Permalink
Fetching contributors…
Cannot retrieve contributors at this time
935 lines (745 sloc) 26.8 KB
/*
Optimization problem
Copyright (C) 2014 - 2016 AMPL Optimization Inc
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that the copyright notice and this permission notice and warranty
disclaimer appear in supporting documentation.
The author and AMPL Optimization Inc disclaim all warranties with
regard to this software, including all implied warranties of
merchantability and fitness. In no event shall the author be liable
for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortious action, arising out
of or in connection with the use or performance of this software.
Author: Victor Zverovich
*/
#ifndef MP_PROBLEM_H_
#define MP_PROBLEM_H_
#include <cstddef> // for std::size_t
#include <limits>
#include <vector>
#include "mp/expr.h"
#include "mp/suffix.h"
// Maximum index of a variable, objective or constraint.
#ifndef MP_MAX_PROBLEM_ITEMS
# define MP_MAX_PROBLEM_ITEMS \
static_cast<std::size_t>(std::numeric_limits<int>::max())
#endif
namespace mp {
class LinearExpr {
private:
class Term {
private:
int var_index_;
double coef_;
friend class LinearExpr;
Term(int var_index, double coef) : var_index_(var_index), coef_(coef) {}
public:
int var_index() const { return var_index_; }
double coef() const { return coef_; }
};
std::vector<Term> terms_;
public:
int num_terms() const { return static_cast<int>(terms_.size()); }
int capacity() const { return static_cast<int>(terms_.capacity()); }
typedef std::vector<Term>::const_iterator iterator;
iterator begin() const { return terms_.begin(); }
iterator end() const { return terms_.end(); }
void AddTerm(int var_index, double coef) {
terms_.push_back(Term(var_index, coef));
}
void Reserve(int num_terms) {
terms_.reserve(num_terms);
}
};
class Solver;
/** An optimization problem. */
template <typename Alloc>
class BasicProblem : public ExprFactory, public SuffixManager {
public:
typedef mp::Function Function;
typedef mp::Expr Expr;
typedef mp::NumericExpr NumericExpr;
typedef mp::LogicalExpr LogicalExpr;
typedef mp::CountExpr CountExpr;
typedef mp::Reference Reference;
typedef internal::ExprTypes ExprTypes;
private:
// A variable.
struct Var {
double lb;
double ub;
Var(double lb, double ub) : lb(lb), ub(ub) {}
};
std::vector<Var> vars_;
// Packed variable type information.
// is_var_int_[i] specifies whether variable i is integer.
std::vector<bool> is_var_int_;
// Packed objective type information.
// is_obj_max_[i] specifies whether objective i is maximization.
std::vector<bool> is_obj_max_;
// Linear parts of objective expessions.
std::vector<LinearExpr> linear_objs_;
// Nonlinear parts of objective expressions.
// The array can be empty if the problem is linear.
std::vector<NumericExpr> nonlinear_objs_;
// Algebraic constraint information.
struct AlgebraicConInfo {
// Linear part of an algebraic constraint expression.
// Nonlinear parts are stored in nonlinear_cons_ to avoid overhead
// for linear problems.
LinearExpr linear_expr;
double lb;
double ub;
AlgebraicConInfo() : lb(0), ub(0) {}
AlgebraicConInfo(double lb, double ub) : lb(lb), ub(ub) {}
};
std::vector<AlgebraicConInfo> algebraic_cons_;
// Information about complementarity conditions.
// compl_vars_[i] > 0 means constraint i complements variable
// compl_vars_[i] - 1. The array can be empty if there are no
// complementarity conditions.
std::vector<unsigned> compl_vars_;
// Nonlinear parts of algebraic constraint expressions.
// The array can be empty if the problem is linear.
std::vector<NumericExpr> nonlinear_cons_;
// Logical constraint expressions.
std::vector<LogicalExpr> logical_cons_;
// Linear parts of common expressions.
std::vector<LinearExpr> linear_exprs_;
// Nonlinear parts of common expressions.
std::vector<NumericExpr> nonlinear_exprs_;
// Initial values for variables.
std::vector<double> initial_values_;
// Initial values for dual variables.
std::vector<double> initial_dual_values_;
void SetNonlinearObjExpr(int obj_index, NumericExpr expr) {
internal::CheckIndex(obj_index, linear_objs_.size());
if (nonlinear_objs_.size() <= static_cast<std::size_t>(obj_index))
nonlinear_objs_.resize(obj_index + 1);
nonlinear_objs_[obj_index] = expr;
}
void SetNonlinearConExpr(int con_index, NumericExpr expr) {
internal::CheckIndex(con_index, algebraic_cons_.size());
if (nonlinear_cons_.size() <= static_cast<std::size_t>(con_index))
nonlinear_cons_.resize(con_index + 1);
nonlinear_cons_[con_index] = expr;
}
// Sets the initial value for a variable.
void SetInitialValue(int var_index, double value) {
if (initial_values_.size() <= static_cast<unsigned>(var_index)) {
initial_values_.reserve(vars_.capacity());
initial_values_.resize(num_vars());
}
initial_values_[var_index] = value;
}
// Sets the initial value for a dual variable.
void SetInitialDualValue(int con_index, double value) {
MP_ASSERT(0 <= con_index && con_index < num_algebraic_cons(),
"invalid index");
if (initial_dual_values_.size() <= static_cast<unsigned>(con_index)) {
initial_dual_values_.reserve(algebraic_cons_.capacity());
initial_dual_values_.resize(num_algebraic_cons());
}
initial_dual_values_[con_index] = value;
}
template <typename T>
class SuffixHandler {
private:
BasicMutSuffix<T> suffix_;
public:
explicit SuffixHandler(BasicMutSuffix<T> s) : suffix_(s) {}
// Sets the suffix value.
void SetValue(int index, T value) {
suffix_.set_value(index, value);
}
};
int GetSuffixSize(suf::Kind kind);
template <typename T>
SuffixHandler<T> AddSuffix(fmt::StringRef name, suf::Kind kind) {
return SuffixHandler<T>(
suffixes(kind).template Add<T>(name, kind, GetSuffixSize(kind)));
}
template <typename ProblemType>
struct BasicProblemItem {
ProblemType *problem_;
int index_;
typedef ProblemType Problem;
BasicProblemItem(ProblemType *p, int index)
: problem_(p), index_(index) {}
};
typedef BasicProblemItem<const BasicProblem> ProblemItem;
typedef BasicProblemItem<BasicProblem> MutProblemItem;
// An optimization variable.
template <typename Item>
class BasicVariable : private Item {
private:
friend class BasicProblem;
BasicVariable(typename Item::Problem *p, int index) : Item(p, index) {}
static int num_items(const BasicProblem &p) {
return p.num_vars();
}
public:
// Returns the index of the variable.
int index() const { return this->index_; }
// Returns the lower bound on the variable.
double lb() const {
return this->problem_->vars_[this->index_].lb;
}
// Returns the upper bound on the variable.
double ub() const {
return this->problem_->vars_[this->index_].ub;
}
// Returns the type of the variable.
var::Type type() const {
return this->problem_->is_var_int_[this->index_] ?
var::INTEGER : var::CONTINUOUS;
}
// Returns the value of the variable.
double value() const {
std::size_t index = this->index_;
return index < this->problem_->initial_values_.size() ?
this->problem_->initial_values_[index] : 0;
}
template <typename OtherItem>
bool operator==(BasicVariable<OtherItem> other) const {
MP_ASSERT(this->problem_ == other.problem_,
"comparing variables from different problems");
return this->index_ == other.index_;
}
template <typename OtherItem>
bool operator!=(BasicVariable<OtherItem> other) const {
return !(*this == other);
}
};
// An objective.
template <typename Item>
class BasicObjective : private Item {
private:
friend class BasicProblem;
friend class MutObjective;
BasicObjective(typename Item::Problem *p, int index) : Item(p, index) {}
static int num_items(const BasicProblem &p) {
return p.num_objs();
}
public:
// Returns the type of the objective.
obj::Type type() const {
return this->problem_->is_obj_max_[this->index_] ? obj::MAX : obj::MIN;
}
// Returns the linear part of the objective expression.
const LinearExpr &linear_expr() const {
return this->problem_->linear_objs_[this->index_];
}
// Returns the nonlinear part of the objective expression.
NumericExpr nonlinear_expr() const {
std::size_t index = this->index_;
return index < this->problem_->nonlinear_objs_.size() ?
this->problem_->nonlinear_objs_[index] : NumericExpr();
}
template <typename OtherItem>
bool operator==(BasicObjective<OtherItem> other) const {
MP_ASSERT(this->problem_ == other.problem_,
"comparing objectives from different problems");
return this->index_ == other.index_;
}
template <typename OtherItem>
bool operator!=(BasicObjective<OtherItem> other) const {
return !(*this == other);
}
};
// An algebraic constraint.
// This is a constraint of the form lb <= expr <= ub.
template <typename Item>
class BasicAlgebraicCon : private Item {
private:
friend class BasicProblem;
BasicAlgebraicCon(typename Item::Problem *p, int index) : Item(p, index) {}
static int num_items(const BasicProblem &p) {
return p.num_algebraic_cons();
}
public:
// Returns the lower bound on the constraint.
double lb() const {
return this->problem_->algebraic_cons_[this->index_].lb;
}
// Returns the upper bound on the constraint.
double ub() const {
return this->problem_->algebraic_cons_[this->index_].ub;
}
// Returns the dual value.
double dual() const {
std::size_t index = this->index_;
return index < this->problem_->initial_dual_values_.size() ?
this->problem_->initial_dual_values_[index] : 0;
}
// Returns the linear part of a constraint expression.
const LinearExpr &linear_expr() const {
return this->problem_->algebraic_cons_[this->index_].linear_expr;
}
// Returns the nonlinear part of a constraint expression.
NumericExpr nonlinear_expr() const {
std::size_t index = this->index_;
return index < this->problem_->nonlinear_cons_.size() ?
this->problem_->nonlinear_cons_[index] : NumericExpr();
}
template <typename OtherItem>
bool operator==(BasicAlgebraicCon<OtherItem> other) const {
MP_ASSERT(this->problem_ == other.problem_,
"comparing constraints from different problems");
return this->index_ == other.index_;
}
template <typename OtherItem>
bool operator!=(BasicAlgebraicCon<OtherItem> other) const {
return !(*this == other);
}
};
public:
/** Constructs an empty optimization problem. */
BasicProblem() {}
explicit BasicProblem(const Solver &) {}
/** Returns the number of variables. */
int num_vars() const { return static_cast<int>(vars_.size()); }
/** Returns the number of objectives. */
int num_objs() const { return static_cast<int>(linear_objs_.size()); }
/** Returns the number of algebraic constraints. */
int num_algebraic_cons() const {
return static_cast<int>(algebraic_cons_.size());
}
/** Returns the number of logical constraints. */
int num_logical_cons() const {
return static_cast<int>(logical_cons_.size());
}
// Return true if the problem has nonlinear constraints.
bool has_nonlinear_cons() const {
return !nonlinear_cons_.empty();
}
/** Returns the number of common expressions. */
int num_common_exprs() const {
return static_cast<int>(linear_exprs_.size());
}
// An optimization variable.
typedef BasicVariable<ProblemItem> Variable;
// A mutable variable.
class MutVariable : public BasicVariable<MutProblemItem> {
private:
friend class BasicProblem;
MutVariable(BasicProblem *p, int index)
: BasicVariable<MutProblemItem>(p, index) {}
public:
operator Variable() const {
return Variable(this->problem_, this->index_);
}
void set_lb(double lb) const {
this->problem_->vars_[this->index_].lb = lb;
}
void set_ub(double ub) const {
this->problem_->vars_[this->index_].ub = ub;
}
// Sets the initial value.
void set_value(double value) const {
this->problem_->SetInitialValue(this->index_, value);
}
};
/** A pair of iterators to problem elements. */
template <typename T>
class Range {
private:
const BasicProblem *problem_;
friend class BasicProblem;
explicit Range(const BasicProblem *p) : problem_(p) {}
public:
class iterator : public std::iterator<std::forward_iterator_tag, T> {
private:
T item_;
friend class Range<T>;
iterator(const BasicProblem *p, int index) : item_(p, index) {}
public:
const T *operator->() const {
MP_ASSERT(0 <= item_.index_ &&
item_.index_ < T::num_items(*item_.problem_),
"invalid access");
return &item_;
}
T operator*() const { return *this->operator->(); }
iterator &operator++() {
++item_.index_;
return *this;
}
iterator operator++(int ) {
iterator it(*this);
++item_.index_;
return it;
}
bool operator==(iterator other) const {
return item_ == other.item_;
}
bool operator!=(iterator other) const {
return item_ != other.item_;
}
};
/** Returns an iterator to the first element in the range. */
iterator begin() const {
return iterator(problem_, 0);
}
/**
Returns an iterator to the element following the last element
in the range. An attempt to access this element will result in
assertion failure if assertions are enabled and undefined behavior
otherwise.
*/
iterator end() const {
return iterator(problem_, T::num_items(*problem_));
}
};
/** A range of variables. */
typedef Range<Variable> VarRange;
/**
\rst
Returns a range representing all variables in this optimization problem.
It can be used for iterating over variables::
for (auto var: problem.vars()) {
...
}
\endrst
*/
VarRange vars() const { return VarRange(this); }
// Returns the variable at the specified index.
Variable var(int index) const {
internal::CheckIndex(index, num_vars());
return Variable(this, index);
}
MutVariable var(int index) {
internal::CheckIndex(index, num_vars());
return MutVariable(this, index);
}
// Adds a variable.
Variable AddVar(double lb, double ub, var::Type type = var::CONTINUOUS) {
std::size_t index = vars_.size();
MP_ASSERT(index < MP_MAX_PROBLEM_ITEMS, "too many variables");
vars_.push_back(Var(lb, ub));
is_var_int_.push_back(type != var::CONTINUOUS);
return Variable(this, static_cast<int>(index));
}
void AddVars(int num_vars, var::Type type) {
MP_ASSERT(num_vars >= 0, "invalid size");
std::size_t new_size = val(SafeInt<int>(vars_.size()) + num_vars);
vars_.resize(new_size, Var(0, 0));
is_var_int_.resize(new_size, type != var::CONTINUOUS);
}
class LinearExprBuilder {
private:
LinearExpr *expr_;
public:
explicit LinearExprBuilder(LinearExpr *expr) : expr_(expr) {}
void AddTerm(int var_index, double coef) {
expr_->AddTerm(var_index, coef);
}
};
typedef LinearExprBuilder LinearObjBuilder;
// An objective.
typedef BasicObjective<ProblemItem> Objective;
// A mutable objective.
class MutObjective : public BasicObjective<MutProblemItem> {
private:
friend class BasicProblem;
MutObjective(BasicProblem *p, int index)
: BasicObjective<MutProblemItem>(p, index) {}
public:
operator Objective() const {
return Objective(this->problem_, this->index_);
}
void set_type(obj::Type type) const {
this->problem_->is_obj_max_[this->index_] = (type == obj::MAX);
}
// Returns the linear part of the objective expression.
LinearExpr &linear_expr() const {
return this->problem_->linear_objs_[this->index_];
}
// Sets the linear part of the objective expression.
LinearObjBuilder set_linear_expr(int num_linear_terms) const {
LinearExpr &expr = linear_expr();
expr.Reserve(num_linear_terms);
return LinearObjBuilder(&expr);
}
// Sets the nonlinear part of the objective expression.
void set_nonlinear_expr(NumericExpr expr) const {
this->problem_->SetNonlinearObjExpr(this->index_, expr);
}
};
/** A range of objectives. */
typedef Range<Objective> ObjRange;
/**
\rst
Returns a range representing all objectives in this optimization problem.
It can be used for iterating over objectives::
for (auto obj: problem.objs()) {
...
}
\endrst
*/
ObjRange objs() const { return ObjRange(this); }
// Returns the objective at the specified index.
Objective obj(int index) const {
internal::CheckIndex(index, num_objs());
return Objective(this, index);
}
// Returns the mutable objective at the specified index.
MutObjective obj(int index) {
internal::CheckIndex(index, num_objs());
return MutObjective(this, index);
}
// Adds an objective.
// Returns a builder for the linear part of an objective expression.
LinearObjBuilder AddObj(obj::Type type, NumericExpr expr,
int num_linear_terms = 0);
LinearObjBuilder AddObj(obj::Type type, int num_linear_terms = 0) {
return AddObj(type, NumericExpr(), num_linear_terms);
}
void AddObjs(int num_objs) {
linear_objs_.resize(num_objs);
is_obj_max_.resize(num_objs);
}
typedef LinearExprBuilder LinearConBuilder;
// An algebraic constraint.
typedef BasicAlgebraicCon<ProblemItem> AlgebraicCon;
// A mutable algebraic constraint.
class MutAlgebraicCon : public BasicAlgebraicCon<MutProblemItem> {
private:
friend class BasicProblem;
MutAlgebraicCon(BasicProblem *p, int index)
: BasicAlgebraicCon<MutProblemItem>(p, index) {}
public:
operator AlgebraicCon() const {
return AlgebraicCon(this->problem_, this->index_);
}
// Sets the lower bound on the constraint.
void set_lb(double lb) const {
this->problem_->algebraic_cons_[this->index_].lb = lb;
}
// Sets the upper bound on the constraint.
void set_ub(double ub) const {
this->problem_->algebraic_cons_[this->index_].ub = ub;
}
// Sets the initial dual value.
void set_dual(double value) const {
this->problem_->SetInitialDualValue(this->index_, value);
}
// Returns the linear part of the constraint expression.
LinearExpr &linear_expr() const {
return this->problem_->algebraic_cons_[this->index_].linear_expr;
}
// Sets the linear part of the objective expression.
LinearConBuilder set_linear_expr(int num_linear_terms) const {
LinearExpr &expr = linear_expr();
expr.Reserve(num_linear_terms);
return LinearConBuilder(&expr);
}
// Sets the nonlinear part of the constraint expression.
void set_nonlinear_expr(NumericExpr expr) const {
if (expr)
this->problem_->SetNonlinearConExpr(this->index_, expr);
}
};
/** A range of algebraic constraints. */
typedef Range<AlgebraicCon> AlgebraicConRange;
/**
\rst
Returns a range representing all algebraic constraints in this
optimization problem. It can be used for iterating over algebraic
constraints::
for (auto con: problem.algebraic_cons()) {
...
}
\endrst
*/
AlgebraicConRange algebraic_cons() const { return AlgebraicConRange(this); }
// Returns the algebraic constraint at the specified index.
AlgebraicCon algebraic_con(int index) const {
internal::CheckIndex(index, num_algebraic_cons());
return AlgebraicCon(this, index);
}
// Returns the mutable algebraic constraint at the specified index.
MutAlgebraicCon algebraic_con(int index) {
internal::CheckIndex(index, num_algebraic_cons());
return MutAlgebraicCon(this, index);
}
// Adds an algebraic constraint.
// Returns a builder for the linear part of a constraint expression.
MutAlgebraicCon AddCon(double lb, double ub) {
std::size_t num_cons = algebraic_cons_.size();
MP_ASSERT(num_cons < MP_MAX_PROBLEM_ITEMS,
"too many algebraic constraints");
algebraic_cons_.push_back(AlgebraicConInfo(lb, ub));
return MutAlgebraicCon(this, static_cast<int>(num_cons));
}
void AddAlgebraicCons(int num_cons) {
algebraic_cons_.resize(num_cons);
}
// A logical constraint.
template <typename Item>
class BasicLogicalCon : private Item {
private:
friend class BasicProblem;
BasicLogicalCon(typename Item::Problem *p, int index) : Item(p, index) {}
static int num_items(const BasicProblem &p) {
return p.num_logical_cons();
}
public:
// Returns the constraint expression.
LogicalExpr expr() const {
return this->problem_->logical_cons_[this->index_];
}
template <typename OtherItem>
bool operator==(BasicLogicalCon<OtherItem> rhs) const {
MP_ASSERT(this->problem_ == rhs.problem_,
"comparing constraints from different problems");
return this->index_ == rhs.index_;
}
template <typename OtherItem>
bool operator!=(BasicLogicalCon<OtherItem> rhs) const {
return !(*this == rhs);
}
};
typedef BasicLogicalCon<ProblemItem> LogicalCon;
class MutLogicalCon : public BasicLogicalCon<MutProblemItem> {
private:
friend class BasicProblem;
MutLogicalCon(BasicProblem *p, int index)
: BasicLogicalCon<MutProblemItem>(p, index) {}
public:
operator LogicalCon() const {
return LogicalCon(this->problem_, this->index_);
}
void set_expr(LogicalExpr expr) {
this->problem_->logical_cons_[this->index_] = expr;
}
};
/** A range of logical constraints. */
typedef Range<LogicalCon> LogicalConRange;
/**
\rst
Returns a range representing all logical constraints in this
optimization problem. It can be used for iterating over logical
constraints::
for (auto con: problem.logical_cons()) {
...
}
\endrst
*/
LogicalConRange logical_cons() const { return LogicalConRange(this); }
// Returns the logical constraint at the specified index.
LogicalCon logical_con(int index) const {
internal::CheckIndex(index, num_logical_cons());
return LogicalCon(this, index);
}
// Returns the mutable logical constraint at the specified index.
MutLogicalCon logical_con(int index) {
internal::CheckIndex(index, num_logical_cons());
return MutLogicalCon(this, index);
}
// Adds a logical constraint.
void AddCon(LogicalExpr expr) {
MP_ASSERT(logical_cons_.size() < MP_MAX_PROBLEM_ITEMS,
"too many logical constraints");
logical_cons_.push_back(expr);
}
void AddLogicalCons(int num_cons) {
logical_cons_.resize(num_cons);
}
// A common expression.
template <typename Item>
class BasicCommonExpr : private Item {
private:
friend class BasicProblem;
BasicCommonExpr(typename Item::Problem *p, int index) : Item(p, index) {}
public:
// Returns the linear part of the common expression.
const LinearExpr &linear_expr() const {
return this->problem_->linear_exprs_[this->index_];
}
// Returns the nonlinear part of the common expression.
NumericExpr nonlinear_expr() const {
std::size_t index = this->index_;
return index < this->problem_->nonlinear_exprs_.size() ?
this->problem_->nonlinear_exprs_[index] : NumericExpr();
}
template <typename OtherItem>
bool operator==(BasicCommonExpr<OtherItem> other) const {
MP_ASSERT(this->problem_ == other.problem_,
"comparing expressions from different problems");
return this->index_ == other.index_;
}
template <typename OtherItem>
bool operator!=(BasicCommonExpr<OtherItem> other) const {
return !(*this == other);
}
};
typedef BasicCommonExpr<ProblemItem> CommonExpr;
class MutCommonExpr : public BasicCommonExpr<MutProblemItem> {
private:
friend class BasicProblem;
MutCommonExpr(BasicProblem *p, int index)
: BasicCommonExpr<MutProblemItem>(p, index) {}
public:
LinearExprBuilder set_linear_expr(int num_linear_terms) const {
LinearExpr &linear = this->problem_->linear_exprs_[this->index_];
linear.Reserve(num_linear_terms);
return LinearExprBuilder(&linear);
}
void set_nonlinear_expr(NumericExpr expr) const {
this->problem_->nonlinear_exprs_[this->index_] = expr;
}
void set_position(int) const {}
};
// Returns the common expression at the specified index.
CommonExpr common_expr(int index) const {
internal::CheckIndex(index, num_common_exprs());
return CommonExpr(this, index);
}
MutCommonExpr common_expr(int index) {
internal::CheckIndex(index, num_common_exprs());
return MutCommonExpr(this, index);
}
// Adds a common expression (defined variable).
MutCommonExpr AddCommonExpr(NumericExpr expr) {
std::size_t num_exprs = linear_exprs_.size();
MP_ASSERT(num_exprs < MP_MAX_PROBLEM_ITEMS, "too many expressions");
linear_exprs_.push_back(LinearExpr());
nonlinear_exprs_.push_back(expr);
return MutCommonExpr(this, static_cast<int>(num_exprs));
}
void AddCommonExprs(int num_exprs) {
MP_ASSERT(num_exprs >= 0, "invalid size");
std::size_t new_size = val(SafeInt<int>(linear_exprs_.size()) + num_exprs);
linear_exprs_.resize(new_size, LinearExpr());
nonlinear_exprs_.resize(new_size, NumericExpr());
}
// Sets a complementarity condition.
void SetComplementarity(int con_index, int var_index, ComplInfo info);
// Returns true if the problem has complementarity conditions.
bool HasComplementarity() const { return !compl_vars_.empty(); }
typedef SuffixHandler<int> IntSuffixHandler;
// Adds an integer suffix.
// name: Suffix name that may not be null-terminated.
IntSuffixHandler AddIntSuffix(fmt::StringRef name, suf::Kind kind, int) {
return AddSuffix<int>(name, kind);
}
typedef SuffixHandler<double> DblSuffixHandler;
// Adds an double suffix.
// name: Suffix name that may not be null-terminated.
DblSuffixHandler AddDblSuffix(fmt::StringRef name, suf::Kind kind, int) {
return AddSuffix<double>(name, kind);
}
// Sets problem information and reserves memory for problem elements.
void SetInfo(const ProblemInfo &info);
typedef BasicProblem Builder;
// Returns the built problem. This is used for compatibility with the problem
// builder API.
BasicProblem &problem() { return *this; }
};
typedef BasicProblem< std::allocator<char> > Problem;
} // namespace mp
#endif // MP_PROBLEM_H_