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PREFACE - DOCUMENTATION STRUCTURE 

The purpose of this document is to describe the RVC_ASAP project. 

The project has many different aspects such as hardware, software, design, verification, tools, and flows. 

 

The document main chapters: 

• Overview & Motivation 

• HAS | High-Level-Architecture-Specification (HW) 

• MAS | Micro-Architecture-Specification (HW) 

• Verification Plan (HW) 

• FPGA 

• SW & API 

• TFM: Tools, Flow & Methodology 
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Glossary  

Term Description 
RVC_ASAP RISC-V Core as soon as possible. 

ISA Instruction Set Architecture (such as X86, ARM, RISC-V). 

IO Input & output. 

MMIO Memory Mapped IO – method of performing Input/Output (IO) between the central processing 
unit (CPU) and peripheral devices in a computer. 

IP Intellectual Property. In this case, RTL building block that can be consumed. 

HAS High Level Architecture Specifications. 

MAS Micro Architecture Specifications. 

I_MEM Instruction Memory – where the program is loaded and ready for execution. 

D_MEM Data Memory – where the LOAD & STORE instructions read/write data. 

CR_MEM Control Register Memory – dedicated memory space for processor registers which changes or 
controls the general behavior of a CPU or other digital device. 

VGA_MEM Video Graphics Array Memory – dedicated memory space for communication with the screen. 

Pipeline Common way to parallel and utilize hardware. 
https://en.wikipedia.org/wiki/Instruction_pipelining 

RISC Reduce Instruction Set Computer (unlike CISC – Complex Instruction Set Computer). 
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer 

RISC-V A relatively new open and free ISA (compared to intel X86, ARM). 
https://en.wikipedia.org/wiki/RISC-V 

Unprivileged Spec https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-
20191213.pdf 

Privileged Spec https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-
20211203.pdf 

RV32I RISC-V 32-bit Integer. The RISC-V baseline compatible ISA (no extensions M/A/F). 

Standard interface Functional characteristics to allow the exchange of information between two systems. 

Word 32-bit of data – 4 bytes. The size of an integer in RV32I ISA. 

Hazard Potential source of harm. In the document when reading outdated data or wrongly executing 
instruction. 

MSFF Master-Slave Flip Flop. 

API Application Programming Interface. 

TB Test Bench. 

SV System Verilog Hardware Description Language. 

ELF Executable and Linkable Format.  

 

Table 1 - Glossary 

https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/RISC-V
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
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1 OVERVIEW & MOTIVATION 

1.1 PROJECT OVER-VIEW 
In this project we implemented a 5-stage processor that supports the RV32I ISA. The five stages of the 

processor are Fetch, Decode, Execute, Memory and Write Back. The processor architecture that we 

designed and implemented is essentially like the well-known MIPS architecture, although when we went 

down to details in the implementation of the hardware, we encountered architectural challenges for 

which we were required to produce creative solutions to ensure the correctness of RV32I ISA support. 

As a result, the lowest abstraction layer of the design (the level of the control signals and the interface 

with the peripheral components) received a unique character in relation to the MIPS architecture and 

other 5-stage architectures. The processor we designed contains a Hazard Detection unit and a 

Forwarding unit. In addition to this, the processor contains a 16kb instruction memory and a 16kb data 

memory divided into the following memory spaces: Data Memory, Control Register Memory, and Video 

Graphics Array (VGA) Memory. Due to the interface with the peripheral components found in the FPGA 

on which we burned the design, we implemented VGA and IO controllers. 

To verify the correctness of the hardware implementation, we established a validation and simulation 

environment that operates fully through automation. That is, we wrote a program in the Bash language 

(script) that knows how to take an Assembly file or a C file and lead it through the entire chain of 

compilation and linking up to the level of producing two files in System Verilog format that make up the 

program's instruction memory and data memory. These files are loaded in the Test Bench, each to the 

memory space relevant to it, and after compiling the hardware, the program runs a simulation and 

checks the output that was produced in the memory in relation to the expected output. If the simulation 

was correct, the program indicates this, otherwise it will inform that an error occurred and indicate the 

location of the error. In this way, errors in the implementation of the hardware can be corrected. 

In the advanced stages of the project, after the stabilization of the architecture, we synthesized and 

burned the design on an Intel DE10-Lite FPGA and built Hardware API libraries for communication 

through software with the hardware. In addition to this, we built a game that runs on top of the 

processor. In designing the game, we used ASCII tables and symbols that we created and loaded into the 

program's memory. For this purpose, we used game design tools that were used in the past to design 

arcade games. The main challenge at this stage of the project was designing a computer game in a 

system with few resources (in terms of the memory and peripheral components available to us) and we 

were required to produce effective solutions in the software code to carry out the task. 

The entire RTL code of the project, documentations, applications, validation and verification tools, and 

guides to operate them are all can be founded in the RVC_ASAP GitHub repository. 

 

 

https://github.com/amichai-bd/rvc_asap
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1.2 MOTIVATION 
RISC-V ISA 

Due to the growing importance of RISC-V ISA we conceived a project where we could study the RISC-V 

ISA and reveal how simple and accessible the ability to design your CPU is. In the initial stage of the 

project, we were required to implement in hardware the data flow of each instruction in the ISA. As a 

result, we studied each instruction in the ISA deeply and learned the meaning of each instruction. 

Building a RISC-V based processor is a project accepted and known to many undergraduate students 

around the world. What sets this project apart is that we built everything ourselves and adhered to 

advanced methods of hardware planning and a readable coding style. 

Git 

The work methodology with Git nowadays is very common. As a Computer Engineers, most of our work 

is done with Git. Given that, one of our goals was to improve our ability in this environment. Our final 

project was fully managed with Git tool, mainly for the purposes of smart and efficient management and 

creating complete uniformity among the team members. Working with Git as part of the project 

contributed a lot to our ability to work with this tool. 

System-Verilog HDL 

One of the most important skills to acquire after completing a degree in Computer or Electrical 

Engineering is the ability to design and implement hardware. The purpose of this ability is to implement 

new ideas that come to the mind of the engineer by implementing them in hardware. The System-

Verilog language is a hardware description language that allows you to implement the hardware just as 

you write a computer program. With this understanding, our goal was to acquire knowledge in the 

System-Verilog language and improve our ability to implement ideas that require a hardware 

implementation. The processor we built was written in the System-Verilog language and as a result we 

learned a lot about writing hardware in this language. 

HW-SW Integration 

An important point to understand in computer architecture is the interface between the hardware and 

the software. The ability to write an efficient and optimal program in terms of runtime complexity and 

memory complexity depends directly on knowing the hardware architecture on which the program code 

executes and knowing the limitations of the architecture. A central motivation with which we 

approached the project was to improve our understanding in this area. To check the correctness of the 

hardware implementation, we wrote test programs in Assembly and C languages. To write the test 

programs, we were required to know all the Assembly instructions relevant to our architecture and to 

understand how compiler and assembler works. In addition to this, we were required to understand 

how to write a linker script and, in general, to understand how the compilation and linking chain works. 

At an advanced stage of the project, we implemented Hardware API libraries for communication 

through the software with the hardware and wrote a computer game so that we were required to 

develop creative solutions to consider the limitations of the architecture. 
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2 HAS | HIGH-LEVEL-ARCHITECTURE-SPECIFICATION (HW) 

2.1 HIGH LEVEL DEFINITION 
In this High-Level Architecture Specification (HAS) section we will describe the specification of RVC_ASAP 

IP – a RISC-V Core supported RV32I ISA. The section will explain the macro design of the core, the use 

and functionality of the different components in it. 

This section is architectonic section, and it is a macro view section of the project. To fully understand the 

micro level architecture, please read the MAS | Micro-Architecture-Specification (HW) as well. 

2.2 GENERAL BACKGROUND 

2.2.1 RISC-V & ISA background 

RISC-V is an open-source base integer instruction set architecture (ISA) based on established reduced 

instruction set computer (RISC) principles. It is a classic RISC architecture rebuilt for modern times. At its 

heart is an array of 32 registers containing the processor's running state, the data is immediately 

operated on, and housekeeping information. RISC-V comes in 32-bit and 64-bit variants, with register 

size to match. The project began in 2010 at the University of California, Berkeley along with many 

volunteer contributors not affiliated with the university. It was originally designed to support computer 

architecture research and education but eventually on nowadays used for industry and many other uses. 

The RISC-V eco system has all the SW needed to program, compile and creating RISC-V assembly & 

executable RISC-V machine code. Unlike outer ISAs, anyone can write compatible RISC-V core without 

going through bureaucracy of licenses and fees. RVC_ASAP supports the RV32I ISA that can be found in 

this link – RISC-V spec. RISC-V is a load-store architecture, meaning three things:  

1. Its arithmetic instructions operate only on registers. 

2. Only load and store instructions transfer data to and from memory. 

3. Data must first be loaded into a register before it can be operated on. 

RV32I ISA is shown in Figure 1. 

2.2.2 Central Processing Unit (CPU) 

General-Purpose CPU is the electronic circuitry that executes instructions comprising a computer 

program. The CPU performs basic arithmetic, logic, controlling, and input/output (IO) operations 

specified by the instructions in the program. Principal components of a CPU include the arithmetic–logic 

unit (ALU) that performs arithmetic and logic operations, processor registers that supply operands to the 

ALU and store the results of ALU operations, and a control unit that orchestrates the fetching (from 

memory), decoding and execution of instructions by directing the coordinated operations of the ALU, 

registers and other components. 

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
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Figure 1 - RV32I ISA 
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2.3 HIGH LEVEL DESCRIPTION 
RVC_ASAP, which all this project converse to, is our own implementation of a general-purpose compute 

unit based on RV32I ISA which supports communication with FPGA peripherals, screen, and memory 

modules. 

• RVC_ASAP include 2 Main building blocks: Core and Memory Wrapper.  

• The entire module and building blocks architecture based on synchronic pipeline architecture. 

• The pipeline is in-order pipeline (instruction performs by their order in program). 

• The pipeline is single scalar, only one instruction is executed per clock cycle. 

• Core: 5-Stage pipeline RV32I core. The core contains hazard detection and forwarding units. 

• Memory Wrapper contains: 

o Instruction Memory which the core reads the 32-bit RV32I instructions from. 

o Data Memory which the core use to initiate LOAD & STORE instruction. 

o Control Registers Memory which handles the communication with the FPGA peripherals. 

o Video Graphic Array Controller which handles the communication with the screen and 

contains VGA memory. 

• The design is compatible with RV32I ISA. 

• Steady State Instructions Per Cycle (IPC) of 1 (probably ~0.7 IPC). 

• The access to the memory is word-aligned (4 bytes). 

 

Figure 2 - Top level block diagram 
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0x00000000 

2.4 DESIGN BUILDING BLOCKS 

2.4.1 Core & pipeline stages 

The core is the building block that runs and executes the program instructions. It is RV32I based core, 

which means the core entire design supports only RV32I instructions – 32-bit encoded assembly 

instructions. The core contains hazard detection and forwarding units. 

RVC_ASAP core is a piped core with 5 stages: 

1. Instruction Fetch (Q100H) 

2. Decode (Q101H) 

3. Execute (Q102H) 

4. Memory (Q103H) 

5. Write Back (Q104H) 

2.4.2 Memory regions 

RVC_ASAP has total of 69.5kb S-RAM memory in addition to Flip-Flop memories and Registers File. The 

entire memory is divided into 4 regions: 

1. I_MEM – 16kb. 

2. D_MEM – 16kb. 

3. CR_MEM – as part of Data Memory allocation. 

4. VGA_MEM – 32.5kb. 

Each memory transaction has a 32-bit address. Please see Memory regions in the MAS to understand 

how we assigned the CPU address to the appropriate memory space. 

Figure 3 shows us the distribution of the memory space as it is depicted from the processor's point of 

view. 

VGA_MEM 

CR_MEM 

D_MEM 

I_MEM 

 

Figure 3 - Address space from core's point of view 

 

0x00004000 

0x00007000 

0x00008000 

0x00116000 
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Table 2 shows us the exact memory regions ranges from the core's point of view. 

Region Start address End address Description 
I_MEM 0x00000000 0x00003FFF 16kb of Instruction Memory. 

D_MEM 0x00004000 0x00006FFF 16kb of Data Memory. 

CR_MEM 0x00007000 0x00007FFF Control Register Memory as part of Data Memory allocation. 

VGA_MEM 0x00008000 0x000115FF 32.5kb of VGA Memory. 

 

Table 2 - Memory regions range from core's point of view 

2.4.3 VGA Controller 

The VGA controller generates synchronization signals and reads the VGA Memory. The VGA Controller 

contains the following instances: 

• sync_gen. 

• Pll_2. 

• VGA_MEM. 

For more information, please read the VGA Controller section in the MAS.
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3 MAS | MICRO-ARCHITECTURE-SPECIFICATION (HW) 

3.1 MICRO LEVEL DEFINITION 
The MAS describes the Micro-Level Architecture of the RVC_ASAP. This is the logic design 

implementation of RVC_ASAP architectonic demands described on HAS. This section covers the micro 

architecture of the core's stages, and the way that mem_wrap interact with the core. The section will 

cover the logic design for this communication and the implementation of the RVC_ASAP. 

3.2 MICRO LEVEL DESCRIPTION 
RVC_ASAP include 2 main building blocks: Core and Memory Wrapper. Those building blocks wrapped 

together in the top view of the design. The Memory Wrapper wraps together the Instruction Memory, 

Data Memory, CR Memory, and VGA Controller. The interface between the core and the Memory 

Wrapper located in the top view of the design. The core is 5-stage piped core which means that the 

interface between the core and the Memory Wrapper is expressed in 4 stages. The first stage is the 

Fetch stage. The core sends the address of the next instruction which pointed by the PC (Program 

Counter) to the Memory Wrapper. The memory concludes that this is an address intended for the 

Instruction Memory area and transmits the signal to this memory. The Instruction Memory module will 

provide the instruction to the core at the next clock cycle. The second stage of the interface between 

the core and the Memory Wrapper is in the Decode stage, where the core gets the instruction from the 

Instruction Memory. The next stage is the Memory stage. In this stage the core may want to perform 

any memory operations such as store data in the memory or load data from a memory address. The 

requests for memory operations go through the Memory Wrapper which checks the target address for 

the operation and sends the signals only to the appropriate memory according to the distribution of the 

address space (Data Memory, CR Memory, or VGA Memory). The final stage is the Write Back stage 

where if we loaded a data from the memory in the Memory stage, then the data arrives in the Write 

Back stage. 

The top view of the design outputs the control signals for communication with the FPGA so that some of 

them are input signals and some are output signals. 

The flow that has been described so far is the main flow of the design. Now, we will enter the 

implementation level of the various design components and explain the interface between them.  
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3.3 DESIGN BUILDING BLOCKS 

3.3.1 Parameters 

RVC_ASAP contains the following parameters which are defined in the rvc_asap_pkg file: 

Parameter Value Description 
I_MEM_MSB 0x00003FFF Instruction Memory section highest address. 

D_MEM_MSB 0x00006FFF Data Memory section highest address. 

CR_MEM_MSB 0x00007FFF CR Memory section highest address. 

VGA_MEM_MSB 0x000115FF VGA Memory section highest address. 

LSB_REGION 0 Least Significant Bit of the memory addresses. 

MSB_REGION 15 Most Significant Bit of the memory addresses. 

VGA_MSB_REGION 19 Most Significant Bit of the VGA Memory address. 

I_MEM_REGION_FLOOR 0 Instruction Memory section lowest address. 

I_MEM_REGION_ROOF 0x00003FFF Instruction Memory section highest address. 

D_MEM_REGION_FLOOR 0x00004000 Data Memory section lowest address. 

D_MEM_REGION_ROOF 0x00006FFF Data Memory section highest address. 

CR_MEM_REGION_FLOOR 0x00007000 CR Memory section lowest address. 

CR _MEM_REGION_ROOF 0x00007FFF CR Memory section highest address. 

VGA_MEM_REGION_FLOOR 0x00008000 VGA Memory section lowest address. 

VGA _MEM_REGION_ROOF 0x000115FF VGA Memory section highest address. 

SIZE_D_MEM 3000h Data Memory size in bytes. 

SIZE_VGA_MEM 38400d VGA Memory size in bytes. 

CR_SEG7_0 0x00007000 CR address, RW 7 bit. 

CR_SEG7_1 0x00007004 CR address, RW 7 bit. 

CR_SEG7_2 0x00007008 CR address, RW 7 bit. 

CR_SEG7_3 0x0000700C CR address, RW 7 bit. 

CR_SEG7_4 0x00007010 CR address, RW 7 bit. 

CR_SEG7_5 0x00007014 CR address, RW 7 bit. 

CR_LED 0x00007018 CR address, RW 10 bit. 

CR_Button_0 0x0000701C CR address, RO 1 bit. 

CR_Button_1 0x00007020 CR address, RO 1 bit. 

CR_Switch 0x00007024 CR address, RO 10 bit. 

CR_CURSOR_H 0x00007028 CR address, RW 32 bit. 

CR_CURSOR_V 0x0000702C CR address, RW 32 bit. 

 

Table 3 - RVC_ASAP parameters 

These parameters were defined for the flexibility of the design regarding the changes and readability of 

the code. 

 

 

 

 

 



 

17 
 

3.3.2 Top level 

The top level of the design contains the interface and the communication between the FPGA and the 

RVC_ASAP component. The Figure below illustrates this communication: 

 

Figure 4 - Top Level interface 

 

Signal Size [bits] Description 
Clock 1 Clock signal. 

Rst 1 Reset signal. 

Button_0 1 Key 0. 

Button_0 1 Key 1. 

Switch 10 The 10 switch buttons. 

SEG7_0 8 The 8 bulbs of segment 0. 

SEG7_1 8 The 8 bulbs of segment 1. 

SEG7_2 8 The 8 bulbs of segment 2. 

SEG7_3 8 The 8 bulbs of segment 3. 

SEG7_4 8 The 8 bulbs of segment 4. 

SEG7_5 8 The 8 bulbs of segment 5. 

LED 10 The 10 led bulbs. 

RED 4 The red signal of the VGA. 

GREEN 4 The green signal of the VGA. 

BLUE 4 The blue signal of the VGA. 

h_sync 1 Horizontal synchronization signal of the VGA. 

V_sync 1 Vertical synchronization signal of the VGA. 

 

Table 4 - rvc_asap_top - FPGA interface signals 
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3.3.3 Core – Memory Wrapper interface 

As mentioned earlier, the Memory Wrapper wraps together  the Instruction Memory, Data Memory, CR 

Memory, and VGA Controller. The interface between the core and the Memory Wrapper located in the 

top view of the design. All the information traffic between the core and the various memories goes 

through the Memory Wrapper. The Figure below illustrates this interface: 

 

Figure 5 - Core - Memory Wrapper interface 

Signal Size [bits] Description 
PreInstructionQ101H 32 Pre-instruction to decode. 

DMemRdRspQ104H 32 Data to read from the memory. 

PcQ100H 32 Program Counter. 

DMemWrDataQ103H 32 Data to write to the memory. 

DMemAddressQ103H 32 Address. 

DMemByteEnQ103H 4 Byte enable – defines which bytes to choose from the 4 bytes. 

DMemWrEnQ103H 1 Write enable. 

DMemRdEnQ103H 1 Read enable. 

 

Table 5 - rvc_asap_core - rvc_asap_mem_wrap interface signals 
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3.3.4 Core & pipeline stages 

The core is one of the main building blocks of RVC_ASAP. The core task is to run and execute the 

program instructions. The core is in order pipeline architecture with 5 stages. The MAS covers the core 

stages along with the logic and interface with the Memory Wrapper. The interface of the core, in 

addition to what is shown in Figure 5, also receives a clock signal and a reset signal. 

3.3.4.1 Instruction Fetch (Q100H) 

• Send PC (Program Counter) to Instruction Memory. 

• Set Next PC – (PC + 4) or calculated address.  

 

 
 

PcQ100H is the actual PC that sent to Instruction Memory. The branch resolution is in Execute 

stage (Q102H), so there are two options. If the branch condition met – in the next clock cycle 

PcQ100H will get the jump target address, and if it not met – PcQ100H will get PcQ100H + 4. 

3.3.4.2 Decode (Q101H) 

• Load & Control hazard detection: 

 

 
 

We get the PreInstructionQ101H from the Instruction Memory. We look on the RegSrc1 and the 

RegSrc2 fields of the instruction. LoadHzrdDetectQ101H checks first if we are in reset, if yes 

there is no meaning to check for load hazard, hence it gets the value of 0. Otherwise, it checks if 

the instruction in the Execute stage is a LOAD instruction and it writes to a register RegDst which 

is match to RegSrc1 or RegSrc2, if yes, we are in load hazard, otherwise not. 

PcEnQ101H checks if there is no load hazard – if there is no load hazard allow the Q100H stage 

registers to sample on the rise of the clock. If we find out in Execute stage that the branch 

condition is met, we will need to insert 2 NOP (No Operation) instructions, one is to don't 

decode the current instruction and the second is to don't decode the current fetched 

instruction. In other words, we have a branch predictor where his jump rule is always not taken. 

If we are not in one of the flushes, we check if we are in load hazard. If yes, we insert one NOP 

and if not, we are check if we were in load hazard in the previous step, if yes, we will complete 

the instruction that was waiting – PreviousInstructionQ101H. Otherwise, proceed regular and 

take the PreInstructionQ101H. 

assign Pc_To_ImemQ100H  = PcQ100H; 
assign PcPlus4Q100H     = PcQ100H + 3'h4; 
`RVC_EN_RST_MSFF(PcQ100H, NextPcQ102H, Clock, PcEnQ101H, Rst) 
 

 

assign PreRegSrc1Q101H           = PreInstructionQ101H[19:15]; 
assign PreRegSrc2Q101H           = PreInstructionQ101H[24:20]; 
assign LoadHzrdDetectQ101H       = Rst ? 1'b0 :  
                                 ((PreRegSrc1Q101H == RegDstQ102H) && (OpcodeQ102H == LOAD)) ? 1'b1: 
                                 ((PreRegSrc2Q101H == RegDstQ102H) && (OpcodeQ102H == LOAD)) ? 1'b1: 
                                                                                               1'b0; 
assign PcEnQ101H                = !LoadHzrdDetectQ101H; 
assign InstructionQ101H         = flushQ102H ? NOP : 
                                  flushQ103H ? NOP : 
                                  LoadHzrdDetectQ101H ? NOP:  
                                  LoadHzrdDetectQ102H ? PreviousInstructionQ101H : 
                                                        PreInstructionQ101H; 
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• Receiving instruction from Instruction Memory and using decoder to turn on the relevant 

control bits: 

 

 
 

In this section we fill in the various control singles according to the instruction that was received 

and according to the fields as they are defined in ISA for each group of commands with a similar 

structure. Using these control signals, we activate the various components. 

• Config the ALU operation in case of R_TYPE instruction: 

 

 

assign OpcodeQ101H           = t_opcode'(InstructionQ101H[6:0]); 
assign Funct3Q101H           = InstructionQ101H[14:12]; 
assign Funct7Q101H           = InstructionQ101H[31:25]; 
assign SelNextPcAluOutJQ101H = (OpcodeQ101H == JAL) || (OpcodeQ101H == JALR); 
assign SelNextPcAluOutBQ101H = (OpcodeQ101H == BRANCH); 
assign SelRegWrPcQ101H       = (OpcodeQ101H == JAL) || (OpcodeQ101H == JALR); 
assign SelAluPcQ101H         = (OpcodeQ101H == JAL) || (OpcodeQ101H == BRANCH)  
                                                    || (OpcodeQ101H == AUIPC); 
assign SelAluImmQ101H        =!(OpcodeQ101H == R_OP); // Only in case of RegReg Operation the Imm 
Selector is deasserted - defualt is asserted 
assign SelDMemWbQ101H        = (OpcodeQ101H == LOAD); 
assign CtrlLuiQ101H          = (OpcodeQ101H == LUI); 
assign CtrlRegWrEnQ101H      = (OpcodeQ101H == LUI ) || (OpcodeQ101H == AUIPC) ||  
                               (OpcodeQ101H == JAL)  || (OpcodeQ101H == JALR) || 
                               (OpcodeQ101H == LOAD) || (OpcodeQ101H == I_OP)  ||  
                               (OpcodeQ101H == R_OP) || (OpcodeQ101H == FENCE); 
assign CtrlDMemWrEnQ101H     = (OpcodeQ101H == STORE); 
assign CtrlSignExtQ101H      = (OpcodeQ101H == LOAD) && (!Funct3Q101H[2]); // Sign extend the LOAD     
from memory read. 
assign CtrlDMemByteEnQ101H   = ((OpcodeQ101H == LOAD) || (OpcodeQ101H == STORE)) &&  
                               (Funct3Q101H[1:0] == 2'b00) ? 4'b0001 : // LB || SB 
                               ((OpcodeQ101H == LOAD) || (OpcodeQ101H == STORE)) &&  
                               (Funct3Q101H[1:0] == 2'b01) ? 4'b0011 : // LH || SH 
                               ((OpcodeQ101H == LOAD) || (OpcodeQ101H == STORE)) &&  
                               (Funct3Q101H[1:0] == 2'b10) ? 4'b1111 : // LW || SW 
                                                             4'b0000 ; 
assign CtrlBranchOpQ101H     = t_branch_type'(Funct3Q101H); 
 

 

always_comb begin 
    unique casez ({Funct3Q101H, Funct7Q101H, OpcodeQ101H}) 
    // ---- R type ---- 
    {3'b000, 7'b0000000, R_OP} : CtrlAluOpQ101H = ADD;  // ADD 
    {3'b000, 7'b0100000, R_OP} : CtrlAluOpQ101H = SUB;  // SUB 
    {3'b001, 7'b0000000, R_OP} : CtrlAluOpQ101H = SLL;  // SLL 
    {3'b010, 7'b0000000, R_OP} : CtrlAluOpQ101H = SLT;  // SLT 
    {3'b011, 7'b0000000, R_OP} : CtrlAluOpQ101H = SLTU; // SLTU 
    {3'b100, 7'b0000000, R_OP} : CtrlAluOpQ101H = XOR;  // XOR 
    {3'b101, 7'b0000000, R_OP} : CtrlAluOpQ101H = SRL;  // SRL 
    {3'b101, 7'b0100000, R_OP} : CtrlAluOpQ101H = SRA;  // SRA 
    {3'b110, 7'b0000000, R_OP} : CtrlAluOpQ101H = OR;   // OR 
    {3'b111, 7'b0000000, R_OP} : CtrlAluOpQ101H = AND;  // AND 
    // ---- I type ---- 
    {3'b000, 7'b???????, I_OP} : CtrlAluOpQ101H = ADD;  // ADDI 
    {3'b010, 7'b???????, I_OP} : CtrlAluOpQ101H = SLT;  // SLTI 
    {3'b011, 7'b???????, I_OP} : CtrlAluOpQ101H = SLTU; // SLTUI 
    {3'b100, 7'b???????, I_OP} : CtrlAluOpQ101H = XOR;  // XORI 
    {3'b110, 7'b???????, I_OP} : CtrlAluOpQ101H = OR;   // ORI 
    {3'b111, 7'b???????, I_OP} : CtrlAluOpQ101H = AND;  // ANDI 
    {3'b001, 7'b0000000, I_OP} : CtrlAluOpQ101H = SLL;  // SLLI 
    {3'b101, 7'b0000000, I_OP} : CtrlAluOpQ101H = SRL;  // SRLI 
    {3'b101, 7'b0100000, I_OP} : CtrlAluOpQ101H = SRA;  // SRAI 
    // ---- Other ---- 
    default                    : CtrlAluOpQ101H = ADD;  // LUI || AUIPC || JAL || JALR || BRANCH || LOAD || STORE 
    endcase 
end 
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• Building the immediate types: 

 

 

Figure 6 - Immediate types 

Figure 6: Types of immediate produced by RISC-V instructions. The fields are labeled with the 

instruction bits used to construct their value. Sign extension always uses inst[31]. 

 

 

• Using RS1 and RS2 to read the Register File: 

 

 
 

Here we are also making forwarding from Write Back stage (Q104H) directly to 

RegRdData1Q101H and RegRdData2Q101H signals which read the Register File.  

always_comb begin 
  unique casez (OpcodeQ101H) // Mux 
    JALR, I_OP, LOAD : SelImmTypeQ101H = I_TYPE; 
    LUI, AUIPC       : SelImmTypeQ101H = U_TYPE; 
    JAL              : SelImmTypeQ101H = J_TYPE; 
    BRANCH           : SelImmTypeQ101H = B_TYPE; 
    STORE            : SelImmTypeQ101H = S_TYPE; 
    default          : SelImmTypeQ101H = I_TYPE; 
  endcase 
  unique casez (SelImmTypeQ101H) // Mux 
    U_TYPE : ImmediateQ101H = {    InstructionQ101H[31:12], 12'b0 } ; 
    I_TYPE : ImmediateQ101H = {{20{InstructionQ101H[31]}}, InstructionQ101H[31:20]};  
    S_TYPE : ImmediateQ101H = {{20{InstructionQ101H[31]}}, InstructionQ101H[31:25],InstructionQ101H[11:7]  }; 
    B_TYPE : ImmediateQ101H = {{20{InstructionQ101H[31]}}, InstructionQ101H[7]    ,InstructionQ101H[30:25], InstructionQ101H[11:8], 1'b0}; 
    J_TYPE : ImmediateQ101H = {{12{InstructionQ101H[31]}}, InstructionQ101H[19:12],InstructionQ101H[20]    , InstructionQ101H[30:21, 1'b0}; 
    default: ImmediateQ101H = {   InstructionQ101H[31:12], 12'b0 }; // U_Immediate 
  endcase 
end 

 

assign RegDstQ101H  = InstructionQ101H[11:7]; 
assign RegSrc1Q101H = InstructionQ101H[19:15]; 
assign RegSrc2Q101H = InstructionQ101H[24:20]; 
// ---- Read Register File ---- 
assign MatchRd1AftrWrQ101H = (RegSrc1Q101H == RegDstQ104H) && (CtrlRegWrEnQ104H) && (RegSrc1Q101H != 5'b0); 
assign RegRdData1Q101H     = MatchRd1AftrWrQ101H     ? RegWrDataQ104H       : // forwarding  
                              (RegSrc1Q101H == 5'b0) ? 32'b0                : 
                                                       Register[RegSrc1Q101H]; 
assign MatchRd2AftrWrQ101H = (RegSrc2Q101H == RegDstQ104H) && (CtrlRegWrEnQ104H) && (RegSrc2Q101H != 5'b0); 
assign RegRdData2Q101H     =  MatchRd2AftrWrQ101H   ? RegWrDataQ104H        : // forwarding 
                             (RegSrc2Q101H == 5'b0) ? 32'b0                 : 
                                                      Register[RegSrc2Q101H]; 
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3.3.4.3 Execute (Q102H) 

• Hazard Detection: 

 

 
 

Here we check if one of the operands RegSrc1Q102H or RegSrc2Q102H updated value is going 

to be updated by one of the instructions from the Memory stage or from the Write Back stage, if 

yes, we are in data hazard. We also check that the RegSrc is not the x0 registers because x0 

register must consist of the 0 value and we don't want to make nonzero value forwarding. 

 

• Forwarding Unit: 

 

 
 

Here we define mux for each one of the signals RegRdData1Q102H and RegRdData2Q102H. The 

mux checks first if we are in Hazard1Data which means we read register that going to be 

updated by instruction which located in the Memory stage, if yes, forward the AluOut103H 

value. Otherwise, checks if we are in Hazard2Data which means we read register that going to 

be updated by instruction which located in the Write Back stage, if yes, forward the 

RegWrDataQ104H value. Note that a situation where we read a register in the Execute stage is 

not possible so that there is a LOAD instruction in the Memory stage which writes to this 

register and apparently should be forwarding although this is not possible because the sampling 

is done only at the end of the current clock cycle. This is not possible since this is a load hazard 

which is handled by spacing between the LOAD instruction and the next instruction that needs 

the LOAD value by NOP instruction, therefore the forwarding situation from the Memory stage 

to the Execute stage is necessarily of instructions that do not access memory. 

 

 

 

 

 

 

 

 

 

 
assign Hazard1Data1Q102H = (RegSrc1Q102H == RegDstQ103H) && (CtrlRegWrEnQ103H) && (RegSrc1Q102H != 5'b0); 
assign Hazard2Data1Q102H = (RegSrc1Q102H == RegDstQ104H) && (CtrlRegWrEnQ104H) && (RegSrc1Q102H != 5'b0); 
assign Hazard1Data2Q102H = (RegSrc2Q102H == RegDstQ103H) && (CtrlRegWrEnQ103H) && (RegSrc2Q102H != 5'b0); 
assign Hazard2Data2Q102H = (RegSrc2Q102H == RegDstQ104H) && (CtrlRegWrEnQ104H) && (RegSrc2Q102H != 5'b0); 

 
 

assign RegRdData1Q102H = Hazard1Data1Q102H ? AluOutQ103H       : // Rd 102 After Wr 103 
                         Hazard2Data1Q102H ? RegWrDataQ104H    : // Rd 102 After Wr 104 
                                             PreRegRdData1Q102H; // Common Case - No Hazard 
assign RegRdData2Q102H = Hazard1Data2Q102H ? AluOutQ103H       : // Rd 102 After Wr 103 
                         Hazard2Data2Q102H ? RegWrDataQ104H    : // Rd 102 After Wr 104  
                                             PreRegRdData2Q102H; // Common Case - No Hazard 
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• ALU operations: Calculation of the information for writing back to the Register File, address 

calculation for Store/Load instructions, calculation of target address for Jump/Branch: 

 

 
 

• Branch resolution: 

 

 
 

Here SelNextPcAluOutQ102H checks if we are in branch instruction and the branch condition is 

met or are in jump instruction. If yes, NextPcQ102H get the calculated target address from 

AluOutQ102H and flushQ102H is on in that case. 

 

assign AluIn1Q102H = SelAluPcQ102H  ? PcQ102H          : RegRdData1Q102H; 
assign AluIn2Q102H = SelAluImmQ102H ? ImmediateQ102H   : RegRdData2Q102H; 
 
always_comb begin : alu_logic 
  ShamtQ102H      = AluIn2Q102H[4:0]; 
  unique casez (CtrlAluOpQ102H)  
    // Adder 
    ADD     : AluOutQ102H = AluIn1Q102H +   AluIn2Q102H;                            // 
ADD/LW/SW/AUIOC/JAL/JALR/BRANCH/ 
    SUB     : AluOutQ102H = AluIn1Q102H + (~AluIn2Q102H) + 1'b1;                    // SUB 
    SLT     : AluOutQ102H = {31'b0, ($signed(AluIn1Q102H) < $signed(AluIn2Q102H))}; // SLT 
    SLTU    : AluOutQ102H = {31'b0 , AluIn1Q102H < AluIn2Q102H};                    // SLTU 
    // Shifter 
    SLL     : AluOutQ102H = AluIn1Q102H << ShamtQ102H;                              // SLL 
    SRL     : AluOutQ102H = AluIn1Q102H >> ShamtQ102H;                              // SRL 
    SRA     : AluOutQ102H = $signed(AluIn1Q102H) >>> ShamtQ102H;                    // SRA 
    // Bit wise operations 
    XOR     : AluOutQ102H = AluIn1Q102H ^ AluIn2Q102H;                              // XOR 
    OR      : AluOutQ102H = AluIn1Q102H | AluIn2Q102H;                              // OR 
    AND     : AluOutQ102H = AluIn1Q102H & AluIn2Q102H;                              // AND 
    default : AluOutQ102H = AluIn1Q102H + AluIn2Q102H; 
  endcase 
  if (CtrlLuiQ102H) AluOutQ102H = AluIn2Q102H;                                      // LUI 
end 
 

 

always_comb begin : branch_comp 
  // Check branch condition 
  unique casez ({CtrlBranchOpQ102H}) 
    BEQ     : BranchCondMetQ102H =  (RegRdData1Q102H == RegRdData2Q102H);                  // BEQ 
    BNE     : BranchCondMetQ102H = ~(RegRdData1Q102H == RegRdData2Q102H);                  // BNE 
    BLT     : BranchCondMetQ102H =  ($signed(RegRdData1Q102H) < $signed(RegRdData2Q102H)); // BLT 
    BGE     : BranchCondMetQ102H = ~($signed(RegRdData1Q102H) < $signed(RegRdData2Q102H)); // BGE 
    BLTU    : BranchCondMetQ102H =  (RegRdData1Q102H < RegRdData2Q102H);                   // BLTU 
    BGEU    : BranchCondMetQ102H = ~(RegRdData1Q102H < RegRdData2Q102H);                   // BGEU 
    default : BranchCondMetQ102H = 1'b0; 
  endcase 
end 
 
assign SelNextPcAluOutQ102H = (SelNextPcAluOutBQ102H && BranchCondMetQ102H)  
                               || (SelNextPcAluOutJQ102H);    
assign NextPcQ102H = SelNextPcAluOutQ102H ? AluOutQ102H : PcPlus4Q100H; 
assign flushQ102H = SelNextPcAluOutQ102H; 
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3.3.4.4 Memory (Q103H) 

• Access to RAM for reading and writing: 

 

 
 

Here we examine the lower 2 bits of the addresses we access and accordingly perform a non-

cyclical shift to the information and the byte enable signals to enforce word alignment accesses 

to the memory. The shift operation was needed for supporting non 4 bytes align memory access 

due to HW constraint of the standard RAM which we used. 

 

always_comb begin 

DMemWrDataQ103H = (DMemAddressQ103H[1:0] == 2'b01 ) ? { RegRdData2Q103H[23:0],8'b0  } : 

                  (DMemAddressQ103H[1:0] == 2'b10 ) ? { RegRdData2Q103H[15:0],16'b0 } : 

                  (DMemAddressQ103H[1:0] == 2'b11 ) ? { RegRdData2Q103H[7:0] ,24'b0 } : 

                                                        RegRdData2Q103H; 

DMemByteEnQ103H = (DMemAddressQ103H[1:0] == 2'b01 ) ? { CtrlDMemByteEnQ103H[2:0],1'b0 } : 

                  (DMemAddressQ103H[1:0] == 2'b10 ) ? { CtrlDMemByteEnQ103H[1:0],2'b0 } : 

                  (DMemAddressQ103H[1:0] == 2'b11 ) ? { CtrlDMemByteEnQ103H[0]  ,3'b0 } : 

                                                        CtrlDMemByteEnQ103H; 

end 

assign DMemAddressQ103H = AluOutQ103H; 

assign DMemWrEnQ103H    = CtrlDMemWrEnQ103H; 

assign DMemRdEnQ103H    = SelDMemWbQ103H; 
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3.3.4.5 Write Back (Q104H) 

• Selecting the information to be written back to the Register File - The ALU source or the memory 

source: 

 

 
 

Here we do some interesting things. First, we undo the operation of the shift that we performed 

in the previous step so that we do not allow crossword reads. We handle the sign bit according 

to the type of instruction - signed or unsigned and choose what to write back to the Register File 

- the ALU source or the memory source. 

 

 

 

 

 

 

assign ByteOffsetQ104H = AluOutQ104H[1:0];  

 

always_comb begin 

ByteenaRestoreQ104H   = (ByteOffsetQ104H == 2'b01 ) ? { 1'b0,ByteEnQ104H[3:1] } : // we have done 1 

shift - so 1 shift right 

                        (ByteOffsetQ104H == 2'b10 ) ? { 2'b0,ByteEnQ104H[3:2] } : // we have done 2 

shift - so 2 shift right 

                        (ByteOffsetQ104H == 2'b11 ) ? { 3'b0,ByteEnQ104H[3]   } : // we have done 3 

shift - so 3 shift right 

                                                             ByteEnQ104H;         // we don't shifted 

end 

assign RdDataAfterShiftQ104H = (ByteOffsetQ104H == 2'b00) ?        DMemRdRspQ104H         : 

                               (ByteOffsetQ104H == 2'b01) ? { 8'b0,DMemRdRspQ104H[31:8]}  : 

                               (ByteOffsetQ104H == 2'b10) ? {16'b0,DMemRdRspQ104H[31:16]} : 

                               (ByteOffsetQ104H == 2'b11) ? {24'b0,DMemRdRspQ104H[31:24]} : 

                                                                   DMemRdRspQ104H         ; 

// Sign extend taking care of 

assign PostSxDMemRdDataQ104H[7:0]   =  ByteenaRestoreQ104H[0] ? RdDataAfterShiftQ104H[7:0]     : 8'b0; 

assign PostSxDMemRdDataQ104H[15:8]  =  ByteenaRestoreQ104H[1] ? RdDataAfterShiftQ104H[15:8]    : 

                                       CtrlSignExtQ104H       ? {8{PostSxDMemRdDataQ104H[7]}}  : 8'b0; 

assign PostSxDMemRdDataQ104H[23:16] =  ByteenaRestoreQ104H[2] ? RdDataAfterShiftQ104H[23:16]   : 

                                       CtrlSignExtQ104H       ? {8{PostSxDMemRdDataQ104H[15]}} : 8'b0; 

assign PostSxDMemRdDataQ104H[31:24] =  ByteenaRestoreQ104H[3] ? RdDataAfterShiftQ104H[31:24]   : 

                                       CtrlSignExtQ104H       ? {8{PostSxDMemRdDataQ104H[23]}} : 8'b0; 

 

// ---- Select what write to the register file ---- 

assign WrBackDataQ104H = SelDMemWbQ104H  ? PostSxDMemRdDataQ104H : AluOutQ104H; 

assign RegWrDataQ104H  = SelRegWrPcQ104H ? PcPlus4Q104H          : WrBackDataQ104H; 
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The Figure below shows the complete architecture of the RVC_ASAP core: 

 

Figure 7 - RVC_ASAP detailed block diagram 
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3.3.5 Memory regions 

The division of the memory space from the point of view of the process is more detailed. It doesn't differ 

in its general delimitation limits although the memory of the process requires a further division of the 

memory spaces into additional spaces. The memory space of the processor in our case is equivalent to 

the memory space of a single process since there is always one and only one process in the system. The 

division of the memory space of the process is carried out by the linker script. We touch on this topic in 

the GCC section. 

At this point, we will expand on the memory components as they are defined in hardware. 

3.3.5.1 mem_wrap 

The Memory Wrapper wraps together the Instruction Memory, Data Memory, CR Memory, and VGA 

Controller. The Figure below illustrates this interface: 

 

Figure 8 - mem_wrap interface 
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Signal Size [bits] Description 
Clock 1 Clock signal. 

Rst 1 Reset signal. 

Button_0 1 Key 0. 

Button_0 1 Key 1. 

Switch 10 The 10 switch buttons. 

SEG7_0 8 The 8 bulbs of segment 0. 

SEG7_1 8 The 8 bulbs of segment 1. 

SEG7_2 8 The 8 bulbs of segment 2. 

SEG7_3 8 The 8 bulbs of segment 3. 

SEG7_4 8 The 8 bulbs of segment 4. 

SEG7_5 8 The 8 bulbs of segment 5. 

LED 10 The 10 led bulbs. 

RED 4 The red signal of the VGA. 

GREEN 4 The green signal of the VGA. 

BLUE 4 The blue signal of the VGA. 

h_sync 1 Horizontal synchronization signal of the VGA. 

V_sync 1 Vertical synchronization signal of the VGA. 

PreInstructionQ101H 32 Pre instruction to decode. 

DMemRdRspQ104H 32 Data to read from the memory. 

PcQ100H 32 Program Counter. 

DMemWrDataQ103H 32 Data to write to the memory. 

DMemAddressQ103H 32 Address. 

DMemByteEnQ103H 4 Byte enable – defines which bytes to choose from the four bytes. 

DMemWrEnQ103H 1 Write enable. 

DMemRdEnQ103H 1 Read enable. 

 

Table 6 - mem_wrap interface signals 

The technique in which we assign the address that comes out of the core towards the mem_wrap to the 

memory space relevant to the address is shown in the following code segment: 

always_comb begin 

    MatchVGAMemRegionQ103H = ((DMemAddressQ103H[VGA_MSB_REGION:LSB_REGION] >= VGA_MEM_REGION_FLOOR)  

                             && (DMemAddressQ103H[VGA_MSB_REGION:LSB_REGION] <= VGA_MEM_REGION_ROOF)); 

    MatchDMemRegionQ103H   = MatchVGAMemRegionQ103H ? 1'b0 :  

                            ((DMemAddressQ103H[MSB_REGION:LSB_REGION]  >= D_MEM_REGION_FLOOR)  

                            && (DMemAddressQ103H[MSB_REGION:LSB_REGION] <= D_MEM_REGION_ROOF)); 

    MatchCRMemRegionQ103H  = MatchVGAMemRegionQ103H ? 1'b0 :  

                            ((DMemAddressQ103H[MSB_REGION:LSB_REGION] >= CR_MEM_REGION_FLOOR)  

                            && (DMemAddressQ103H[MSB_REGION:LSB_REGION] <= CR_MEM_REGION_ROOF)); 

end 

`RVC_MSFF(MatchDMemRegionQ104H   , MatchDMemRegionQ103H    , Clock) // Q103H to Q104H Flip Flops 

`RVC_MSFF(MatchCRMemRegionQ104H  , MatchCRMemRegionQ103H   , Clock) // Q103H to Q104H Flip Flops 

`RVC_MSFF(MatchVGAMemRegionQ104H , MatchVGAMemRegionQ103H  , Clock) // Q103H to Q104H Flip Flops 

// Mux between CR ,data and vga memory 

assign DMemRdRspQ104H= MatchCRMemRegionQ104H  ? PreCRMemRdDataQ104H  : 

                       MatchDMemRegionQ104H   ? PreDMemRdDataQ104H   : 

                       MatchVGAMemRegionQ104H ? PreVGAMemRdDataQ104H : 

                                                32'b0                ; 
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We check the memory area to which the address belongs explicitly and turn on the signals 

MatchDMemRegionQ103H, MatchCRMemRegionQ103H, MatchVGAMemRegionQ103H accordingly. In 

the next step, we send to each memory component in the rden and wren ports the result of the AND 

operation between each signal and the match region corresponding to it and in this way only the 

component that needs to work works. One clock cycle ahead, we check against which memory area we 

worked and return the corresponding port DMemRdRspQ104H. 

3.3.5.2 I_MEM 

I_MEM is the memory region that contains the instructions of the program. It is S-RAM based and its 

size is 16kb. The program is loaded to the I_MEM with backdoor load through the Test Bench if we are in 

simulation or as setting the initial memory content if we are in FPGA. The memory size is control by the 

parameter I_MEM_MSB and its basic size is 16kb. The access to I_MEM is a single-port access. The 

processor accesses I_MEM in the FETCH stage. In the simulation we used behavioral memory, and on 

the FPGA, we used the on-die FPGA memory. In addition, on the FPGA we used the MIF format to pre-

load the I_MEM as a ROM.  

3.3.5.3 D_MEM 

D_MEM is the memory region that contains the data of the program. It is S-RAM based and its size is 

16kb. The program data is loaded to the D_MEM with backdoor load through the Test Bench if we are in 

simulation or as setting the initial memory content if we are in FPGA. The memory size is control by the 

parameter D_MEM_MSB and its basic size is 16kb. The access to D_MEM is a single-port access. The 

processor accesses D_MEM in the Memory stage. In the simulation we used behavioral memory, and on 

the FPGA, we used the on-die FPGA memory. In addition, on the FPGA we used the MIF format to pre-

load the D_MEM which then can be overwritten by the SW (RAM). 

3.3.5.4 CR_MEM 

CR_MEM is the control registers memory region. It is a flip-flop based that contains essential registers 

for the communication with the FGPA peripherals. CR data can be accessed through the software by 

requesting the specific offset of the specific CR in the CR table. Some CRs are read only that sample data 

from the hardware. Others are read and write CRs. The memory size is control by the parameter 

CR_MEM_MSB and its basic size is 4kb. The access to CR_MEM is a single-port access. The processor 

accesses CR_MEM in the Memory stage. The table below shows the control registers present in the 

design: 

CR Name Address Description 
CR_SEG7_0 0x00007000 RW 7 bit. 

CR_SEG7_1 0x00007004 RW 7 bit. 

CR_SEG7_2 0x00007008 RW 7 bit. 

CR_SEG7_3 0x0000700C RW 7 bit. 

CR_SEG7_4 0x00007010 RW 7 bit. 

CR_SEG7_5 0x00007014 RW 7 bit. 

CR_LED 0x00007018 RW 10 bit. 

CR_Button_0 0x0000701C RO 1 bit. 

CR_Button_1 0x00007020 RO 1 bit. 

CR_Switch 0x00007024 RO 10 bit. 

CR_CURSOR_H 0x00007028 RW 32 bit. 

CR_CURSOR_V 0x0000702C RW 32 bit. 

 



 

30 
 

Table 7 - Control Registers 

To get the full understanding behind each control register, look at Figure 9. The names of the control 

registers correspond to the names indicated in the figure. 

 

Figure 9 - DE10-Lite intel FPGA [image from DE10-Lite User Manual] 

The way we implemented CR_MEM is the following way. First, we defined 2 structs: 

 

The idea behind the definition of the structures is to integrate the control registers in a convenient and 

simple way while dividing into control registers which can only be read and those which can be both 

read and written. 

 

typedef struct packed { // RO 
    logic       Button_0; 
    logic       Button_1; 
    logic [9:0] Switch; 
} t_cr_ro ; 
 
typedef struct packed { // RW 
    logic [7:0]  SEG7_0; 
    logic [7:0]  SEG7_1; 
    logic [7:0]  SEG7_2; 
    logic [7:0]  SEG7_3; 
    logic [7:0]  SEG7_4; 
    logic [7:0]  SEG7_5; 
    logic [9:0]  LED; 
    logic [31:0] CR_CURSOR_H; 
    logic [31:0] CR_CURSOR_V; 
} t_cr_rw ; 
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In the next step we defined the memory as follows: 

 

This is a partial view of the memory code because it is long, but the view is enough to understand the 

principles behind it. First, we instantiate each of the structures we defined earlier. In the case shown in 

the code section, we perform a write. If the address matches one of the addresses of any CR, we update 

the value of the CR represented as a variable in the appropriate struct accordingly. 

 

t_cr_ro cr_ro; 
t_cr_rw cr_rw; 
t_cr_ro cr_ro_next; 
t_cr_rw cr_rw_next; 
// Data-Path signals 
logic [31:0] pre_q; 
always_comb begin 
    cr_ro_next = cr_ro; 
    cr_rw_next = cr_rw;  
    if(wren) begin 
        unique casez (address) // address holds the offset 
            // ---- RW memory ---- 
            CR_SEG7_0   : cr_rw_next.SEG7_0         = data[7:0]; 
            CR_SEG7_1   : cr_rw_next.SEG7_1         = data[7:0]; 
            CR_SEG7_2   : cr_rw_next.SEG7_2         = data[7:0]; 
            CR_SEG7_3   : cr_rw_next.SEG7_3         = data[7:0]; 
            CR_SEG7_4   : cr_rw_next.SEG7_4         = data[7:0]; 
            CR_SEG7_5   : cr_rw_next.SEG7_5         = data[7:0]; 
            CR_LED      : cr_rw_next.LED            = data[9:0]; 
            CR_CURSOR_H : cr_rw_next.CR_CURSOR_H    = data[31:0]; 
            CR_CURSOR_V : cr_rw_next.CR_CURSOR_V    = data[31:0]; 
            // ---- Other ---- 
            default   : /* Do nothing */; 
        endcase 
    end 
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3.3.5.5 VGA_MEM 

VGA_MEM is the memory region that responsible for communicating with the screen. It is also S-RAM 

based and its size is 32.5kb. Any writing to a certain area in this memory region will be reflected to the 

screen and in addition to that the processor can read the status of a certain pixel assuming that the 

software is interested in it. There is an option for this memory area to be initialized to zero by the 

software that run on the processor if it so wishes. The memory size is control by the parameter 

VGA_MEM_MSB and its basic size is 32.5kb. The access to VGA_MEM is a dual-port access because both 

the processor and the VGA controller can access this memory area together. The processor accesses 

VGA_MEM in the Memory stage. The driver that pulls the information from this memory region to the 

screen is the VGA Controller. In the simulation we used behavioral memory, and on the FPGA, we used 

the on-die FPGA memory (as same as I_MEM and D_MEM). 

All the memory regions that have been described so far are wrapped by mem_wrap so that at the level 

of this component the address is checked, and the reference is made to the relevant memory space. In 

relation to VGA_MEM, this memory component is wrapped by the VGA Controller and the VGA 

Controller is a component of mem_wrap. That is, every request to the memory area of the VGA goes 

through the processor, passes through the mem_wrap to the VGA Controller and then reaches the 

memory area of the VGA.  

Now, we will touch in detail on the VGA Controller. 



 

33 
 

3.3.6 VGA Controller 

The resolution of our target screen is 640×480. As can be seen from Figure 10, there are 640 vertical bits 

lines and 480 horizontal bits lines. Overall, the screen contains 80×480 = 38,400 bytes, and if we take 

into account that the size of a word is 4 bytes, the screen contains 9600 words. Each pixel on the screen 

is represented by a single bit, as a result, the total number of pixels is 640×480 = 307,200 pixels. The 

VGA support 12 bit RGB, but we decided that having such a large amount of memory was a waste. So, 

we implemented a monochromatic screen, which each pixel is either on or off. 

 

Figure 10 - The screen 

VGA at 640×480 resolution at 60Hz (frames per second) requires a pixel clock of 25.175Mhz, this is the 

industry standard. The tables below show the necessary timing for the VGA control signals at 640×480 

resolution at 60Hz. You can view additional timings for different cases in the following link. 

General timing 

Parameter Timing 

Screen refresh rate 60 HZ 

Vertical refresh 31.46875 kHz 

Pixel freq. 25.175 MHz 

Table 8 - VGA general timing 

Horizontal timing (line) 

Polarity of horizontal sync pulse is negative. 

Scanline part Pixels Time [µs] 
Visible area 640 25.422045680238 
Front porch 16 0.63555114200596 
Sync pulse 96 3.8133068520357 
Back porch 48 1.9066534260179 
Whole line 800 31.777557100298 

Table 9 - VGA horizontal timing 

http://tinyvga.com/vga-timing
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Vertical timing (frame) 

Polarity of vertical sync pulse is negative. 

Frame part Lines Time [ms] 
Visible area 480 15.253227408143 
Front porch 10 0.31777557100298 
Sync pulse 2 0.063555114200596 
Back porch 33 1.0486593843098 
Whole line 525 16.683217477656 

 

Table 10 - VGA vertical timing 

To understand how the transmission to the screen is carried out, the first two signals that deserve 

mention and explanation are the horizontal and vertical synchronization signals. 
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Horizontal Synchronization 

Figure 11 shows the wave diagram of the horizontal synchronization signal. We will look at the hsync 

(horizontal synchronization) signal and how it relates to how the electron beam of the CRT monitor 

traverses across the CRT monitor. In Figure 11 we can see a CRT monitor with a black border, and the 

reason is because older CRT monitors did have that black border and it is part of the scanning pattern 

that we do. That is, we do pass the electron beam across the black border too, however we don't show 

any pixels over there.  

The hsync signal is a periodic digital signal that goes between zero and one logic. Based on the value of 

that signal the CRT monitor generates a sawtooth signal which moves the electron beam across the 

screen. The period of hsync signal is between 0 all the way to 799, which is 800. Suppose we start at the 

point marked 0 in the wave diagram of the hsync signal in Figure 11, in principle we can start at any 

point we want because the signal is periodic. Point 0 is the start of the screen, this point located in the 

visible portion of the screen, not the border. We set the hsync signal to 1 all the way to 639 which 

means the electron beam will travers across the CRT monitor from left to right. We can observe that the 

sawtooth signal in this section is going all the way up, but it didn't finish though. What is happens next is 

that the electron beam goes through the right border (front porch) for exactly 16 clock cycles (not the 

system clock cycle). Then, the horizontal line must go backwards for 96 clock cycles, this is what we call 

the retrace and the sawtooth signal in this section is going all the way down to zero. In the final stage, 

relative to the point where we started (0) and because the signal is periodic the electron beam goes 

through the left border (back porch) for exactly 48 clock cycles. Realization of the hsync signal is 

basically by a simple counter which goes from 0 to 799 (modulo 800). 

  

 

Figure 11 - Horizontal Synchronization 

https://en.wikipedia.org/wiki/Cathode-ray_tube


 

36 
 

Vertical Synchronization 

Figure 12 shows the wave diagram of the vertical synchronization signal. Now, we will look at the vsync 

(vertical synchronization) signal and how it relates to how the electron beam of the CRT monitor 

traverses across the CRT monitor. The horizontal synchronization signal allowed us to move the electron 

beam or the scanning of the pixels from left to right, so we need another signal which goes from top to 

bottom, this is where the vertical synchronization signal comes into play. We want to go from top to 

bottom in 1/60 seconds because we have a refresh rate of 60Hz.  

vsync signal is very similar to hsync signal so the vsync signal is also a periodic digital signal that goes 

between zero and one logic. Suppose we start at the point marked 0 in the wave diagram of the vsync 

signal in Figure 12, here also we can start at any point we want because the signal is periodic. Point 0 is 

the start of the screen, this point located in the visible portion of the screen, not the border. We set the 

vsync signal to 1 all the way to 479 which means the electron beam will travers across the CRT monitor 

from top to bottom. What is happens next is that the electron beam goes through the bottom border 

(front porch) for exactly 10 clock cycles (not the system clock cycle). Then, the vertical line must go 

backwards for 2 clock cycles, this is the retrace. In the final stage, relative to the point where we started 

(0) and because the signal is periodic the electron beam goes through the top border (back porch) for 

exactly 33 clock cycles. Realization of the vsync signal is also basically by a simple counter which goes 

from 0 to 524 (modulo 525). 

 

 

Figure 12 - Vertical Synchronization 

 

 

https://en.wikipedia.org/wiki/Cathode-ray_tube
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Now, let's look at the complete picture. That is, let's consider the horizontal and vertical synchronization 

signals together. Figure 13 shows the complete scanning pattern of the screen. 

 

 

Figure 13 - Screen scanning pattern 

As mentioned in the HAS section, The VGA Controller contains the following instances: 

• VGA Synchronization Machine (sync_gen). 

• 25MHz Clock Generator (pll_2). 

• Video Graphic Array Memory (VGA_MEM). 
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3.3.6.1 sync_gen 

This module is the controller of the hsync and vsync signals: 

 

The signal ConterXmaxed resets or when Reset signal is on or when CounterX signal reaches the value of 

800. The value 800 is derived from 16 clock cycles in the front porch area, 96 clock cycles retrace, 48 

clock cycles left border and 640 clock cycles display. In a similar way, the signal CounterYmaxed resets or 

when Reset signal is on or when CounterY signal reaches the value of 525. The value 525 is derived from 

10 clock cycles in the front porch area, 2 clock cycles retrace, 33 clock cycles back porch and 480 clock 

cycles display. 

3.3.6.2 Pll_2 

This module is a frequency divider: 

 

The exact pixel frequency of the VGA for the resolution we used is 25.175MHz. The system clock 

frequency is 50MHz. Instead of using PLL we simply divide the system clock by 2 to get 25Mhz clock and 

its works fine as a clock of the VGA (although it's not exactly accurate). 

3.3.6.3 VGA_MEM 

Explained in VGA_MEM section. 

 

 

 

 

// VGA @ 640x480 resolution @ 60Hz requires a pixel clock of 25.175Mhz. 
// Maxed x = 800 , y = 525 
assign CounterXmaxed = (CounterX == 800) || Reset; // 16 + 48 + 96 + 640 
assign CounterYmaxed = (CounterY == 525) || Reset; // 10 + 2 + 33 + 480 
 
// x and y counters 
`RVC_RST_MSFF   (CounterX, (CounterX+1'b1), CLK_25, CounterXmaxed) 
`RVC_EN_RST_MSFF(CounterY, (CounterY+1'b1), CLK_25, CounterXmaxed, (CounterXmaxed && CounterYmaxed) ) 
assign next_h_sync = (CounterX >= (640 + 16) && (CounterX < (640 + 16 + 96)));  // active for 96 
clocks 
assign next_v_sync = (CounterY >= (480 + 10) && (CounterY < (480 + 10 + 2)));   // active for 2 clocks 
 
`RVC_MSFF(h_sync, next_h_sync, CLK_25) 
`RVC_MSFF(v_sync, next_v_sync, CLK_25) 
 
// Indication that we must not send Data in VGA RGB 
assign NextinDisplayArea = ((CounterX < 640) && (CounterY < 480)); 
`RVC_MSFF(inDisplayArea, NextinDisplayArea, CLK_25) 
assign vga_h_sync = ~h_sync; 
assign vga_v_sync = ~v_sync; 

 

`RVC_RST_MSFF(CLK_25, !CLK_25, CLK_50, Reset) 
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4 VERIFICATION PLAN (HW) 

4.1 INTRODUCTION  
Validation is one of the most important procedures at product manufacturing and quality assurance. 

Validation definition is the assurance that a product, system, or service is working as expected. For 

example, a very familiar validation is the post-silicon validation, which is the performance, functionality, 

power, voltage, and more verifying tests after the CPU is manufactured physically. In RVC_ASAP project 

validation was critical to ensure the correctness of RVC_ASAP core and memory functionality, before 

continuing to the next project step, the FPGA synthesis. On our first step, when we still do not have a 

physical RVC_ASAP unit, we checked RVC_ASAP functionality with ModelSim simulations on a Test 

Bench. 

4.2 TEST BENCH 
Test Bench is an environment used to verify the correctness or soundness of a design or model. In our 

project, the Test Bench instantiate the top view of the design. The Test Bench also provides clock and 

reset signals to the design, loads the instruction and the data memories by a backdoor load and 

monitors them. 

The backdoor load for the Instruction and Data Memory occurs in the following code snippet: 

 

Code Snippet 1 - Backdoor load 

At the end of the TB code there is a task that initiated by EBRAKE instruction and ends the simulation by 

creating a snapshot of the data memory and extracting the snapshot to a log file. In addition, a snapshot 

of the VGA memory region is taken to simulate screen printing which also extracted to a log file. 

initial begin: test_seq 
    //====================================== 
    //load the program to the TB 
    //====================================== 
    $readmemh({"../apps/sv/",hpath,"-inst_mem_rv32i.sv"}, IMem); 
    $readmemh({"../apps/sv/",hpath,"-data_mem_rv32i.sv"}, DMem); 
    // Backdoor load the Instruction memory 
    force rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_i_mem.IMem = IMem; //XMR 
    assign Ebrake = rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl.InstructionQ101H; //XMR 
    // Backdoor load the data memory 
    force rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_d_mem.DMem = DMem; //XMR 
    # 10 
    release rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_d_mem.DMem; 
    #1000000  
    end_tb("====TEST TIME OUT===="); 
end: test_seq 
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4.3 CHECKER 
In the final stage we check the results by conduct a comparison between actual output of the test to the 

memory and its golden image. Golden image is pre-generated memory image produced from Venus 

RISC-V simulator. This Visual Studio Code extension embeds the popular Venus RISC-V simulator. It 

provides a standalone learning environment as no other tools are needed. It runs RISC-V assembly code 

with the standard debugging capabilities of VS Code. Here is a link for more information about the 

Venus RISC-V simulator. The golden image was extracted from the Venus RISC-V simulator by run and 

debug the Assembly code in the simulator. Venus simulator provides a way to view the memory dump 

after running the program. In this way we could build the golden image (correct memory snapshot) after 

running the program. 

The Test Bench builds a memory snapshot that corresponds to the format of the golden image as 

follows: 

 

Code Snippet 2 - Test Bench memory snapshot 

As part of the automation process, the buildl.sh script compares the two files (golden image and real 

image) and alerts if there is a discrepancy between the two files and where the discrepancy exists. 

In addition, the Test Bench builds a VGA Memory snapshot as follows: 

 

Code Snippet 3 - Test Bench VGA memory snapshot 

This was helpful to enable the VGA mem in simulation.

    // Data memory snapshot 
    fd = $fopen({"../target/",hpath,"/mem_snapshot.log"},"w"); 
    if (fd) $display("File was open succesfully : %0d", fd); 
    else $display("File was not open succesfully : %0d", fd); 
    for (i = 0 ; i < SIZE_D_MEM; i = i+4) begin   
        $fwrite(fd,"Offset %08x : %02x%02x%02x%02x\n",i+D_MEM_REGION_FLOOR, 
rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_d_mem.DMem[i+D_MEM_REGION_FLOOR+3], 
rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_d_mem.DMem[i+D_MEM_REGION_FLOOR+2], 
rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_d_mem.DMem[i+D_MEM_REGION_FLOOR+1], 
rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_d_mem.DMem[i+D_MEM_REGION_FLOOR]); 
    end 
    $fclose(fd); 
 

 

    // VGA memory snapshot - simulate a screen 
    fd1 = $fopen({"../target/",hpath,"/screen.log"},"w"); 
    if (fd1) $display("File was open succesfully : %0d", fd1); 
    else $display("File was not open succesfully : %0d", fd1); 
    for (i = 0 ; i < 38400; i = i+320) begin // Lines 
        for (j = 0 ; j < 4; j = j+1) begin // Bytes 
            for (k = 0 ; k < 320; k = k+4) begin // Words 
                for (l = 0 ; l < 8; l = l+1) begin // Bits 
                    if 
(rvc_asap_5pl_tb.rvc_top_5pl.rvc_asap_5pl_mem_wrap.rvc_asap_5pl_vga_ctrl.rvc_asap_5pl_vga_mem.VGAMem[k+j+i][l]) 
$fwrite(fd1,"X"); 
                    else $fwrite(fd1," "); 
                end         
            end  
            $fwrite(fd1,"\n"); 
        end 
    end 
    $fclose(fd1); 

 

https://marketplace.visualstudio.com/items?itemName=hm.riscv-venus
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5 FPGA 

In this section we will present several statistics from the utilization of the FPGA component after 

uploading our design onto it. 

Flow summary: 

Parameter Value 
Flow Status Successful - Thu Sep 15 11:15:24 2022 

Quartus Prime Version 20.1.1 Build 720 11/11/2020 SJ Lite Edition 

Revision Name CPU_GARAGE 

Top-level Entity Name Top 

Family MAX 10 

Device 10M50DAF484C7G 

Timing Models Final 

Total logic elements 3,540 / 49,760 (7%) 

Total combinational functions 3,283 / 49,760 (7%) 

Dedicated logic registers 1,706 / 49,760 (3%) 

Total registers 1706 

Total pins 85 / 360 (24%) 

Total virtual pins 0 

Total memory bits 569,437 / 1,677,312 (34 %) 

Embedded Multiplier 9-bit elements 0 / 288 (0%) 

Total PLLs 1 / 4 (25%) 

UFM blocks 0 / 1 (0%) 

ADC blocks 0 / 2 (0%) 

 

Table 11 - FPGA statistics 

As can be seen from the statistics presented, we use 34% of the total memory that can be used on the 

FPGA. As a result, there is the option to significantly increase the instruction memory and the data 

memory and build larger and more complex programs.



 

42 
 

6 SW & API 

6.1 RISC-V GNU COMPILER TOOLCHAIN 
The Toolchain is a bundle of software tools cloned from riscv-gnu-toolchain Git repositories. It was used 

to create and verify assembly instructions against the open-source ISA specification for an RV32IM core. 

A detailed installation guide can be found in this link on John Winans repository. 

6.2 GCC 
In simplicity, the Toolchain contains several of special compilers based on the famous GCC compiler 

family and we use it to compile a .c file written in C language to a RISC-V Assembly language file (.s), and 

from that file, to a binary .sv file that will simulate the Instruction Memory such that RVC_ASAP can 

read. The toolchain also generates these files as text files that the user can read. The Assembly code is 

longer than the C code. Each Assembly command is coded in a 32-bit vector (or 8 hexadecimal digit 

vector in the text file). All vectors combined to form the simulation Instruction Memory, which can be 

seen in Code Snippet 15. The RVC_ASAP decodes each vector. The SV text file will used as an Instruction 

Memory to the RVC_ASAP in the simulations via Back Door technique which discussed in here. 

After writing a C program that we want to run on the RVC_ASAP Test Bench, and after considering the 

expected results for the program, we use the RISC-V Toolchain commands on our local Windows 

machine in Git Bash terminal. Before we proceed further, there are several important elements that we 

need to go over. 

• RVC_ASAP Initialization Assembly code file – a file named crt0.s which contains a code written 
in RISC-V Assembly that supposed to run on the RVC_ASAP Test Bench before any C program.  
It has those main stages: 

o Pipeline cleanup – 5 NOP (No Operation) instructions entered to RVC_ASAP to clean the 
pipe from previous or undefined data.  

o Initialize registers – Set all 32 core registers to 0 using mv instruction and register x0 
which always contains zero value. 

o Stack initialization and CR initialization – Load to the Stack Pointer (SP) the address of 
the Stack by the following command: 
la   sp, _stack 
_stack parameter is defined by the linker script. Moreover, initialize the CR_CURSOR_H 
and CR_CURSOR_V which points to the current place of the cursor by the following 
commands: 
li       x31, 0x7028 # CR_CURSOS_H address 
mv   x1, x0            # Reset x1 register 
sw   x1, 0x0(x31) # Reset CR_CURSOR_H 
sw   x1, 0x4(x31) # Reset CR_CURSOR_V 

o Jump to main – Jump directly to the C program main function. 
o Terminate run – after returning from C program's main, we use EBREAK instruction to 

terminate the Test Bench. 
 

https://github.com/johnwinans/riscv-toolchain-install-guide
https://github.com/riscv-collab/riscv-gnu-toolchain
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Linker script file – An LD file, which is a script written in the GNU Linker Command Language. 
The Toolchain use the linker to link the crt0.s code and the program Assembly code to a single 
Assembly program. It also defines the sizes and origin addresses of the Instruction and Data 

Memories and the Stack Memory. The central part of the linker script is shown in  

• Code Snippet 4. In this section we determine the memory regions as they are observed from 
the perspective of the process: instrram, dataram, and stack. Those regions are further divided 
into internal sub-regions. 
 

 
 

Code Snippet 4 - Memory definition inside the linker script 

The further division occurs as follows: 
o instrram is divided to: 

▪ vectors – Contains ISR vector table. 
▪ text – Contains executable code and is generally read-only and fixed size. 

o dataram is divided to: 
▪ rodata – Contains initialized static variables, i.e., global variables and local static 

variables which have a defined value and cannot be modified.  
▪ data – Contains initialized static variables, i.e., global variables and local static 

variables which have a defined value and can be modified. 
▪ bss - Contains uninitialized static data, both variables and constants, i.e., 

global variables and local static variables that are initialized to zero or do not 
have explicit initialization in source code. 

 

Because the access to the memory in our architecture is word-aligned (4 bytes) we are enforcing 
the same alignment in placing the data into the memory, we do that by the ALIGN (4) instruction 
as follow: 
  

 
 

Code Snippet 5 - Enforce data alignment by the linker 

 
 
 
 
 

MEMORY 
{ 
    instrram    : ORIGIN = 0x00000000, LENGTH = 0x4000 
    dataram     : ORIGIN = 0x00004000, LENGTH = 0x3000 
    stack       : ORIGIN = 0x00006E00, LENGTH = 0x0200 
} 
 

 

    .rodata : { 
        . = ALIGN(4); 
        *(.rodata); 
        *(.rodata.*) 
    } > dataram 

 

https://en.wikipedia.org/wiki/Interrupt_vector_table
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0x00000000 

Now, Figure 3 from the HAS section looks from the point of view of the process as follows:  
 

VGA_MEM 

CR_MEM 

D_MEM 

stack 

bss 

data 

rodata 

I_MEM 

text 

crt0 

isr_vector 
 

Figure 14 - Address space from process's point of view 

It is worth noting that in our case we do not use the heap section, but of course it is possible to 
use it and even implement and use the malloc function. 
To read more about linker please visit here. 
 

• Assembler – An Assembler is a program that takes basic computer instructions and converts 
them into a pattern of bits that the computer's processor can use to perform its basic 
operations. Some people call these instructions Assembler language and others use the 
term Assembly language. 

0x00004000 

0x00007000 

0x00008000 

0x00116000 

0x00006E00 

https://users.informatik.haw-hamburg.de/~krabat/FH-Labor/gnupro/5_GNUPro_Utilities/c_Using_LD/ldLinker_scripts.html#SECTIONS_command
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6.3 HW API 
The hardware resource APIs allow you to work with hardware resources. A hardware resource is an 

addressable piece of hardware on the system. A hardware resource is known to the system by its 

resource name. A resource entry is the reference to the hardware resource in the hardware resource 

information, which can be thought of as a list of the hardware resources on the system [from IBM.com]. 

In our project the basis of the communication through the software with the hardware, thereby 

substituting the HW API, is the defines which are defined in the file rvc_defines.h. This file contains the 

following settings: 

 

Code Snippet 6 - rvc_defines.h 

As you can see, the file contains the memory address of each memory area. In addition, the file contains 

the address of the control registers. Also, the file contains several basic functions for writing and reading 

from memory (WRITE_REG & READ_REG). 

From here, all that remains to be done to realize HW API is to write dedicated programs that interface 

with this file and define dedicated functions for certain purposes. We wrote two APIs in two different 

domains. The first area is communication between the software and the peripheral components that are 

on the FPGA and the second was communication between the software and the screen. In Code Snippet 

7 you can see the functions signature of the Graphic Screen API and in Code Snippet 8 you can see the 

functions signature of the CR API. 

#define D_MEM_BASE   0x00004000 
#define CR_MEM_BASE  0x00007000 
#define VGA_MEM_BASE 0x00008000 
#define FP_RESULTS   0x00004f00 
 
#define WRITE_REG(REG,VAL) (*REG) = VAL 
#define READ_REG(VAL,REG)  VAL    = (*REG) 
#define MEM_SCRATCH_PAD    ((volatile int *) (D_MEM_BASE)) 
#define MEM_SCRATCH_PAD_FP  ((volatile float *) (FP_RESULTS)) 
 
/* Control registers addresses */ 
#define CR_SEG7_0   (volatile int *) (CR_MEM_BASE + 0x0) 
#define CR_SEG7_1   (volatile int *) (CR_MEM_BASE + 0x4) 
#define CR_SEG7_2   (volatile int *) (CR_MEM_BASE + 0x8) 
#define CR_SEG7_3   (volatile int *) (CR_MEM_BASE + 0xc) 
#define CR_SEG7_4   (volatile int *) (CR_MEM_BASE + 0x10) 
#define CR_SEG7_5   (volatile int *) (CR_MEM_BASE + 0x14) 
#define CR_LED      (volatile int *) (CR_MEM_BASE + 0x18) 
#define CR_Button_0 (volatile int *) (CR_MEM_BASE + 0x1c) 
#define CR_Button_1 (volatile int *) (CR_MEM_BASE + 0x20) 
#define CR_Switch   (volatile int *) (CR_MEM_BASE + 0x24) 
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Code Snippet 7 - graphic_screen_api 

 

Code Snippet 8 - cr_api 

In addition to this, we have defined an ASCII table and a symbol table which are loaded into the program 

memory. The tables were defined in the graphic_screen.h file, so that any program that wishes to use 

those tables can interface with this file. We defined the ASCII table in a smart way. First, so that the 

characters can be distinguished well, we defined two tables ASCII_TOP and ASCII_BOTTOM. As can be 

seen in Figure 15, the character 'A' consists of a total of 64 bits. The TOP part of the character consists of 

the top 32 bites – from byte 0 to byte 3, and the BOTTOM part of the character consists of the bottom 

32 bits – from byte 4 to byte 7. Therefore, to write the character 'A' we need to turn on the bits marked 

in black in the drawing. That is, the bits that are marked in black will have the value 1 and all the other 

bits will have the value 0. In addition to this, to write the letter 'A' to the screen, we will have to write 

the TOP part of the letter and with an offset of 320 bytes (because there are 80 bytes in each line, and 

we want to reach the appropriate byte but 4 lines below) we will write the BOTTOM part of the letter. 

/* Graphic Screen API functions */ 
void draw_char(char note, int raw, int col) /* This function print a char note on the screen in 
(raw,col) position */ 

void rvc_printf(const char *c) /* This function print a string on the screen in 
(CR_CURSOR_V,CR_CURSOR_H) position */ 

void draw_symbol(int symbol, int raw, int col) /* This function print a symbol from anime table on the 
screen in (raw,col) position */ 
 
void clear_screen() /* This function clear the screen */ 
 
void set_cursor(int raw, int col) /* This set the cursor in (raw,col) position */ 
void draw_horizontal_line(short int start, short int end, short int raw) /* This function draws 
horizontal line from start to and in raw */ 
void clear_horizontal_line(short int start, short int end, short int raw) /* This function clears 
horizontal line from start to and in raw */ 
void draw_vertical_line(short int start, short int end, short int col) /* This function draws vertical 
line from start to and in col */ 
void delay(int num) /* this function makes delay */ 

 

 

/* Control registers API functions */ 
/* Write functions */ 
void cr_seg7_0_write(unsigned int val); 
void cr_seg7_1_write(unsigned int val); 
void cr_seg7_2_write(unsigned int val); 
void cr_seg7_3_write(unsigned int val); 
void cr_seg7_4_write(unsigned int val); 
void cr_seg7_5_write(unsigned int val); 
void cr_led_write(unsigned int val); 
 
/* Read functions */ 
int cr_seg7_0_read(); 
int cr_seg7_1_read(); 
int cr_seg7_2_read(); 
int cr_seg7_3_read(); 
int cr_seg7_4_read(); 
int cr_seg7_5_read(); 
int cr_led_read(); 
int cr_button_0_read(); 
int cr_button_1_read(); 
int cr_switch_read(); 
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Figure 15 - A character bits drawing 

To create the characters and symbols we used a tool called Stella-Graph. Stella-Graph is a program that 

help to create playfield graphics for the Atari 2600. It allows to create graphics by clicking on the check 

boxes and then hit the create code button. The program generates the appropriate hex values to include 

in the source code. This tool provided us with the coding of each letter and each symbol so that we 

created pre-coded defines for the characters and symbols that are ready to use. 

 

Figure 16 - A character coded in Stella-Graph 

The coding of the letter 'A' in the software is: 

 

Code Snippet 9 - A character coded in the software 

This technique was applied to every character and symbol we wanted, and we created the ASCII table in 

such a way that to get the bitmap of a certain character we turn to the array in the place that 

corresponds to the ASCII value of this character. For example, the ASCII value of the character 'A' is 65, 

therefore in place of 65 in the ASCII_TOP table the top part of the letter 'A' appears and in the 

ASCII_BOTTOM table in place 65 the bottom part of the letter 'A' appears as we defined it beforehand. 

#define A_TOP        0x663C1800                   

#define A_BOTTOM     0x00667E66                   
 

https://www.romhacking.net/utilities/725/
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Code Snippet 10 - ASCII table

/* ASCII tabels */ 

unsigned int ASCII_TOP[97] = 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SPACE_TOP, 

EXCL_TOP,0,0,0,0,0,0,0,0,0,0,COMMA_TOP,0,POINT_TOP,0,ZERO_TOP,ONE_TOP,TWO_TOP,THREE_TOP,FOUR_TOP,FIVE_

TOP,SIX_TOP,SEVEN_TOP,EIGHT_TOP,NINE_TOP,COLON_TOP,0,0,0,0,0,0,A_TOP,B_TOP,C_TOP,D_TOP,E_TOP,F_TOP,G_T

OP,H_TOP,I_TOP,J_TOP,K_TOP,L_TOP,M_TOP,N_TOP,O_TOP,P_TOP,Q_TOP,R_TOP,S_TOP,T_TOP,U_TOP,V_TOP,W_TOP,X_T

OP,Y_TOP,Z_TOP}; 

unsigned int ASCII_BOTTOM[97] = 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SPACE_BOTTOM,EXCL_BOTTOM,0,0,0,0,0,0,

0,0,0,0,COMMA_BOTTOM,0,POINT_BOTTOM,0,ZERO_BOTTOM, 

ONE_BOTTOM,TWO_BOTTOM,THREE_BOTTOM,FOUR_BOTTOM,FIVE_BOTTOM,SIX_BOTTOM, 

SEVEN_BOTTOM,EIGHT_BOTTOM,NINE_BOTTOM,COLON_BOTTOM,0,0,0,0,0,0,A_BOTTOM, 

B_BOTTOM,C_BOTTOM,D_BOTTOM,E_BOTTOM,F_BOTTOM,G_BOTTOM,H_BOTTOM,I_BOTTOM, 

J_BOTTOM,K_BOTTOM,L_BOTTOM,M_BOTTOM,N_BOTTOM,O_BOTTOM,P_BOTTOM,Q_BOTTOM,R_BOTTOM,S_BOTTOM,T_BOTTOM,U_B

OTTOM,V_BOTTOM,W_BOTTOM,X_BOTTOM,Y_BOTTOM,Z_BOTTOM}; 
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6.4 SW GUIDE 
In this section we will go over the installations and steps required to become a contributor to the 

project. This is a technical guide detailing the steps required to do so. 

1) Download a text editor: 

o VSCode: https://code.visualstudio.com/download 

o Add useful extensions – Vim, PowerShell, System-Verilog, Venus Terminal. 

 

2) Download git-bash for windows: 

o https://gitforwindows.org/ 

 

3) Set git-bash in VSCode: 

o You may configure the ~/.bashrc & ~/.aliases with your preferences. 

 

4) Download ModelSim – A System-Verilog compiler & simulator (lite free version): 

o https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-

lite-edition-design-software-version-20-1-1-for-windows.html 

Download individual files: ModelSim, Quartus, Intel MAX 10 Device Support. 

Note: after all 3 programs ere downloaded, run the Quartus installation which will 

automatically install ModelSim & MAX10. 

 

5) Download RISC-V ToolChain: 

o https://github.com/xpack-dev-tools/riscv-none-embed-gcc-xpack/releases/ - File name:  

xpack-riscv-none-embed-gcc-10.1.0-1.1-win32-x64.zip. 

o https://xpack.github.io/riscv-none-embed-gcc/install/ - Follow manual install (only 

extract in correct location). 

 

6) git-bash shell – Set aliases for the compile & link commands: 

 

define the following aliases in ~/.aliases or C:\ProgramFiles\Git\etc\profile.d\aliases.sh: 

o alias rv_gcc='/c/Users/YoursUserName/AppData/Roaming/xPacks/riscv-none-embed-

gcc/xpack-riscv-none-embed-gcc-10.1.0-1.1/bin/riscv-none-embed-gcc.exe'   

o alias rv_objcopy='/c/Users/ YoursUserName /AppData/Roaming/xPacks/riscv-none-

embed-gcc/xpack-riscv-none-embed-gcc-10.1.0-1.1/bin/riscv-none-embed-objcopy.exe'   

o alias rv_objdump='/c/Users/ YoursUserName/AppData/Roaming/xPacks/riscv-none-

embed-gcc/xpack-riscv-none-embed-gcc-10.1.0-1.1/bin/riscv-none-embed-objdump.exe' 

 

This step is just for convenience in order not to use long commands.  

 

7) Clone the repository: 

o git clone https://github.com/amichai-bd/rvc_asap.git 

 

 

https://code.visualstudio.com/download
https://gitforwindows.org/
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://github.com/xpack-dev-tools/riscv-none-embed-gcc-xpack/releases/
https://xpack.github.io/riscv-none-embed-gcc/install/
https://github.com/amichai-bd/rvc_asap.git
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8) Create a new branch: 

o git checkout -b "branch_name" 

 

9) Create a simple C program under apps/C directory – alive.c: 

 

 
 

10) Run from git-bash terminal in buildl.sh script directory the following command: 

o ./build.sh alive 

o For GUI interface simulation add the -gui flag and for debug add -debug flag (don't 

delete temporary compilation files). 

 

11) Check you got the result 5 in address 0x00004000 in target/alive/mem_snapshot.log file: 

 

 
 

12) Modifies, staging and commits: 

o git add . git commit -m 'your commit' 

 

13) Pull from origin/master (to make sure no conflicts): 

o git pull origin main 

 

14) Push to origin: 

o git push origin 'branch_name' 

 

15) Modifies, staging and commits: 

o git add . git commit -m 'your commit' 

 

16) Add a pull request: 

o From https://github.com/amichai-bd/rvc_asap/pulls ->New pull request 

#include "../defines/rvc_defines.h" 

 

int main(){ 

    volatile int *ptr = (int*) D_MEM_BASE; 

    int x,y,z;   

    x = 2;   

    y = 3;   

    z = x+y;   

    ptr[0] = z; 

 

    return 0; 

} 
 

https://github.com/amichai-bd/rvc_asap/pulls
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6.5 WORKING EXAMPLE 
When planning software in a low-resource system (in our case, without a doubt, the system is low in 

resources) one of the most important aspects to consider is the memory limit. The code you write 

should be smart and efficient code that takes this limitation into account. This is reflected in the types of 

variables that are worked with, in the code summaries so that no duplicate code is created and in the 

number of constitutive calls to the functions so as not to overload the stack. Constitutive calls to 

functions can overload the Stack because the function's arguments, return address, and local variables 

of the function enter the Stack. Many constitutive calls to a function can create Stack Overflow. So, let's 

start from the end, we managed to write the old and classic Breakout Game which was a very popular 

game in the early 80's with the memory limitations we had. 

The way we were able to do this is by being careful and paying attention to the principles we have 

mentioned so far. We tried to use types like short int whose size is 2 bytes instead of int whose size is 4 

bytes, we tried to avoid repetition of double code and many constitutive calls to functions in order not 

to overload the Stack. For it to be possible to play the game in a comfortable way that can be viewed by 

the human eye, we had to insert delays in the software since the screen refresh rate is 60 times per 

second. 

The game is structured so that there is a game brick that exists at the bottom of the screen and a ball 

that moves in the space of the screen and hits the brick board that is on the screen. The player must 

move the game brick so that the ball does not fall to the ground, when the ball hits the game brick it 

goes back up and receives a certain direction of movement. The game ends when the player fails to 

catch the ball. 3 things happen at each stage increase, first the game brick gets shorter. Second, the 

speed of the ball increases and the last is that the brick wall rolls down one step, and a new row of 

bricks enters. Each brick that is blown up by the ball gives the player one point. The player can move the 

game board using the Key[0] and Key[1] buttons of the FPGA. 

 

Figure 17 - Breakout game on RVC_ASAP
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7 TFM: TOOLS, FLOW & METHODOLOGY 

7.1 TOOLS 
 

Git Bash 

Git Bash is an application for Microsoft Windows environments that provides an emulation layer for the 

Git command line experience. Bash stands for Bourne Again Shell. A shell is a terminal application used 

to interface with an operating system using scripted commands. Bash is a popular default shell on Linux 

and macOS. Git Bash is a package that installs Bash, some common Bash and Git utilities on a Windows 

operating system. 

ModelSim 

ModelSim is a multi-language environment for simulation of hardware description languages such as 

VHDL, Verilog and SystemC. Simulation is performed using the graphical user interface (GUI), or 

automatically using scripts. On the RVC_ASAP project we used ModelSim in the validation process to 

simulate the RVC_ASAP core and the memories using the System Verilog RTL files. On the first steps of 

the project, we used the GUI form of ModelSim, especially in the Waveform GUI to debug and track 

signals, but as the project progressed, we used automation scripting to simulate. 

Quartus 

Intel Quartus is programmable logic device design software. Quartus Prime enables analysis and 

synthesis of HDL designs, which enables the developer to compile their designs, perform timing analysis, 

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target device 

with the programmer. Quartus Prime includes an implementation of VHDL and Verilog for hardware 

description, visual editing of logic circuits, and vector waveform simulation. 

Visual Studio Code 

Visual Studio Code is a streamlined code editor with support for development operations like debugging, 

task running, and version control. It aims to provide just the tools a developer needs for a quick code-

build-debug cycle and leaves more complex workflows to fuller featured IDEs, such as Visual Studio IDE. 

It was very convenient for us to manage the project in this environment, mainly because you can add 

extensions that support Git Bash or the Venus simulator for example.
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7.2 BUILD 
The main flow of the build process shown in Figure 18. 

 
Figure 18 - Build process flow 

We built a main build script called buildl.sh which is written in the Bash language and performs the 

entire process described in Figure 18 automatically. We expand on the script itself here, but we will 
now expand on the core of the script and its building blocks. 
 
First, we defined the following aliases in ~/.aliases or C:\ProgramFiles\Git\etc\profile.d\aliases.sh: 

• alias rv_gcc='/c/Users/YoursUserName/AppData/Roaming/xPacks/riscv-none-embed-gcc/xpack-

riscv-none-embed-gcc-10.1.0-1.1/bin/riscv-none-embed-gcc.exe'   

• alias rv_objcopy='/c/Users/ YoursUserName /AppData/Roaming/xPacks/riscv-none-embed-

gcc/xpack-riscv-none-embed-gcc-10.1.0-1.1/bin/riscv-none-embed-objcopy.exe'   

• alias rv_objdump='/c/Users/ YoursUserName/AppData/Roaming/xPacks/riscv-none-embed-

gcc/xpack-riscv-none-embed-gcc-10.1.0-1.1/bin/riscv-none-embed-objdump.exe'   

This step is just for convenience in order not to use long commands.  

Now, we will go through the various steps in the build process and indicate how they are realized. We 

will run throw a live example for the build process. At each stage, we will touch on the important details 

for that stage and attach figures that illustrate what is being done at each stage.  

In total, we built 24 tests in C and Assembly languages that test different aspects of the processor. Let's 

take, for example, a basic test that performs Bubble Sort. The test is called BubbleSort.c and it performs 

Bubble Sort on integers array. 

https://en.wikipedia.org/wiki/Bubble_sort
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Code Snippet 11 - BubbleSort.c 

7.2.1 SW Build 

1. Compile – Compile the C program to RV32I Assembly code by the following command: 

rv_gcc -S -ffreestanding -march=rv32i BubbleSort.c  -o BubbleSort.s 
 

 
 

Code Snippet 12 - BubbleSort.s 

Since the total output is large, we only show the part from the main function as it is shown in 

Assembly language. 

 

 

 

 

#define _ASMLANGUAGE 
#include "../defines/rvc_defines.h" 
void swap(int *xp, int *yp){ 
    int temp = *xp; 
    *xp = *yp; 
    *yp = temp; 
} 
void bubbleSort(int arr[], int n) { 
    int i, j; 
    for (i = 0; i < n-1; i++)     
        for (j = 0; j < n-i-1; j++) 
            if (arr[j] > arr[j+1]) 
                swap(&arr[j], &arr[j+1]); 
} 
int main(){ 
    int arr[] = {80,200,60,300,100,70,90}; 
    bubbleSort(arr,7); 
 
    for(int i=0;i<7;i++)        MEM_SCRATCH_PAD[i] = arr[i]; 
    return 0; 
} 

 

main: 
    addi    sp,sp,-48 
    sw  ra,44(sp) 
    sw  s0,40(sp) 
    addi    s0,sp,48 
    lui a5,%hi(.LC0) 
    addi    a5,a5,%lo(.LC0) 
    lw  a6,0(a5) 
    lw  a0,4(a5) 
    lw  a1,8(a5) 
    lw  a2,12(a5) 
    lw  a3,16(a5) 
    lw  a4,20(a5) 
    lw  a5,24(a5) 
    sw  a6,-48(s0) 
    sw  a0,-44(s0) 
    sw  a1,-40(s0) 
    sw  a2,-36(s0) 
    sw  a3,-32(s0) 
    sw  a4,-28(s0) 
    sw  a5,-24(s0) 
    addi    a5,s0,-48 
    li  a1,7 
    mv  a0,a5 
    call    bubbleSort 
    sw  zero,-20(s0) 
    j   .L9 
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2. Assembler & Linker – Assemble the Assembly program to object file and link the output with 

the assembled crt0.s file – crt0.o to get ELF file (Executable and linkable Format) by the following 

command: 

rv_gcc -O3 -march=rv32i -Tlink.common.ld -nostartfiles -D__riscv__ crt0.s BubbleSort.s -o 
BubbleSort.elf 
 

 
 

Code Snippet 13 - BubbleSort.elf 

It can be noticed that the names of the processor registers have been changed, the reason for 

this lies in the fact that in the previous step the program was presented in disassembly 

language, and now this is a complete Assembly presentation according to RV32I ISA. For 

example, SP (Stack Pointer) in RV32I ISA is x2 register. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

000001dc <main>: 

 1dc:   fd010113            addi    x2,x2,-48 

 1e0:   02112623            sw  x1,44(x2) 

 1e4:   02812423            sw  x8,40(x2) 

 1e8:   03010413            addi    x8,x2,48 

 1ec:   000047b7            lui x15,0x4 

 1f0:   00078793            mv  x15,x15 

 1f4:   0007a803            lw  x16,0(x15) # 4000 <_endtext+0x3d64> 

 1f8:   0047a503            lw  x10,4(x15) 

 1fc:   0087a583            lw  x11,8(x15) 

 200:   00c7a603            lw  x12,12(x15) 

 204:   0107a683            lw  x13,16(x15) 

 208:   0147a703            lw  x14,20(x15) 

 20c:   0187a783            lw  x15,24(x15) 

 210:   fd042823            sw  x16,-48(x8) 

 214:   fca42a23            sw  x10,-44(x8) 

 218:   fcb42c23            sw  x11,-40(x8) 

 21c:   fcc42e23            sw  x12,-36(x8) 

 220:   fed42023            sw  x13,-32(x8) 

 224:   fee42223            sw  x14,-28(x8) 

 228:   fef42423            sw  x15,-24(x8) 

 22c:   fd040793            addi    x15,x8,-48 

 230:   00700593            li  x11,7 

 234:   00078513            mv  x10,x15 

 238:   ec5ff0ef            jal x1,fc <bubbleSort> 

 23c:   fe042623            sw  x0,-20(x8) 

 240:   0380006f            j   278 <_min_stack+0x78> 

 244:   fec42783            lw  x15,-20(x8) 

 248:   00279713            slli    x14,x15,0x2 

 24c:   000047b7            lui x15,0x4 

 250:   00f70733            add x14,x14,x15 

 254:   fec42783            lw  x15,-20(x8) 

 258:   00279793            slli    x15,x15,0x2 

 25c:   ff040693            addi    x13,x8,-16 

 260:   00f687b3            add x15,x13,x15 

 264:   fe07a783            lw  x15,-32(x15) # 3fe0 <_endtext+0x3d44> 

 268:   00f72023            sw  x15,0(x14) 

 26c:   fec42783            lw  x15,-20(x8) 

 270:   00178793            addi    x15,x15,1 

 274:   fef42623            sw  x15,-20(x8) 

 278:   fec42703            lw  x14,-20(x8) 

 27c:   00600793            li  x15,6 
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3. ELF to SV – Compile the ELF file to System Verilog file (.sv) which contains the instruction and 

data memories content. buildl.sh script will separate this single output file into two separate 

files so that each one is loaded separately in Test Bench to its appropriate memory region 

(Instruction Memory or Data Memory) by the following command: 

rv_objcopy --srec-len 1 --output-target=verilog BubbleSort.elf BubbleSort-inst_mem_rv32i.sv 
 

 
 

Code Snippet 14 - BubbleSort_Data.sv 

 
 

Code Snippet 15 - BubbleSort_Instruction.sv 

It can be noticed that the array we defined is loaded into the data region at address 0x00004000 

as defined in the linker. For example, the first member of the array is 80 in decimal base which is 

50 in hexadecimal base as you can see. Moreover, it can be noticed that the first instruction 

found in the instruction memory at address 0x00000000 as defined in the linker is 00000013 

which is a NOP instruction as defined in the crt0.s file. 

 

 

 

 

 

 

 

 

 

@00004000 

50 00 00 00 C8 00 00 00 3C 00 00 00 2C 01 00 00 

64 00 00 00 46 00 00 00 5A 00 00 00 

 
 

@00000000 

13 00 00 00 13 00 00 00 13 00 00 00 13 00 00 00 

13 00 00 00 6F 00 40 00 17 71 00 00 13 01 81 FE 

B7 7F 00 00 93 8F 8F 02 93 00 00 00 23 A0 1F 00 

23 A2 1F 00 93 81 00 00 13 82 00 00 93 82 00 00 

13 83 00 00 93 83 00 00 13 84 00 00 93 84 00 00 

13 85 00 00 93 85 00 00 13 86 00 00 93 86 00 00 

13 87 00 00 93 87 00 00 13 88 00 00 93 88 00 00 

13 89 00 00 93 89 00 00 13 8A 00 00 93 8A 00 00 

13 8B 00 00 93 8B 00 00 13 8C 00 00 93 8C 00 00 

13 8D 00 00 93 8D 00 00 13 8E 00 00 93 8E 00 00 

13 8F 00 00 93 8F 00 00 EF 00 40 13 73 00 10 00 

@000000B0 

13 01 01 FD 23 26 81 02 13 04 01 03 23 2E A4 FC 

23 2C B4 FC 83 27 C4 FD 83 A7 07 00 23 26 F4 FE 

83 27 84 FD 03 A7 07 00 83 27 C4 FD 23 A0 E7 00 

83 27 84 FD 03 27 C4 FE 23 A0 E7 00 13 00 00 00 

03 24 C1 02 13 01 01 03 67 80 00 00 13 01 01 FD 

23 26 11 02 23 24 81 02 13 04 01 03 23 2E A4 FC 

23 2C B4 FC 23 26 04 FE 6F 00 C0 09 23 24 04 FE 

6F 00 00 07 83 27 84 FE 93 97 27 00 03 27 C4 FD 

B3 07 F7 00 03 A7 07 00 83 27 84 FE 93 87 17 00 

93 97 27 00 83 26 C4 FD B3 87 F6 00 83 A7 07 00 

63 DA E7 02 83 27 84 FE 93 97 27 00 03 27 C4 FD 

B3 06 F7 00 83 27 84 FE 93 87 17 00 93 97 27 00 

03 27 C4 FD B3 07 F7 00 93 85 07 00 13 85 06 00 

EF F0 1F F3 83 27 84 FE 93 87 17 00 23 24 F4 FE 

03 27 84 FD 83 27 C4 FE B3 07 F7 40 93 87 F7 FF 

03 27 84 FE E3 40 F7 F8 83 27 C4 FE 93 87 17 00 

23 26 F4 FE 83 27 84 FD 93 87 F7 FF 03 27 C4 FE 

E3 4E F7 F4 13 00 00 00 13 00 00 00 83 20 C1 02 

03 24 81 02 13 01 01 03 67 80 00 00 13 01 01 FD 

23 26 11 02 23 24 81 02 13 04 01 03 B7 47 00 00 

93 87 07 00 03 A8 07 00 03 A5 47 00 83 A5 87 00 

03 A6 C7 00 83 A6 07 01 03 A7 47 01 83 A7 87 01 

23 28 04 FD 23 2A A4 FC 23 2C B4 FC 23 2E C4 FC 

23 20 D4 FE 23 22 E4 FE 23 24 F4 FE 93 07 04 FD 
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7.2.2 HW Build 

1. Hardware Compilation – Compile all the architecture including the Test Bench and all the files 

present in the list.f file by the following command:  

 

vlog.exe +define+HPATH= BubbleSort -f list.f 

 

 

Code Snippet 16 - list.f file 

 

2. Simulation – Simulate the Test Bench with ModelSim by the following command: 

vsim.exe -gui work.tb 
 
To debug the hardware, many times we had to open a wave diagram of the control signals by 

using ModelSim software. The debug technique was to follow the signals in relation to what we 

would expect to see and what we see. If we detected an anomaly, then we returned to the 

implementation of the hardware to understand what caused the anomaly and thus correct it. 

The key to success in these cases is to start by building simple test plans and gradually increase 

the complexity of the plans. A wave diagram of running the BubbleSort.c program on the design 

is given as an example in Figure 19. 

 

 

//include dir - the Machine code for I_MEM load. 

+incdir+../verif/ 

+incdir+../source/common 

+define+SIMULATION_ON 

 

//Source File (PKG, RTL, MACROS) 

../source/common/rvc_asap_pkg.sv 

../source/rvc_asap_5pl/rvc_asap_5pl.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_mem_wrap.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_i_mem.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_d_mem.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_cr_mem.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_vga_mem.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_vga_ctrl.sv 

../source/rvc_asap_5pl/rvc_asap_5pl_sync_gen.sv 

../source/rvc_asap_5pl/rvc_top_5pl.sv 

 

//Test Bench 

../verif/rvc_asap_5pl_tb.sv 
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Figure 20 - BubbleSort.c golden image 

 

Figure 19 - BubbleSort.c Wave Diagram 

In the attached wave diagram, you can see the NOP instruction that appears in the crt0.s file in 

the square surrounded by red. Of course, during the past year we encountered several complex 

bugs that required deep and gentle treatment and the wave diagram tool was a necessary and 

important tool for solving them. 

 

3. Check the results – In the final stage we check the results by conduct a comparison between 

actual output of the test to the memory and its golden image as described in Checker section. 

 

 

 

 

 

 

 

 

 

 

Figure 21 - BubbleSort.c real image 

As you can see, the snapshots match and the numbers in the array are sorted as required. As a 

result, the test was passed successfully. 
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7.3 AUTOMATION & SCRIPTS 

7.3.1 buildl.sh 

buildl.sh is the main build script. The idea behind the development of the script were to enable a 

convenient and simple way to perform the validation and simulation process, for many test programs. 

The script was written in the Bash language, which is a common scripting language, convenient and 

simple to use.  The script contains the following steps: 

1. Check build flags. 

2. Print usage in case there are no arguments provided by the user. 

3. Check if the directories apps/elf, apps/elf_txt, apps/sv exist – if not create them. 

4. Clean target directory and compilation directories. 

5. Compile C files in apps/C directory to Assembly files in apps/asm directory. 

6. Compile Assembly files in apps/asm directory to ELF files in apps/elf directory. 

7. Compile ELF files in apps/elf directory to SV files in apps/sv directory. 

8. Split SV files to Instruction Memory and Data Memory and call to hex2mif.py script. 

9. Compile the design with vlog.exe. 

10. Simulate the test with ModelSim (vsim.exe). 

11. Clean compilation files. 

12. Check the results. 

13. Print summary. 

Figure 22 illustrates the usage of the script in case no arguments provided. 

 

Figure 22 - buildl.sh script usage 

Figure 23 illustrates correct running output of the script for test_asap.c test. 

 

Figure 23 - buildl.sh script - correct running output 
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7.3.2 hex2mif.py 

A .mif file is an ASCII text file that specifies the initial content of a memory block (RAM or ROM), that is, 

the initial values for each address. This file is used during project compilation and/or simulation. You can 

create a Memory Initialization File in the Memory Editor, the In-System Memory Content Editor, or the 

Quartus Prime Text Editor. You can also use a hexadecimal (Intel-Format) file (.hex) to provide memory 

initialization data. A Memory Initialization File contains the initial values for each address in the 

memory. More details about if can found in this link. 

In our case, our output from the build process was a .hex text file so we need to convert it to .mif file. 

Actually, on Linux system or WSL, there is a command that generate it - srec_cat -o –mif but it has not 

been possible in our case and it can be helpful to implement something like this by hand. 

The main idea of this script is quite simple, to convert System-Verilog fie (.sv): 

 

Figure 24 - System Verilog file 

To it appropriate .mif file: 

 

Figure 25 - MIF file 

we see that in the .sv file there are bulks of bytes (8-bit - 2 hex digit) and that each line is end with size 

of 4 words (32 bit × 4) or less. Moreover, that some line starts with @0xxxx that represent the address it 

points. In the .mif file, there are bulks of words (32-bit - 8 hex digit), and each line start with number 

represent the number of words in each line cumulatively, and the line ends when reached to 8 word, or 

when reached other/far address (@0xxx in the .sv file). 

So, what we’ve done is gather all the bytes into words (take care of the Little-Endian format) and start 

each line by the cumulative number of words, or by the parallel amount in case there is address that far 

in the .sv file.

https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/reference/glossary/def_mif.htm
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7.4 SYSTEM-VERILOG CODING STYLE 
Throw the entire System Verilog programming of the RTL, we used a coding style for order, uniformity, 

and readability. 

• Macros - On system Verilog, when you want do design a flip-flop it is known to use this 

convention: 

 

 

Code Snippet 17 - Flip-Flop in System Verilog 

Therefore, every time we had to use a flip-flop, we used the define which was defined in 

advance. 

 

• CamelCase - we used CamelCase coding style convention to name the variables, logic signals, 

wires, buffers etc. throw all the RTL files. On this convention we name the variables as follows: 

SomeNameOfTheLogic with no spaces with each word starts, for example: SimpleReset. 

 

 

Figure 26 - CamelCase coding style 

 

 

 

 

 

 

 

 

 

 

 

 

`define  RVC_EN_RST_MSFF(q,i,clk,en,rst)\ 

         always_ff @(posedge clk)       \ 

            if (rst)    q <='0;         \ 

            else if(en) q <= i; 
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• rvc_asap_pkg – All the RVC_ASAP project parameters were defined in a file named 

rvc_asap_pkg.sv. Many parameters such as opcodes, CR addresses, memory sizes, offsets, MSB 

and LSB locations, encoded region (I_MEM, D_MEM, CR_MEM, VGA_MEM) bits, structs (like CR 

memory struct) and more were defined there and can be used on all RTL files. 

 

 

Code Snippet 18 - RV32I instructions opcode parameters from rvc_asap_pkg.sv 

 

• Cycle Suffix – To make development easier, we labeled each signal name with a suffix implying 

the pipeline stage this signal is used, generated, or sampled. After the signal sampled in flops, its 

suffix increased by 1. Any signal can be used anywhere on the cycle but that is our convention. 

For example, AluOutQ102H is the ALU output signal on stage Q102H and when it used in stage 

Q103H it will be sampled on flop and will be named AluOutQ103H. 

 

 

Code Snippet 19 - Signal from Q102H stage, sampled before used in Q103H stage 

• Files Headers – In all the project files, we used a uniform template for the headers of the project 

files. The goal was to maintain uniformity and provide an informative and clear header for each 

file in the project. 

 

typedef enum logic [6:0] { 
   LUI    = 7'b0110111 , 
   AUIPC  = 7'b0010111 , 
   JAL    = 7'b1101111 , 
   JALR   = 7'b1100111 , 
   BRANCH = 7'b1100011 , 
   LOAD   = 7'b0000011 , 
   STORE  = 7'b0100011 , 
   I_OP   = 7'b0010011 , 
   R_OP   = 7'b0110011 , 
   FENCE  = 7'b0001111 , 
   SYSCAL = 7'b1110011 
} t_opcode ; 
 

 

// Q102H to Q103H Flip Flops 
`RVC_MSFF(RegRdData2Q103H     , RegRdData2Q102H     , Clock) 
`RVC_MSFF(AluOutQ103H         , AluOutQ102H         , Clock) 
`RVC_MSFF(CtrlDMemByteEnQ103H , CtrlDMemByteEnQ102H , Clock) 
`RVC_MSFF(CtrlDMemWrEnQ103H   , CtrlDMemWrEnQ102H   , Clock) 
`RVC_MSFF(SelDMemWbQ103H      , SelDMemWbQ102H      , Clock) 
`RVC_MSFF(CtrlSignExtQ103H    , CtrlSignExtQ102H    , Clock) 
`RVC_MSFF(PcPlus4Q103H        , PcPlus4Q102H        , Clock) 
`RVC_MSFF(SelRegWrPcQ103H     , SelRegWrPcQ102H     , Clock) 
`RVC_MSFF(RegDstQ103H         , RegDstQ102H         , Clock) 
`RVC_MSFF(CtrlRegWrEnQ103H    , CtrlRegWrEnQ102H    , Clock) 
`RVC_MSFF(flushQ103H          , flushQ102H          , Clock) 
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Code Snippet 20 - RVC_ASAP file header 

 

//----------------------------------------------------------------------------- 
// Title            : riscv as-fast-as-possible  
// Project          : rvc_asap 
//----------------------------------------------------------------------------- 
// File             : rvc_asap_5pl  
// Original Author  : Amichai Ben-David 
// Code Owner       :  
// Adviser          : Amichai Ben-David 
// Created          : 10/2021 
//----------------------------------------------------------------------------- 
// Description : 
// This module will comtain a complite RISCV Core supportint the RV32I 
// Will be implemented in a single cycle microarchitecture. 
// The I_MEM & D_MEM will support async memory read. (This will allow the single-cycle arch) 
// ---- 5 Pipeline Stages ----- 
// 1) Q100H Instruction Fetch 
// 2) Q101H Instruction Decode  
// 3) Q102H Execute  
// 4) Q103H Memory Access 
// 5) Q104H Write back data from Memory/ALU to Registerfile 
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7.5 GIT & GITHUB 

7.5.1 Git 

Git is a well-known software for tracking changes in any set of files. we used git to clone our project files 

to our personal computers, work on them simultaneously and then upload them to our common cloud 

stored in github.com. Git also used us for solving merge conflicts and track changes. 

7.5.2 GitHub 

GitHub is a free provider of internet hosting for software development and version control using Git. We 

used GitHub to store our repository which include all the project files.  

The structure of our project repository is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|    buildl.sh 

|    .gitignore 

|    LICENSE 

|    README.md 

+---apps 

|       +---asm 

|       +---asm_verif 

|       +---C 

|       +---elf 

|       +---elf.txt 

|       +---library 

|       +---sv 

|       crt0.s 

|       link.common.ld 

|       README.md 

+---doc 

|       HOW_TO.md 

|       5 stage pipeline.pptx 

|       HOW_TO_RUN_BUILDL.md 

|       HOW_TO_MAKE_LINKER.md 

|       HOW_TO_GIT.md 

|       riscv-spec-20191213.pdf 

|       rvc_asap.pptx 

|       rvc_core_asap.vsdx 

|       single_cycle_RVC.png 

 

+---FPGA 

|       +---db 

|       +---incremental_db 

|       +---mem_hex 

|       +---output_files 

|       +---sv 

|       assignment_defaults.qdf 

|       CPU_GARAGE.qsf 

|       platform.sv 

|       rvc_asap.qpf 

+---modelsim_run 

|       README.md 

|       rvc_asap_5pl_list.f 

|       rvc_asap_sc_list.f 

|       +---work 

+---source 

|       README.md 

|       +---common 

|       +---rvc_asap_5pl 

|       +---rvc_asap_sc 

+---target 

Temporary compilation files. 

+---verif 

|       README.md 

|       rvc_asap__5pl_tb.sv 

|       +---golden_image 
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We will go through the different folders in the repository and explain the essence of each folder. apps 

directory consists of all the software content. Means all the Assembly programs and the C programs are 

in this folder. The directories: C, asm_verif, and library contains static codes. The directories: asm, elf, 

elf.txt, and sv contains temporary compilation files which are cleaned by buildl.sh script. source 

directory contains all the RTL files of the design. doc directory contains all the documentation of the 

project. FPGA directory contains all the files related to the FPGA. modelsim_run contains all the files 

related to ModelSim simulation. target directory contains temporary compilation files such as memory 

dump which are cleaned by buildl.sh script. verif directory contains the Test Bench and golden images of 

the various tests. 

Using the .gitignore file we prevent irrelevant files from being uploaded to the repository. 

 

Figure 27 - .gitignore file 

In addition to storing our files and tracking old version using git, the GitHub also include many aspects: 

• Code & Code Review - Each contributor can upload his code and receive code review before the 

new uploaded code is merged with the complete repository code. 

 

 

Figure 28 - RVC_ASAP repository structure 

# Ignore those extensions 

*.qdb 

*.qpg 

*.qtl 

*.bak 

_info 

# modelsim generated files 

*.swp 

modelsim/work/* 

modelsim_run/* 

target/* 

transcript 

!modelsim_run/README.md 

!modelsim_run/rvc_asap_5pl_list.f 

!modelsim_run/rvc_asap_sc_list.f 

!modelsim_run/rvc_asap_list.f 

!target/README* 

# apps generated files 

apps/elf/* 

apps/elf_txt/* 

apps/sv/* 

apps/asm/* 

apps/library/obj/* 

apps/library/out/* 

!apps/elf/README.md 

!apps/elf_txt/README.md 

!apps/sv/README.md 

# target generated files 

target/* 

#FPGA 

quartus/output_files/* 

quartus/incremental_db/* 

quartus/db/* 

modelsim_run/transcript 

modelsim_run/work/_lib.qdb 

modelsim_run/work/_vmake 

 

 

############# 
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• Task Management - Used by Issues tab on GitHub. Each meeting with the advisor we assign 

tasks between us and detailed about the task in its page. 

 

 

Figure 29 - Project tasks as shown in GitHub 

• Discussions and Questions - Every time we encountered a problem in our work, we wrote about 

it in the Discussions tab. One of the many contributors to one of the projects can answer if 

knows. 

 

 

Figure 30 - Questions & Discussions on GitHub repository 
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8 FUTURE PLANS 

We think this project is an amazing foundation for a wide variety of interesting and fascinating projects 

in both hardware and software fields. The directions for the continuation concern making the project a 

system as similar as possible to a standard computer that we know. Each of the directions listed is a 

basis for a complete graduation project. Here are the plans to continue: 

❖ Expanding the API functions and writing additional service functions such as malloc using a heap 

structure. 

❖ Writing a lite operating system for creating and managing processes including scheduling, 

control, and interrupt mechanisms. 

❖ Create L1 cache, and a controller for memory management including the implementation of 

error correction codes. 

❖ Building arithmetic circuits for fast addition, subtraction, multiplication, and division. 

❖ Create OOO (Out-Of-Order) execution by implementing a ROB (Re-Order Buffer). 

❖ Implement Branch Predictor. 

❖ Implement RISC-V extensions (M/F/A/CSR). 

❖ Implement Interrupts & Exceptions. 

❖ IO – UART. 

❖ Connect Keyboard. 

❖ RGB Mode – lower the resolution of the screen but get RGB capabilities. 
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