
Ion 1.1 Specification

Ion Team

Ion 1.1 Specification ii

Contents

1 Introduction 1

2 What’s New in Ion 1.1 2

2.1 Motivation . 2

2.2 Backwards Compatibility . 2

2.3 Text Syntax Changes . 2

2.4 Binary Encoding Changes . 3

2.4.1 Inlined Symbolic Tokens . 3

2.4.2 Delimited Containers . 4

2.4.3 Low-level Binary Encoding Changes . 4

2.4.4 Type Encoding Changes . 4

2.4.5 Encoding Expressions in Binary . 5

2.5 Macros, Templates, and Encoding-Expressions . 5

2.5.1 Encoding Context and Modules . 6

2.5.2 Macro Definitions . 6

2.5.3 Macro Definition Language . 7

2.5.4 Shared Modules . 7

2.6 System Symbol Table Changes . 7

2.7 E-Expression Calling Conventions in Binary . 8

3 Macros by Example 9

3.1 Constants . 9

3.2 Simple Templates . 10

3.3 Invoking Macros from Templates . 11

3.3.1 E-expressions Versus S-expressions . 12

3.4 Special Form: literal . 12

3.5 Parameter Types . 13

3.6 Rest Parameters . 13

3.7 Arguments and Results are Streams . 14

3.7.1 Splicing in Encoded Data . 14

3.7.2 Splicing in Template Expressions . 15

Ion 1.1 Specification iii

3.8 Mapping Templates Over Streams: for . 15

3.9 Empty Streams: void . 16

3.10 Cardinality . 17

3.10.1 Exactly-One . 17

3.10.2 Zero-or-One . 17

3.10.3 Zero-or-More . 18

3.10.4 One-or-More . 18

3.11 Grouped Parameters . 18

3.12 Optional Arguments . 20

3.13 Tagless and Fixed-Width Types . 20

3.14 Macro Shapes . 21

3.15 Return Types . 22

4 Modules by Example 23

4.1 Ion 1.0 Encoding Environment . 23

4.2 Modules from the Outside . 23

4.3 Ion 1.1 Encoding Environment . 24

4.4 Defining Local Symbols . 25

4.5 Importing Symbols . 26

4.6 Declaring Multiple Modules . 26

4.7 Extending the Current Symbol Table . 27

4.8 Installing and Using Macros . 28

4.9 Shared Modules . 28

4.10 Using Shared Macros . 29

4.11 Private Imports . 30

4.12 Macro Aliases . 32

4.13 Exports . 33

4.14 Extending the Macro Table . 33

4.15 Separate Installation . 34

4.16 Prioritization . 34

5 Encoding Directives 35

5.1 Document Structure . 36

5.2 Ion Version Markers . 36

5.3 $ion_encoding Directives . 36

5.3.1 Retaining Available Modules . 37

5.3.2 Declaring Modules . 37

5.3.2.1 Loading Shared Modules . 37

5.3.2.2 Defining Inline Modules . 38

5.3.3 Using Modules . 38

5.3.4 Assembling the Symbol Table . 38

5.3.5 Assembling the Macro Table . 39

5.4 $ion_symbol_table Directives . 39

Ion 1.1 Specification iv

6 Encoding Modules 40

6.1 Overview . 40

6.1.1 Module Interface . 40

6.1.2 Internal Environment . 40

6.2 Resolving Macro References . 41

6.3 Module Versioning . 42

6.4 Inline, Shared, and Tunneled Modules . 43

6.5 Module Bodies . 43

6.5.1 Dependencies . 43

6.5.2 The Symbol Table . 44

6.5.3 Declaring Macros . 44

6.5.3.1 Macro Aliases . 44

6.5.3.2 Macro Definitions . 44

6.5.3.3 Exporting Macros . 45

7 Macro Signatures 46

7.1 Parameter Shapes . 46

7.2 Base Types . 46

7.3 Cardinality . 47

7.4 Grouped Parameters . 48

7.5 Rest Parameters . 48

7.6 Voidable and Optional Parameters . 48

7.7 Arity . 48

7.8 Result Specification . 48

8 The System Module 50

8.1 Primitive Operators . 50

8.1.1 Stream Constructors . 50

8.1.1.1 void . 50

8.1.1.2 values . 50

8.1.2 Value Constructors . 51

8.1.2.1 make_string . 51

8.1.2.2 make_symbol . 51

8.1.2.3 make_list . 51

8.1.2.4 make_sexp . 51

8.1.2.5 make_struct . 51

8.1.2.6 make_decimal . 52

8.1.2.7 make_float . 52

8.1.2.8 make_timestamp . 52

Ion 1.1 Specification v

8.1.2.9 annotate . 52

8.2 Derived Operators . 53

8.2.1 Symbol Table Management . 53

8.2.1.1 Local Symtab Declaration . 53

8.2.1.2 Local Symtab Appending . 53

8.2.1.3 Embedded Documents (aka Local Scopes) . 53

8.2.2 Compact Module Definitions . 53

9 Template Expressions 54

9.1 Grammar . 54

9.1.1 Symbols are Variable References . 54

9.1.2 Other Scalars are Literals . 55

9.1.3 Lists and Structs are Quasi-Literals . 55

9.1.4 S-expressions are Operator Invocations . 55

9.2 Special Forms . 55

9.2.1 Preventing Evaluation . 55

9.2.1.1 literal . 55

9.2.2 Conditionals . 56

9.2.2.1 if_void . 56

9.2.2.2 if_single . 56

9.2.2.3 if_many . 56

9.2.3 Mapping . 56

9.2.3.1 for . 56

9.3 Macro Invocation . 57

9.4 Type Checking . 57

9.5 Error Handling . 57

10 Ion 1.1 Binary Encoding 58

10.1 Encoding Primitives . 58

10.1.1 FlexUInt . 58

10.1.2 FlexInt . 59

10.1.3 FixedUInt . 59

10.1.4 FixedInt . 60

10.1.5 FlexSym . 60

10.2 Opcodes . 61

10.3 Encoding Expressions . 62

10.3.1 E-expression With the Address in the Opcode . 62

10.3.2 E-expression With the Address as a Trailing FlexUInt . 62

10.4 Booleans . 64

Ion 1.1 Specification vi

10.5 Numbers . 64

10.5.1 Integers . 64

10.5.2 Floats . 65

10.5.3 Decimals . 66

10.6 Timestamps . 67

10.6.1 Short-form Timestamp . 67

10.6.1.1 Opcodes by precision and offset . 68

10.6.2 Long-form Timestamp . 72

10.7 Text . 74

10.7.1 Strings . 74

10.7.2 Symbols With Inline Text . 74

10.7.3 Symbols With a Symbol Address . 75

10.8 Binary Data . 75

10.8.1 Blobs . 75

10.8.2 Clobs . 76

10.9 Containers . 76

10.9.1 Lists . 76

10.9.1.1 Length-prefixed encoding . 76

10.9.1.2 Delimited Encoding . 77

10.9.2 S-Expressions . 78

10.9.3 Structs . 79

10.9.3.1 Structs With Symbol Address Field Names . 79

10.9.3.2 Structs With FlexSym Field Names . 80

10.9.3.3 Delimited Structs . 80

10.10Nulls . 81

10.11Annotations . 82

10.12Annotations With Symbol Addresses . 82

10.13Annotations With FlexSym Text . 83

10.14NOPs . 84

10.15E-expression Arguments . 84

10.15.1 Tagged Encodings . 84

10.15.1.1 Core types . 84

10.15.1.2 Abstract types . 84

10.15.1.3 Tagged E-expression Argument Encoding . 85

10.15.2 Tagless Encodings . 86

10.15.2.1 Primitive Types . 87

10.15.2.2 Macro Shapes . 87

10.16Encoding E-expressions With Multiple Arguments . 87

10.17Argument Encoding Bitmap (AEB) . 88

Ion 1.1 Specification vii

10.18Expression Groups . 89

10.18.1 Length-prefixed Expression Groups . 89

10.18.2 Delimited Expression Groups . 89

10.18.2.1 Delimited Tagged Expression Groups . 89

10.18.2.2 Delimited Tagless Expression Groups . 90

11 Domain Grammar 91

11.1 Documents . 91

11.2 Encoding Directives . 91

11.2.1 Catalog Access . 91

11.3 Macro References . 92

11.4 Module Definitions . 92

11.4.1 Module Bodies . 92

11.5 Macro Definitions . 92

11.6 Template Expressions . 93

11.7 Backwards Compatibility . 93

11.7.1 Symbol Table Directives . 93

11.7.2 Tunneled Modules . 93

12 Glossary 94

Ion 1.1 Specification 1 / 96

Chapter 1

Introduction

Draft Status

This document is currently a working draft and subject to change.

Audience

This documents presents the formal specification for the Ion 1.1 data format. This document is not intended to be used as a user
guide or as a cook book, but as a reference to the syntax and semantics of the Ion data format and its logical data model.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 2 / 96

Chapter 2

What’s New in Ion 1.1

We will go through a high-level overview of what is new and different in Ion 1.1 from Ion 1.0 from an implementer’s perspective.

2.1 Motivation

Ion 1.1 has been designed to address some of the trade-offs in Ion 1.0 to make it suitable for a wider range of applications. Ion
1.1 now makes length prefixing of containers optional, and makes the interning of symbolic tokens optional as well. This allows
for applications that write data more than they read data or are constrained by the writer in some way to have more flexibility.
Data density is another motivation. Certain encodings (e.g., timestamps, integers) have been made more compact and efficient,
but more significantly, macros now enable applications to have very flexible interning of their data’s structure. In aggregate, data
transcoded from Ion 1.0 to Ion 1.1 should be more compact.

2.2 Backwards Compatibility

Ion 1.1 is backwards compatible to Ion 1.0. Backwards compatibility is defined as being able to parse Ion 1.0 encoded data and
ensuring that any data model values produced by Ion 1.1 that are not system values must be representable in Ion 1.0. To wit, any
data that can be produced and read by an application in Ion 1.1 must have an equivalent representation in Ion 1.0.

Important
Discussion: Is this statement too weak? Specifically, should we be attempting to "fill in the holes" in the Ion data model
around system values? Should we require that Ion 1.1 implementations produce Ion 1.0 data?

Ion 1.1 is not required to preserve Ion 1.0 binary encodings in Ion 1.1 encoding contexts (i.e., the type codes and lower-level
encodings are not preserved in the new version). The Ion Version Marker (IVM) is used to denote the different versions of the
syntax. Ion 1.1 does retain text compatibility with Ion 1.0 in that the changes are a strict superset of the grammar, however due
to the updated system symbol table, symbol IDs referred to using the $n syntax for symbols beyond the 1.0 system symbol table
are not compatible.

2.3 Text Syntax Changes

Ion 1.1 text must use the $ion_1_1 version marker at the top-level of the data stream or document.

The only syntax change for the text format is the introduction of encoding expression (E-expression) syntax, which allows for
the invocation of macros in the data stream. This syntax is grammatically similar to S-expressions, except that these expressions

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 3 / 96

are opened with (: and closed with). For example, (:a 1 2) would expand the macro named a with the arguments 1 and 2.
See the Macros, Templates, and Encoding-Expressions section for details.

This syntax is allowed anywhere an Ion value is allowed:

Figure 1. E-expression Examples

// At the top level
(:foo 1 2)

// Nested in a list
[1, 2, (:bar 3 4)]

// Nested in an S-expression
(cons a (:baz b))

// Nested in a struct
{c: (:bop d)}

E-expressions are also grammatically allowed in the field name position of a struct and when used there, indicate that the
expression should expand to a struct value that is merged into the enclosing struct:

Figure 2. E-Expression in field position of struct.

{
a:1,
b:2,
(:foo 1 2),
c: 3,

}

In the above example, the E-expression (:foo 1 2) must evaluate into a struct that will be merged between the b field and
the c field. If it does not evaluate to a struct, then the above is an error.

2.4 Binary Encoding Changes

Ion 1.1 binary encoding reorganizes the type descriptors to support compact E-expressions, make certain encodings more com-
pact, and certain lower priority encodings marginally less compact. The IVM for this encoding is the octet sequence 0xE0
0x01 0x01 0xEA.

2.4.1 Inlined Symbolic Tokens

Important
Discussion: Should we call this something else (e.g., non-interned)?

In binary Ion 1.0, symbol values, field names, and annotations are required to be encoded using a symbol ID in the local symbol
table. For some use cases (e.g., as write-once, read-maybe logs) this creates a burden on the writer and may not actually be
efficient for an application. Ion 1.1 introduces optional binary syntax for encoding inline UTF-8 sequences for these tokens
which can allow an encoder to have flexibility in whether and when to add a given symbolic token to the symbol table.

Ion text requires no change for this feature as it already had inline symbolic tokens without using the local symbol table. Ion text
also has compatible syntax for representing the local symbol table and encoding of symbolic tokens with their position in the
table (i.e., the $id syntax).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 4 / 96

2.4.2 Delimited Containers

In Ion 1.0, all data is length prefixed. While this is good for optimizing the reading of data, it requires an Ion encoder to buffer
any data in memory to calculate the data’s length. Ion 1.1 introduces optional binary syntax to allow containers to be encoded
with an end marker instead of a length prefix.

2.4.3 Low-level Binary Encoding Changes

Ion 1.0’s VarUInt and VarInt encoding primitives used big-endian byte order and used the high bit of each byte to indicate
whether it was the final byte in the encoding. VarInt used an additional bit in the first byte to represent the integer’s sign. Ion
1.1 replaces these primitives with more optimized versions called FlexUInt and FlexInt.

FlexUInt and FlexInt use little-endian byte order, avoiding the need for reordering on x86 architectures. Rather than using
a bit in each byte to indicate the width of the encoding, FlexUInt and FlexInt front-load the continuation bits. In most
cases, this means that these bits all fit in the first byte of the representation, allowing a reader to determine the complete size
of the encoding without having to inspect each byte individually. Finally, FlexInt does not use a separate bit to indicate its
value’s sign. Instead, it uses two’s complement representation, allowing it to share much of the same structure and parsing logic
as its unsigned counterpart. Benchmarks have shown that in aggregate, these encoding changes are between 1.25 and 3x faster
than Ion 1.0’s VarUInt and VarInt encodings depending on the host architecture.

Ion 1.1 supplants Ion 1.0’s Int encoding primitive with a new encoding called FixedInt, which uses two’s complement
notation instead of sign-and-magnitude. A corresponding FixedUInt primitive has also been introduced; its encoding is the
same as Ion 1.0’s UInt primitive.

A new primitive encoding type, FlexSym, has been introduced to flexibly encode symbol IDs and symbolic tokens with inline
text.

2.4.4 Type Encoding Changes

All Ion types use the new low-level encodings as specified in the previous section. Many of the opcodes used in Ion 1.0 have
been re-organized primarily to make E-expressions compact.

Typed null values are now encoded in two bytes using the 0xEB opcode.

Lists and S-expressions have two encodings: a length-prefixed encoding and a new delimited form that ends with the 0xF0
opcode.

Struct values have three encodings: a length-prefixed encoding which uses symbol IDs for its field names, a length-prefixed
encoding which uses FlexSym for its field names (allowing for inline symbol text as needed), and a delimited form which
encodes its field names with FlexSym and ends with an escape (0x00) followed by the 0xF0 opcode. (There is no delimited
form with symbol ID field names).

Symbol values have two encodings: one is the Ion 1.0-style encoding using the symbol ID, and the other one is structurally
identical to the encoding of strings, supplying its text’s UTF-8 bytes inline.

Annotation sequences are a prefix to the value they decorate, and no longer have an outer length container. They are now
encoded with an opcode that specifies a single annotation with value following, an opcode that specifies two annotations with a
value following, and finally, an opcode that specifies a variable length of annotations followed by a value. The latter encoding is
similar to how Ion 1.0 annotations are encoded with the exception that there is no outer length.

Important
Discussion: Should we provide an op-code for length prefixing the entire annotation? If so, where should it go? E.g,
make the variable length SID based annotations support this.

Integers now use a FixedInt sub-field instead of the Ion 1.0 encoding which used sign-and-magnitude (with two opcodes).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://amazon-ion.github.io/ion-docs/docs/binary.html#varuint-and-varint-fields
binary-encoding.adoc#flexuint
binary-encoding.adoc#flexint
binary-encoding.adoc#flexuint
binary-encoding.adoc#flexint
https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields
binary-encoding.adoc#fixedint
binary-encoding.adoc#fixeduint
https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields
binary-encoding.adoc#flexsym
binary-encoding.adoc#nulls
binary-encoding.adoc#lists
binary-encoding.adoc#structs
binary-encoding.adoc#symbols_with_inline_text
binary-encoding.adoc#annotations
binary-encoding.adoc#integers

Ion 1.1 Specification 5 / 96

Decimals are structurally identical to their Ion 1.0 counterpart with the exception of the negative zero coefficient. The Ion 1.1
FlexInt encoding is two’s complement, so negative zero cannot be encoded directly with it. Instead, an encoding opcode is
allocated specifically for encoding decimals with a negative zero coefficient.

Timestamps no longer encode their sub-field components as octet-aligned fields. The Ion 1.1 format uses a packed bit encoding
and has a biased form (encoding the year field as an offset from 1970) to make common encodings of timestamp easily fit in a
64-bit word for microsecond and nanosecond precision (with UTC offset or unknown UTC offset). Benchmarks have shown this
new encoding to be 59% faster to encode and 21% faster to decode. A non-biased, arbitrary length timestamp with packed bit
encoding is defined for uncommon cases.

2.4.5 Encoding Expressions in Binary

E-expressions in binary are encoded with an opcode that encodes the macro identifier or an opcode that specifies a FlexUInt
for the macro identifier. This is followed by the encoding of the arguments to the E-expression. The macro’s definition statically
determines how the arguments are to be laid out. An argument may be a full Ion value with encoding opcode, or it could be a
lower-level encoding (e.g., fixed width integer or FlexInt/FlexUInt).

2.5 Macros, Templates, and Encoding-Expressions

Ion 1.1 introduces a new kind of encoding called encoding expression (E-expression). These expressions are (in text syntax)
similar to S-expressions, but they are not part of the data model and are evaluated into one or more Ion values (called a stream)
which enable compact representation of Ion data. E-expressions represent the invocation of either system defined or user de-
fined macros with arguments that are either themselves E-expressions, value literals, or container constructors (list, sexp, struct
syntax containing E-expressions) corresponding to the formal parameters of the macro’s definition. The resulting stream is then
expanded into the resulting Ion data model.

At the top level, the stream becomes individual top-level values. Consider for illustrative purposes an E-expression (:values
1 2 3) that evaluates to the stream 1, 2, 3 and (:void) that evaluates to the empty stream. In the following examples,
values and void are the names of the macros being invoked and each line is equivalent.

Figure 3. Top-level E-expressions

a (:values 1 2 3) b (:void) c
a 1 2 3 b c

Within a list or S-expression, the stream becomes additional child elements in the collection.

Figure 4. E-expressions in lists

[a, (:values 1 2 3), b, (:void), c]
[a, 1, 2, 3, b, c]

Figure 5. E-expressions in S-expressions

(a (:values 1 2 3) b (:void) c)
(a 1 2 3 b c)

Within a struct at the field name position, the resulting stream must contain structs and each of the fields in those structs become
fields in the enclosing struct (the value portion is not specified); at the value position, the resulting stream of values becomes
fields with whatever field name corresponded before the E-expression (empty stream elides the field all together). In the following
examples, let us define (:make_struct c 5) that evaluates to a single struct {c: 5}.

Figure 6. E-expressions in structs

{a: (:values 1 2 3), b: 4, (:make_struct c 5), d: 6, e: (:void)}
{a: 1, a: 2, a: 3, b: 4, c: 5, d: 6}

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

binary-encoding.adoc#decimals
binary-encoding.adoc#timestamps
binary-encoding.adoc#e_expression_with_the_address_in_the_opcode
binary-encoding.adoc#e_expression_arguments

Ion 1.1 Specification 6 / 96

2.5.1 Encoding Context and Modules

In Ion 1.0, there is a single encoding context which is the local symbol table. In Ion 1.1, the encoding context becomes the
following:

• The local symbol table which is a list of strings. This is used to encode/decode symbolic tokens.

• The local macro table which is a list of macros. This is used to reference macros that can be invoked by E-expressions.

• A mapping of a string name to module which is an organizational unit of symbol definitions and macro definitions. Within
the encoding context, this name is unique and used to address a module’s contents either as the list of symbols to install into
the local symbol table, the list of macros to install into the local macro table, or to qualify the name of a macro in a text
E-expression or the definition of a macro.

The module is a new concept in Ion 1.1. It contains:

• A list of strings representing the symbol table of the module.

• A list of macro definitions.

Modules can be imported from the catalog (they subsume shared symbol tables), but can also be defined locally. Modules are
referenced as a group to allocate entries in the local symbol table and local macro table (e.g., the local symbol table is initially,
implicitly allocated with the symbols in the $ion module).

Ion 1.1 introduces a new system value (an encoding directive) for the encoding context (see the TBD section for details.)

Figure 7. Ion encoding directive example

$ion_encoding::{
modules: [/* module declarations - including imports */],
install_symbols: [/* names of declared modules */],
install_macros: [/* names of declared modules */]

}

Important
This is still being actively worked and is provisional.

2.5.2 Macro Definitions

Macros can be defined by a user either directly in a local module within an encoding directive or in a shared module defined
externally (i.e., shared module). A macro has a name which must be unique in a module or it may have no name.

Ion 1.1 defines a list of system macros that are built-in in the module named $ion. Unlike the system symbol table, which is
always installed and accessible in the local symbol table, the system macros are both always accessible to E-expressions and not
installed in the local macro table by default (unlike the local symbol table).

In Ion binary, macros are always addressed in E-expressions by the offset in the local macro table. System macros may be
addressed by the system macro identifier using a specific encoding op-code. In Ion text, macros may be addressed by the offset in
the local macro table (mirroring binary), its name if its name is unambiguous within the local encoding context, or by qualifying
the macro name/offset with the module name in the encoding context. An E-expression can only refer to macros installed in the
local macro table or a macro from the system module. In text, an E-expression referring to a system macro that is not installed
in the local macro table, must use a qualified name with the $ion module name.

For illustrative purposes let’s consider the module named foo that has a macro named bar at offset 5 installed at the begining
of the local macro table.

Figure 8. E-expressions name resolution in text

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 7 / 96

// allowed if there are no other macros named ’bar’
(:bar)
// fully qualified by module--always allowed
(:foo:bar)
// by local macro table offset
(:5)
// system macros are always addressable by name--in binary this would be a different offset ←↩

with a different opcode
(:$ion:void)

2.5.3 Macro Definition Language

User defined macros are defined by their parameters and template which defines how they are invoked and what stream of data
they evaluate to. This template is defined using a domain specific Ion macro definition language with S-expressions. A template
defines a list of zero or more parameters that it can accept. These parameters each have their own cardinality of expression
arguments which can be specified as exactly one, zero or one, zero or more, and one or more. Furthermore the template defines
what type of argument can be accepted by each of these parameters:

• Specific type(s) of Ion value.

• Lower-level binary data (e.g. fixed width integers or VarUInt) for efficient encodings of the E-expressions in binary.

• Specific macro shaped arguments to allow for structural composition of macros and efficient encoding in binary.

The macro definition includes a template body that defines how the macro is expanded (see the TBD section for details).
In the language, system macros, macros defined in previously defined modules in the encoding context, and macros defined
previously in the current module are accessible to be invoked with (name ...) syntax where name is the macro to be
invoked. Certain names in the expression syntax are reserved for special forms (i.e., quote, if, when, unless, and each).
When a macro name is shadowed by a special form, or is ambiguous with respect to all macros visible, it can always be qualified
with (’:module:name’ ...) syntax where module is the name of the module and name is the offset or name of the
macro. Referring to a previously defined macro name within a module may be qualified with (’:name’ ...) syntax.

INFORMATION: TBD put an easy to access example of a macro definition.

2.5.4 Shared Modules

Ion 1.1 extends the concept of shared symbol table to be a shared module. An Ion 1.0 shared symbol table is a shared module
with no macro definitions. A new schema for the convention of serializing shared modules in Ion are introduced in Ion 1.1 (see
the TBD section for details). An Ion 1.1 implementation should support containing Ion 1.0 shared symbol tables and Ion 1.1
shared modules in its catalog.

2.6 System Symbol Table Changes

The system symbol table in Ion 1.1 adds the following symbols:

ID Symbol Text
10 $ion_encoding
11 $ion_literal

System macro identifiers are namespaced separately and therefore do not have entries in the system symbol table.

Important
These assignments are provisional. Specifically assignments for the macro definition language have not been estab-
lished.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 8 / 96

2.7 E-Expression Calling Conventions in Binary

Important
WIP: This section is incomplete and needs rework.

An E-expression specifies the macro ID, followed by the macro’s arguments. The macro’s parameter list determines which how
these arguments are laid out. When all parameters for a macro have exactly one argument, each argument is encoded using their
normal Ion binary encodings.

When a parameter to a macro may have multiple argument expressions (i.e., zero or one, one or more, or zero or more), a bit
stream aligned to the nearest byte in big endian order precedes the encoded values/invocations to indicate the presence or absence
of the argument at that position. This bit stream is only used when one or more such parameters with low-level encoding (tagless)
or two or more parameters with typed opcode (tagged) encoding exist.

For each parameter that is specified to have a zero or more or one or more cardinality, its argument prefixed with a VarInt that
specifies the length of the argument:

• When positive this is an octet length prefix for the values/invocations.

• When negative this is a count for the values/invocations. * When zero and the encoding of the arguments use a full encoding
opcode per argument the arguments are delimited by the 0xAD (end indicator).

• When zero and the encoding of the arguments use lower-level encodings, this denotes empty arguments.

This VarInt is not required when an E-expression encoding has the argument bit-stream indicating no argument is present (i.e.,
empty).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 9 / 96

Chapter 3

Macros by Example

Before getting into the technical details of Ion’s macro and module system, it will help to be more familiar with the use of macros.
We’ll step through increasingly sophisticated use cases, some admittedly synthetic for illustrative purposes, with the intent of
teaching the core concepts and moving parts without getting into the weeds of more formal specification.

Ion macros are defined using a domain-specific language that is in turn expressed via the Ion data model. That is, macro
definitions are Ion data, and use Ion features like S-expressions and symbols to represent code in a LISP-like fashion. In this
document, the fundamental construct we explore is the macro definition, denoted using an S-expression of the form (macro
name ...) where macro is a keyword and name must be a symbol denoting the macro’s name.

Note
S-expressions of that shape only declare macros when they occur in the context of an encoding module, which is the topic of a
chapter to come. We will completely ignore modules for now, and the examples below omit this context to keep things simple.

3.1 Constants

The most basic macro is a constant:

(macro pi []
3.141592653589793)

This declaration defines a macro named pi. The [] is the macro’s signature, in this case a trivial one that declares no parameters.
The 3.141592653589793 is a similarly trivial template, an expression in Ion 1.1’s domain-specific language for defining
macro functions. This macro accepts no arguments and always returns a constant value.

To use pi in an Ion document, we write an encoding expression or E-expression:

$ion_1_1
(:pi)

The syntax (:pi) looks a lot like an S-expression. It’s not, though, since colons cannot appear unquoted in that context. Ion
1.1 makes use of syntax that is not valid in Ion 1.0—specifically, the (: digraph—to denote E-expressions. Those characters
must be followed by a reference to a macro, and we say that the E-expression is an invocation of the macro. Here, (:pi) is an
invocation of the macro named pi.

Note
We also call these “smile expressions” when we’re feeling particularly casual.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 10 / 96

That document is equivalent to the following, in the sense that they denote the same data:

$ion_1_1
3.141592653589793

The process by which the Ion implementation turns the former document into the latter is called macro expansion or just ex-
pansion. This happens transparently to Ion-consuming applications: the stream of values in both cases are the same. The
documents have the same content, encoded in two different ways. It’s reasonable to think of (:pi) as a custom encoding for
3.141592653589793, and the notation’s similarity to S-expressions leads us to the term “encoding expression”.

Note
Any Ion 1.1 document with macros can be fully-expanded into an equivalent Ion 1.0 document.

We can streamline future examples with a couple conventions. First, assume that any E-expression is occurring within an Ion 1.1
document; second, we use the relation notation,⇒, to mean “expands to”. So we can say:

(:pi) ⇒ 3.141592653589793

3.2 Simple Templates

Most macros are not constant, they accept inputs that determine their results.

(macro price
[a, c] // signature
{ amount: a, currency: c }) // template

This macro has a signature that declares two parameters, named a and c, and it therefore accepts two arguments when invoked.

(:price 99 USD) ⇒ { amount: 99, currency: USD }

Note
We are careful to distinguish between the views from “inside” and “outside” the macro: parameters are the names used by a
macro’s implementation to refer to its expansion-time inputs, while arguments are the data provided to a macro at the point of
invocation. In other words, we have “formal” parameters and “actual” arguments.

The struct in this macro is our first non-trivial template, an expression in Ion’s new domain-specific language for defining macro
functions. This expression language treats Ion scalar values (except for symbols) as literals, giving the decimal in pi’s template
its intended meaning. Expressions that are structs are interpreted almost literally: the field names are literal, but the field “values”
are arbitrary expressions. This is why the amount and currency field names show up as-is in the expansion. We call these
almost-literal forms quasi-literals.

The template language also treats lists quasi-literally, and every element inside the list is an expression. Here’s a silly macro to
illustrate:

(macro reverse [a, b] [b, a])

(:reverse first 1990) ⇒ [1990, first]

The sub-expressions in these templates demonstrate that the expression language treats symbols as variable references. The
symbols in the templates above (a and c in price; a and b in reverse) refer to the parameters of their respective surrounding
macros, and during expansion they are “filled in” with the values supplied by the invocation of the macro.

These names are part of the macro language that have no relation to data encoded using the macro:

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 11 / 96

(:reverse c {amount:a, currency:c}) ⇒ [{amount:a, currency:c}, c]

Symbols in an E-expression are not part of the expression language and do not reference macro parameters or any other named
entity. From the point of view of reverse’s template, the inputs are literal data.

E-expressions can nest, so we could also encode the same data using price:

(:reverse first (:price a c))
⇒ (:reverse first {amount:a, currency:c})
⇒ [{amount:a, currency:c}, first]

As the example suggests, expansion steps proceed "inside out" and the outer macro receives the results from the inner invocation.

3.3 Invoking Macros from Templates

Template expressions that are S-expressions are operator invocations, where the operators are either macros or special forms.
We start with the former:

(macro website_url
[path]
(make_string "https://www.amazon.com/" path))

In this case, the S-expression (make_string ...) is an invocation of the system macro (that is, a built-in function)
make_string, which concatenates its arguments to produce a single string:

(:website_url "gp/cart") ⇒ "https://www.amazon.com/gp/cart"

In the template language, macro invocations can appear almost anywhere:

(macro detail_page_url
[asin]
(website_url (make_string "dp/" asin)))

(:detail_page_url "B08KTZ8249") ⇒ "https://www.amazon.com/dp/B08KTZ8249"

Note
While this doesn’t look like much of an improvement, the full string takes 38 bytes to encode, but the macro invocation takes as
few as 12 bytes.

Careful readers will note that templates can use [...] and {...} notation to construct lists and structs, but (...) doesn’t
construct S-expressions. This gap is filled by the built-in macro make_sexp which accepts any number of arguments and puts
them in a sexp:

(macro double_sexp [val] (make_sexp val val))

(:make_sexp true 19.3 null) ⇒ (true 19.3 null)
(:double_sexp double) ⇒ (double double)

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 12 / 96

3.3.1 E-expressions Versus S-expressions

We’ve now seen two ways to invoke macros, and their difference deserves thorough exploration.

An E-expression is an encoding artifact of a serialized Ion document. It has no intrinsic meaning other than the fact that it
represents a macro invocation. The meaning of the document can only be determined by expanding the macro, passing the E-
expression’s arguments to the function defined by the macro. This all happens as the Ion document is parsed, transparent to the
reader of the document. In casual terms, E-expressions are expanded away before the application sees the data.

Within the template-expression language, you can define new macros in terms of other macros, and those invocations are written
as S-expressions. Unlike E-expressions, these are normal Ion data structures, consumed by the Ion system and interpreted as
code. Further, they only exist in the context of a macro definition, inside an encoding module, while E-expressions can occur
anywhere in an Ion document.

Warning
It’s entirely possible to write a macro that can generate all or part of a macro definition. We don’t recommend that you
spend time considering such things at this point.

These two invocation forms are syntactically aligned in their calling convention, but are distinct in context and "immediacy".
E-expressions occur anywhere and are invoked immediately, as they are parsed. S-expression invocations occur only within
macro definitions, and are only invoked if and when that code path is ever executed by invocation of the surrounding macro.

3.4 Special Form: literal

When a template-expression is syntactically an S-expression, its first element must be a symbol that matches either a set of
keywords denoting the special forms, or the name of a previously-defined macro. The interpretation of the S-expression’s
remaining elements depends on how the symbol resolves. In the case of macro invocations, we’ve seen above that the following
elements are (so far!) arbitrary template expressions, but for special forms that’s not always the case. The literal form makes
this clear:

(macro USD_price [dollars] (price dollars (literal USD)))

(:USD_price 12.99) ⇒ { amount: 12.99, currency: USD }

In this template, we can’t just write (price dollars USD) because the symbol USD would be treated as an unbound
variable reference and a syntax error, so we turn it into literal data by “escaping” it with literal.

Tip
Our documents use bold typewriter face to distinguish special forms and keywords from symbols referencing macros and
parameters.

The critical point is that special forms are “special” precisely because they cannot be expressed as macros and must therefore
receive bespoke syntactic treatment. Since the elements of macro-invocation expressions are themselves expressions, when you
want something to not be evaluated that way, it must be a special form.

Finally, these special forms are part of the template language itself, and are not visible to encoded data: the E-expression
(:literal foo) must necessarily refer to some user-defined macro named literal, not to this special form. As an aside,
there is no need for such a form in E-expressions, because in that context symbols and S-expressions are not “evaluated”, and
everything is literal except for E-expressions (which are not data, but encoding artifacts).

Note
Ion 1.1 defines a number of built-in macros and special forms. While this document covers the highlights, it is not a complete
reference to all features.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 13 / 96

3.5 Parameter Types

In our examples so far, the macro signatures have been simple lists of parameter names, and each parameter accepts a value of
any type. But this is often undesirable, since the resulting output could violate the intended schema or the macro-expansion could
fail in hard-to-diagnose ways:

(:detail_page_url [true]) ⇒ error: make_string expects a string

This E-expression cannot be expanded because make_string requires its arguments to be textual values, and [true] is not
a string or symbol. But this failure happens within the implementation of detail_page_url, not the point where the error
occurred. In this example, those points are only one step removed, but it’s not hard to imagine macros where the call stack is
deep enough to make diagnosis difficult.

To detect problems close to their source, macro signatures can declare type constraints on their parameters:

(macro detail_page_url
[(asin string)]
(website_url (make_string "dp/" asin)))

This example reveals additional syntax for parameter declarations. So far, a parameter was declared by a symbol denoting its
name, now we have an S-expression containing a name and a type. Here the parameter’s name is asin, its type is string. The
intended input domain is now clear and the Ion parser can emit an error sooner:

(:detail_page_url [true]) ⇒ error: detail_page_url expects a string

In this context the types include all the normal “concrete” Ion types, abstract supertypes like number, text, and lob, and the
unconstrained “top type” any. The latter is the default type, and the signature [foo] is equivalent to [(foo any)] meaning
that the parameter foo accepts one value of any type.

Tip
These types also serve a second purpose: they can allow the binary encoding to be more compact by avoiding type tags or
using fixed-width values.

3.6 Rest Parameters

Sometimes we want a macro to accept an arbitrary number of arguments, in particular all the rest of them. The make_string
macro is one of those, concatenating all of its arguments into a single string:

(:make_string) ⇒ ""
(:make_string "a") ⇒ "a"
(:make_string "a" "b") ⇒ "ab"
(:make_string "a" "b" "c") ⇒ "abc"
(:make_string "a" "b" "c" "d") ⇒ "abcd"

To make this work, the definition of make_string is effectively:

(macro make_string [(parts text ...)] ...)

This says that parts is a rest parameter accepting zero or more arguments of type text. The ... modifier can only occur on
the last parameter, declaring that “all the rest” of the arguments will be passed to that one name.

Note
The Ion grammar treats identifiers like text and operators like ... as separate tokens regardless of whether they are
separated by whitespace. We think it’s easier to read without whitespace and will use that convention from now on.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 14 / 96

At this point our distinction between parameters and arguments becomes apparent, since they are no longer one-to-one: this
macro with one parameter can be invoked with one argument, or twenty, or none. We describe the acceptable number of values
for a parameter as its cardinality. In the examples so far, all parameters have had exactly-one cardinality, while parts has
zero-or-more cardinality. We’ll see additional cardinalities soon!

Tip
To declare a rest parameter that requires at least one value, use the ...+ modifier.

3.7 Arguments and Results are Streams

The inputs to and results from a macro are modeled as streams of values. When a macro is invoked, each argument produces
a stream of values, and within the macro definition, each parameter name refers to the corresponding stream, not to a specific
value. The declared cardinality of a parameter constrains the number of elements produced by its stream, and is verified by the
macro expansion system.

More generally, the results of all template expressions are streams. While most expressions produce a single value, various
macros and special forms can produce zero or more values.

We have everything we need to illustrate this, via another system macro, values:

(macro values [(vals any...)] vals)

(:values 1) ⇒ 1
(:values 1 true null) ⇒ 1 true null
(:values) ⇒ nothing

The values macro accepts any number of arguments and returns their values, effectively a multi-value identity function. We
can use this to explore how streams combine in E-expressions.

3.7.1 Splicing in Encoded Data

When an E-expression occurs at top-level or within a list or S-expression, the results are spliced into the surrounding container:

[first, (:values), last] ⇒ [first, last]
[first, (:values "middle"), last] ⇒ [first, "middle", last]
(first (:values left right) last) ⇒ (first left right last)

This also applies wherever a tagged type can appear inside an E-expression:

(first (:values (:values left right) (:values)) last) ⇒ (first left right last)

Note that each argument-expression always maps to one parameter, even when that expression returns too-few or too-many
values.

(macro reverse [(a any), (b any)]
[b, a])

(:reverse (:values 5 USD)) ⇒ error: ’reverse’ expects 2 arguments, given 1
(:reverse 5 (:values) USD) ⇒ error: ’reverse’ expects 2 arguments, given 3
(:reverse (:values 5 6) USD) ⇒ error: argument ’a’ expects 1 value, given 2

In this example, the parameters expect exactly one argument, producing exactly one value. When the cardinality allows multiple
values, then the argument result-streams are concatenated. We saw this (rather subtly) above in the nested use of values, but
can also illustrate using the rest-parameter to make_string, which we’ll expand here in steps:

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 15 / 96

(:make_string (:values) a (:values b (:values c) d) e)
⇒ (:make_string a (:values b (:values c) d) e)
⇒ (:make_string a (:values b c d) e)
⇒ (:make_string a b c d e)
⇒ "abcde"

Splicing within sequences is straightforward, but structs are trickier due to their key/value nature. When used in field-value
position, each result from a macro is bound to the field-name independently, leading to the field being repeated or even absent:

{ name: (:values) } ⇒ { }
{ name: (:values v) } ⇒ { name: v }
{ name: (:values v ann::w) } ⇒ { name: v, name: ann::w }

An E-expression can even be used in place of a key-value pair, in which case it must return structs, which are merged into the
surrounding container:

{ a:1, (:values), z:3 } ⇒ { a:1, z:3 }
{ a:1, (:values {}), z:3 } ⇒ { a:1, z:3 }
{ a:1, (:values {b:2}), z:3 } ⇒ { a:1, b:2, z:3 }
{ a:1, (:values {b:2} {z:3}), z:3 } ⇒ { a:1, b:2, z:3, z:3 }

{ a:1, (:values key "value") } ⇒ error: struct expected for splicing into struct

3.7.2 Splicing in Template Expressions

The preceding examples demonstrate splicing of E-expressions into encoded data, but similar stream-splicing occurs within the
template language, making it trivial to convert a stream to a list:

(macro int_list
[(vals int...)]
[vals])

(macro clumsy_bag
[(elts any...)]
{ ’’: elts })

(:int_list) ⇒ []
(:clumsy_bag) ⇒ {}

(:int_list 1 2 3) ⇒ [1, 2, 3]
(:clumsy_bag true 2) ⇒ {’’:true, ’’:2}

Streams and lists are different, there’s no flattening involved, and declared types are verified:

(:int_list 1 [2] 3) ⇒ error: [2] is not an int

TODO: demonstrate splicing in TDL macro invocations

3.8 Mapping Templates Over Streams: for

Another way to produce a stream is via a mapping form. The for special form evaluates a template once for each value provided
by a stream or streams. Each time, a local variable is created and bound to the next value on the stream.

(macro prices
[(currency symbol), (amounts number...)]
(for [(amt amounts)] v1
(price amt currency)))

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 16 / 96

v1 The first subform of for is a list of binding pairs, S-expressions containing a variable names and a template expressions.
Here, that template expression is simply a parameter reference, so each individual value from the amounts is bound to
the name amt before the price invocation is expanded.

(:prices GBP 10 9.99 12.)
⇒ {amount:10, currency:GBP} {amount:9.99, currency:GBP} {amount:12., currency:GBP}

More than one stream can be iterated in parallel, and iteration terminates when any stream becomes empty.

(macro zip [(front any*), (back any*)]
v1

(for [(f front),
(b back)]

[f, b]))

v1 The * means that the parameter accepts any number of values; see Section 3.10.3.

(:zip (:values 1 2 3) (:values a b))
⇒ [1, a] [2, b]

Note
This termination rule is under discussion; see https://github.com/amazon-ion/ion-docs/issues/201

3.9 Empty Streams: void

The empty stream is an important edge case that requires careful handling and communication. We’ll use the term void to mean
“empty stream”. We’ll even mint the word voidable to describe parameters that can accept empty streams, like the ...s above.

Correspondingly, the built-in macro void accepts no values and produces an empty stream:

(:int_list (:void)) ⇒ []
(:int_list 1 (:void) 2) ⇒ [1, 2]
[(:void)] ⇒ []
{a:(:void)} ⇒ {}

When used as a macro argument, a void invocation (like any other expression) counts as one argument:

(:pi (:void)) ⇒ error: ’pi’ expects 0 arguments, given 1

The special-case E-expression (:) is synonymous with (:void) and is useful as a more succinct expression of absent argu-
ments:

(:int_list (:)) ⇒ []
(:int_list 1 (:) 2) ⇒ [1, 2]

Tip
While void and values both produce the empty stream, the former is preferred for clarity of intent and terminology.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://github.com/amazon-ion/ion-docs/issues/201

Ion 1.1 Specification 17 / 96

3.10 Cardinality

As described earlier, parameters are all streams of values, but the number of values can be controlled by the parameter’s car-
dinality. So far we have seen the default exactly-one and the ... (zero-or-more) cardinality modifiers, and in total there are
six:

Modifier Cardinality
! exactly-one value
? zero-or-one value
+ one-or-more values
* zero-or-more values
... zero-or-more values, as "rest" arguments
...+ one-or-more values, as "rest" arguments

3.10.1 Exactly-One

Many parameters expect exactly one value and thus have exactly-one cardinality. This is the default for ungrouped parameters,
but the ! modifier can be used for clarity.

This cardinality means that the parameter requires a stream producing a single value, so one might refer to them as singleton
streams or just singletons colloquially.

3.10.2 Zero-or-One

A parameter with the modifier ? has zero-or-one cardinality, which is much like exactly-one cardinality, except the parameter is
voidable. That is, it accepts an empty-stream argument as a way to denote an absent parameter.

(macro temperature
[(degrees decimal), (scale symbol?)]
{degrees: degrees, scale: scale})

Since the scale is voidable, we can pass it void:

(:temperature 96 F) ⇒ {degrees:96, scale:F}
(:temperature 283 (:)) ⇒ {degrees:283}

Note that the result’s scale field has disappeared because no value was provided. It would be more useful to fill in a default
value, and to do that we introduce a special form that can detect void:

(macro temperature
[(degrees decimal), (scale symbol?)]
{degrees: degrees, scale: (if_void scale (literal K) scale)})

(:temperature 96 F) ⇒ {degrees:96, scale:F}
(:temperature 283 (:)) ⇒ {degrees:283, scale:K}

The if_void form is if/then/else syntax testing stream emptiness. It has three sub-expressions, the first being a stream to check.
If and only if that stream is void (it produces no values), the second sub-expression is expanded and its results are returned by
the if_void expression. Otherwise, the third sub-expression is expanded and returned.

Note
Exactly one branch is expanded, because otherwise the void stream might be used in a context that requires a value, resulting
in an errant expansion error.

To refine things a bit further, trailing voidable arguments can be omitted entirely:

(:temperature 283) ⇒ {degrees:283, scale:K}

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 18 / 96

3.10.3 Zero-or-More

A parameter with the modifier * has zero-or-more cardinality. This modifier behaves the same as ... from the perspective of
its template, but it can be used in any position, not just last place.

(macro prices
[(amount number*), (currency symbol)]
(for [(amt amount)]
(price amt currency)))

The calling convention for * is different from ... since the “all the rest” convention can’t be used to draw the boundaries of the
stream. Instead, we need a single expression that produces the desired values:

(:prices (:) JPY) ⇒ void
(:prices 54 CAD) ⇒ {amount:54, currency:CAD}
(:prices (:values 10 9.99) GBP) ⇒ {amount:10, currency:GBP} {amount:9.99, currency:GBP}

3.10.4 One-or-More

A parameter with the modifier + has one-or-more cardinality, which works like * except the resulting stream must produce at
least one value. To continue using our prices example:

(macro prices
[(amount number+), (currency symbol)]
(for [(amt amount)]
(price amt currency)))

(:prices (:) JPY) ⇒ error: at least one value expected for + parameter
(:prices 54 CAD) ⇒ {amount:54, currency:CAD}
(:prices (:values 10 9.99) GBP) ⇒ {amount:10, currency:GBP} {amount:9.99, currency:GBP}

A macro’s final parameter can use a variant of rest parameters with one-or-more cardinality, denoted by the ...+ modifier:

(macro thanks [(names text...+)]
(make_string "Thank you to my Patreon supporters:\n"
(for [(n names)]

(make_string " * " n "\n"))))

(:thanks) ⇒ error: at least one value expected for ...+ parameter

(:thanks Larry Curly Moe) ⇒
’’’\
Thank you to my Patreon supporters:

* Larry

* Curly

* Moe
’’’

3.11 Grouped Parameters

The non-rest versions of multi-value parameters can be annoying to invoke, since they require the use of values or some
other template to produce the stream of values. To streamline invocation, a macro can opt-in to special syntax that uses a list as
delimiting syntax to group the applicable sub-expressions. This is denoted by wrapping the parameter’s type in []:

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 19 / 96

(macro prices
[(amount [number]), v1
(currency symbol)]

(for [(amt amount)]
(price amt currency)))

v1 Note the use of [] around number.

This is referred to as a grouped parameter, and at invocation it requires a list delimiting its argument group:

(:prices [1, 2, 3] GBP) ⇒ {amount:1, currency:GBP}
{amount:2, currency:GBP}
{amount:3, currency:GBP}

Within the group, the invocation can have any number of arguments, including macro invocations. The macro parameter produces
the results of those expressions, concatenated into a single stream, and the expander verifies that each value on that stream is
acceptable by the parameter’s declared type.

(:prices [1, (:values 2 3), 4] GBP) ⇒ {amount:1, currency:GBP}
{amount:2, currency:GBP}
{amount:3, currency:GBP}
{amount:4, currency:GBP}

Important
To avoid ambiguity, the delimiter is required even for singleton values. Consider this macro:

(macro ouch [(stuff [list])] ...)

Without this rule, the E-expression (:ouch []) would be ambiguous whether the parameter was intended to be void
or a singleton empty-list value.

Grouping says whether multiple arguments can be provided, while cardinality describes the number of values those argument(s)
must produce. The parameter declaration (amount [number]) makes grouping explicit, with a default cardinality of zero-
or-more. The declaration (amount [number]+) is also valid, indicating that the sequence of arguments must produce at
least one value.

Tip
Grouped parameters cannot use the ? and ! modifiers; there’s no point in requiring a grouping list when no more than one
value is allowed.

Tip
Rest parameters are effectively another grouping mode, so they cannot be combined with [].

Delimiting sequences and values expressions may appear similar because they both denote streams of values, but they are not
interchangeable:

(:prices (:values 10 9.99 12.) GBP) ⇒ error: delimiting list or sexp expected
(:prices (:) GBP) ⇒ error: delimiting list or sexp expected

That’s because the binary representation of these parameters uses a tagless format for these delimiters to keep the common case
as dense as possible. It’s not possible to replace that container with a macro invocation, and the text form mirrors that limitation.
If the parameter type allows (see Section 3.13), you can call a macro inside the delimiter, with no loss of generality:

(:prices [(:values 10)] GBP) ⇒ {amount:10, currency:GBP}

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 20 / 96

3.12 Optional Arguments

When a trailing parameter is voidable, an invocation can omit its corresponding arguments or group, as long as no following
parameter is being given an argument or group. We’ve seen this as applied to ... rest-parameters, but it also applies to ? and *
parameters, with or without groups:

(macro optionals
[(a [any]), (b any?), (c any!), (d [any]), (e any?), (f any...)]
(make_list a b c d e f))

Since d, e, and f are all voidable, they can be omitted by invokers. But c is required so a and b must always be present, at least
as an empty group:

(:optionals [] (:) "value for c") ⇒ ["value for c"]

Now c receives the symbol for_c while the other parameters are all void. If we want to provide just e, then we must also
provide a group for d:

(:optionals [] (:) "value for c" [] "value for e")
⇒ ["value for c", "value for e"]

3.13 Tagless and Fixed-Width Types

In Ion 1.0, the binary encoding of every value starts off with a “type tag”, an opcode that indicates the data-type of the next value
and thus the interpretation of the following octets of data. In general, these tags also indicate whether the value has annotations,
and whether it’s null.

These tags are necessary because the Ion data model allows values of any type to be used anywhere. Ion documents are not
schema-constrained: nothing forces any part of the data to have a specific type or shape. We call Ion “self-describing” precisely
because each value self-describes its type via a type tag.

If schema constraints are enforced through some mechanism outside the serializer/deserializer, the type tags are unnecessary and
may add up to a non-trivial amount of wasted space. when you observe that the overhead for each value also includes length
information: encoding an octet of data takes two octets on the stream.

Ion 1.1 tries to mitigate this overhead in the binary format by allowing macro parameters to use more-constrained primitive types.
These are subtypes of the concrete types, constrained such that type tags are not necessary in the binary form. In general this can
shave 4-6 bits off each value, which can add up in aggregate. In the extreme, that octet of data can be encoded with no overhead
at all.

The following primitive types are available:

Primitive Type Description
var_symbol Tagless symbol (SID or text)
var_string Tagless string
var_int Tagless, variable-width signed int
var_uint Tagless, variable-width unsigned int
int8 int16 int32 int64 Fixed-width signed int
uint8 uint16 uint32 uint64 Fixed-width unsigned int
float16 float32 float64 Fixed-width float

To define a tagless parameter, just declare one of the primitive types:

(macro point
[(x var_int), (y var_int)]
{x: x, y: y})

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 21 / 96

(:point 3 17) ⇒ {x:3, y:17}

The type constraint has no real benefit here in text, as primitive types aim to improve the binary encoding. TODO talk about
binary length improvement.

This density comes at the cost of flexibility. Primitive types cannot be annotated or null, and arguments cannot be expressed
using macros, like we’ve done before:

(:point null.int 17) ⇒ error: primitive var_int does not accept nulls
(:point a::3 17) ⇒ error: primitive var_int does not accept annotations
(:point (:values 1) 2) ⇒ error: cannot use macro for a primitive argument

While Ion text syntax doesn’t use tags—the types are built into the syntax—these errors ensure that a text E-expression may only
express things that can also be expressed using an equivalent binary E-expression.

For the same reasons, a parameter accepting more than one tagless argument can only be expressed by grouped or rest parameters,
not by ungrouped forms. For example, (v var_int+) and (v int32*) are not accepted.

A subset of the tagless types are fixed-width: they are binary-encoded with no per-value overhead.

(macro byte_array
[(bytes uint8...)]
[bytes])

Invocations of this macro are encoded as a sequence of untagged octets, because the macro definition constrains the argument
shape such that nothing else is acceptable. A text invocation is written using normal ints:

(:byte_array 0 1 2 3 4 5 6 7 8) ⇒ [0, 1, 2, 3, 4, 5, 6, 7, 8]
(:byte_array 9 -10 11) ⇒ error: -10 is not a valid uint8
(:byte_array 256) ⇒ error: 256 is not a valid uint8

As above, Ion text doesn’t have syntax specifically denoting “8-bit unsigned integers”, so to keep text and binary capabilities
aligned, the parser rejects invocations where an argument value exceeds the range of the binary-only type.

Primitive types have inherent tradeoffs and require careful consideration, but in the right circumstances the density wins can be
significant.

3.14 Macro Shapes

We can now introduce the final kind of input constraint, macro-shaped parameters. To understand the motivation, consider
modeling a scatter-plot as a list of points:

[{x:3, y:17}, {x:395, y:23}, {x:15, y:48}, {x:2023, y:5}, ...]

Lists like these exhibit a lot of repetition. Since we already have a point macro, we can eliminate a fair amount:

[(:point 3 17), (:point 395 23), (:point 15 48), (:point 2023 5), ...]

This eliminates all the xs and ys, but leaves repeated macro invocations. We can try to wrap this in another macro, but we find
the type constraints insufficient, since the tightest we can go is struct, and things aren’t really any better:

(macro scatterplot [(points struct...)]
[points])

(:scatterplot (:point 3 17) (:point 395 23) (:point 15 48) (:point 2023 5) ...)

What we’d like is to eliminate the point calls and just write a stream of pairs, something like:

(:scatterplot (3 17) (395 23) (15 48) (2023 5) ...)

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 22 / 96

We can achieve exactly that with a macro-shaped parameter, in which we use the point macro as a pseudo-type:

(macro scatterplot [(points point...)] v1
[points])

v1 point is not one of the built-in types, so its a reference to the macro of that name defined earlier.

(:scatterplot (3 17) (395 23) (15 48) (2023 5) ...)
⇒
[{x:3, y:17}, {x:395, y:23}, {x:15, y:48}, {x:2023, y:5}, ...]

Each argument S-expression like (3 17) is implicitly an E-expression invoking the point macro. The argument mirrors the
shape of the inner macro, without repeating its name. Further, expansion of the implied points happens automatically, so the
overall behavior is just like the preceding struct-based variant and the points parameter produces a stream of structs.

The binary encoding of macro-shaped parameters are similarly tagless, eliding any opcodes mentioning point and just writing
its arguments with minimal delimiting.

Macro types can be grouped and/or combined with cardinality modifiers, following the same rules as tagless types. Note that
grouped macro types require callers to use two layers of delimiting containers: and outer list for the group, and an inner S-
expression for each macro instance:

(macro scatterplot
[(points [point] +), (x_label string), (y_label string)]
{ points: [points], x_label: x_label, y_label: y_label })

(:scatterplot [(3 17), (395 23), (15 48), (2023 5)] "hour" "widgets")
⇒
{
points: [{x:3, y:17}, {x:395, y:23}, {x:15, y:48}, {x:2023, y:5}],
x_label: "hour",
y_label: "widgets"

}

As with non-macro arguments, you cannot replace a grouping list with a macro invocation. Further, you can’t use a macro
invocation as an element of the delimiting-list:

(:scatterplot (:make_points 3 17 395 23 15 48 2023 5) "hour" "widgets")
⇒ error: delimiting list or sexp expected, found :make_points

(:scatterplot [(3 17), (:make_points 395 23 15 48), (2023 5)] "hour" "widgets")
⇒ error: sexp expected with args for ’point’, found :make_points

(:scatterplot [(3 17), (:point 395 23), (15 48), (2023 5)] "hour" "widgets")
⇒ error: sexp expected with args for ’point’, found :point

This limitation mirrors the binary encoding, where both the delimiting list and the individual macro invocations are tagless and
there’s no way to express a macro invocation.

Tip
The primary goal of macro-shaped arguments, and tagless types in general, is to increase density by tightly constraining the
inputs.

3.15 Return Types

TODO

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 23 / 96

Chapter 4

Modules by Example

The prior chapter explored macro definitions while ignoring the contexts within which those definitions exist. This chapter covers
that context top-down.

4.1 Ion 1.0 Encoding Environment

An Ion document is a stream of octets conforming to either the Ion text or binary specification. (For our purposes here, a
document does not necessarily exist as a file, and isn’t necessarily finite.) The interpretation of those octets is guided by an
encoding environment, the context maintained by an Ion implementation while encoding or decoding a document. The Ion 1.0
encoding environment is just the local symbol table.

The encoding environment is controlled by directives embedded in the document at top-level. These are encoding artifacts and
are not part of the application data model.

Ion 1.0 has two forms of directives:

• An Ion Version Marker (IVM) resets the environment to the default provided by that version of Ion.

• An $ion_symbol_table struct defines a new environment that takes effect immediately after the struct closes.

A segment is a contiguous portion of a document that uses the same encoding environment. Segment boundaries are caused
by directives: an IVM starts a new segment, while an $ion_symbol_table struct ends a segment, defining a new one that
starting immediately afterwards. As a result, non-IVM directives are always encoded using the environment of the segment that
contains them.

TODO Ion text docs always start with a 1.0 segment until an IVM is encountered.

4.2 Modules from the Outside

In Ion 1.1, you define, share, and install symbols and macros using encoding modules. The logical interface to a module has
three main components: a spec version, a symbol table, and a macro table.

A module’s spec version indicates which Ion specification it uses. This ensures the module has stable semantics over time. A
module can only be used in segments encoded with that version or later.

Important
Discussion: The above may be too strict; use solely for symbols could be more relaxed.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 24 / 96

A module’s exported symbol table is simply a sequence of strings. These denote the text of symbols, and are equivalent in
meaning to the symbols list of an Ion 1.0 shared symbol table.

A module’s exported macro table is a sequence of <name, macro> pairs. Names can be null, in which case the corresponding
macro can be referenced by its zero-based index in the table, known as its exported address. Non-null names in the table must
all be unique, so that a name-to-macro mapping function is well-defined.

Tip
Macros have their own identity independent of the names that map to them. It’s possible for the same macro to have multiple
addresses and/or names.

To reuse macros across documents, shared modules subsume the capabilities of shared symbol tables while remaining backwards-
compatible with their current schema and catalog semantics.

Important
All existing Ion shared symbol tables are encoding modules. Such modules only declare symbols and not macros.

4.3 Ion 1.1 Encoding Environment

In Ion 1.1, the encoding environment includes:

• The current Ion version, because a document may have segments using different Ion versions.

• The available modules, a name to module mapping.

• The current symbol table, assembled from a subset of the available modules.

• The current macro table, assembled from a subset of the available modules.

Note
In Ion 1.0, the local symbol table is the encoding environment.

Upon encountering the $ion_1_1 IVM, the environment is reset to the default state, in which:

• The Ion version is 1.1.

• The available modules contains only the $ion module, version 2 (v1 being Ion 1.0).

• The macro table is empty.

• The symbol table is the Ion 1.1 system symbol table.

To customize this environment, we use an encoding directive: a top-level S-expression annotated with $ion_encoding. Like
$ion_symbol_table, this directive defines a new encoding environment that goes into effect immediately after the directive
closes.

Note
We use the term "encoding directive" to refer to the $ion_encoding S-expression, and "local symbol table directive" to refer
to the $ion_symbol_table struct. Both forms are valid in Ion 1.1.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 25 / 96

The general syntax of an encoding directive is as follows:

$ion_encoding::(
(retain ...) // Reuse selected modules from the current segment
(load ...) // Get a shared module from the catalog
(module ...) // Define a new module inline
...
(symbol_table ...) // Install modules into the symbol table
(macro_table ...) // Install modules into the macro table

)

Each syntactic form affects one of the main components of the environment. The symbol_table and macro_table clauses
specify the layout of those tables, while the preceding clauses enumerate the available modules that may be installed into them.

Note
Using an S-expression instead of a struct constrains the order in which clauses are encountered, making it both more code-like
and easier to parse.

Let’s look at some examples illustrating the relation between $ion_symbol_table and $ion_encoding.

4.4 Defining Local Symbols

The most basic Ion encoding scenario uses only locally-defined symbols. In Ion 1.0, this is expressed as follows:

$ion_1_0
$ion_symbol_table::{

symbols: ["s1", "s2"]
}

Here’s an Ion 1.1 document that’s equivalent, in the sense that it allocates symbol IDs in the same order. (The IDs will be
different, though, due to new system symbols.)

$ion_1_1
$ion_encoding::(

(module extracted
(symbol_table ["s1", "s2"]))

(symbol_table extracted)
)

The definition of the local symbol table has been refactored into two parts. First, the list of symbols is expressed inside a module
named extracted. Then, the symbols from that module are installed to form the new local symbol table. Compared to the
behavior of $ion_symbol_table, this is akin to defining a named symbol table “inline” to hold local symbols, then defining
the local symbol table only via imports and no symbols field.

Let’s look more closely at the definition of extracted:

(module extracted
(symbol_table ["s1", "s2"]))

The module keyword starts an S-expression that defines a new inline module with the given name. The symbol_table
keyword starts a subform that defines the module’s exported symbol table. This clause accepts a list of strings, using the same
syntax and semantics as the symbols field of $ion_shared_symbol_table.

Once this module is defined, we can install its symbols into the directive’s symbol table:

(symbol_table extracted)

This clause accepts a series of symbols that match names declared in the modules field. The resulting local symbol table is
simply the concatenation of the exported symbol tables of those modules. This works the same way as the imports field of
$ion_symbol_table.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 26 / 96

4.5 Importing Symbols

Given the equivalencies above, we could perform a naive round-trip of the preceding 1.1 document back to 1.0. First, turn the
extracted module into the equivalent shared symbol table:

$ion_shared_symbol_table::{
name: "com.example.extracted",
version: 1,
symbols: ["s1", "s2"]

}

Then translate (symbol_table extracted) into its 1.0 equivalent:

$ion_1_0
$ion_symbol_table::{

imports: [{ name: "com.example.extracted", version: 1, max_id: 2 }]
}

Note
Even ignoring Ion 1.1, this is how you would extract local symbols into a new shared symbol table.

The latter imports-only document has this 1.1 equivalent:

$ion_1_1
$ion_encoding::(

(load extracted "com.example.extracted" 1 2)
(symbol_table extracted)

)

Here we see a new form inside the modules field that imports a module into the encoding environment and assigns it a name.
The load keyword starts an S-expression that expects three or four arguments. The first is a symbolic name that we can use
later to refer to the imported module. The remaining arguments are effectively the name, version and max_id fields of the
1.0 imports struct, with only the max_id being optional in this form.

Tip
From the perspective of Ion 1.1, shared symbol tables are encoding modules.

4.6 Declaring Multiple Modules

Let’s look at a scenario with both imported and locally-defined symbols:

$ion_1_0
$ion_symbol_table::{

imports: [{ name: "com.example.shared1", version: 1, max_id: 10 },
{ name: "com.example.shared2", version: 2, max_id: 20 }],

symbols: ["s1", "s2"]
}

Here’s the Ion 1.1 equivalent in terms of symbol allocation order:

$ion_1_1
$ion_encoding::(

(load m1 "com.example.shared1" 1 10)
(load m2 "com.example.shared2" 2 20)
(module local_syms (symbol_table ["s1", "s2"]))
(symbol_table m1 m2 local_syms)

)

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 27 / 96

Just as in the 1.0 version, this allocates ten symbol IDs for m1 (as requested by its max_id argument), twenty symbol IDs for m2,
then the two locally-defined symbols.

By decoupling symbol-table importing from installation, Ion 1.1 allows some encoding techniques that are not possible in 1.0.
For example, we can give local symbols smaller IDs than imported symbols by installing local_syms first:

$ion_1_1
$ion_encoding::(

(load m1 "com.example.shared1" 1 10)
(load m2 "com.example.shared2" 2 20)
(module local_syms (symbol_table ["s1", "s2"]))
(symbol_table local_syms m1 m2) // ’local_syms’ is first

)

While there is little impact in this example, when imported tables are large this technique can ensure that local symbols fit into
the first 256 addresses, using only two bytes to encode in binary.

4.7 Extending the Current Symbol Table

The last 1.0 feature to examine is adding symbols to the current symbol table:

$ion_1_0
$ion_symbol_table::{

symbols: ["s1", "s2"]
}

// ... application data ...

$ion_symbol_table::{
imports: $ion_symbol_table,
symbols: ["s3", "s4"]

}

To achieve this in Ion 1.1, we must copy the available modules from the current segment into the next, while also defining a new
module for the additional symbols.

$ion_1_1
$ion_encoding::(

(module syms (symbol_table ["s1", "s2"]))
(symbol_table syms)

)

// ... application data ...

$ion_encoding::(
(retain *)
(module syms2 (symbol_table ["s3", "s4"]))
(symbol_table syms syms2)

)

The retain clause indicates that all (*) of the available modules in the current encoding environment are to be reused in the
new one. Alternatively, individual modules can be named, if only a subset is desired.

Here again, Ion 1.1 enables a new technique: we can prepend new symbols to the current symbol table.

$ion_encoding::(
(retain *)
(module syms2 (symbol_table ["s3", "s4"]))
(symbol_table syms2 syms) // ’syms2’ is first

)

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 28 / 96

4.8 Installing and Using Macros

The local macro table works in essentially the same way as the local symbol table: you import or define modules that export
macros, then you enumerate the modules whose macros you want to install. The lists of exported macros from each of those
modules are concatenated to form a contiguous address space so that any macro can be referenced by an integer.

We can now define a small module for two-dimensional geometry, finally showing macro definitions in full context:

$ion_1_1
$ion_encoding::(

(module geo
(macro_table

(macro point [(x int), (y int)]
{x: x, y: y})

(macro line [(a point), (b point)]
[a, b])))

(macro_table geo)
)
(:point 17 28)
(:line (1 2) (3 4))

This geo module defines macros instead of symbols, using the macro definition syntax explored throughout Chapter 3.

The macro_table field works much like symbol_table: it assembles a macro table by concatenating the exported macro
tables of the referenced modules, which must be declared within the adjacent modules field.

With macros installed, the document can then invoke them using E-expressions, and the point and line invocations above
produce results equivalent to:

{x:17, y:28}
[{x:1, y:2}, {x:3, y:4}]

There are a couple differences between the local symbol and macro tables. In both cases, their entries can be addressed via
offsets in the table, but the local macro table does not start with system macros so user-defined macros start at address zero. In
the document above, the first macro in the first module is point, so we could write:

(:0 17 28) ⇒ {x:17, y:28}

Further, the local macro table tracks the names of installed modules, so that macros can be addressed using qualified names like
(:geo:point 17 28). Any ambiguity among exported macro names may be resolved at the point of reference using this
syntax. Qualified addresses work as well, so :geo:0 resolves to the macro at address 0 of module geo, which is point.

All told, Ion text offers four variants of macro references. Each of these lines is equivalent:

(:0 17 28) (:1 (1 2) (3 4))
(:geo:0 17 28) (:geo:1 (1 2) (3 4))
(:geo:point 17 28) (:geo:line (1 2) (3 4))
(:point 17 28) (:line (1 2) (3 4))

This topic is more interesting when more than one module is involved, so let’s table this for now.

4.9 Shared Modules

Macros are most useful when they’re shared across documents, and for that we use shared modules, a generalization of Ion 1.0’s
shared symbol tables. As discussed in Section 4.2, they export both a symbol table and a macro table.

Tip
In Ion 1.1, a shared symbol table is a shared module.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 29 / 96

NOTE: We intend to propose a new schema for shared modules, akin to the new $ion_encoding schema. That should be
easier to explain and understand than the format below.

For backwards compatibility purposes, shared modules are expressed using the legacy schema for shared symbol tables, adding
a module field to hold macro definitions:

$ion_1_0
$ion_shared_module::$ion_1_1::(

(catalog_key "com.example.graphics.3d" 1)
(symbol_table ["x", "y", "z"])
(macro_table
(macro point [(x int), (y int), (z int)]

{x: x, y: y, z: z})
(macro line [(a point), (b point)]

[a, b])
(macro poly [(first point), (second point), (rest point...+)]

[first, second, rest]))
)

This S-expression is very similar to the module S-expression inside $ion_encoding. Here, no symbolic name is declared,
since one will be assigned when the module is loaded. No symbols clause is allowed, since those are expected to be in the
legacy symbols field. For comparison, here’s a functionally-equivalent inline definition:

$ion_encoding::(
(module g3d
(symbol_table ["x", "y", "z"])
(macro_table

(macro point [(x int), (y int), (z int)]
{x: x, y: y, z: z})

(macro line [(a point), (b point)]
[a, b])

(macro poly [(first point), (second point), (rest point...+)]
[first, second, rest])))

...

The $ion_shared_module document above is encoded in Ion 1.0 format, despite containing information that only applies
to an Ion 1.1 implementation. Shared symbol tables are communicated via the Ion data model, which is guaranteed consistent
across all Ion 1.x specifications, so encoding modules can be expressed using any Ion version with no change in semantics.
To accomplish this, we require the IVM-like $ion_1_1 annotation on the definition, denoting the spec version that provides
meaning to the module.

4.10 Using Shared Macros

With a shared module at hand, we can load it and install its macros:

$ion_1_1
$ion_encoding::(

(load g3d "com.example.graphics.3d" 1) // Load it
(macro_table g3d) // Install it

)

We can also combine shared and inline modules:

$ion_1_1
$ion_encoding::(

(load g3d "com.example.graphics.3d" 1)
(module geo
(macro_table

(macro point [(x int), (y int)]
{x: x, y: y})

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 30 / 96

(macro line [(a point), (b point)]
[a, b])))

(macro_table geo g3d)
)

We now have a problem: the names point and line are ambiguous, referring to two different macros each. Thankfully, we
can use qualified references to disambiguate:

(:geo:point 17 28) (:g3d:point 20 18 45)
(:geo:0 17 28) (:g3d:0 20 18 45) // Equivalent

In fact, we must do so. An E-expression with an un unqualified macro name is erroneous when the name is ambiguous, meaning
that two installed modules map it to different macros.

(:point 17 28) ⇒ error: ’:point’ is ambiguous, exported by ’geo’ and ’g3d’.

Another thing to note in the directive used above is that the load g3d declaration includes a symbol table name and version,
but no max_id argument. As with imports in a local symbol table, absence of max_id forces the Ion implementation to acquire the
symbol table entity with exactly the stated version. While this is generally not best-practice for importing symbols, exact-match
is a requirement for using any macros in the module or installing it in a macro_table. In other words, when a document is
encoded using macros, the Ion decoder will always use the exact version of those macros that was used when encoding the data.

Tip
With respect to macros, there is no assumption of compatibility across versions of modules.

4.11 Private Imports

In Ion 1.0, the ability to import symbols from a shared symbol table is limited to local symbol table; shared tables cannot be
dynamically composed via imports. This isn’t much of a problem in practice, since symbols are trivial to manage. Macros
are more sophisticated entities, and most macros are implemented in terms of other macros. This makes it valuable to support
transitive import of macros between shared modules.

Let’s revisit our scatter plot example and build a module for expressing charts for various data sets. First we take our basic
geometric macros and package them in a shared module:

$ion_shared_module::$ion_1_1::(
(catalog_key "com.example.geometry" 1)
(macro_table
(macro point [(x int), (y int)]

{x: x, y: y})
(macro line [(a point), (b point)]

[a, b]))
)

Now we build another shared module using it:

$ion_shared_module::$ion_1_1::(
(catalog_key "com.example.charts" 1)
(load geo "com.example.geometry" 1) v1
(macro_table
(macro scatterplot

[(points ’:geo:point’...)] v2
[points]))

)

v1 Loading the geo module means. . .

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 31 / 96

v2 . . . we can access point by qualified reference.

Here’s another load clause, but this time it’s inside a module rather than alongside them in an encoding directive. This makes
the geo module visible only within this module, so we can reference point as the argument shape of the scatterplot
macro. As before, we assign a symbolic name to the module for qualified references.

It’s often preferable to avoid the clunky quoted qualified references by bringing into scope not just the geo module but also its
macros, via use:

$ion_shared_module::$ion_1_1::(
(catalog_key "com.example.charts" 1)
(use (load geo "com.example.geometry" 1)) v1
(macro_table
(macro scatterplot [(points point...)] v2

[points]))
)

v1 Using the geo module means. . .v2 . . . no qualification needed for point.

The use clause accepts a series of modules, by name or by load, and makes their exported macros visible in the body of the
importing module. This is common, so there’s a shorthand: (import ...) is equivalent to (use (load ...)).

Regardless of how scatterplot is declared, we know how to invoke it in a document:

$ion_1_1
$ion_encoding::(

(load chart "com.example.charts" 1)
(macro_table chart)

)
(:scatterplot (3 17) (395 23) (15 48) (2023 5))

While the signature of point is now implicit in the signature of scatterplot, and while the macro expander will invoke
point while expanding scatterplot, neither point nor the module containing it is in scope within the document:

(:point 25 10) ⇒ error: no installed module exports a macro named ’point’.
(:geo:point 2 1) ⇒ error: no module named ’geo’ is installed.

In particular, geo is not in the encoding environment’s available modules, since it wasn’t imported into it:

$ion_1_1
$ion_encoding::(

(load chart "com.example.charts" 1)
(macro_table chart geo)

)
⇒ error: no module named ’geo’ is available for installation.

When the Ion implementation loads the chart module, it will transitively load the geometry module as well, but the import of
com.example.geometry by com.example.charts is not visible by name to the importer.

You can do similar things within an encoding directive:

$ion_1_1
$ion_encoding::(

(module geo
(macro_table

(macro point [(x int), (y int)]
{x: x, y: y})

(macro line [(a point), (b point)]
[a, b])))

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 32 / 96

(module chart
(import geo) v1
(macro_table

(macro scatterplot [(points point...)]
[points])))

(macro_table chart) v2
)

v1 Importing geo makes its macros accessible within chart.v2 The geo module is not installed into the encoding environment, so its macros are not accessible in the document body.

4.12 Macro Aliases

We’ve seen how to resolve an ambiguous macro name by using qualified references. Another approach is to give new names to
existing macros. Suppose we want to add a 3d chart to our module, so we import both the 2d and 3d modules:

$ion_1_1
$ion_encoding::(

(module chart
(import geo "com.example.geometry" 1)
(import g3d "com.example.graphics.3d" 1)
(macro_table

(macro scatterplot [(points point...)]

⇒ error: ’point’ is ambiguous, exported by ’geo’ and ’g3d’.

The most direct way to fix this is to use a qualified reference. We’ve seen this used in E-expressions like (:geo:point 17
28), but now we need it in a signature where the special smile syntax does not apply. Instead, use a quoted symbol:

(macro scatterplot [(points ’:geo:point’ ...)]
[points]))

That has the intended effect of keeping scatterplot using 2D points, but it’s somewhat awkward. A more ergonomic
approach is to introduce an alias to disambiguate:

(module chart
(import geo "com.example.geometry" 1)
(import g3d "com.example.graphics.3d" 1)
(alias point2 ’:geo:point’) v1
(macro_table

(macro scatterplot [(points point2 ...)] v2
[points])

...

v1 Declaration of alias point2.v2 Use of that new name in a signature.

Aliases can only be declared within a module, where they can be used wherever a macro reference occurs, including for macro
invocations in the template language. In addition to disambiguation, they can be used to shorten long names, or to give names to
anonymous macros.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 33 / 96

4.13 Exports

Unlike macro definitions, aliases are not automatically exported from the module where they are declared; they are presumed
to be implementation details. Sometimes it’s helpful to make them available to consumers of the module, and for that they can
be exported:

$ion_1_1
$ion_encoding::(

(load geo "com.example.geometry" 1)
(load g3d "com.example.graphics.3d" 1)
(module local
(alias point2 ’:geo:point’) v1
(alias point3 ’:g3d:point’)
(macro_table

(export point2 point3)))
(macro_table local geo g3d)

)
(:point2 93 5)
(:point3 0 12 33)

v1 Modules loaded at the directive level are visible within inline module bodies.

Exports can also be used to "pass through" selected macros from an imported module: (export ’:g2d:line’) exports the
name line from the enclosing module. The pass-through form is almost the same as the pair of clauses:

(alias line ’:g2d:line’)
...
(export line)

...except the latter declares a local name while the pass-through does not.

Important
The macro names exported by a module must be unique, regardless of whether they are exported implicitly via macro
or explicitly via export.

4.14 Extending the Macro Table

Some Ion use cases benefit from defining macros "on the fly" in response to repeated content. The techniques we used to extend
the symbol table in Section 4.7 work for the macro table as well:

$ion_1_1
$ion_encoding::(

(module mod1
(symbol_table ["s1", "s2"])
(macro_table (macro mac1 ...)))

(symbol_table mod1)
(macro_table mod1)

)

// ... application data ...

$ion_encoding::(
(retain *)
(module mod2
(symbol_table ["s3", "s4"])

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 34 / 96

(macro_table (macro mac2 ...)))
(symbol_table mod1 mod2)
(macro_table mod1 mod2)

)

4.15 Separate Installation

The preceding example has some repetition between symbol_table and macro_table, illustrating that the symbol and
macro tables are maintained independently. The following is legal:

(symbol_table mod1 mod2)
(macro_table mod2 mod1)

There’s no assumption that the document needs both symbols and macros from every module, or that the relative allocation of
addresses should be the same. If anything, we assume the opposite: that installing the macros from a module suggests that you
don’t need to install its symbols since they’ll surface in the results of macro expansion.

If we find this particularly bothersome, a macro can eliminate the repetition:

(macro both_tables [(module_names symbol...)]
(values
(make_sexp (literal symbol_table) module_names)
(make_sexp (literal macro_table) module_names)))

Invoked as:

$ion_encoding::(
(load foo ...)
(load bar ...)
(load baz ...)
(:both_tables bar foo baz)

)

This leverages splicing to add two S-expressions to the enclosing directive.

4.16 Prioritization

The features we’ve explored can be combined to achieve fine-grained control over the allocation of macro and symbol addresses.
This lets document authors assign the smallest opcodes to the most used macros and symbols.

Let’s assume that our graphics modules have grown to include a large number of macros, far more than the 64 that can be invoked
with a single-byte opcode. If we know that our document invokes, say, 3D point and tri more than anything else, we can
grant them single-byte opcodes by ensuring they show up first among the installed macros:

$ion_1_1
$ion_encoding::(

(load geo "com.example.geometry" 1)
(load g3d "com.example.graphics.3d" 1)
(module priority
(use g3d)
(macro_table

(export point tri)))
(macro_table priority geo g3d)

)
(:0 101 17 5) // invoke :g3d:point
(:1 (101 17 5) (101 17 20) (100 17 20)) // invoke :g3d:tri

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 35 / 96

Chapter 5

Encoding Directives

TODO
This intro section is probably misplaced in the context of the larger book. Move or integrate elsewhere.

Ion 1.0 uses symbol tables to capture and compress repeated symbol text. At all points in an Ion document, there exists an
encoding environment that contains the current symbol table mapping symbol IDs to text. The encoding environment of a
document is controlled by directives embedded in the document. These directives are encoding artifacts and not part of the
application data model. Ion 1.0 has two directive forms:

• An Ion Version Marker (IVM) resets the environment to the default provided by that version of Ion.

• An $ion_symbol_table struct defines a new environment that takes effect immediately after the struct closes.

The latter form includes a feature that allows the new environment to be specified in terms of the current one in a limited fashion:
the current symbol table can be imported as if it were shared, so that new symbols can be appended to it.

To increase compression across many documents that have similar content (for example, they use the same schema), Ion 1.0 has
shared symbol tables that capture a portion of an encoding context—a list of symbols—that can be imported into many local
symbol tables.

Ion 1.1 generalizes and refactors these features:

• Macros are a generalization of symbols in the sense that they are a feature to enable increased density. The Ion parser expands
integer symbol IDs to symbol text; it now also expands macro expressions into data of arbitrary type and cardinality.

• The encoding context is extended to contain a local macro table alongside the local symbol table. In much the same way that
the local symbol table defines an address-space for identifying symbols, the local macro table defines an address-space for
macros.

• Symbols and macros are defined and collected inside encoding modules. Modules subsume shared symbol tables while re-
maining backwards-compatible with their current data model and catalog semantics. Any existing Ion shared symbol table is a
valid encoding module, albeit one that only declares symbols and not macros.

• The $ion_symbol_table struct and its behavior are subsumed by a new $ion_encoding top-level S-expression that
imports and defines modules, then separately assembles the local symbol and macro tables.

This chapter focuses on the new components of the top-level context and the $ion_encoding S-expression that controls it.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 36 / 96

5.1 Document Structure

TODO Cover document segmentation, environment components, etc.

TODO The below should probably move elsewhere

As we’ve seen, encoding directives manipulate the global context, managing modules and installing (some of) them into the local
symbol and macro tables. To clarify this behavior, we should first discuss the lifecycle of modules. An Ion 1.1 implementation
must manage a few distinct sets of modules:

• The loaded modules are those that have been defined or loaded by an encoding directive, or transitively loaded from another
loaded module.

• The available modules are loaded modules that have been assigned a name via a load or import clause.

• The installed modules are available modules that have been listed in an encoding directive’s symbol_table or macro_table
field. Technically, modules are installed immediately following termination of the $ion_encoding directive.

Each encoding directive on the stream fully replaces the prior context. A user module becomes unavailable when a succeeding
directive fails to retain it explicitly. A loaded module can be unloaded (garbage collected) when its no longer reachable from an
available module.

5.2 Ion Version Markers

The bootstrap directive, required at the start of all Ion 1.1 segments, and acceptable mid-stream, is the Ion version marker:

$ion_1_1

This keyword has the effect of resetting the encoding context to the default modules, symbols, and macros provided by the Ion
specification. More precisely, the default context has a single available module named $ion, installed for both symbols and
macros. This ensures that the system symbols and system macros provided by Ion 1.1 are available by default.

The system module and its macros are in fact available everywhere in the document, and cannot be removed or redefined by
$ion_encoding: to a large degree, it’s as if the retain, symbol_table, and macro_table clauses all have $ion as
their implicit first element. As a result, system macros can always be invoked by (:$ion:name ...).

System macros have one additional bit of special handling: they are binary-encoded using a dedicated opcode, using a dedicated
address space that’s independent of the explicitly-enumerated modules in macro_table. This means that the initial range of
unqualified numeric macro references like (:3 ...) don’t inherently refer to system macros. User-level macros get priority
to those precious single-byte opcodes.

5.3 $ion_encoding Directives

The $ion_encoding directive declares a set of available modules, then assembles some subset of those into the local symbol
and macro tables. The general shape of an encoding directive is as follows:

$ion_encoding::(
(retain ...) // Reuse selected modules from the current segment
(load ...) // Get a shared module from the catalog
(module ...) // Define a new module inline
...
(symbol_table ...) // Install modules into the symbol table
(macro_table ...) // Install modules into the macro table

)

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 37 / 96

More formally, here’s the relevant portion of the domain grammar:

encoding-directive ::= $ion_encoding::(retention? module-decl* symtab? top-mactab?)

The directive has four sections: declare currently available modules to retain, declare additional modules to make available,
define the new symbol table, define the new macro table.

5.3.1 Retaining Available Modules

An encoding directive defines a new encoding environment in terms of the current environment (that is, the encoding environment
for the segment containing the directive). By default, the new environment starts with an empty set of available modules, and if
any modules are to be reused by the new segment, they must be explicitly retained.

retention ::= (retain retainees)
retainees ::= ’*’ | module-name*

Before declaring new names, the directive can selectively retain available modules (that is, modules declared in the preceding
directive. This is done either by using the keyword * to copy all available modules from the current encoding environment into
the new one, or by enumerating specific names to copy.

5.3.2 Declaring Modules

After possibly retaining modules from the current environment, the directive can make additional modules available, either
loading them from the implementation’s catalog, or defining them inline. Either way, an entry is added (or updated) in the
directive’s map of available modules.

module-decl ::= dependency | inline-module-def
dependency ::= load-decl | use-decl | import-decl

The names of available modules can be remapped: if a name is reused, the earlier declaration is shadowed through the rest of the
directive (including upcoming inline modules).

5.3.2.1 Loading Shared Modules

To make a shared module available, it must first be loaded, which gives the module a symbolic name that can be used to reference
the module’s components.

load-decl ::= (load load-body)
load-body ::= module-name catalog-name catalog-version symbol-maxid?
catalog-name ::= unannotated-string
catalog-version ::= unannotated-uint
symbol-maxid ::= unannotated-uint

This works like an import struct in $ion_symbol_table in that it acquires an entity from the implementation’s catalog,
though here there is no direct effect on the symbol table. The catalog-name, catalog-version, and symbol-maxid arguments have
the same meaning as the corresponding fields of an imports struct, but only the latter is optional. Resolving the name and
version to a shared module is the same as for shared symbol tables, using the same algorithm for inexact match on the version.

Tip
A primary design tenet of Ion 1.1 is to remain compatible with existing catalog APIs and services that vend shared symbol
tables. Existing shared symbol tables are shared modules that export no macros.

As suggested by its name, the symbol-maxid argument only affects symbol allocation, not macros. Use of macros from a shared
module requires exact match of the shared-version, and a module that was imported inexactly will trigger an error if its name
appears within a local module or macro_table.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 38 / 96

5.3.2.2 Defining Inline Modules

Along with loading shared modules, a directive can define local modules. From the perspective of the rest of the encoding
directive, and the data that follows, there’s no meaningful distinction in the result. Either way, there’s another module available
for use.

inline-module-def ::= (module module-name module-body)

TODO import and link to the module reference.

Note that module names are lexically scoped: an inline module’s body can access modules previously made available by the
enclosing directive. That is, their macros can be accessed by qualified references, but unqualified references require a use clause
in the module of directive.

5.3.3 Using Modules

In the context of an encoding directive, a use clause makes macros visible within upcoming inline modules, so they can be
referenced without qualification (assuming no ambiguity).

use-decl ::= (use use-item*)
use-item ::= module-name | load-decl

You can use a module by name, referring to a previously retained, loaded, or inline module, or in combination with load. In the
latter case, (use (load module ...)) is equivalent to (load module ...)(use module).

TODO This is incorrect: An Ion parser must signal a fatal error if a directive uses a shared module that cannot be acquired by
exact match to the declared catalog version.

The import clause is simply a shorthand for “load and use”.

import-decl ::= (import load-body)

That is, (import module ...) is equivalent to (load module ...)(use module).

5.3.4 Assembling the Symbol Table

Modules must be installed into the symbol table to affect the encoding of symbols.

symtab ::= (symbol_table symtab-item*)
symtab-item ::= module-name | [text*]

TODO update this

The symbol_table field is simply a list of module names, with no duplicates allowed. The $ion module is implicitly first
in the list and cannot be named explicitly. All names must be in the declared earlier in the directive, including implicit inclusion
via (retain *)

The effect of this field is to allocate addresses to symbol text, in a manner identical to Ion 1.0 imports, allocating contiguous
ranges to each installed module. The width of each range is the number of symbols exported by the corresponding module, or
the symbol-maxid argument of the associated load clause, when provided.

In encoded data numeric symbol references (in text, using the form $d+) work the same way as in Ion 1.0: the first system
symbol is $1 and the first user-installed module starts where the system symbols end.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 39 / 96

5.3.5 Assembling the Macro Table

TODO This needs work.

Modules must be installed into the macro table to enable their use in the document’s E-expressions.

top-mactab ::= (macro_table module-name*)

The meaning is nearly identical to that of symbol_table in that it allocates macro addresses by effectively concatenating the
exported macro tables of the listed modules.

The differences versus symbols are:

• The names of modules installed for macros are part of the “macro environment” of the new encoding context, and are used
to resolve qualified macro references. The names of modules in symbol_table are not added to the context’s visible
environment and cannot be used to reference symbols.

• Shared modules that are in macro_table must have exactly the version requested.

• There’s no corollary to symbol-maxid for macro imports.

5.4 $ion_symbol_table Directives

TODO This content is very old and needs much attention.

Ion 1.1 still supports the legacy $ion_symbol_table directive, internally transforming it into an equivalent $ion_encoding
form.

This is generally not detectable by users, except when followed by an $ion_encoding directive that retains the current
modules. In that case, the imported symbol tables, and the synthetic local module, are visible to the new encoding context, so we
must TODO define what those names are.

TODO define the transformation formally

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 40 / 96

Chapter 6

Encoding Modules

6.1 Overview

6.1.1 Module Interface

The interface to a module consists of:

• its spec version, denoting the Ion version used to define the module

• its exported symbols, an array of strings denoting symbol content

• its exported macros, an array of <name, macro> pairs, where all names are unique identifiers (or null).

The spec version for an inline module is implicitly derived from the Ion version of its containing segment. The spec version for
a shared module is denoted via a required annotation.

The exported symbol array is denoted by the symbol_table clause of a module definition, and by the symbols field of a
shared symbol table.

The exported macro array is denoted by the module’s macro_table clause, with addresses allocated to bindings in the order
they are declared. One address is allocated per macro definition, while the export clause allocates one address for each listed
macro.

6.1.2 Internal Environment

The body of a module tracks an internal environment by which macro references are resolved. This environment is constructed
incrementally by each clause in the definition and consists of:

• the visible modules, a map from identifier to module

• the imported macros, a map from identifier to macro (or to an ambiguity sentinel)

• the local macros, a map from identifier to a macro and optional exported address.

• the exported macros, an array containing name/macro pairs

Before any clauses of the module definition are examined, the initial environment is as follows:

• The visible modules map $ion to the system module for the appropriate spec version. For an inline module, it also includes
the modules previously made available by the enclosing encoding directive (via retain, load, or import).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 41 / 96

• The imported macros contain the exported macros from that system module. For an inline module, it also contains the exported
macros from modules previously used or imported by the enclosing encoding directive.

• The exported macros and local macros are empty.

The first section of a module definition consists of dependency declarations in the form of use, load, and import clauses.
This section affects the environment as follows:

• A load declaration retrieves a shared module from the implementation’s catalog and assigns it a name in the visible modules.
An error must be signaled if the name already appears in the visible modules.

• A use declaration adds its arguments to the visible modules, and adds their exported macros to the imported macros. When a
name is exported from more than one module, and refers to different macros, its mapping points to a sentinel value recording
the ambiguity.

• An import declaration is shorthand for loading a shared module and immediately using it.

After these dependencies are declared, a symbol_table definition may follow.

Next, any number of alias declarations.

• An alias clause associates a (presumably) new name with an existing macro. An error must be signaled if the name exists in
the local macros. Otherwise, the name is added to the local macros.

Finally, there’s the macro_table definition, affecting the local macros and the exported macros.

• An export clause exports imported and aliased macros. Each entry in the clause is handled in order. If the given reference is
anonymous, the macro is appended to the exported macro array without a name. When the reference uses a name, an error must
be signaled if it already appears in the exported macro array. Otherwise, the name and macro are appended to the exported
macro array.

• A macro clause defines a new, exported macro. An error must be signaled if the definition uses a name that exists in the
local macros. Otherwise, the name and macro are appended to the exported macro array, and (when not anonymous) the name,
macro, and address are added to the local macros.

• A module name TODO

6.2 Resolving Macro References

Within a module definition, macros can be referenced in several contexts using the following macro-ref syntax:

macro-ref ::= macro-name | local-ref | qualified-ref
local-ref ::= <symbol of the form ’:name-or-address’>
qualified-ref ::= <symbol of the form ’:module-name:name-or-address’>
module-name ::= unannotated-identifier-symbol
macro-name ::= unannotated-identifier-symbol
macro-address ::= unannotated-uint
name-or-address ::= macro-name | macro-address

Macro references are resolved to a specific macro as follows:

• An unqualified macro-name is looked up within the local macros, and if not found then the imported macros. If it maps to a
macro, that’s the resolution of the reference. Otherwise, if the name maps to the ambiguity sentinel, an error is signaled due to
an ambiguous reference. Otherwise, an error is signaled due to an unbound reference.

• A named local reference (’:name’) is looked up within the local macros. If there’s no entry, an error is signaled due to an
unbound reference.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 42 / 96

• An anonymous local reference (’:address’) is resolved by index in the exported macro array. If the address exceeds the
array boundary, an error is signaled due to an invalid reference.

• A qualified reference (’:module:name-or-address’) resolves solely against the referenced module. If the module
name does not exist in the visible modules, an error is signaled due to an unbound reference. Otherwise, the name or address
is resolved within that module’s exported macro array.

Note
An unqualified macro name can change meaning in the middle of a module: it could be imported and used with that meaning,
then a declaration shadows that name and gives it a new meaning.

6.3 Module Versioning

Every module definition has a spec version that gives the definition its meaning in terms of acceptable syntax, available features,
and so on. A module’s spec version is expressed in terms of a specific Ion version; the meaning of the module is as defined by
that version of the Ion specification.

The spec version of a shared or tunneled module must be declared explicitly using an annotation of the form $ion_1_N . This
allows the module to be serialized using any version of Ion, and its meaning will not change.

$ion_shared_module::$ion_1_1::(
(catalog_key "com.example.symtab" 3)
(symbol_table ...)
(macro_table ...)

)

$ion_shared_symbol_table::{
name: "com.example.symtab", version: 3,
symbols: [...],
module: $ion_1_1::(// Spec version is 1.1
// Semantics of this module are specified by Ion 1.1, regardless of the
// enclosing document’s Ion version.
...

)
}

The spec version of an inline module is always the same as the Ion version of its enclosing segment.

$ion_1_1
$ion_encoding::(

(module M1 ...) // Module semantics specified by Ion 1.1
...

}
...
$ion_1_3
$ion_encoding::(

(module M2 ...) // Module semantics specified by Ion 1.3
...

}
... // Assuming no IVM
$ion_encoding::(

(module M3 ...) // Module semantics specified by Ion 1.3
...

}

To ensure that all consumers of a module can properly understand it, a module can only import shared modules defined with the
same or earlier spec version.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 43 / 96

6.4 Inline, Shared, and Tunneled Modules

Inline modules are defined within an $ion_encoding directive, and are available only within the enclosing document. Their
scope is lexical; they can be used immediately following their definition, up until the next directive, at which point they’ll either
be retained by the new encoding environment, or made unavailable.

inline-module-def ::= (module module-name module-body)

Inline modules always have a symbolic name given at the point of definition. They inherit their spec version from the surrounding
document, and they have no content version.

Shared modules exist independently of the documents that use them. They are identified by a catalog key consisting of a string
name and an integer version. When consumed by a document or another module, they are given a local identifier.

shared-module-def ::= $ion_shared_module::ion-version-marker::(catalog-key module-body)
catalog-key ::= (catalog_key catalog-name catalog-version)

Tunneled modules are shared modules that are defined within a shared symbol table definition.

shared-symtab ::= $ion_shared_symbol_table::{ name : catalog-name version :
catalog-version symbols : [string*] module : tunneled-module-def }

tunneled-module-def ::= ion-version-marker ::(tunneled-module-body)
tunneled-module-
body

::= dependency* macro-alias* module-mactab

Shared and tunneled modules have self-declared catalog-names that are generally long, since they must be more-or-less globally
unique. That’s not usable as a namespace qualifier, so they are given local symbolic names by load and import declarations. They
have a spec version that’s explicit via annotation, and a content version derived from the catalog version.

6.5 Module Bodies

The body of a module is a sequence of elements following this grammar:

module-body ::= dependency* symtab? macro-alias* module-mactab?

6.5.1 Dependencies

Inline modules automatically have access to modules previously declared in the enclosing directive using retain, module,
load, or import. Macro names are also visible as declared by directive-level use and import clauses. Shared and tunneled
modules lie outside an encoding directive and have no such automatic visibility into other modules.

To extend any such automatic names within a module body, you can write the same load, use, and import clauses that are
acceptable within an $ion_encoding directive. The difference is one of scope: the module and macro names introduced by
these forms only affect the enclosing module, not the overall encoding environment.

dependency ::= load-decl | use-decl | import-decl

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 44 / 96

6.5.2 The Symbol Table

A module can define a list of exported symbols by copying symbols from other modules and/or declaring new symbols.

symtab ::= (symbol_table symtab-item*)
symtab-item ::= module-name | [text*]

Note
This clause is not allowed in tunneled modules.

This clause builds a list of symbol-texts by concatenating the elements (the symbol tables of named modules, and the lists of
symbol/string values).

Where a module name occurs, that module must have been previously loaded in the enclosing module or encoding directive, and
its symbol table is appended. If a symbol-maxid was given when loaded, the list is truncated or padded to that length.

Where a list occurs, it follows the syntax and semantics to the symbols field of $ion_shared_symbol_table. In addition,
it allows symbols as well as strings.

TODO: "inline" the specified behavior of such lists.

6.5.3 Declaring Macros

Macros are declared after symbols, in two parts. First, a set of aliases, then the macro table itself.

A macro name is a symbol that can be used to reference a macro, both inside and (if public or exported) outside the module.
Macro names are optional, and improve legibility when using, writing, and debugging macros.

When a name is used, it must be an identifier per Ion’s syntax for symbols. If the name is also exported by any visible module,
the import is shadowed by the declaration. An error must be signaled if the same macro name occurs more than once among the
declarations.

TODO: the above repeats content from elsewhere.

6.5.3.1 Macro Aliases

Aliases simply create a new name bound to an existing macro.

macro-alias ::= (alias macro-name macro-ref)

(alias s some_long_name)
(alias t ’:some_module:23’) // Give name to an anonymous macro

The effect of an alias is to resolve the reference to determine the corresponding macro, and to assign a name for it in the local
macro map.

Unlike macro definitions, aliases are not implicitly exported, do not have addresses allocated, and cannot be referenced using
:address syntax. If an alias is later exported, an address is allocated at that time.

6.5.3.2 Macro Definitions

After aliases, a macro table can be defined.

module-mactab ::= (macro_table macro-or-export*)
macro-or-export ::= macro-defn | export

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 45 / 96

Most commonly, a macro table entry is a definition of a new macro expansion function, following this general shape:

macro-defn ::= (macro macro-name? signature template)

When no name is given, this defines an anonymous macro that can be referenced by its numeric address (that is, its index in the
enclosing macro table). Inside the defining module, that uses a local reference like ’:12’.

The signature defines the syntactic shape of expressions invoking the macro; see TODO for details. The template defines the
expansion of the macro, in terms of the signature’s parameters; see Chapter 9 for details.

6.5.3.3 Exporting Macros

Aliases and used or imported macros and aliases must be explicitly exported if so desired. Export clauses can be intermingled
with macro definitions inside the macro_table; together, they determine the bindings that make up the module’s exported
macro array.

Exports are expressed in two ways: export clauses and module names:

export ::= (export export-item*) | module-name
export-item ::= macro-ref | (from module-name name-or-address*)

An export clause contains a sequence of macro references, using the normal single-symbol syntax, or an S-expression variant
that exports multiple macros from the same module. Each entry in the clause is handled in order.

Where a macro-ref appears, the referenced macro is appended to the macro table. When the reference uses an address, the macro
is exported without a name. When the reference uses a name, an error must be signaled if it already appears in the macro table.

A from clause is shorthand for a series of qualified references from within a single module.

The module-name export form is shorthand for referencing all exported macro from that module, in their original order.

Tip
No name can be repeated among the exported macros, including macro definitions. Name conflicts must be resolved by
aliases.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 46 / 96

Chapter 7

Macro Signatures

A macro’s signature defines the syntax of expressions that invoke it, and the set of input values it accepts. Signatures apply to
both E-expressions and macro-language invocations. Because they denote the interface for users of macros, we describe them
independently of macro definitions.

A signature consists of a sequence of named parameter specifications, followed by an option result specification.

signature ::= param-specs result-spec?
param-specs ::= (param-spec* rest-spec?) | [param-spec* rest-spec?]
param-spec ::= param-name | (param-name param-shape)
rest-spec ::= (param-name rest-shape)
param-name ::= unannotated-identifier-symbol

Each parameter in a signature has a name, expressed as a Ion identifier symbol. Restricting names to Java-style identifiers enables
use of operator characters (like ? and *) for the syntax surrounding names, including qualified macro references.

7.1 Parameter Shapes

A macro’s “wire format”—the sequence of acceptable tokens in an E-expression—is determined by its parameters’ shapes. The
shape of a parameter has two dimensions: its base type and its grouping. The base type constrains the expression forms that can
be used for each argument supplied to the parameter. Independently, a parameter is either simple, grouped, or a rest parameter;
this dimension determines how the arguments supplied to the parameter are delimited within the overall invocation.

param-shape ::= simple-shape | grouped-shape
simple-shape ::= tagged-type? tagged-cardinality? | tagless-type tagless-cardinality?
grouped-shape ::= [any-type?] grouped-cardinality?
rest-shape ::= any-type? rest-cardinality

7.2 Base Types

The core of a parameter specification is its base type, which constrains the syntax of each argument (that is, the acceptable
expression forms that can be used).

any-type ::= tagged-type | tagless-type
tagged-type ::= abstract-type | concrete-type
tagless-type ::= primitive-type | macro-ref

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 47 / 96

The concrete types correspond to the usual Ion data types, from null and bool through list and struct. These have the
obvious meanings, with the caveat that annotations are allowed, as are appropriately-typed and untyped nulls. For example, the
inputs null.int and null.null are acceptable to an int-typed argument, as are arbitrary annotations on either.

concrete-type ::= ’null’ | bool | timestamp | int | decimal | float | string | symbol | blob
| clob | list | sexp | struct

The abstract types are select supertypes of the concrete types: text accepts both symbol and string; number accepts int,
decimal, and float; lob accepts blob and clob; sequence accepts list and sexp; any accepts any value. Nulls and
annotations are accepted as with the concrete types.

abstract-type ::= any | number | exact | text | lob | sequence

Collectively, the abstract and concrete types are the tagged types. Parameters of these types can use macro invocations in place
of normal values.

The primitive types are subtypes of various concrete types that have particularly compact binary encodings. These include
variable-length strings, symbols, signed ints, unsigned uints, as well as fixed-width ints, uints, and floats, all of
various widths between 8 and 64 bits. These types are untagged, so they do not accept nulls, annotations, or macro invocations.

primitive-type ::= var_symbol | var_string | var_int | var_uint | uint8 | uint16 | uint32 |
uint64 | int8 | int16 | int32 | int64 | float16 | float32 | float64

Finally, any visible macro can be used as a type, in which case the argument is written (in text) as an S-expression with elements
matching that macro’s signature. As with tagless arguments, these arguments are serialized without any explicit indication of
their type, since that’s implied by context. (Using a zero-parameter macro as a parameter type is acceptable but pointless, since
the result is constant.)

7.3 Cardinality

Each parameter specification includes a cardinality that indicates the number of values that it expects its argument(s) to produce.

tagged-cardinality ::= ! | + | ’?’ | ’*’
tagless-cardinality ::= ’?’
grouped-cardinality ::= ’+’
rest-cardinality ::= ... | ...+

The following cardinality modifiers are available:

• ? denotes a parameter that accepts zero or one value.

• ! denotes a parameter that accepts exactly one value.

• * denotes a parameter that accepts zero or more values.

• + denotes a parameter that accepts one or more values.

Cardinality is verified by the Ion implementation: the expansion system will signal an expansion error if the number of values
produced by the argument(s) is not aligned with the declared cardinality.

Some combinations of type and cardinality are inherently erroneous: a primitive type cannot produce more than one value.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 48 / 96

7.4 Grouped Parameters

A parameter may be grouped, in which case its invocation shape is a sequence of arguments. In text invocations, this sequence
is written as an Ion list containing the arguments. In binary E-expressions, the sequence uses a dedicated encoding. In all cases,
each element of the group must match the parameter’s declared type.

TODO expansion splicing semantics

To declare a grouped parameter, write the parameter specification with a list around the base type. Grouped parameters may
declare the + cardinality, otherwise * is implied. No other cardinalities are allowed; there’s no point in grouping a parameter that
accepts at most one value.

Examples:

(counts [int]) // Accepts zero or more ints
(points [point]+) // Accepts one or more points

7.5 Rest Parameters

The last parameter may be a rest parameter, which is effectively an implicitly grouped parameter. In text invocations, these
parameters don’t use a grouping sequence, but instead take “all the rest” of the argument expressions.

To declare a rest parameter, use one of the two special cardinality modifiers:

• ... denotes a parameter that accepts zero or more values.

• ...+ denotes a parameter that accepts one or more values.

Examples:

(counts int ...) // Accepts zero or more ints
(points point ...+) // Accepts one or more points

7.6 Voidable and Optional Parameters

Parameters with cardinality accepting zero values (declared with modifiers ?, *, or ...) are called voidable because their
resulting value streams can be void. A parameter is optional when it is voidable and all following parameters are voidable.

Optional parameters are given special treatment in text invocations: their arguments can be omitted entirely (as long as all
following arguments are also omitted).

7.7 Arity

The minimum arity of a macro is equal to the number of leading non-optional parameters. Assuming no rest-parameter, the
maximum arity of the macro is the total number of declared parameters. A macro with a rest-parameter has no maximum arity.
A macro with equal minimum and maximum arity is fixed arity; other templates are variable arity.

7.8 Result Specification

To enable more robust and easier-to-debug templates, a signature can express a result specification that constrains the data that
it produces. Results are specified by their type (abstract or concrete) and cardinality. Both factors are verified by the macro
expander when the macro is invoked.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 49 / 96

result-spec ::= -> tagged-type tagged-cardinality

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 50 / 96

Chapter 8

The System Module

The symbols and macros of the system module $ion are available everywhere within an Ion document, with the version of that
module being determined by the spec-version of each segment.

The specific system symbols are largely uninteresting to users; while the binary encoding heavily leverages the system symbol
table, the text encoding that users typically interact with does not. The system macros are more visible, especially to authors of
macros.

This chapter catalogs the system-provided macros. The examples below use unqualified names, which works assuming no other
module exports the same name, but the unambiguous form :$ion:macro-name is always correct.

Important
This list is not complete. We expect it to grow and evolve as we gain experience writing macros.

8.1 Primitive Operators

This section describes operators that cannot be defined as macros.

8.1.1 Stream Constructors

8.1.1.1 void

(void) -> any?

Produces an empty stream. The most common use of this operator is to supply “no value” to a voidable parameter. To make such
use more readable, the special-case E-expression (:) is synonymous to (:void).

8.1.1.2 values

(values (v any...)) -> any*

Produces a stream from any number of arguments, concatenating the streams produced by the nested expressions. Used to
aggregate multiple values or sub-streams to pass to a single argument, or to return multiple results. Generally only useful with
more than one subexpression.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 51 / 96

8.1.2 Value Constructors

8.1.2.1 make_string

(make_string (content text...)) -> string

Produces a non-null, unannotated string containing the concatenated content produced by the arguments. Nulls and annotations
are discarded.

TODO https://github.com/amazon-ion/ion-docs/issues/255 Probably useful to allow some other Ion scalars (at least) to allow
type conversion. I think this would be most useful for ints, since the binary representation is more compact than as characters.
Lobs wouldn’t work well, though.

8.1.2.2 make_symbol

(make_symbol (content text...)) -> symbol

Like make_string but produces a symbol.

8.1.2.3 make_list

(make_list (vals any...)) -> list

Produces a non-null, unannotated list from any number of inputs. Template expressions of the form [E1, ..., En] are
equivalent to (make_list E1 ... En).

8.1.2.4 make_sexp

(make_sexp (vals any...)) -> sexp

Like make_list but produces a sexp. This is the only way to produce an S-expression from a template: unlike lists, S-
expressions in templates are not quasi-literals.

(:make_sexp) ⇒ ()
(:make_sexp null) ⇒ (null)

8.1.2.5 make_struct

(make_struct (kv any...)) -> struct

Produces a non-null, unannotated struct from any number of elements. The kvs are processed in order, incrementally adding
fields to an initially-empty struct. Various forms of kvs are allowed:

• A (non-null) string or symbol is treated as a field name, and MUST be followed by another value to comprise a key-value pair
in the result. Annotations on the field name are discarded.

• A (non-null) struct is merged into the result as-is, after discarding annotations.

• Any other type of value evokes an expansion error.

Template expressions of the form {T1:E1, ..., Tn:En} are equivalent to (make_struct (literal T1) E1 ...
(literal Tn) En), assuming that no expression E produces more than one value. In that case, the make_struct variant
would misbehave: the second value produced by E would be treated as the next key.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://github.com/amazon-ion/ion-docs/issues/255

Ion 1.1 Specification 52 / 96

(:make_struct k1 1 k2 2 {k3:3} k4 4) ⇒ {k1:1, k2:2, k3:3, k4:4}

Because rest-parameters receive the concatenated argument result-streams, make_struct’s key-value pairs may not align with
the actual arguments. This is different from splicing of macro results into structs, causing the key to repeat:

{ k1: (:values 1 k2) } ⇒ { k1: 1, k1: k2 }
(:make_struct k1 (:values 1 k2) 2) ⇒ { k1: 1, k2: 2 }

8.1.2.6 make_decimal

(make_decimal (coefficient int) (exponent int)) -> decimal

Since decimal is already compact, this is perhaps most useful in conjunction with packed arrays, or when the exponent is repeated
and can be baked into a macro.

TODO https://github.com/amazon-ion/ion-docs/issues/253 If the coefficient were decimal, this could re-scale values. Useful?

8.1.2.7 make_float

(make_float ieee) -> float

Included for completeness, but of unclear utility.

TODO https://github.com/amazon-ion/ion-docs/issues/252 Coerce an int or decimal to float? Perhaps useful to use fixed-width
ints to encode various float widths? This may not be useable to convert “IEEE bits” to float, since they would be converted to int
before arriving here.

8.1.2.8 make_timestamp

(make_timestamp
(year int) (month? int) (day int?)
(hour int?) (minute int?) (second decimal?)
(offset int?))
� timestamp

Produces a non-null, unannotated timestamp at various levels of precision. When offset is absent, the result has unknown
local offset; offset 0 denotes UTC.

TODO https://github.com/amazon-ion/ion-docs/issues/256 Reconsider offset semantics, perhaps default should be UTC.

Example:

(macro ts_today
((hour uint8) (minute uint8) (seconds_millis uint32))
(make_timestamp 2022 04 28 hour minute
(decimal seconds_millis -3) 0))

8.1.2.9 annotate

(annotate (ann [text]*) value) -> any

Produces the value prefixed with the annotations anns. Each ann must be a non-null, unannotated string or symbol.

(:annotate ["a2"] a1::true) ⇒ a2::a1::true

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://github.com/amazon-ion/ion-docs/issues/253
https://github.com/amazon-ion/ion-docs/issues/252
https://github.com/amazon-ion/ion-docs/issues/256

Ion 1.1 Specification 53 / 96

8.2 Derived Operators

These operators can be defined in terms of the primitives, using the macro language.

8.2.1 Symbol Table Management

8.2.1.1 Local Symtab Declaration

This macro is optimized for representing symbols-list with minimal space.

(macro import
((name string) (version uint?) (max_id uint?)) -> struct
{ name:name, version:version, max_id:max_id })

(macro local_symtab
((imports [import]) (symbols string...))
$ion_symbol_table::{
imports:(if_void imports (void) [imports]),
symbols:(if_void symbols (void) [symbols]),

})

(:local_symtab [("my.symtab" 4)] "newsym" "another")
⇒
$ion_symbol_table::{ imports:[{name:"my.symtab", version:4}],

symbols:["newsym", "another"] }

8.2.1.2 Local Symtab Appending

(macro lst_append
((symbols string...))
(if_void symbols
(void) // Produce nothing if no symbols provided.
$ion_symbol_table::{

imports: (literal $ion_symbol_table),
symbols: [symbols]}))

(:lst_append "newsym" "another")
⇒
$ion_symbol_table::{ imports:$ion_symbol_table,

symbols:["newsym", "another"] }

8.2.1.3 Embedded Documents (aka Local Scopes)

TODO

8.2.2 Compact Module Definitions

TODO

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 54 / 96

Chapter 9

Template Expressions

The behavior of a macro is defined in terms of an expression language. Like encoding directives and modules, this language is
expressed as Ion data, and the meaning of templates is defined structurally and recursively based on the Ion data model.

9.1 Grammar

Here’s the relevant portion of the domain grammar:

template ::= identifier | literal | quasi-literal | special-form | macro-invocation
literal ::= null | bool | int | float | decimal | timestamp | string | blob | clob
quasi-literal ::= [template*] | { quasi-field* }
quasi-field ::= text : template
special-form ::= (literal datum) | (if_void templatecond templatethen templateelse) | (

if_single templatecond templatethen templateelse) | (if_many templatecond
templatethen templateelse) | (for [for-clause*] templatebody)

for-clause ::= (identifier templatein)
macro-invocation ::= (macro-ref macro-arg*)
macro-arg ::= template | [template*] // Very roughly

An expression in this language is called a template, and the expansion of a template (that is, its evaluation) produces a stream
of Ion values. The central design concept is that symbols denote variable references, S-expressions denote operator invocations,
and other Ion types denote values of that type.

9.1.1 Symbols are Variable References

When a template is an Ion symbol, it denotes a reference to a variable, either a macro parameter or a local binding from a for
expression. The result of this template is the stream of values referred to by that variable.

The symbols used for variable names must be identifiers as defined by the Ion specification: a sequence of ASCII letters, digits,
or the characters $ (dollar sign) or _ (underscore), not starting with a digit.

When a template is expected, the symbols $0 and null.symbol evoke a syntax error, as does any annotated symbol.

Tip
To denote the literal symbol foo, use the template (literal foo).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 55 / 96

9.1.2 Other Scalars are Literals

When a template is a non-symbol Ion scalar, it denotes a literal value, and the template expands into that value. Any annotations
on the template are included in the output.

9.1.3 Lists and Structs are Quasi-Literals

When a template is an Ion list or struct, it denotes a quasi-literal of the same type. We say “quasi” literal because the elements of
the container are treated as templates, not literal values.

When a template is a list, it expands into a list with the same annotations. The elements of the list-template are each treated as
templates themselves. Each sub-template may produce any number of values, and the resulting streams are all concatenated to
produce the output list.

[1, [2, 3], 4] ⇒ [1, [2, 3], 4]
[1, (values 2 3), 4] ⇒ [1, 2, 3, 4]
[1, (values), 3] ⇒ [1, 3]

When a template is a struct, it expands into a struct with the same annotations. The struct-template’s field names are treated
as literals, and field values are treated as sub-templates, and the output struct contains the given names and their associated
sub-template expansions.

Field-value sub-templates MAY produce multiple values. When a sub-template produces more than one result, then the output
struct will have more than one field with the same name. When a sub-template produces no results, then nothing is added to the
output.

{a:(values 1 2)} ⇒ {a:1, a:2} // or, equivalently, {a:2, a:1}
{f:(values)} ⇒ {}

9.1.4 S-expressions are Operator Invocations

The template language uses S-expressions to denote operations using Lisp-style prefix notation. The first element of the S-
expression must be a symbol that identifies the operator, and the meaning of subsequent elements depends on the operator.

Operators come in two varieties: special forms and macro invocations.

9.2 Special Forms

Special forms are operators that cannot be expressed as macros, because some parts of their syntax are not recursively-expanded
templates, as all macro arguments are.

We use bold monospace when naming these special forms, to distinguish them from macro names.

In the descriptions below, template subforms accept any template-language form. In all such cases, sub-templates are ex-
panded only when indicated.

9.2.1 Preventing Evaluation

9.2.1.1 literal

(literal datum)

Produces datum as-is, preventing the operand from being evaluated as a template.

For example, (literal [1, (values 2 3), 4]) produces [1, (values 2 3), 4]; both the list and the S-expression
are treated as literal, constant data, not as template expressions to be expanded.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 56 / 96

9.2.2 Conditionals

These special forms allow output to vary based on whether a template produces zero, one, or more values.

9.2.2.1 if_void

(if_void templatecond templatethen templateelse)

Evaluates templates conditionally based on the cardinality of a stream.

The templatecond is expanded to see if it produces any values. If and only if it produces no values, then templatethen is expanded
and its results returned. Otherwise, templateelse is expanded and its results returned.

9.2.2.2 if_single

(if_single templatecond templatethen templateelse)

Like if_void, but expands templatethen if and only if templatecond produces exactly one value, otherwise expands templateelse.

9.2.2.3 if_many

(if_many templatecond templatethen templateelse)

Like if_void, but expands templatethen if and only if templatecond produces more than one value, otherwise expands templateelse.

(macro decimal_constraint
[(precision int*), (exponent int*)]
{

precision: (if_many precision range::[precision] precision),
exponent: (if_many exponent range::[exponent] exponent),

})

(:decimal_constraint (3) (-1)) ⇒ { precision: 3, exponent: -1 }
(:decimal_constraint (1 5) (-5 0)) ⇒ { precision: range::[1, 5],

exponent: range::[-5, 0] }
(:decimal_constraint (:) (3 max)) ⇒ { exponent: range::[3, max] }
(:decimal_constraint (1) (:)) ⇒ { precision: 1 }

9.2.3 Mapping

These special forms produce repeated output mapped across elements of a stream.

9.2.3.1 for

(for [(id templatein), ...] templatebody)

Iteratively expands the templatebody using individual values from the in-templates.

Each iteration takes the next value from each templatein stream; iteration stops when any stream ends. Local variables are created
for each identifier id, bound to the current value from their stream. The templatebody is then expanded in that environment, and
iteration proceeds. The result of the for expression is the concatenated results of the body expansions.

Note
The termination rule is under discussion; see https://github.com/amazon-ion/ion-docs/issues/201

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://github.com/amazon-ion/ion-docs/issues/201

Ion 1.1 Specification 57 / 96

9.3 Macro Invocation

A macro definition can express its output in terms of other macros. Quite often, these will be macros provided by the Ion
implementation, but they can also be acquired from other modules.

The S-expression syntax for macro invocation is similar to that of E-expressions. When a template is an S-expression and the first
element is not the name of a special form, that element must instead be a macro-ref and the template denotes a macro invocation.
There are multiple sources of macros: the defining module’s internal environment (which is being incrementally extended with
each definition), and the exported macros of modules loaded by the enclosing module or $ion_encoding directive.

The remaining elements of the S-expression are subforms that denote the inputs to the macro. These use normal Ion notation,
but what’s syntactically acceptable is defined by the macro’s signature.

The number of such subforms (that is, the invocation’s actual arity) must be equal to or greater than the macro’s minimum arity,
and at most its maximum arity, when one exists. In other words, an invocation must contain one subform for each required
parameter, followed by optional subforms for the remaining optional parameters.

Within an invocation expression, the syntax of each subform is defined first by its parameter’s grouping form, then its base type:

• The subform for a simple parameter must match the base type below.

• The subform for a grouped parameter must be a list containing elements that each match the base type.

• A rest parameter captures all remaining subforms of the invocation, each of which must match the base type.

The base types match as follows:

• For tagged types, the subform may be any template that produces acceptable values.

• For primitive types, the subform may be any template that produces values accepted by the corresponding concrete type.

• For macro types, the subform must be an S-expression containing subforms acceptable to that macro’s signature. These are
implicit invocations of the macro, and the macro name cannot be provided explicitly.

TODO Allow macro invocations where grouping list is expected?

TODO Clarify when/where range checks are applied for fixed-width types.

TODO Examples

9.4 Type Checking

TODO

9.5 Error Handling

TODO

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 58 / 96

Chapter 10

Ion 1.1 Binary Encoding

10.1 Encoding Primitives

10.1.1 FlexUInt

A variable-length unsigned integer.

The bytes of a FlexUInts are written in little-endian byte order. This means that the first bytes will contain the FlexUInt’s
least significant bits.

The least significant bits in the FlexUInt indicate the number of bytes that were used to encode the integer. If a FlexUInt
is N bytes long, its N-1 least significant bits will be 0; a terminal 1 bit will be in the next most significant position. All bits that
are more significant than the terminal 1 represent the magnitude of the FlexUInt.

Figure 1: FlexUInt encoding of 14

Lowest bit is 1 (end), indicating
this is the only byte.

0 0 0 1 1 1 0 1

unsigned int 14

Figure 2: FlexUInt encoding of 729

There’s 1 zero in the least significant bits, so this
integer is two bytes wide.

0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1

lowest 6 bits highest 8 bits
of the unsigned of the unsigned
integer integer

Figure 3: FlexUInt encoding of 21,043

There are 2 zeros in the least significant bits, so this
integer is three bytes wide.

1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

lowest 6 bits next 8 bits of highest 8 bits
of the unsigned the unsigned of the unsigned
integer integer integer

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://en.wikipedia.org/wiki/Endianness:

Ion 1.1 Specification 59 / 96

10.1.2 FlexInt

A variable-length signed integer.

From an encoding perspective, FlexInts are structurally similar to a FlexUInt (described above). Both encode their bytes
using little-endian byte order, and both use the count of least-significant zero bits to indicate how many bytes were used to encode
the integer. They differ in the interpretation of their bits; while a FlexUInt’s bits are unsigned, a FlexInt’s bits are encoded
using two’s complement notation.

Tip
An implementation could choose to read a FlexInt by instead reading a FlexUInt and then reinterpreting its bits as two’s
complement.

Figure 4: FlexInt encoding of 14

Lowest bit is 1 (end), indicating
this is the only byte.

0 0 0 1 1 1 0 1

2’s comp. 14

Figure 5: FlexInt encoding of -14

Lowest bit is 1 (end), indicating
this is the only byte.

1 1 1 0 0 1 0 1

2’s comp. -14

Figure 6: FlexInt encoding of 729

There’s 1 zero in the least significant bits, so this
integer is two bytes wide.

0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1

lowest 6 bits highest 8 bits
of the 2’s of the 2’s
comp. integer comp. integer

Figure 7: FlexInt encoding of -729

There’s 1 zero in the least significant bits, so this
integer is two bytes wide.

1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0

lowest 6 bits highest 8 bits
of the 2’s of the 2’s
comp. integer comp. integer

10.1.3 FixedUInt

A fixed-width, little-endian, unsigned integer whose length is inferred from the context in which it appears.

Figure 8: FixedUInt encoding of 3,954,261

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://en.wikipedia.org/wiki/Two%27s_complement

Ion 1.1 Specification 60 / 96

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0

lowest 8 bits next 8 bits of highest 8 bits
of the unsigned the unsigned of the unsigned
integer integer integer

10.1.4 FixedInt

A fixed-width, little-endian, signed integer whose length is known from the context in which it appears. Its bytes are interpreted
as two’s complement.

Figure 9: FixedInt encoding of -3,954,261

1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1

lowest 8 bits next 8 bits of highest 8 bits
of the 2’s the 2’s comp. of the 2’s comp.
comp. integer integer integer

10.1.5 FlexSym

A variable-length symbol token whose UTF-8 bytes can be inline, found in the symbol table, or derived from a macro expansion.

A FlexSym begins with a FlexInt; once this integer has been read, we can evaluate it to determine how to proceed. If the FlexInt
is:

• greater than zero, it represents a symbol ID. The symbol’s associated text can be found in the local symbol table. No more
bytes follow.

• less than zero, its absolute value represents a number of UTF-8 bytes that follow the FlexInt. These bytes represent the
symbol’s text.

• exactly zero, another byte follows that is an opcode. The FlexSym parser is not responsible for evaluating this opcode, only
returning it—the caller will decide whether the opcode is legal in the current context. Example usages of the opcode include:

– Representing SID $0 as 0x70. (See: Strings)

– Representing the empty string ("") as 0x80. (See: Symbols with inline text)

– When used to encode a struct field name, the opcode can invoke a macro that will evaluate to a struct whose key/value pairs
are spliced into the parent struct (TODO: Link)

– In a delimited struct, terminating the sequence of (field name, value) pairs with 0xF0.

Figure 10: FlexSym encoding of symbol ID $10

The leading FlexInt ends in a ‘1‘,
no more FlexInt bytes follow.

0 0 0 1 0 1 0 1

2’s comp.
positive 10

Figure 11: FlexSym encoding of symbol text ’hello’

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 61 / 96

The leading FlexInt ends in a ‘1‘,
no more FlexInt bytes follow.
h e l l o

1 1 1 1 0 1 1 1 01101000 01100101 01101100 01101100 01101111

2’s comp. 5-byte UTF-8 encoded "hello"
negative 5

Figure 12: FlexSym encoding of ” (empty text) using an opcode

The leading FlexInt ends in a ‘1‘,
no more FlexInt bytes follow.

0 0 0 0 0 0 0 1 1110000

2’s comp. opcode 0x70:
zero empty symbol

10.2 Opcodes

An opcode is a 1-byte FixedUInt that tells the reader what the next expression represents and how the bytes that follow should
be interpreted.

The meanings of each opcode are organized loosely by their high and low nibbles.

High nibble Low nibble Meaning
0x0_ to 0x3_ 0-F E-expression with the address in the opcode

0x4_ 0-F E-expression with the address as a trailing FlexUInt

0x5_

0-8 Integers up to 8 bytes wide
9 Reserved
A-D Floats
E-F Booleans

0x6_ 0-F Decimals
0x7_ 0-F Timestamps
0x8_ 0-F Strings
0x9_ 0-F Symbols with inline text
0xA_ 0-F Lists
0xB_ 0-F S-expressions

0xC_
0 Empty struct
1 Reserved
2-F Structs with symbol address field names

0xD_
0-1 Reserved
2-F Structs with FlexSym field names

0xE_

0 Ion version marker
1-3 Symbols with symbol address
4-6 Annotations with symbol address
7-9 Annotations with FlexSym text
A null.null
B Typed nulls
C-D NOP
E Reserved
F System macro invocation

0xF_

0 Delimited container end
1 Delimited list start
2 Delimited S-expression start

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 62 / 96

High nibble Low nibble Meaning
3 Delimited struct with FlexSym field names start
4 Variable length prefixed macro invocation
5 Variable length integer
6 Variable length decimal
7 Variable length, long-form timestamp
8 Variable length string
9 Variable length symbol encoded as FlexSym
A Variable length list
B Variable length S-expression
C Variable length struct with symbol address field names
D Variable length struct with FlexSym field names
E Variable length blob
F Variable length clob

10.3 Encoding Expressions

10.3.1 E-expression With the Address in the Opcode

If the value of the opcode is less than 64 (0x40), it represents an E-expression invoking the macro at the corresponding ad-
dress—an offset within the local macro table.

Figure 13: Invocation of macro address 7

0 0 0 0 0 1 1 1

FixedUInt 7

Figure 14: invocation of macro address 31

0 0 0 1 1 1 1 1

FixedUInt 31

Note that the opcode alone tells us which macro is being invoked, but it does not supply enough information for the reader to
parse any arguments that may follow. The parsing of arguments is described in detail in the section Macro calling conventions.
(TODO: Link)

10.3.2 E-expression With the Address as a Trailing FlexUInt

While E-expressions invoking macro addresses in the range [0, 63] can be encoded in a single byte using E-expressions with
the address in the opcode, many applications will benefit from defining more than 64 macros.

If the high nibble of the opcode is 0x4_, then the low nibble represents the four least significant bits of the macro address. A
FlexUInt follows that contains the remaining, more significant bits.

Because the first 64 macro addresses can already be encoded using high nibbles 0 to 3, the decoded value is biased by 64. (That
is: the reader must add 64 to the decoded value. If the decoded value is 0, the macro address that it represents is 64.)

Because the address is encoded using a FlexUInt, there is no (theoretical) limit to the number of addresses that can be
invoked. However, larger addresses require more bytes to encode. The following table shows the number of bytes needed to
encode invocations of macro addresses in various ranges.

Address range Bytes needed Magnitude bits available
0 to 63 1 6
64 to 2,112 2 11

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 63 / 96

Address range Bytes needed Magnitude bits available
2,113 to 262,208 3 18
262,209 to 33,554,432 4 25

Figure 15: Invocation of macro address 131

The address FlexUInt ends in a ‘1‘,
no more FlexUInt bytes follow.

0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1

FlexUInt containing the 7 most
4 least significant significant bits of the macro

opcode high bits of the macro address
nibble 4 address

Magnitude bits: 0000100_0011
Decoded value : 67
Biased value : 131

Figure 16: Invocation of macro address 1,211

The address FlexUInt ends in a ‘1‘,
no more FlexUInt bytes follow.

0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1

FlexUInt containing the 7 most
4 least significant significant bits of the macro

opcode high bits of the macro address
nibble 4 address

Magnitude bits: 1000111_1011
Decoded value : 1,147
Biased value : 1,211

Figure 17: Invocation of macro address 71,376

The address FlexUInt ends in ‘10‘; the zero in the least ←↩
significant
bits indicates that one more FlexUInt byte follows.

0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1

the 8 most significant bits
of the macro address

FlexUInt containing the next 7 most
4 least significant significant bits of the macro

opcode high bits of the macro address
nibble 4 address

Magnitude bits: 01000101_101001_0000
Decoded value : 71,312
Biased value : 71,376

Note
From this point on in the document, example encodings are given in hexadecimal notation.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 64 / 96

10.4 Booleans

0x5E represents boolean true, while 0x5F represents boolean false.

0xEB 0x00 represents null.bool.

Figure 18: Encoding of boolean true

5E

Figure 19: Encoding of boolean false

5F

Figure 20: Encoding of null.bool

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: boolean

EB 00

10.5 Numbers

10.5.1 Integers

Opcodes in the range 0x50 to 0x58 represent an integer. The opcode is followed by a FixedInt that represents the integer value.
The low nibble of the opcode (0x_0 to 0x_8) indicates the size of the FixedInt. Opcode 0x50 represents integer 0; no more
bytes follow.

Integers that require more than 8 bytes are encoded using the variable-length integer opcode 0xF5, followed by a FlexUInt
indicating how many bytes of representation data follow.

0xEB 0x01 represents null.int.

Figure 21: Encoding of integer 0

Opcode in 50-58 range indicates integer
Low nibble 0 indicates
no more bytes follow.

50

Figure 22: Encoding of integer 17

Opcode in 50-58 range indicates integer
Low nibble 1 indicates
a single byte follows.

51 11
FixedInt 17

Figure 23: Encoding of integer -944

Opcode in 50-58 range indicates integer
Low nibble 2 indicates
that two bytes follow.

52 50 FC

FixedInt -944

Figure 24: Encoding of integer -944

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 65 / 96

Opcode F5 indicates a variable-length integer, FlexUInt length follows
FlexUInt 2; a 2-byte FixedInt follows

F5 05 50 FC

FixedInt -944

Figure 25: Encoding of null.int

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: integer

EB 01

10.5.2 Floats

Float values are encoded using the IEEE-754 specification, and can be serialized in four sizes:

• 0 bits (0 bytes), representing the value 0e0 and indicated by opcode 0x5A

• 16 bits (2 bytes, half precision), indicated by opcode 0x5B

• 32 bits (4 bytes, single precision), indicated by opcode 0x5C

• 64 bits (8 bytes, double precision), indicated by opcode 0x5D

Note that in the Ion data model, float values are always 64 bits. However, if a value can be losslessly serialized in fewer than 64
bits, Ion implementations may choose to do so.

0xEB 0x02 represents null.float.

Figure 26: Encoding of float 0e0

Opcode in range 5A-5D indicates a float
Low nibble A indicates
a 0-length float; 0e0

5A

Figure 27: Encoding of float 3.14e0

Opcode in range 5A-5D indicates a float
Low nibble B indicates a 2-byte float

5B 42 47

half-precision 3.14

Figure 28: Encoding of float 3.1415927e0

Opcode in range 5A-5D indicates a float
Low nibble C indicates a 4-byte,
single-precision value.

5C 40 49 0F DB

single-precision 3.1415927

Figure 29: Encoding of float 3.141592653589793e0

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Ion 1.1 Specification 66 / 96

Opcode in range 5A-5D indicates a float
Low nibble D indicates an 8-byte,
double-precision value.

5D 40 09 21 FB 54 44 2D 18

double-precision 3.141592653589793

Figure 30: Encoding of null.float

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: float

EB 02

10.5.3 Decimals

If an opcode has a high nibble of 0x6_, it represents a decimal. Low nibble values 0x_E and below indicate the number of
trailing bytes used to encode the decimal.

The body of the decimal is encoded as a FlexInt representing its coefficient, followed by a FixedInt representing its exponent.
The width of the exponent is the total length of the decimal encoding minus the length of the coefficient. It is possible for the
exponent to have a width of zero, indicating an exponent of 0.

Decimal values that require more than 14 bytes can be encoded using the variable-length decimal opcode: 0xF6.

A decimal with a coefficient of -0 (which cannot be encoded as a FlexInt) is encoded using opcode 6F. The opcode is
followed by a FlexInt representing the exponent.

0xEB 0x03 represents null.decimal.

Figure 31: Encoding of decimal 0d0

Opcode in range 60-6F indicates a decimal
Low nibble 0 indicates a zero-byte
decimal; 0d0

60

Figure 32: Encoding of decimal 7d0

Opcode in range 60-6F indicates a decimal
Low nibble 1 indicates a 1-byte decimal

61 0F
Coefficient: FlexInt 7; no more bytes follow, so exponent is implicitly 0

Figure 33: Encoding of decimal `1.27`

Opcode in range 60-6F indicates a decimal
Low nibble 3 indicates a 3-byte decimal

63 FD 01 FE
Exponent: 1-byte FixedInt -2

Coefficient: FlexInt 127

Figure 34: Variable-length encoding of decimal 1.27

Opcode F6 indicates a variable-length decimal

F6 07 FD 01 FE
Exponent: 1-byte FixedInt -2
Coefficient: FlexInt 127

Decimal length: FlexUInt 3

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 67 / 96

Figure 35: Encoding of -0d3, which has a coefficient of negative zero

Opcode 6F indicates a variable-length decimal with a coefficient of -0

6F 07
Exponent: FlexInt 3

Figure 36: Encoding of null.decimal

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: decimal

EB 03

10.6 Timestamps

Note
In Ion 1.0, text timestamp fields were encoded using the local time while binary timestamp fields were encoded using UTC time.
This required applications to perform conversion logic when transcribing from one format to the other. In Ion 1.1, all binary
timestamp fields are encoded in local time.

Timestamps have two encodings:

Short-form timestamps A compact representation optimized for the most commonly used precisions and date ranges.

Long-form timestamps A less compact representation capable of representing any timestamp in the Ion data model.

0xEB x04 represents null.timestamp.

Figure 37: Encoding of null.timestamp

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: timestamp

EB 04

10.6.1 Short-form Timestamp

If an opcode has a high nibble of 0x7_, it represents a short-form timestamp. This encoding focuses on making the most common
timestamp precisions and ranges the most compact; less common precisions can still be expressed via the variable-length long
form timestamp encoding.

Timestamps may be encoded using the short form if they meet all of the following conditions:

The year is between 1970 and 2097. The year subfield is encoded as the number of years since 1970. 7 bits are dedicated to
representing the biased year, allowing timestamps through the year 2097 to be encoded in this form.

The local offset is either UTC, unknown, or falls between -14:00 to +14:00 and is divisible by 15 minutes. 7 bits are ded-
icated to representing the local offset as the number of quarter hours from -56 (that is: offset -14:00). The value
0b1111111 indicates an unknown offset. At the time of this writing (2023-05T), all real-world offsets fall between
-12:00 and +14:00 and are multiples of 15 minutes.

The fractional seconds are a common precision. The timestamp’s fractional second precision (if present) is either 3 digits
(milliseconds), 6 digits (microseconds), or 9 digits (nanoseconds).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://en.wikipedia.org/wiki/List_of_UTC_offsets
https://en.wikipedia.org/wiki/List_of_UTC_offsets

Ion 1.1 Specification 68 / 96

10.6.1.1 Opcodes by precision and offset

Each opcode with a high nibble of 0x7_ indicates a different precision and offset encoding pair.

Opcode Precision Serialized size
in bytes*

Offset encoding

0x70 Year 1
Implicitly Unknown offset0x71 Month 2

0x72 Day 2
0x73 Hour and

minutes
4

1 bit to indicate UTC or Unknown Offset0x74 Seconds 5
0x75 Milliseconds 6
0x76 Microseconds 7
0x77 Nanoseconds 8
0x78 Hour and

minutes
5

7 bits to represent a known offset. This encoding can also
represent UTC and Unknown Offset, though it is less compact
than opcodes 0x73-0x77 above.

0x79 Seconds 5
0x7A Milliseconds 7
0x7B Microseconds 8
0x7C Nanoseconds 9
0x7D

Reserved0x7E
0x7F

* Serialized size in bytes does not include the opcode.

The body of a short-form timestamp is encoded as a FixedUInt of the size specified by the opcode. This integer is then
partitioned into bit-fields representing the timestamp’s subfields. Note that endianness does not apply here because the bit-fields
are defined over the body interpreted as an integer.

The following letters to are used to denote bits in each subfield in diagrams that follow. Subfields occur in the same order in all
encoding variants, and consume the same number of bits, with the exception of the fractional bits, which consume only enough
bits to represent the fractional precision supported by the opcode being used.

Letter code Number of bits Subfield
Y 7 Year
M 4 Month
D 5 Day
H 5 Hour
m 6 Minute
o 7 Offset
U 1 Unknown or UTC offset
s 6 Second

f
10 (ms) 20 (µs) 30

(ns) Fractional second

. n/a Unused

We will denote the timestamp encoding as follows with each byte ordered vertically from top to bottom. The respective bits are
denoted using the letter codes defined in the table above.

7 0 <--- bit position
| |

+=========+
byte 0 | 0xNN | <-- hex notation for constants like opcodes

+=========+ <-- boundary between encoding primitives (e.g., opcode/‘FlexUInt‘)
1 |nnnn:nnnn| <-- bits denoted with a ‘:‘ as a delimeter to aid in reading

+---------+ <-- octet boundary within an encoding primitive

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 69 / 96

...
+---------+

N |nnnn:nnnn|
+=========+

The bytes are read from top to bottom (least significant to most significant), while the bits within each byte should be read from
right to left (also least significant to most significant.)

Note
While this encoding may complicate human reading, it guarantees that the timestamp’s subfields (year, month, etc.) occupy
the same bit contiguous indexes regardless of how many bytes there are overall. (The last subfield, fractional_seconds,
always begins at the same bit index when present, but can vary in length according to the precision.) This arrangement allows
processors to read the Little-Endian bytes into an integer and then mask the appropriate bit ranges to access the subfields.

Figure 38: Encoding of a timestamp with year precision

+=========+
byte 0 | 0x70 |

+=========+
1 |.YYY:YYYY|

+=========+

Figure 39: Encoding of a timestamp with month precision

+=========+
byte 0 | 0x71 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |....:.MMM|

+=========+

Figure 40: Encoding of a timestamp with day precision

+=========+
byte 0 | 0x72 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+=========+

Figure 41: Encoding of a timestamp with hour-and-minutes precision at UTC or unknown offset

+=========+
byte 0 | 0x73 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |....:Ummm|

+=========+

Figure 42: Encoding of a timestamp with seconds precision at UTC or unknown offset

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 70 / 96

+=========+
byte 0 | 0x74 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |ssss:Ummm|

+---------+
5 |....:..ss|

+=========+

Figure 43: Encoding of a timestamp with milliseconds precision at UTC or unknown offset

+=========+
byte 0 | 0x75 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |ssss:Ummm|

+---------+
5 |ffff:ffss|

+---------+
6 |....:ffff|

+=========+

Figure 44: Encoding of a timestamp with microseconds precision at UTC or unknown offset

+=========+
byte 0 | 0x76 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |ssss:Ummm|

+---------+
5 |ffff:ffss|

+---------+
6 |ffff:ffff|

+---------+
7 |..ff:ffff|

+=========+

Figure 45: Encoding of a timestamp with nanoseconds precision at UTC or unknown offset

+=========+
byte 0 | 0x77 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 71 / 96

3 |mmmH:HHHH|
+---------+

4 |ssss:Ummm|
+---------+

5 |ffff:ffss|
+---------+

6 |ffff:ffff|
+---------+

7 |ffff:ffff|
+---------+

8 |ffff:ffff|
+=========+

Figure 46: Encoding of a timestamp with hour-and-minutes precision at known offset

+=========+
byte 0 | 0x78 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |oooo:ommm|

+---------+
5 |....:..oo|

+=========+

Figure 47: Encoding of a timestamp with seconds precision at known offset

+=========+
byte 0 | 0x79 |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |oooo:ommm|

+---------+
5 |ssss:ssoo|

+=========+

Figure 48: Encoding of a timestamp with milliseconds precision at known offset

+=========+
byte 0 | 0x7A |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |oooo:ommm|

+---------+
5 |ssss:ssoo|

+---------+
6 |ffff:ffff|

+---------+

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 72 / 96

7 |....:..ff|
+=========+

Figure 49: Encoding of a timestamp with microseconds precision at known offset

+=========+
byte 0 | 0x7B |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |oooo:ommm|

+---------+
5 |ssss:ssoo|

+---------+
6 |ffff:ffff|

+---------+
7 |ffff:ffff|

+---------+
8 |....:ffff|

+=========+

Figure 50: Encoding of a timestamp with nanoseconds precision at known offset

+=========+
byte 0 | 0x7C |

+=========+
1 |MYYY:YYYY|

+---------+
2 |DDDD:DMMM|

+---------+
3 |mmmH:HHHH|

+---------+
4 |oooo:ommm|

+---------+
5 |ssss:ssoo|

+---------+
6 |ffff:ffff|

+---------+
7 |ffff:ffff|

+---------+
8 |ffff:ffff|

+---------+
9 |..ff:ffff|

+=========+

Warning
Opcodes 0x7D, 0x7E, and 7F are illegal; they are reserved for future use.

10.6.2 Long-form Timestamp

Unlike the Short-form timestamp encoding, which is limited to encoding timestamps in the most commonly referenced timestamp
ranges and precisions for which it optimizes, the long-form timestamp encoding is capable of representing any valid timestamp.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 73 / 96

The long form begins with opcode 0xF7. A FlexUInt follows indicating the number of bytes that were needed to represent the
timestamp. The encoding consumes the minimum number of bytes required to represent the timestamp. The declared length can
be mapped to the timestamp’s precision as follows:

Length Corresponding precision
0 Illegal
1 Illegal
2 Year
3 Month or Day (see below)
4 Illegal; the hour cannot be specified without also specifying minutes
5 Illegal
6 Minutes
7 Seconds

8 or more Fractional seconds

Unlike the short-form encoding, the long-form encoding reserves:

• 14 bits for the year (Y), which is not biased.

• 12 bits for the offset, which counts the number of minutes (not quarter-hours) from -1440 (that is: -24:00). An offset value
of 0b111111111111 indicates an unknown offset.

Similar to short-form timestamps, with the exception of representing the fractional seconds, the components of the timestamp
are encoded as bit-fields on a FixedUInt that corresponds to the length that followed the opcode.

If the timestamp’s overall length is greater than or equal to 8, the FixedUInt part of the timestamp is 7 bytes and the remaining
bytes are used to encode fractional seconds. The fractional seconds are encoded as a (coefficient, scale) pair, which
is similar to a decimal. The primary difference is that the scale represents a negative exponent because it is illegal for the
fractional seconds value to be greater than or equal to 1.0 or less than 0.0. The coefficient is encoded as a FlexUInt (instead
of FlexInt) to prevent the encoding of fractional seconds less than 0.0. The scale is encoded as a FixedUInt (instead of
FixedInt) to discourage the encoding of decimal numbers greater than 1.0. Note that validation is still required; namely:

• A scale value of 0 is illegal, as that would result in a fractional seconds greater than 1.0 (a whole second).

• If coefficient * 10ˆ-scale > 1.0, that (coefficient, scale) pair is illegal.

If the timestamp’s length is 3, the most significant bit in the final byte (h) is a flag that indicates month (0) or day (1) precision.
If the timestamp’s length is greater than 3, the (h) bit is treated as the least-significant bit of the hour (H) bits.

Figure 51: Encoding of the body of a long-form timestamp

+=========+
byte 0 |YYYY:YYYY|

+=========+
1 |MMYY:YYYY|

+---------+
2 |hDDD:DDMM|

+---------+
3 |mmmm:HHHH|

+---------+
4 |oooo:oomm|

+---------+
5 |ssoo:oooo|

+---------+
6 |....:ssss|

+=========+
7 |FlexUInt | <-- coefficient of the fractional seconds

+---------+
...

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 74 / 96

+=========+
N |FixedUInt| <-- scale of the fractional seconds

+---------+
...

10.7 Text

10.7.1 Strings

If the high nibble of the opcode is 0x8_, it represents a string. The low nibble of the opcode indicates how many UTF-8 bytes
follow. Opcode 0x80 represents a string with empty text ("").

Strings longer than 15 bytes can be encoded with the F8 opcode, which takes a FlexUInt-encoded length after the opcode.

0xEB x05 represents null.string.

Figure 52: Encoding of the empty string, ""

Opcode in range 80-8F indicates a string
Low nibble 0 indicates that no UTF-8 bytes follow

80

Figure 53: Encoding of a 14-byte string

Opcode in range 80-8F indicates a string
Low nibble E indicates that 14 UTF-8 bytes follow

f o u r t e e n b y t e s
8E 66 6F 75 72 74 65 65 6E 20 62 79 74 65 73

UTF-8 bytes

Figure 54: Encoding of a 24-byte string

Opcode F8 indicates a variable-length string
Length: FlexUInt 24

v a r i a b l e l e n g t h e n c o d i n g
F8 31 76 61 72 69 61 62 6C 65 20 6C 65 6E 67 74 68 20 65 6E 63 6f 64 69 6E 67

UTF-8 bytes

Figure 55: Encoding of null.string

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: string

EB 05

10.7.2 Symbols With Inline Text

If the high nibble of the opcode is 0x9_, it represents a symbol whose text follows the opcode. The low nibble of the opcode
indicates how many UTF-8 bytes follow. Opcode 0x90 represents a symbol with empty text (”).

0xEB x06 represents null.symbol.

Figure 56: Encoding of a symbol with empty text (”)

Opcode in range 90-9F indicates a symbol with inline text
Low nibble 0 indicates that no UTF-8 bytes follow

90

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 75 / 96

Figure 57: Encoding of a symbol with 14 bytes of inline text

Opcode in range 90-9F indicates a symbol with inline text
Low nibble E indicates that 14 UTF-8 bytes follow

f o u r t e e n b y t e s
9E 66 6F 75 72 74 65 65 6E 20 62 79 74 65 73

UTF-8 bytes

Figure 58: Encoding of a symbol with 24 bytes of inline text

Opcode F9 indicates a variable-length symbol with inline text
Length: FlexUInt 24

v a r i a b l e l e n g t h e n c o d i n g
F9 31 76 61 72 69 61 62 6C 65 20 6C 65 6E 67 74 68 20 65 6E 63 6f 64 69 6E 67

UTF-8 bytes

Figure 59: Encoding of null.symbol

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: symbol

EB 06

10.7.3 Symbols With a Symbol Address

Symbol values whose text can be found in the local symbol table are encoded using opcodes 0xE1 through 0xE3:

• 0xE1 represents a symbol whose address in the symbol table (aka its symbol ID) is a 1-byte FixedUInt that follows the opcode.

• 0xE2 represents a symbol whose address in the symbol table is a 2-byte FixedUInt that follows the opcode.

• 0xE3 represents a symbol whose address in the symbol table is a FlexUInt that follows the opcode.

Writers MUST encode a symbol address in the smallest number of bytes possible. For each opcode above, the symbol address
that is decoded is biased by the number of addresses that can be encoded in fewer bytes.

Opcode Symbol address range Bias
0xE1 0 to 255 0
0xE2 256 to 65,791 256
0xE3 65,792 to infinity 65,792

10.8 Binary Data

10.8.1 Blobs

Opcode FE indicates a blob of binary data. A FlexUInt follows that represents the blob’s byte-length.

0xEB x07 represents null.blob.

Figure 60: Encoding of a blob with 24 bytes of data

Opcode FE indicates a blob, FlexUInt length follows
Length: FlexUInt 24

FE 31 49 20 61 70 70 6c 61 75 64 20 79 6f 75 72 20 63 75 72 69 6f 73 69 74 79

24 bytes of binary data

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 76 / 96

Figure 61: Encoding of null.blob

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: blob

EB 07

10.8.2 Clobs

Opcode FF indicates a clob—binary character data of an unspecified encoding. A FlexUInt follows that represents the clob’s
byte-length.

0xEB x08 represents null.clob.

Figure 62: Encoding of a clob with 24 bytes of data

Opcode FF indicates a clob, FlexUInt length follows
Length: FlexUInt 24

FF 31 49 20 61 70 70 6c 61 75 64 20 79 6f 75 72 20 63 75 72 69 6f 73 69 74 79

24 bytes of binary data

Figure 63: Encoding of null.clob

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: clob

EB 08

10.9 Containers

Each of the container types (list, s-expression, and struct) has both a length-prefixed encoding and a delimited encoding.

The length-prefixed encoding places more burden on the writer, but simplifies reading and enables skipping over uninteresting
values in the data stream. In contrast, the delimited encoding is simpler and faster for writers, but requires the reader to visit each
child value in turn to skip over the container.

10.9.1 Lists

10.9.1.1 Length-prefixed encoding

An opcode with a high nibble of 0xA_ indicates a length-prefixed list. The lower nibble of the opcode indicates how many bytes
were used to encode the child values that the list contains.

If the list’s encoded byte-length is too large to be encoded in a nibble, writers may use the 0xFA opcode to write a variable-length
list. The 0xFA opcode is followed by a FlexUInt that indicates the list’s byte length.

0xEB 0x09 represents null.list.

Figure 64: Length-prefixed encoding of an empty list ([])

An Opcode in the range 0xA0-0xAF indicates a list.
A low nibble of 0 indicates that the child values of this list took zero bytes to ←↩

encode.
A0

Figure 65: Length-prefixed encoding of [1, 2, 3]

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 77 / 96

An Opcode in the range 0xA0-0xAF indicates a list.
A low nibble of 0 indicates that the child values of this list took zero bytes to ←↩

encode.
A6 51 01 51 02 51 03

1 2 3

Figure 66: Length-prefixed encoding of ["variable length list"]

Opcode 0xFA indicates a variable-length list. A FlexUInt length follows.
Length: FlexUInt 22

Opcode 0xF8 indicates a variable-length string. A FlexUInt length follows.
Length: FlexUInt 20

v a r i a b l e l e n g t h l i s t
FA 2d F8 29 76 61 72 69 61 62 6c 65 20 6c 65 6e 67 74 68 20 6c 69 73 74

Nested string element

Figure 67: Encoding of null.list

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: list

EB 09

10.9.1.2 Delimited Encoding

Opcode 0xF1 begins a delimited list, while opcode 0xF0 closes the most recently opened delimited container that has not yet
been closed.

Figure 68: Delimited encoding of an empty list ([])

Opcode 0xF1 indicates a delimited list
Opcode 0xF0 indicates the end of the most recently opened container

F1 F0

Figure 69: Delimited encoding of [1, 2, 3]

Opcode 0xF1 indicates a delimited list
Opcode 0xF0 indicates the end of
the most recently opened container

F1 51 01 51 02 51 03 F0

1 2 3

Figure 70: Delimited encoding of [1, [2], 3]

Opcode 0xF1 indicates a delimited list
Opcode 0xF1 begins a nested delimited list

Opcode 0xF0 closes the most recently
opened delimited container: the nested list.

Opcode 0xF0 closes the most recently opened (and still open ←↩
)

delimited container: the outer list.

F1 51 01 F1 51 02 F0 51 03 F0

1 2 3

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 78 / 96

10.9.2 S-Expressions

S-expressions use the same encodings as lists, but with different opcodes.

Opcode Encoding
0xB0-0xBF Length-prefixed S-expression; low nibble of the opcode represents the byte-length.

0xFB Variable-length prefixed S-expression; a FlexUInt following the opcode represents the
byte-length.

0xF2 Starts a delimited S-expression; 0xF0 closes the most recently opened delimited container.

0xEB 0x0A represents null.sexp.

Figure 71: Length-prefixed encoding of an empty S-expression (())

An Opcode in the range 0xB0-0xBF indicates an S-expression.
A low nibble of 0 indicates that the child values of this S-expression took zero ←↩

bytes to encode.
B0

Figure 72: Length-prefixed encoding of (1 2 3)

An Opcode in the range 0xB0-0xBF indicates an S-expression.
A low nibble of 6 indicates that the child values of this S-expression took six bytes ←↩

to encode.
B6 51 01 51 02 51 03

1 2 3

Figure 73: Length-prefixed encoding of ("variable length sexp")

Opcode 0xFB indicates a variable-length list. A FlexUInt length follows.
Length: FlexUInt 22

Opcode 0xF8 indicates a variable-length string. A FlexUInt length follows.
Length: FlexUInt 20

v a r i a b l e l e n g t h s e x p
FB 2D F8 29 76 61 72 69 61 62 6C 65 20 6C 65 6E 67 74 68 20 73 65 78 70

Nested string element

Figure 74: Delimited encoding of an empty S-expression (())

Opcode 0xF2 indicates a delimited S-expression
Opcode 0xF0 indicates the end of the most recently opened container

F2 F0

Figure 75: Delimited encoding of (1 2 3)

Opcode 0xF2 indicates a delimited S-expression
Opcode 0xF0 indicates the end of
the most recently opened container

F2 51 01 51 02 51 03 F0

1 2 3

Figure 76: Delimited encoding of (1 (2) 3)

Opcode 0xF2 indicates a delimited S-expression
Opcode 0xF2 begins a nested delimited S-expression

Opcode 0xF0 closes the most recently
opened delimited container: the nested S-expression.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 79 / 96

Opcode 0xF0 closes the most recently opened (and still open ←↩
)

delimited container: the outer S-expression.

F2 51 01 F2 51 02 F0 51 03 F0

1 2 3

Figure 77: Encoding of null.sexp

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: sexp

EB 0A

10.9.3 Structs

Structs have 3 available encodings:

1. Structs with symbol address field names

2. Structs with FlexSym field names

3. Delimited structs with FlexSym field names

0xEB 0x0B represents null.struct.

Figure 78: Encoding of null.struct

Opcode 0xEB indicates a typed null; a byte follows specifying the type
Null type: struct

EB 0B

10.9.3.1 Structs With Symbol Address Field Names

An opcode with a high nibble of 0xC_ indicates a struct with symbol address field names (which is similar to the only available
encoding of structs in Ion 1.0. The lower nibble of the opcode indicates how many bytes were used to encode all of its nested
(field name, value) pairs.

If the struct’s encoded byte-length is too large to be encoded in a nibble, writers may use the 0xFC opcode to write a variable-
length struct with symbol address field names. The 0xFC opcode is followed by a FlexUInt that indicates the byte length.

Each field in the struct is encoded as a FlexUInt representing the address of the field name’s text in the symbol table, followed by
an opcode-prefixed value.

Figure 79: Length-prefixed encoding of an empty struct ({})

An opcode in the range 0xC0-0xCF indicates a struct with symbol address field names
A lower nibble of 0 indicates that the struct’s fields took zero bytes to encode

C0

Figure 80: Length-prefixed encoding of {$10: 1, $11: 2}

An opcode in the range 0xC0-0xCF indicates a struct with symbol address field names
Field name: FlexUInt 10 ($10)

Field name: FlexUInt 11 ($11)

C6 15 51 01 17 51 02

1 2

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://amazon-ion.github.io/ion-docs/docs/binary.html#0xd-struct
https://amazon-ion.github.io/ion-docs/docs/binary.html#0xd-struct

Ion 1.1 Specification 80 / 96

Figure 81: Length-prefixed encoding of {$10: "variable length struct"}

Opcode ‘FC‘ indicates a variable length struct with symbol address field ←↩
names

Length: FlexUInt 25
Field name: FlexUInt 10 ($10)
Opcode ‘F8‘ indicates a variable length string
FlexUInt: 22 the string is 22 bytes long
v a r i a b l e l e n g t h s t r u c t

FC 33 15 F8 2D 76 61 72 69 61 62 6c 65 20 6c 65 6e 67 74 68 20 73 74 72 75 63 74

UTF-8 bytes

10.9.3.2 Structs With FlexSym Field Names

Note
This encoding is very similar to structs with symbol address field names, but allows writers to choose between representing
each field name as a symbol address (for example: $10) or as inline UTF-8 bytes (for example: "foo"). This encoding is
potentially less dense, but offers writers significant flexibility over whether and when field names are added to the symbol table.

An opcode with a high nibble of 0xD_ indicates a struct with FlexSym field names. The lower nibble of the opcode indicates
how many bytes were used to encode all of its nested (field name, value) pairs.

Warning
This form cannot be used to encode an empty struct; 0xD0 is a reserved opcode. Empty structs can be written using
either the length-prefixed form 0xC0 or the delimited form 0xF3 0xF0.

If the struct’s encoded byte-length is too large to be encoded in a nibble, writers may use the 0xFD opcode to write a variable-
length struct with FlexSym field names. The 0xFD opcode is followed by a FlexUInt that indicates the byte length.

Each field in the struct is encoded as a FlexSym field name, followed by an opcode-prefixed value.

Figure 82: Length-prefixed encoding of {"foo": 1, $11: 2}

Opcode with high nibble ‘D‘ indicates a struct with FlexSym field names
Length: 9
FlexSym -3 FlexSym: 11 ($11)
f o o

D9 FD 66 6F 6F 51 01 17 91 02

3 UTF-8 1 2
bytes

TODO: Demonstrate splicing macro values into the struct via FlexSym escape code 0x00.

10.9.3.3 Delimited Structs

Opcode 0xF3 indicates the beginning of a delimited struct with FlexSym field names.

Unlike lists and S-expressions, structs cannot use opcode 0xF0 by itself to indicate the end of the delimited container. This is
because 0xF0 is a valid FlexSym (a symbol with 16 bytes of inline text). To close the delimited struct, the writer emits a 0x00
byte (a FlexSym escape) followed by the opcode 0xF0.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 81 / 96

Note
While length-prefixed structs can choose between structs with symbol address field names and structs with FlexSym field
names, delimited structs always use FlexSym-encoded field names.

Figure 83: Delimited encoding of the empty struct ({})

Opcode 0xF3 indicates the beginning of a delimited struct with ‘FlexSym‘ field names.
FlexSym escape code 0x00: an opcode follows

Opcode 0xF0 indicates the end of the most
recently opened delimited container

F3 00 F0

Figure 84: Delimited encoding of {"foo": 1, $11: 2}

Opcode 0xF3 indicates the beginning of a delimited struct with ‘FlexSym‘ field names.

FlexSym -3 FlexSym: 11 ($11)
FlexSym escape code 0x00: an opcode follows

Opcode 0xF0 indicates the end of the most
f o o recently opened delimited container

F3 FD 66 6F 6F 51 01 17 91 02 00 F0

3 UTF-8 1 2
bytes

10.10 Nulls

The opcode 0xEA indicates an untyped null (that is: null, or its alias null.null).

The opcode 0xEB indicates a typed null; a byte follows whose value represents an offset into the following table:

Byte Type
0x00 null.bool
0x01 null.int
0x02 null.float
0x03 null.decimal
0x04 null.timestamp
0x05 null.string
0x06 null.symbol
0x07 null.blob
0x08 null.clob
0x09 null.list
0x0A null.sexp
0x0B null.struct

All other byte values are reserved for future use.

Note
Future versions of Ion may decide to generalize this into a "constants" table.

Figure 85: Encoding of null

The opcode ‘0xEA‘ represents a null (null.null)
EA

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 82 / 96

Figure 86: Encoding of null.string
The opcode ‘0xEB‘ indicates a typed null; a byte indicating the type follows

Byte 0x05 indicates the type ‘string‘
EB 05

10.11 Annotations

TODO: Decide whether we want an Ion 1.0-style double-length-prefixed sequence.

Annotations can be encoded either as symbol addresses or as FlexSyms. In both encodings, the annotations sequence appears
just before the value that it decorates.

It is illegal for an annotations sequence to appear before any of the following:

• Another annotations sequence

• The end of the stream

• A NOP

• An E-expression (that is: a macro invocation). To add annotations to the expansion of an E-expression, see the annotate
macro. (TODO: Link)

10.12 Annotations With Symbol Addresses

Opcodes 0xE4 through 0xE6 indicate one or more annotations encoded as symbol addresses. If the opcode is:

• 0xE4, a single FlexUInt-encoded symbol address follows.

• 0xE5, two FlexUInt-encoded symbol addresses follow.

• 0xE6, a FlexUInt follows that represents the number of bytes needed to encode the annotations sequence, which can be made
up of any number of FlexUInt symbol addresses.

Figure 87: Encoding of $10::false
The opcode ‘0xE4‘ indicates a single annotation encoded as a symbol address follows

Annotation with symbol address: FlexUInt 10
E4 15 5F

The annotated value: ‘false‘

Figure 88: Encoding of $10::$11::false
The opcode ‘0xE5‘ indicates that two annotations encoded as symbol addresses follow

Annotation with symbol address: FlexUInt 10 ($10)
Annotation with symbol address: FlexUInt 11 ($11)

E5 15 17 5F
The annotated value: ‘false‘

Figure 89: Encoding of $10::$11::$12::false
The opcode ‘0xE6‘ indicates a variable-length sequence of symbol address annotations;
a FlexUInt follows representing the length of the sequence.

Annotations sequence length: FlexUInt 3 with symbol address: FlexUInt 10 ($10)
Annotation with symbol address: FlexUInt 10 ($10)

Annotation with symbol address: FlexUInt 11 ($11)
Annotation with symbol address: FlexUInt 12 ($12)

E5 07 15 17 19 5F
The annotated value: ‘false‘

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 83 / 96

10.13 Annotations With FlexSym Text

Opcodes 0xE7 through 0xE9 indicate one or more annotations encoded as FlexSyms.

If the opcode is:

• 0xE7, a single FlexSym-encoded symbol follows.

• 0xE8, two FlexSym-encoded symbols follow.

• 0xE9, a FlexUInt follows that represents the byte length of the annotations sequence, which is made up of any number of
annotations encoded as FlexSyms.

While this encoding is more flexible than annotations with symbol addresses, it can be slightly less compact when all the anno-
tations are encoded as symbol addresses.

Figure 90: Encoding of $10::false

The opcode ‘0xE7‘ indicates a single annotation encoded as a FlexSym follows
Annotation with symbol address: FlexSym 10 ($10)

E7 15 5F
The annotated value: ‘false‘

Figure 91: Encoding of foo::false

The opcode ‘0xE7‘ indicates a single annotation encoded as a FlexSym follows
Annotation: FlexSym -3; 3 bytes of UTF-8 text follow

f o o
E7 FD 66 6F 6F 5F

The annotated value: ‘false‘
3 UTF-8
bytes

Note that FlexSym annotation sequences can switch between symbol address and inline text on a per-annotation basis.

Figure 92: Encoding of $10::foo::false

The opcode ‘0xE8‘ indicates two annotations encoded as FlexSyms follow
Annotation: FlexSym 10 ($10)

Annotation: FlexSym -3; 3 bytes of UTF-8 text follow
f o o

E8 15 FD 66 6F 6F 5F
The annotated value: ‘false‘

3 UTF-8
bytes

Figure 93: Encoding of $10::foo::$11::false

The opcode ‘0xE9‘ indicates a variable-length sequence of FlexSym-encoded annotations
Length: FlexUInt 6

Annotation: FlexSym 10 ($10)
Annotation: FlexSym -3; 3 bytes of UTF-8 text follow

Annotation: FlexSym 11 ($11)
f o o

E9 0D 15 FD 66 6F 6F 17 5F
The annotated value: ‘false‘

3 UTF-8
bytes

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 84 / 96

10.14 NOPs

A NOP (short for "no-operation") is the binary equivalent of whitespace. NOP bytes have no meaning, but can be used as padding
to achieve a desired alignment.

An opcode of 0xEC indicates a single-byte NOP pad. An opcode of 0xED indicates that a FlexUInt follows that represents the
number of additional bytes to skip.

It is legal for a NOP to appear anywhere that a value can be encoded. It is not legal for a NOP to appear in annotation sequences
or struct field names. If a NOP appears in place of a struct field value, then the associated field name is ignored; the NOP is
immediately followed by the next field name, if any.

Figure 94: Encoding of a 1-byte NOP

The opcode ‘0xEC‘ represents a 1-byte NOP pad

EC

Figure 95: Encoding of a 4-byte NOP

The opcode ‘0xED‘ represents a variable-length NOP pad; a FlexUInt length follows
Length: FlexUInt 2; two more bytes of NOP follow

ED 05 93 C6

NOP bytes, values ignored

10.15 E-expression Arguments

The binary encoding of E-expressions (aka macro invocations) starts with the address of the macro to expand. The address can
be encoded as part of the opcode or as a FlexUInt that follows the opcode.

The encoding of the E-expression’s arguments depends on their respective types. Argument types can be classified as belonging
to one of two categories: tagged encodings and tagless encodings.

10.15.1 Tagged Encodings

Tagged types are argument types whose encoding begins with an opcode, sometimes informally called a ’tag’. These include the
core types and the abstract types.

10.15.1.1 Core types

The core types are the 13 types in the Ion data model:

null | bool | int | float | decimal | timestamp | string | symbol | blob | clob | list | sexp | struct

10.15.1.2 Abstract types

The abstract types are unions of two or more of the core types.

Abstract type Included Ion types
any All core Ion types

number int, float, decimal
exact int, decimal
text string, symbol

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 85 / 96

Abstract type Included Ion types
lob blob, clob

sequence list, sexp

10.15.1.3 Tagged E-expression Argument Encoding

When a macro parameter has a tagged type, the encoding of that parameter’s corresponding argument in an E-expression is
identical to how it would be encoded anywhere else in an Ion stream: it has a leading opcode that dictates how many bytes follow
and how they should be interpreted. This is very flexible, but makes it possible for writers to encode values that conflict with
the parameter’s declared type. Because of this, the macro expander will read the argument and then check its type against the
parameter’s declared type. If it does not match, the macro expander must raise an error.

Macro foo (defined below) is used in this section’s subsequent examples to demonstrate the encoding of tagged-type arguments.

Figure 96: Definition of example macro foo at address 0

(macro
foo // Macro name
[(x number!)] // Parameters
/*...*/ // Template (elided)

)

Figure 97: Encoding of E-expression (:foo 3.14e)

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a tagged number as a parameter (‘x‘), so an opcode ←↩

follows.
Opcode 0x5B indicates a 2-byte float; an IEEE-754 half-precision float follows

00 5B 42 47

3.14e0

// The macro expander confirms that ‘3.14e0‘ (a ‘float‘) matches the expected type: ‘number ←↩
‘.

Figure 98: Encoding of E-expression (:foo 9)

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a tagged number as a parameter (‘x‘), so an opcode ←↩

follows.
Opcode 0x51 indicates a 1-byte integer. A 1-byte FixedInt follows.

A 1-byte FixedInt: 9
00 51 09

// The macro expander confirms that ‘9‘ (an ‘int‘) matches the expected type: ‘number‘.

Figure 99: Encoding of E-expression (:foo $10::9)

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a tagged number as a parameter (‘x‘), so an opcode ←↩

follows.
Opcode 0xE4 indicates a single annotation with symbol address. A FlexUInt follows.

Symbol address: FlexUInt 10 ($10); an opcode for the annotated value follows.
Opcode 0x51 indicates a 1-byte integer

1-byte FixedInt 9
00 E4 15 51 09

// The macro expander confirms that ‘$10::9‘ (an annotated ‘int‘) matches the expected type ←↩
: ‘number‘.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 86 / 96

Figure 100: Encoding of E-expression (:foo null.int)

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a tagged number as a parameter (‘x‘), so an opcode ←↩

follows.
Opcode 0xEB indicates a typed null. A 1-byte FixedUInt follows indicating the type ←↩

.
Null type: FixedUInt: 1; integer

00 EB 01

// The macro expander confirms that ‘null.int‘ matches the expected type: ‘number‘.

Figure 101: Encoding of E-expression (:foo null)

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a tagged number as a parameter (‘x‘), so an opcode ←↩

follows.
Opcode 0xEA represents an untyped null (aka ‘null.null‘)

00 EA

// The macro expander confirms that ‘null‘ matches the expected type: ‘number‘

Figure 102: Encoding of E-expression (:foo (:bar))

// A second macro definition at address 1
(macro

bar // Macro name
() // Parameters
5 // Template; invocations of ‘bar‘ always expand to ‘5‘.

)

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a tagged int as a parameter (‘x‘), so an opcode follows ←↩

.
Opcode 0x01 is less than 0x40, so it is an E-expression invoking the macro
at address 1: ‘bar‘. ‘bar‘ takes no parameters, so no bytes follow.

00 01

// The macro expander confirms that the expansion of ‘(:bar)‘ (that is: ‘5‘) matches
// the expected type: ‘number‘.

Figure 103: Encoding of illegal E-expression (:foo "hello")

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0, ‘foo‘. ‘foo‘ takes a tagged int as a parameter (‘x‘), so an opcode follows ←↩

.
Opcode 0x85 indicates a 5-byte string. 5 UTF-8 bytes follow.

h e l l o
00 85 68 65 6C 6C 6F

UTF-8 bytes

// ERROR: Expected a ‘number‘ for ‘foo‘ parameter ‘x‘, but found ‘string‘

10.15.2 Tagless Encodings

In contrast to tagged encodings, tagless encodings do not begin with an opcode. This means that they are potentially more
compact than a tagged type, but are also less flexible. Because tagless encodings do not have an opcode, they cannot represent
E-expressions, annotation sequences, or null values of any kind.

Tagless types include the primitive types and macro shapes.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 87 / 96

10.15.2.1 Primitive Types

Primitive types are self-delineating, either by having a statically known size in bytes or by including length information in their
encoding.

Primitive types include:

Ion type Primitive type Size in bytes Encoding

int

uint8 1

FixedUInt
uint16 2
uint32 4
uint64 8

compact_uint variable FlexUInt
int8 1

FixedInt
int16 2
int32 4
int64 8

compact_int variable FlexInt

float
float16 2 IEEE-754 half-precision floating point format
float32 4 IEEE-754 single-precision floating point format
float64 8 IEEE-754 double-precision floating point format

symbol compact_symbol variable FlexSym

TODO:

• Finalize names for primitive types. (compact_? plain_?)

• Do we need a compact_string encoding? It saves a byte for string lengths >16 and <128.

• Do we need other int sizes? int24? int40?

10.15.2.2 Macro Shapes

The term macro shape describes a macro that is being used as the encoding of an E-expression argument. They are considered
"shapes" rather than types because while their encoding is always statically known, the types of data produced by their expansion
is not. A single macro can produce streams of varying length and containing values of different Ion types depending on the
arguments provided in the invocation.

See the Macro Shapes section of Macros by Example for more information.

10.16 Encoding E-expressions With Multiple Arguments

E-expression arguments corresponding to each parameter are encoded one after the other moving from left to right.

Figure 104: Definition of macro foo at address 0

(macro foo // Macro name
[// Parameters
(a string!),
(b compact_symbol!),
(c uint16!)

]
/* ... */ // Body (elided)

)

Figure 105: Encoding of E-expression for macro with multiple parameters: (:0 "hello" baz 512)

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
macros-by-example.adoc#eg:macro_shapes

Ion 1.1 Specification 88 / 96

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0, ‘foo‘. ‘foo‘’s first parameter is a string, so an opcode follows.

Opcode 0x85 indicates a 5-byte string. 5 UTF-8 bytes follow.

‘foo‘’s second parameter is a compact_symbol, so a ‘FlexSym‘ ←↩
follows.

FlexSym -3: 3 bytes of UTF-8 text follow.

‘foo‘’s third parameter is a uint16, so a 2-byte
2-byte ‘FixedUInt‘ follows.
FixedUInt: 512

h e l l o b a z
00 85 68 65 6C 6C 6F FD 62 61 7A 00 20

UTF-8 bytes UTF-8 bytes

10.17 Argument Encoding Bitmap (AEB)

The examples in previous sections have only shown how to encode invocations of macros which have either no parameters at all
(aka constants) or whose parameters all have a cardinality of exactly-one.

If a macro has any parameters with a cardinality of zero-or-one (?), zero-or-more (*), or one-or-more (+), then E-expressions
invoking that macro will begin with an argument encoding bitmap (AEB). An AEB is a series of bits that correspond to a macro
parameter and communicate additional information about how the arguments corresponding to that parameter have been encoded
in the current E-expression. In particular, the AEB indicates whether a parameter that accepts (:void) has any arguments at
all, and how a grouped parameter’s arguments have been delimited.

The number of bits allotted to each parameter is determined by its cardinality, as shown in the table below; each parameter can
have 0, 1, or 2 bits.

Grouping
Mode Cardinality

Example
parameter
signature

Number
of bits

Bit(s)
value Encoding

Ungrouped

Exactly-one (x int!) 0 n/a One expression

Zero-or-one (x int?)
1

0 No expression; equivalent to (:void)
1 One expression

Zero-or-more (x int*)
0 No expression; equivalent to (:void)
1 One expression

One-or-more (x int+) 0 n/a One expression

Grouped

Zero-or-more
(x [int])
(x int...)

2

00 No expression; equivalent to (:void)
01 One expression
10 Length-prefixed expression group
11 Delimited expression group

One-or-more
(x)` +

`(x
int\...)

00 Illegal. One-or-more forbids (:void).
01 One expression
10 Length-prefixed expression group
11 Delimited expression group

The total number of bits in the AEB can be calculated by analyzing the signature of the macro being invoked. If the macro has
no parameters or all of its parameters have a cardinality of either exactly-one or one-or-more, no bits are required; the AEB will
be omitted altogether. If the macro has many parameters with a cardinality other than exactly-one, it is possible for the AEB to
require more than one byte to encode; in such cases, the bytes are written in little-endian order. AEB bytes can contain unused
bits.

Bits are assigned to the parameters in a macro’s signature from left to right. Bits are assigned from least significant to most
significant (commonly: right-to-left).

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

macros-by-example.adoc#exactly_one

Ion 1.1 Specification 89 / 96

Example parameter sequence Bit assignments Total bits
() No AEB 0
((a int!) (b string!) (c float!)) No AEB 0
((a int!) (b string!) (c float?)) -------c 1
((a int!) (b string?) (c float!)) -------b 1
((a int!) (b string*) (c float?)) ------cb 2
((a int*) (b string!) (c [float])) -----cca 3
((a int*) (b [string]) (c [float])) ---ccbba 5
((a [int]) (b [string]) (c [float]+)) --ccbbaa 6
((a int*) (b [string]) (c [float]) (d [bool])
(e blob...))

eddccbba -------e 9

10.18 Expression Groups

Grouped parameters can be encoded using either a length-prefixed or delimited expression group encoding.

The example encodings in the following sections refer to this macro definition:

Figure 106: Definition of macro foo at address 0

(macro
foo // Macro name
[(x [int])] // Parameters; ‘x‘ is a grouped parameter
/*...*/ // Body (elided)

)

10.18.1 Length-prefixed Expression Groups

If a grouped parameter’s AEB bits are 0b10, then the argument expressions belonging to that parameter will be prefixed by a
FlexUInt indicating the number of bytes used to encode them.

Figure 107: Length-prefixed encoding of (:foo [1, 2, 3])

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a group of int expressions as a parameter (‘x‘),
so an argument encoding bitmap (AEB) follows.

AEB: 0b0000_0010; the arguments for grouped parameter ‘x‘ have been encoded
as a length-prefixed expression group. A FlexUInt length prefix follows.

FlexUInt: 6; the next 6 bytes are an ‘int‘ expression group.

00 02 0D 51 01 51 02 51 03

1 2 3

10.18.2 Delimited Expression Groups

If a grouped parameter’s AEB bits are 0b11, then the argument expressions belonging to that parameter will be encoded in a
delimited sequence. Delimited sequences are encoded differently for tagged types and tagless types.

10.18.2.1 Delimited Tagged Expression Groups

Tagged type encodings begin with an opcode; a delimited sequence of tagged arguments is terminated by the closing delimiter
opcode, 0xF0.

Figure 108: Delimited encoding of (:foo [1, 2, 3])

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 90 / 96

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a group of int expressions as a parameter (‘x‘),
so an argument encoding bitmap (AEB) follows.

AEB: 0b0000_0011; the arguments for grouped parameter ‘x‘ have been encoded
as a delimited expression group. A series of tagged ‘int‘ expressions follow.

Opcode 0xF0 ends the expression group.

00 03 51 01 51 02 51 03 F0

1 2 3

10.18.2.2 Delimited Tagless Expression Groups

Tagless type encodings do not have an opcode, and so cannot use the closing delimiter opcode--0xF0 is a valid first byte for
many tagless encodings.

Instead, tagless expressions are grouped into ’pages’, each of which is prefixed by a FlexUInt representing a count (not a byte-
length) of the expressions that follow. If a prefix has a count of zero, that marks the end of the sequence of pages.

Figure 109: Definition of macro compact_foo at address 1

(macro
compact_foo // Macro name
[(x [compact_int])] // Parameters; ‘x‘ is a grouped parameter
/*...*/ // Body (elided)

)

Figure 110: Delimited encoding of (:compact_foo [1, 2, 3]) using a single page

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a group of int expressions as a parameter (‘x‘),
so an argument encoding bitmap (AEB) follows.

AEB: 0b0000_0011; the arguments for grouped parameter ‘x‘ have been encoded
as a delimited expression group. Count-prefixed pages of ‘compact_int‘
expressions follow.

Count prefix: FlexUInt 3; 3 ‘compact_int‘s follow.
Count prefix: FlexUInt 0; no more pages follow.

00 03 07 03 05 07 01

First page: 1, 2, 3

Figure 111: Delimited encoding of (:compact_foo [1, 2, 3]) using two pages

The opcode is less than 0x40, so it is an E-expression invoking the macro at
address 0: ‘foo‘. ‘foo‘ takes a group of int expressions as a parameter (‘x‘),
so an argument encoding bitmap (AEB) follows.

AEB: 0b0000_0011; the arguments for grouped parameter ‘x‘ have been encoded
as a delimited expression group. Count-prefixed pages of ‘compact_int‘
expressions follow.

Count prefix: FlexUInt 2; 2 ‘compact_int‘s follow.
Count prefix: FlexUInt 1; a single ‘compact_int‘ follows.

Count prefix: FlexUInt 0; no more pages follow.

00 03 05 03 05 03 07 01
Second page: 3

First page: 1, 2

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 91 / 96

Chapter 11

Domain Grammar

This chapter presents Ion 1.1’s domain grammar, by which we mean the grammar of the domain of values that drive Ion’s
encoding features.

We use a BNF-like notation for describing various syntactic parts of a document, including Ion data structures. In such cases, the
BNF should be interpreted loosely to accommodate Ion-isms like commas and unconstrained ordering of struct fields.

All ()[]{} below are literal tokens of Ion syntax. Single-quoted ’?’ and ’*’ denote literal Ion symbols, while unquoted |, ?,
and * are BNF notation.

11.1 Documents

TODO this section needs much work.

document ::= segment*
segment ::= ivm? value* directive?
directive ::= symtab-directive | encoding-directive

11.2 Encoding Directives

encoding-directive ::= $ion_encoding::(retention? module-decl* symtab? top-mactab?)
retention ::= (retain retainees)
retainees ::= ’*’ | module-name*
module-decl ::= dependency | inline-module-def
dependency ::= load-decl | use-decl | import-decl
use-decl ::= (use use-item*)
use-item ::= module-name | load-decl
symtab ::= (symbol_table symtab-item*)
symtab-item ::= module-name | [text*]
top-mactab ::= (macro_table module-name*)

11.2.1 Catalog Access

load-decl ::= (load load-body)
import-decl ::= (import load-body)
load-body ::= module-name catalog-name catalog-version symbol-maxid?
catalog-name ::= unannotated-string

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 92 / 96

catalog-version ::= unannotated-uint
symbol-maxid ::= unannotated-uint

11.3 Macro References

macro-ref ::= macro-name | local-ref | qualified-ref
local-ref ::= <symbol of the form ’:name-or-address’>
qualified-ref ::= <symbol of the form ’:module-name:name-or-address’>
module-name ::= unannotated-identifier-symbol
macro-name ::= unannotated-identifier-symbol
macro-address ::= unannotated-uint
name-or-address ::= macro-name | macro-address

11.4 Module Definitions

inline-module-def ::= (module module-name module-body)
shared-module-def ::= $ion_shared_module::ion-version-marker::(catalog-key module-body)
catalog-key ::= (catalog_key catalog-name catalog-version)

11.4.1 Module Bodies

module-body ::= dependency* symtab? macro-alias* module-mactab?
macro-alias ::= (alias macro-name macro-ref)
module-mactab ::= (macro_table macro-or-export*)
macro-or-export ::= macro-defn | export
export ::= (export export-item*) | module-name
export-item ::= macro-ref | (from module-name name-or-address*)

11.5 Macro Definitions

macro-defn ::= (macro macro-name? signature template)
signature ::= param-specs result-spec?
param-specs ::= (param-spec* rest-spec?) | [param-spec* rest-spec?]
param-spec ::= param-name | (param-name param-shape)
rest-spec ::= (param-name rest-shape)
param-name ::= unannotated-identifier-symbol
param-shape ::= simple-shape | grouped-shape
simple-shape ::= tagged-type? tagged-cardinality? | tagless-type tagless-cardinality?
tagged-cardinality ::= ! | + | ’?’ | ’*’
tagless-cardinality ::= ’?’
grouped-shape ::= [any-type?] grouped-cardinality?
grouped-cardinality ::= ’+’
rest-shape ::= any-type? rest-cardinality
rest-cardinality ::= ... | ...+
any-type ::= tagged-type | tagless-type
tagged-type ::= abstract-type | concrete-type
tagless-type ::= primitive-type | macro-ref
abstract-type ::= any | number | exact | text | lob | sequence

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 93 / 96

concrete-type ::= ’null’ | bool | timestamp | int | decimal | float | string | symbol | blob
| clob | list | sexp | struct

primitive-type ::= var_symbol | var_string | var_int | var_uint | uint8 | uint16 | uint32 |
uint64 | int8 | int16 | int32 | int64 | float16 | float32 | float64

result-spec ::= -> tagged-type tagged-cardinality

11.6 Template Expressions

template ::= identifier | literal | quasi-literal | special-form | macro-invocation
literal ::= null | bool | int | float | decimal | timestamp | string | blob | clob
quasi-literal ::= [template*] | { quasi-field* }
quasi-field ::= text : template
special-form ::= (literal datum) | (if_void templatecond templatethen templateelse) | (

if_single templatecond templatethen templateelse) | (if_many templatecond
templatethen templateelse) | (for [for-clause*] templatebody)

for-clause ::= (identifier templatein)
macro-invocation ::= (macro-ref macro-arg*)
macro-arg ::= template | [template*] // Very roughly

Important
Special forms take precedence over macro invocations. Use a local-ref or qualified-ref to invoke a macro whose name
shadows a special-form keyword.

Important
The syntax of macro-args is constrained by the macro expander, based on the signature of the invoked macro.

11.7 Backwards Compatibility

11.7.1 Symbol Table Directives

symtab-directive ::= TODO

11.7.2 Tunneled Modules

shared-symtab ::= $ion_shared_symbol_table::{ name : catalog-name version :
catalog-version symbols : [string*] module : tunneled-module-def }

tunneled-module-def ::= ion-version-marker ::(tunneled-module-body)
tunneled-module-
body

::= dependency* macro-alias* module-mactab

Tip
A tunneled module may not have a symbol_table clause; symbols must be defined in the legacy symbols field.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 94 / 96

Chapter 12

Glossary

actual arity
The number of subforms (arguments or argument groups) in a macro invocation. A macro can be fixed arity or variable
arity.

argument
A single sub-expression within a macro invocation, corresponding to one of the macro’s parameters. This is by default a
one-to-one relation, but a parameter’s grouping mode can change this to a many-to-one relation.

argument group
The concrete syntax for a grouped parameter. In a macro invocation, a list containing multiple arguments, delimited
explicitly with [...] notation in Ion text. Used to express parameters that accept more than one argument.

cardinality
Describes the number of values that a parameter will accept when the macro is invoked. One of zero-or-one, exactly-one,
zero-or-more, or one-or-more. Specified in a signature by one of the modifiers ?, !, *, *`, `*\...*` or `*\....

declaration
The association of a name with an entity (for example, a module or macro). See also definition. Not all declarations are
definitions: some introduce new names for existing entities.

definition
The specification of a new entity.

directive
A keyword or unit of data in an Ion document that affects the encoding environment, and thus the way the document’s data
is decoded. In Ion 1.0 there are two directives: Ion version markers, and the symbol table directives. Ion 1.1 adds encoding
directives.

document
A stream of octets conforming to either the Ion text or binary specification. Can consist of multiple segments, perhaps
using varying versions of the Ion specification. A document doesn’t necessarily exist as a file, and isn’t necessarily finite.

E-expression
See encoding expression.

encoding directive
In an Ion 1.1 segment, a top-level struct annotated with $ion_encoding. Defines a new encoding environment for the
segment immediately following it. The symbol table directive is effectively a less capable alternative syntax.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 95 / 96

encoding environment
The context-specific data maintained by an Ion implementation while encoding or decoding data. In Ion 1.0 this consists
of the current symbol table; in Ion 1.1 this is expanded to also include the Ion spec version, the current macro table, and a
collection of available modules.

encoding expression
The invocation of a macro in encoded data, aka E-expression. Starts with a macro reference denoting the function to
invoke. The Ion text format uses “smile syntax” (:macro ...) to denote E-expressions. Ion binary devotes a large
number of opcodes to E-expressions, so they can be compact.

fixed arity
Describes a macro without optional or rest parameters, so invocations must have actual arity that equals the macro’s formal
arity.

formal arity
The number of parameters declared by a macro. Due to optional parameters and rest parameters, the actual arity of a
macro invocation may differ from its formal arity.

grouped parameter
A macro parameter that accepts multiple arguments in an argument group when the macro is invoked. See also grouping
mode.

grouping mode
One of three ways that a macro parameter is given arguments. A simple parameter accepts one argument, a grouped
parameter accepts a list of arguments, and a rest parameter accepts “all the rest” of the trailing arguments without a
grouping list.

Ion version marker
A keyword directive that denotes the start of a new segment encoded with a specific Ion version. Also known as “IVM”.

macro
A transformation function that accepts some number of streams of values, and produces a stream of values.

macro definition
Specifies a macro in terms of a signature and a template.

macro reference
Identifies a macro for invocation, alias, or exporting. Must always be unambiguous. Lexically scoped, and never a “forward
reference” to a macro that’s declared later in the document.

module
The data entity that defines and exports both symbols and macros. Modules are imported by encoding directives then
installed into the local symbol and/or macro tables.

optional parameter
A parameter that can have its corresponding subform(s) omitted when the macro is invoked. A parameter is optional if it
is voidable and all following arguments are also voidable.

parameter
A named input to a macro, as defined by its signature. At expansion time a parameter produces a stream of values.

qualified macro reference
A macro reference that consists of a module name and either a macro name exported by that module, or a numeric address
within the range of the module’s exported macro table. In text, these look like :module-name:name-or-address.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

Ion 1.1 Specification 96 / 96

quasi-literal
A template, denoted as a list or struct, that is partly (“quasi-”) literal. List-shaped templates treat the elements as nested
templates. Struct-shaped templates treat the field names as literal, but the corresponding values as templates. S-expressions
denote operator invocations and are not treated quasi-literally.

rest parameter
A macro parameter—always the final parameter—declared with the ... or ...+ modifier, that accepts all remaining
arguments to the macro as if they were in an implicit argument group. Similar to “varargs” parameters in Java and other
languages. See also grouping mode.

segment
A contiguous partition of a document that uses the same encoding environment. Segment boundaries are caused by
directives: an IVM starts a new segment, while $ion_symbol_table and $ion_encoding directives end segments
(with a new one starting immediately afterwards).

signature
The part of a macro definition that specifies its “calling convention”, in terms of the shape, type, and cardinality of argu-
ments it accepts, and the type and cardinality of the results it produces.

simple parameter
A macro parameter that matches a single argument when the macro is invoked. See also grouping mode.

subform
A nested portion within some syntactic form of the module or macro declarations.

symbol table directive
A top-level struct annotated with $ion_symbol_table. Defines a new encoding environment without any macros.
Valid in Ion 1.0 and 1.1.

system symbol
A symbol provided by the Ion implementation via the system module $ion. System symbols are available at all points
within an Ion document, though the selection of symbols varies by segment according to its Ion version.

system macro
A macro provided by the Ion implementation via the system module $ion. System macros are available at all points
within Ion 1.1 segments.

system module
A standard module named $ion that is provided by the Ion implementation, implicitly installed so that the system symbols
and system macros are available at all points within a document. Subsumes the functionality of the Ion 1.0 system symbol
table.

template
The part of a macro definition that expresses its transformation of inputs to results.

unqualified macro reference
A macro reference that consists of either a macro name or numeric address, without a qualifying module name. These are
resolved using lexical scope and must always be unambiguous.

variable arity
Describes a macro with optional and/or rest parameters, so invocations may have actual arity different from the macro’s
formal arity.

void
An empty stream of values. Produced by the system macro void as in the E-expression (:void).

voidable
Describes a parameter that accepts void, aka the empty stream. Such parameters have cardinality zero-or-one or zero-or-
more.

Copyright © Copyright ©2023 Amazon.com Inc. or Affiliates (“Amazon”) 2023-10-02

	Introduction
	What’s New in Ion 1.1
	Motivation
	Backwards Compatibility
	Text Syntax Changes
	Binary Encoding Changes
	Inlined Symbolic Tokens
	Delimited Containers
	Low-level Binary Encoding Changes
	Type Encoding Changes
	Encoding Expressions in Binary

	Macros, Templates, and Encoding-Expressions
	Encoding Context and Modules
	Macro Definitions
	Macro Definition Language
	Shared Modules

	System Symbol Table Changes
	E-Expression Calling Conventions in Binary

	Macros by Example
	Constants
	Simple Templates
	Invoking Macros from Templates
	E-expressions Versus S-expressions

	Special Form: literal
	Parameter Types
	Rest Parameters
	Arguments and Results are Streams
	Splicing in Encoded Data
	Splicing in Template Expressions

	Mapping Templates Over Streams: for
	Empty Streams: void
	Cardinality
	Exactly-One
	Zero-or-One
	Zero-or-More
	One-or-More

	Grouped Parameters
	Optional Arguments
	Tagless and Fixed-Width Types
	Macro Shapes
	Return Types

	Modules by Example
	Ion 1.0 Encoding Environment
	Modules from the Outside
	Ion 1.1 Encoding Environment
	Defining Local Symbols
	Importing Symbols
	Declaring Multiple Modules
	Extending the Current Symbol Table
	Installing and Using Macros
	Shared Modules
	Using Shared Macros
	Private Imports
	Macro Aliases
	Exports
	Extending the Macro Table
	Separate Installation
	Prioritization

	Encoding Directives
	Document Structure
	Ion Version Markers
	$ion_encoding Directives
	Retaining Available Modules
	Declaring Modules
	Loading Shared Modules
	Defining Inline Modules

	Using Modules
	Assembling the Symbol Table
	Assembling the Macro Table

	$ion_symbol_table Directives

	Encoding Modules
	Overview
	Module Interface
	Internal Environment

	Resolving Macro References
	Module Versioning
	Inline, Shared, and Tunneled Modules
	Module Bodies
	Dependencies
	The Symbol Table
	Declaring Macros
	Macro Aliases
	Macro Definitions
	Exporting Macros

	Macro Signatures
	Parameter Shapes
	Base Types
	Cardinality
	Grouped Parameters
	Rest Parameters
	Voidable and Optional Parameters
	Arity
	Result Specification

	The System Module
	Primitive Operators
	Stream Constructors
	void
	values

	Value Constructors
	make_string
	make_symbol
	make_list
	make_sexp
	make_struct
	make_decimal
	make_float
	make_timestamp
	annotate

	Derived Operators
	Symbol Table Management
	Local Symtab Declaration
	Local Symtab Appending
	Embedded Documents (aka Local Scopes)

	Compact Module Definitions

	Template Expressions
	Grammar
	Symbols are Variable References
	Other Scalars are Literals
	Lists and Structs are Quasi-Literals
	S-expressions are Operator Invocations

	Special Forms
	Preventing Evaluation
	literal

	Conditionals
	if_void
	if_single
	if_many

	Mapping
	for

	Macro Invocation
	Type Checking
	Error Handling

	Ion 1.1 Binary Encoding
	Encoding Primitives
	FlexUInt
	FlexInt
	FixedUInt
	FixedInt
	FlexSym

	Opcodes
	Encoding Expressions
	E-expression With the Address in the Opcode
	E-expression With the Address as a Trailing FlexUInt

	Booleans
	Numbers
	Integers
	Floats
	Decimals

	Timestamps
	Short-form Timestamp
	Opcodes by precision and offset

	Long-form Timestamp

	Text
	Strings
	Symbols With Inline Text
	Symbols With a Symbol Address

	Binary Data
	Blobs
	Clobs

	Containers
	Lists
	Length-prefixed encoding
	Delimited Encoding

	S-Expressions
	Structs
	Structs With Symbol Address Field Names
	Structs With FlexSym Field Names
	Delimited Structs

	Nulls
	Annotations
	Annotations With Symbol Addresses
	Annotations With FlexSym Text
	NOPs
	E-expression Arguments
	Tagged Encodings
	Core types
	Abstract types
	Tagged E-expression Argument Encoding

	Tagless Encodings
	Primitive Types
	Macro Shapes

	Encoding E-expressions With Multiple Arguments
	Argument Encoding Bitmap (AEB)
	Expression Groups
	Length-prefixed Expression Groups
	Delimited Expression Groups
	Delimited Tagged Expression Groups
	Delimited Tagless Expression Groups

	Domain Grammar
	Documents
	Encoding Directives
	Catalog Access

	Macro References
	Module Definitions
	Module Bodies

	Macro Definitions
	Template Expressions
	Backwards Compatibility
	Symbol Table Directives
	Tunneled Modules

	Glossary

