area will be drawn.

def draw_line(x1,y1,x2,y2,r,g,b,graph_function=false)
if ( @line_dot_size > 1 )
self.draw_dotted_line(x1,y1,x2,y2,@line_dot_size,r,g,b,graph_function)
else
b, g, r = validate_color(b, g, r)
distance = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)) rescue 0
if ( distance == 0 )
return -1
else
x_step = (x2-x1) / distance
y_step = (y2-y1) / distance
i =0
while i<=distance
x = i * x_step + x1
y = i * y_step + y1
if((x >= @g_area_x1.to_f && x <= @g_area_x2.to_f && y >= @g_area_y1.to_f && y <= @g_area_y2.to_f) || !graph_function )
if ( @line_width == 1 )
self.draw_antialias_pixel(x,y,r,g,b)
else
start_offset = -(@line_width/2)
end_offset = (@line_width/2)
j = start_offset

while j<=end_offset
self.draw_antialias_pixel(x+j,y+j,r,g,b)
j+=1
end
end
end
i =i+1
end
end
end
end

# This function will draw an aliased dotted line between points (x1,y1) and (x2,y2).
# Parameter #5 is used to specify the dot size ( 2 will draw 1 point every 2 points )
# The last 3 parameters are used to set the line color.
def draw_dotted_line(x1,y1,x2,y2,dot_size,r,g,b,graph_function=false)
b, g, r = validate_color(b, g, r)
distance = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))
x_step = (x2-x1) / distance
y_step = (y2-y1) / distance
dot_index = 0
i = 0
start_offset = 0

while(i<=distance)
x = i * x_step + x1
y = i * y_step + y1
if ( dot_index <= dot_size)
if ( (x >= @g_area_x1 && x <= @g_area_x2 && y >= @g_area_y1 && y <= @g_area_y2) || !graph_function )
if (@line_width == 1 )
self.draw_antialias_pixel(x,y,r,g,b)
else
start_offset = start_offset -(@line_width/2)
end_offset = (@line_width/2)
j = start_offset
while(j<= end_offset)
self.draw_antialias_pixel(x+j,y+j,r,g,b)
j= j+1
end
end
end
end
dot_index = dot_index+1
dot_index = 0 if (dot_index == dot_size * 2)
i= i+1
end

end

# This function allows you to merge an external PNG picture with your graph specifying the position and the transparency
def draw_from_png(file_name,x,y,alpha=100)
self.draw_from_picture(1,file_name,x,y,alpha)
end

#This function allows you to merge an external GIF picture with your graph specifying the position and the transparenc
#def draw_from_gif(file_name,x,y,alpha=100)
#self.draw_from_picture(2,file_name,x,y,alpha)
#end

# This function allows you to merge an external JPG picture with your graph specifying the position and the transparency.
def draw_from_jpg(file_name,x,y,alpha=100)
self.draw_from_picture(3,file_name,x,y,alpha)
end

# Generic loader function for external pictures accepts png format
def draw_from_picture(pic_type,file_name,x,y,alpha=100)
if ( File.exist?(file_name))
raster = image_create_from_png(file_name) if ( pic_type == 1 )
# raster = image_create_from_gif(file_name) if ( pic_type == 2 )
raster = image_create_from_jpeg(file_name) if ( pic_type == 3 )
infos = get_image_size(raster)
width = infos[0]
height = infos[1]
image_copy_merge(raster,@picture,x,y,0,0,width,height,alpha)
image_destroy(raster)
end
end

# This function will draw an alpha pixel at position (x,y).
# alpha is used to specify the transparency factor ( between 0 and 100 )
# The last 3 parameters are used to set the pixel color.
def draw_alpha_pixel(x,y,alpha,r,g,b)
b, g, r = validate_color(b, g, r)
if ( x < 0 || y < 0 || x >= @x_size || y >= @y_size )
#eturn(-1)
#TODO check image_color_at method is right?
else
rgb2= image_color_at(@picture, x, y)

r2 = (rgb2 >> 16) & 0xFF
g2 = (rgb2 >> 8) & 0xFF
b2 = rgb2 & 0xFF
i_alpha = (100 - alpha)/100
alpha = alpha / 100
ra = (r*alpha+r2*i_alpha).floor
ga = (g*alpha+g2*i_alpha).floor
ba = (b*alpha+b2*i_alpha).floor
image_set_pixel(@picture,x,y,ra,ga,ba)
end
end
# color helper
def allocate_color(picture,r,g,b,factor=0)
r = r + factor
g = g + factor
b = b + factor
r = 0 if ( r < 0 )
r = 255 if ( r > 255 )
g = 0 if ( g < 0 )
g = 255 if ( g > 255 )
b = 0 if ( b < 0 )
b = 255 if ( b > 255 )
image_color_allocate(picture,r,g,b)
end

# Use this function to add a border to your picture. Be carefull, drawing a border will change all the chart components positions, thus this call must be the last one before one of the rendering methods!!!
# You can specify the size of the border and its color.
# The width and height of the picture will be modified by 2x the size value.
def add_border(size=3,r=0,g=0,b=0)
width = @x_size+2*size
height = @y_size+2*size
resampled = image_create_true_color(width,height)
image_filled_rectangle(resampled,0,0,width,height, r, g, b)
image_copy(@picture,resampled,size,size,0,0,@x_size,@y_size)
image_destroy(@picture)
@x_size = width
@y_size = height
@picture = image_create_true_color(@x_size,@y_size)
image_filled_rectangle(@picture,0,0,@x_size,@y_size,255,255,255)
image_color_transparent(@picture,255,255,255)
image_copy(resampled,@picture,0,0,0,0,@x_size,@y_size)
end

# Private functions for internal processing Internal function.
def draw_antialias_pixel(x,y,r,g,b,alpha=100,no_fall_back=false)
#Process shadows
if(@shadow_active && !no_fall_back)
self.draw_antialias_pixel(x+@shadow_x_distance,y+@shadow_y_distance,@shadow_r_color,@shadow_g_color,@shadow_b_color,@shadow_alpha,true)
if(@shadow_blur != 0)
alpha_decay = (@shadow_alpha*1.0 / @shadow_blur)
i=1
while i<=@shadow_blur
self.draw_antialias_pixel(x+@shadow_x_distance-i/2,y+@shadow_y_distance-i/2,@shadow_r_color,@shadow_g_color,@shadow_b_color,@shadow_alpha-alpha_decay*i,true)
i = i+1
end
i =1
while i<=@shadow_blur
self.draw_antialias_pixel(x+@shadow_x_distance+i/2,y+@shadow_y_distance+i/2,@shadow_r_color,@shadow_g_color,@shadow_b_color,@shadow_alpha-alpha_decay*i,true)
i = i+1
end
end
end
b, g, r = validate_color(b, g, r)
plot = ""
xi = x.floor rescue 0
yi = y.floor rescue 0
if ( xi == x && yi == y)
if ( alpha == 100 )
image_set_pixel(@picture,x,y,r,g,b)
else
self.draw_alpha_pixel(x,y,alpha,r,g,b)
end
else
if xi > 0 || yi > 0 #soe error occures therefor added condtion
alpha1 = (((1 - (x - x.floor)) * (1 - (y - y.floor)) * 100) / 100) * alpha
self.draw_alpha_pixel(xi,yi,alpha1,r,g,b) if alpha1 > @anti_alias_quality
alpha2 = (((x - x.floor) * (1 - (y - y.floor)) * 100) / 100) * alpha
self.draw_alpha_pixel(xi+1,yi,alpha2,r,g,b) if alpha2 > @anti_alias_quality
alpha3 = (((1 - (x - x.floor)) * (y - y.floor) * 100) / 100) * alpha
self.draw_alpha_pixel(xi,yi+1,alpha3,r,g,b) if alpha3 > @anti_alias_quality
alpha4 = (((x - x.floor) * (y - y.floor) * 100) / 100) * alpha
self.draw_alpha_pixel(xi+1,yi+1,alpha4,r,g,b) if alpha4 > @anti_alias_quality
end
end
end

# Validate data contained in the description array Internal function
def validate_data_description(function_name,data_description,description_required=true)
if (data_description["position"].nil?)
@errors << "[Warning] #{function_name} - Y Labels are not set."
data_description["position"] = "name"
end

if (description_required)
if ((data_description["description"].nil?))
@errors << "[Warning] #{function_name} - Series descriptions are not set."
data_description["values"].each do |value|
if data_description["description"].nil?
data_description["description"]={value=> value}
else
data_description["description"]=data_description["description"].merge(value=>value)
end
end
end

data_desc_count = data_description["values"].is_a?(Array) ? data_description["values"].count : 1
if ((data_description["description"].count) < data_desc_count)
@errors << "[Warning] #{function_name} - Some series descriptions are not set."
data_description["values"].each do |value|
data_description["description"][value] = value if ( data_description["description"][value].nil?)
end
end
end
return data_description
end

#Validate data contained in the data array Internal function
def validate_data(function_name,data)
data_summary = {}
data.each do |v|
v.each do |key,val|

if (data_summary[key].nil?)
data_summary[key] = 1
else
data_summary[key] = data_summary[key]+1
end
end
end
if ( data_summary.max.last == 0 ) #TODO Check method
@errors << "[Warning] #{function_name} No data set."
end
data_summary.each do |k,v|
if v < data_summary.max.last
@errors << "#{function_name} Missing Data in serie #{key}"
end
end
return data
end
# Activate the image map creation process Internal function
def set_image_map(mode=true,graph_id="MyGraph")
@build_map = mode
@map_id = graph_id
end
# Add a box into the image map Internal function
def add_to_image_map(x1,y1,x2,y2,serie_name,value,caller_function)
if ( @map_function == nil || @map_function == caller_function )
@image_map << (x1.round).to_s+","+(y1.round).to_s+","+(x2.round).to_s+","+(y2.round).to_s+","+serie_name+","+value.to_s
@map_function = caller_function
end
end

#Convert seconds to a time format string
def to_time(value)
hour = (value/3600).floor
minute = ((value - hour*3600)/60).floor
second =(value - hour*3600 - minute*60).floor

hour = "0.#{Hour}" if (hour.length == 1 )
minute = "0.#{minute}" if (minute.length == 1 )
second = "0.#{second}" if (second.length == 1 )

return ("#{hour}.:.#{minute}}.:.#{second}")
end

# Convert to metric system */
def to_metric(value)
go = (value/1000000000).floor
mo = ((value - go*1000000000)/1000000).floor
ko = ((value - go*1000000000 - mo*1000000)/1000).floor
o = (value - go*1000000000 - mo*1000000 - ko*1000).floor

return("#{go}..#{mo}.g") if (go != 0)
return("#{mo}...#{ko}.m") if (mo != 0)
return("#{ko}...#{o}).k") if (ko != 0)
return(o)
end

# Convert to curency
def to_currency(value)
go = (value/1000000000).floor
mo = ((value - go*1000000000)/1000000).floor
ko = ((value - go*1000000000 - mo*1000000)/1000).floor
o = (value - go*1000000000 - mo*1000000 - ko*1000).floor

o = "00.#{o}" if ( (o.length) == 1 )
o = "0.#{o}" if ( (o.length) == 2 )

result_string = o
result_string = "#{ko}...#{result_string}" if ( ko != 0 )
result_string = "#{mo}...#{result_string}" if ( mo != 0 )
result_string = "#{go}...#{result_string}" if ( go != 0 )

result_string = @currency.result_strin
return(result_string)
end
# Set date format for axis labels TODO
def set_date_format(format)
@date_format = format
end

def to_date(value)
#return(Time.parse(value))
end
# Check if a number is a full integer (for scaling)
def is_real_int(value)
value.ceil == value.floor
end
# round of particular decimal
def round_of(no,n=0)
(no * (10.0 ** n)).round * (10.0 ** (-n))
end

#convert degree to radian
def deg2rad(deg)
deg*Math::PI/180
end

def raise_fatal(message)
puts "[FATAL] "+message
return -1
end
# Print all error messages on the CLI or graphically
def print_errors(mode="cli")
return(0) if (@errors.count == 0)

if mode == "cli"
@errors.each do |value|
puts value
end
elsif ( mode == "gd" )
self.set_line_style(width=1)
max_width = 0
@errors.each do |value|
position = image_ftb_box(@error_font_size,0,@error_font_name,value)
text_width = position[2]-position[0]
max_width = text_width if ( text_width > max_width )
end
self.draw_filled_rounded_rectangle(@x_size-(max_width+20),@y_size-(20+((@error_font_size+4)*(@errors.count))),@x_size-10,@y_size-10,6,233,185,185)
self.draw_rounded_rectangle(@x_size-(max_width+20),@y_size-(20+((@error_font_size+4)*(@errors.count))),@x_size-10,@y_size-10,6,193,145,145)
c_text_color = allocate_color(@picture,133,85,85)
ypos = @y_size - (18 + ((@errors.count)-1) * (@error_font_size + 4))
@errors.each do |value|
image_ttf_text(@picture,@error_font_size,0,@x_size-(max_width+15),ypos,c_text_color,@error_font_name,value)
ypos = ypos + (@error_font_size + 4)
end
end
end
# render Graph as png format
def render_png(file_name)
self.print_errors(@error_interface) if ( @error_reporting )
file = File.new(file_name,"wb")
@picture.png(file)
file.close
end
# render Graph as jpeg format
def render_jpeg(file_name,quality=0)
self.print_errors(@error_interface) if ( @error_reporting )
file = File.new(file_name,"wb")
@picture.jpeg(file,quality)
file.close
    end

#Outputs the image in PNG format as String object.
#This method will be especially useful when you want to transmit an image directly to an user(i.e, without first writing it to a file)

  def render_png_str(img=self.picture)
    img.pngStr
  end

  
  # resize image on passing png,jpeg,or gd image
# pass file_name/gd image,new_file_name,percentage,or resize width,resize height
def resize_image(file_name,resize_file_name="test",percentage=0,resized_width=0,resized_height=0)
image = GD::Image.new_from_png(file_name) rescue ""
render_file_as = "png"
if !image.is_a?(GD::Image)
image = GD::Image.new_from_jpeg(file_name) rescue ""
render_file_as = "jpeg"
elsif !image.is_a?(GD::Image)
image = GD::Image.new_from_gd(file_name) rescue ""
render_file_as = "png"
end

if image.is_a?(GD::Image)
width=image.width
height=image.height
if percentage >0
resized_width = (width*percentage)/100.0
resized_height = (height*percentage)/100.0
elsif(resized_width != 0 && resized_height ==0)

resized_height = (100 /(width*1.0/resized_width) ) * 0.01
resized_height = (height * resized_height).round
elsif( resized_height != 0 && resized_width ==0)

resized_width = (100 /(height*1.0/resized_height) ) * 0.01
resized_width = (width * resized_width).round
else
resized_width = 100
resized_height = 100
end

resize_image = GD::Image.newTrueColor(resized_width, resized_height)
image.copyResized(resize_image, 0,0,0,0, resized_width,resized_height, width, height)
file=File.new(resize_file_name,"wb")
if render_file_as == "png"
resize_image.png(file)
elsif render_file_as == "jpeg"
resize_image.jpeg(file)
end
file.close
else
puts "Provide proper image"
end
end
##########################################3
#GD MAP FUNCTION HELPER
#ON NEXT VERSION TRY TO MAP THIS FUNCTION WITH GD2 Gem
def image_ttf_text(picture,font_size,angle,x_pos,y_pos,fg_color,font_name,str)
angle = deg2rad(angle)
err,brect=picture.stringTTF(fg_color, font_name, font_size, angle, x_pos, y_pos, str.to_s)
end

def image_ftb_box(font_size,angle,font_name,str,x=0,y=0)
angle = deg2rad(angle)
err,brect = GD::Image.stringFT(0, font_name, font_size, angle, x, y, str)
brect
end #Compute and draw the scale

def image_color_allocate(picture,r,g,b)
picture.colorAllocate(r,g,b)
end

def image_set_pixel(picture,x,y,r,g,b)
color=image_color_allocate(picture,r,g,b)
picture.setPixel(x,y,color)
end

def image_color_at(picture,x,y)
color = picture.getPixel(x, y)
end

def image_line(picture,x1,y1,x2,y2,r,g,b)
picture.line(x1, y1, x2, y2, allocate_color(picture,r,g,b))
end

def image_filled_rectangle(picture,x1,y1,x2,y2,r,g,b)
color = picture.colorAllocate(r,g,b)
picture.filledRectangle(x1, y1, x2, y2, color)
end

def image_create_true_color(width,height)
GD::Image.newTrueColor(width, height)
end

def image_copy_merge(src_pic,dest_pic, dst_x, dst_y, src_x, src_y, w, h, pct, gray = false)
src_pic.copyMerge(dest_pic, dst_x, dst_y, src_x, src_y, w, h, pct)
end

def image_copy(src_pic,dst_pic,dest_x, dest_y, self_x, self_y, width, height)
src_pic.copy(dst_pic,dest_x, dest_y, self_x, self_y, width, height)
end

def image_color_transparent(im,r,g,b)
color=allocate_color(im, r, g, b)
im.transparent(color)
end

def image_destroy(image)
image.destroy
end

def image_create_from_png(file_name)
GD::Image.new_from_png(file_name)
end
def image_create_from_jpeg(file_name)
GD::Image.new_from_jpeg(file_name)
end

def get_image_size(image)
[image.width,image.height]
end

def image_filled_polygon(picture,points,r,g,b,points_count=0)
color = allocate_color(picture,r,g,b)
polygon=GD::Polygon.new
i=0
if points_count == 0
num_points = (points.length+1)
else
num_points = points_count+points_count
end
while(i<=num_points)
j =i
polygon.addPt(points[j],points[j+1]) if(!points[j+1].nil?)
i = i+2
end
picture.filledPolygon(polygon, color)
end

end
Something went wrong with that request. Please try again.