

Philips’ iSyntax for Digital Pathology

Image format

Pathology iSyntax image format 2

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

1 Introduction
Digital pathology requires large amounts of gigapixel images to be generated, stored, and delivered
with medical grade image quality and high performance to provide a seamless digital workflow.
Philips uses the iSyntax format, which is leveraging Philips’ leading IntelliSpace’s iSyntax image
representation for radiology images. The iSyntax format has distinguished features for storing
pathology Whole Slide Images (WSI).

Philips is committed to an open pathology platform, enabling pathologists and researchers to unlock
the power of digital pathology using Philips IntelliSite Pathology Solution (PIPS). All information and
resources about the iSyntax format can be found on the Open Pathology Portal at
www.openpathology.philips.com.

Image pipeline overview
The image pipeline utilized in Philips’ solutions for digital pathology such as PIPS is built on iSyntax.
The pipeline encompasses all the steps from creating and storing WSI data when scanning to
displaying them to users. The following three steps are the main parts of the iSyntax image pipeline:

1. Write – compression of data in the iSyntax format and storing it
2. Read – reading of iSyntax data and decompressing it to create a source image
3. Post processing – processing of the source image to optimize for display to users

Figure 1 iSyntax image pipeline

https://www.openpathology.philips.com/

Pathology iSyntax image format 3

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

About this document
This document describes the file format of iSyntax, i.e. the structure of iSyntax files generated by
PIPS.

For more information on the iSyntax image format, refer to the white paper 'Philips iSyntax for
Digital Pathology' from Dr. Bas Hulsken, available on the webportal:
www.openpathology.philips.com/index.php/resources/#isyntax

Notice
This document contains source code, which is available as code samples compatible with Python and
reference codes compatible with Octave and Matlab. The code samples/reference codes are verified
with:

• Python 3.7
• Octave 5.1
• Matlab 9.8

All code samples and reference codes listed in this document are available for download from the
Open Pathology Portal at www.openpathology.philips.com.
Please note that the implementation provided in this document is for demonstration purposes and
not optimized for maximum performance, nor can it handle very large inputs.

Notice
All the brand and product names are trademarks of their respective companies.

License
Copyright 2020 Koninklijke Philips N.V.

Subject to the conditions recited below, a free copyright license is hereby granted to you to copy and
redistribute this document as a whole only (you shall not copy or redistribute parts of this
document). Your redistribution(s) of this document as a whole must retain the above copyright
notice, this license and the following disclaimer.

THIS LICENSE AND THE CONTENT IN THIS DOCUMENT ARE PROVIDED "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL PHILIPS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS LICENSE
OR DOCUMENT IN ANY FORM, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.openpathology.philips.com/index.php/resources/#isyntax
http://www.openpathology.philips.com/

Pathology iSyntax image format 4

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

2 iSyntax data model
The iSyntax data model represents the whole slide as three images:

• label image, containing slide identification information.
• macro image, providing a thumbnail view of the slide.
• Whole Slide Image (WSI), representing the tissues region of interests, which are scanned at

high resolution and stored using the iSyntax compression format.

The data model also contains metadata related to the parameters necessary for image acquisition
e.g. scanning protocol, DICOM attributes and acquisition attributes.

Figure 2 Image representation by sub-images

Pathology iSyntax image format 5

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

3 iSyntax file
The iSyntax file is designed to contain both metadata and pixel data corresponding to the iSyntax
data model. An iSyntax file is represented by an XML header, End of Table (EOT), optionally a
seektable and codeblocks.

XML
HEADER

EOT
3 bytes

SEEKTABLE
(optional) CODEBLOCKS

Figure 3 Primary representation of an iSyntax file

XML Header
The XML Header contains the metadata related to the properties describing:

• JPEG image data for the label image, see section Label image
• JPEG image data for the macro image, see section Macro Image
• the WSI

The metadata is stored in UTF-8 encoded XML format.
For more information, see section XML Header.

End of Table (EOT)
The EOT is a marker to indicate that the stream containing the XML Header has ended. EOT
represented by 3 characters.

EOT Hex Representation

 “\r \n \x04” 0D 0A 04

Table 1 EOT characters

Seektable
The Seektable is a serialized representation of the block headers as per DICOM standard. It contains
the offset and size of the codeblocks.
For more information, see section Seektable structure.

Pathology iSyntax image format 6

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Codeblocks
The recursive Discrete Wavelet Transform (DWT) of the RAW pixel data creates a multiresolution
pyramid. Each level in the pyramid is divided into N x N size codeblocks. The codeblocks contain the
compressed coefficients. For more information, see section Codeblocks.

Note that the size of the codeblock may vary from scanner to scanner. You can get the size of the
codeblock from the XML header in UFS_IMAGE_DIMENSION_RANGE in
UFSImageBlockHeaderTemplate dataobject.
For more information, see section Image Dimension Ranges.

Figure 4 WSI-images pyramid representation

Pathology iSyntax image format 7

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

4 XML Header
The XML Header contains the metadata related to the properties describing the WSI and the JPEG
image data for both label image and macro image
The metadata is stored in UTF-8 encoded XML format.

The XML Header of the iSyntax file uses three different types of nodes: leaf nodes, branch nodes and
array nodes, see Node types.
The root node is a branch node, type ‘DataObject‘ and named ‘DPUfsImport’. For more information,
see section DPUfsImport node.

Node types
Leaf node
A leaf node is a node with no child nodes. Generally, a leaf node contains an element named
‘Attribute’. Each leaf node contains four attributes in the same order: Name, Group, Element and
PMSVR.

Example of a leaf node:

<Attribute Name="DICOM_MANUFACTURER" Group="0x0008" Element="0x0070"
PMSVR="IString">PHILIPS</Attribute>

Branch node
A branch node is a node with child nodes, it contains leaf nodes. Generally, a branch node contains
an element named ‘DataObject’ and has one attribute: ‘ObjectType’.

Example of a branch node:

<DataObject ObjectType="DPScannedImage">
…
…
</DataObject>

Array node
Array nodes contains one or more similar type of leaf/branch nodes.

Example of an array node

<Attribute Name="UFS_IMAGE_DIMENSION_RANGES" Group="0x301d" Element="0x200a"
PMSVR="IDataObjectArray">
 <Array>
 <DataObject ObjectType="UFSImageDimensionRange">
 <Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 9215</Attribute>
 </DataObject>
 <DataObject ObjectType="UFSImageDimensionRange">
 <Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 8191</Attribute>
 </DataObject>

Pathology iSyntax image format 8

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

 <DataObject ObjectType="UFSImageDimensionRange">
 <Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 2</Attribute>
 </DataObject>
 <DataObject ObjectType="UFSImageDimensionRange">
 <Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 3</Attribute>
 </DataObject>
 <DataObject ObjectType="UFSImageDimensionRange">
 <Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 3</Attribute>
 </DataObject>
 </Array>
</Attribute>

Metadata attributes
All the attributes with a name starting with ‘DICOM’ are taken from the DICOM standard. For these
attributes, the Group and Element form the 4-byte DICOM tag.
All the attributes with a name not starting with ‘DICOM’ are tags which do not exist in the DICOM
standard. These are Philips private tags, required for specifying the digital pathology WSI format.

Attributes are composed of:

• Name: the name of the attribute.
• Group: in the format (0xXXXX) in hexadecimal value.
• Element: in the format (0xXXXX) in hexadecimal value,
• PMSVR: describes the data type and format of the attribute value.
• Value: contains the attribute’s data.

Group and Element identify an attribute.

The basic attribute structure is:

<Attribute Name="DICOM_MANUFACTURER" Group="0x0008" Element="0x0070"
PMSVR="IString">PHILIPS</Attribute>

The following table shows the list of attributes with group tag, element tag and value type.

Attribute Name Group
tag

Element
tag

Value type

DICOM_ACQUISITION_DATETIME 0008 002A IString

DICOM_MANUFACTURER 0008 0070 IString

DICOM_MANUFACTURERS_MODEL_NAME 0008 1090 IString

DICOM_DERIVATION_DESCRIPTION 0008 2111 IString

DICOM_DEVICE_SERIAL_NUMBER 0018 1000 IString

DICOM_SOFTWARE_VERSIONS 0018 1020 IStringArray

DICOM_DATE_OF_LAST_CALIBRATION 0018 1200 IStringArray

DICOM_TIME_OF_LAST_CALIBRATION 0018 1201 IStringArray

DICOM_SAMPLES_PER_PIXEL 0028 0002 IUInt16

DICOM_BITS_ALLOCATED 0028 0100 IUInt16

DICOM_BITS_STORED 0028 0101 IUInt16

DICOM_HIGH_BIT 0028 0102 IUInt16

Pathology iSyntax image format 9

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Attribute Name Group
tag

Element
tag

Value type

DICOM_ICCPROFILE 0028 2000 IString

DICOM_LOSSY_IMAGE_COMPRESSION 0028 2110 IString

DICOM_LOSSY_IMAGE_COMPRESSION_RATIO 0028 2112 IDouble

DICOM_LOSSY_IMAGE_COMPRESSION_METHOD 0028 2114 IString

PIIM_DP_SCANNER_RACK_NUMBER 101D 1007 IUInt16

PIIM_DP_SCANNER_SLOT_NUMBER 101D 1008 IUInt16

PIIM_DP_SCANNER_OPERATOR_ID 101D 1009 IString

PIIM_DP_SCANNER_CALIBRATION_STATUS 101D 100A IString

PIM_DP_UFS_INTERFACE_VERSION 301D 1001 IString

PIM_DP_UFS_BARCODE 301D 1002 IString

PIM_DP_SCANNED_IMAGES 301D 1003 IDataObjectArray

PIM_DP_IMAGE_TYPE 301D 1004 IString

PIM_DP_IMAGE_DATA 301D 1005 IString

PIM_DP_SCANNER_RACK_PRIORITY 301D 1010 IUInt16

DP_COLOR_MANAGEMENT 301D 1013 IDataObjectArray

DP_WAVELET_QUANTIZER_SETTINGS_PER_COLOR 301D 1019 IDataObjectArray

DP_WAVELET_QUANTIZER_SETTINGS_PER_LEVEL 301D 101A IDataObjectArray

DP_WAVELET_QUANTIZER 301D 101B IUInt16

DP_WAVELET_DEADZONE 301D 101C IUInt16

UFS_IMAGE_GENERAL_HEADERS 301D 2000 IDataObjectArray

UFS_IMAGE_NUMBER_OF_BLOCKS 301D 2001 IUInt32

UFS_IMAGE_DIMENSIONS_OVER_BLOCK 301D 2002 IUInt16Array

UFS_IMAGE_DIMENSIONS 301D 2003 IDataObjectArray

UFS_IMAGE_DIMENSION_NAME 301D 2004 IString

UFS_IMAGE_DIMENSION_TYPE 301D 2005 IString

UFS_IMAGE_DIMENSION_UNIT 301D 2006 IString

UFS_IMAGE_DIMENSION_SCALE_FACTOR 301D 2007 IDouble

UFS_IMAGE_DIMENSION_DISCRETE_VALUES_STRING 301D 2008 IStringArray

UFS_IMAGE_BLOCK_HEADER_TEMPLATES 301D 2009 IDataObjectArray

UFS_IMAGE_DIMENSION_RANGES 301D 200A IDataObjectArray

UFS_IMAGE_DIMENSION_RANGE 301D 200B IUInt32Array

UFS_IMAGE_DIMENSIONS_IN_BLOCK 301D 200C IUInt16Array

UFS_IMAGE_BLOCK_HEADERS 301D 200D IDataObjectArray

UFS_IMAGE_BLOCK_COORDINATE 301D 200E IUInt32Array

UFS_IMAGE_BLOCK_COMPRESSION_METHOD 301D 200F IString

UFS_IMAGE_BLOCK_DATA_OFFSET 301D 2010 IUint64

UFS_IMAGE_BLOCK_SIZE 301D 2011 IUint64

UFS_IMAGE_BLOCK_HEADER_TEMPLATE_ID 301D 2012 IUInt32

UFS_IMAGE_BLOCK_HEADER_TABLE 301D 2014 IString

Table 2 List of Attributes

Pathology iSyntax image format 10

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

DPUfsImport node
De DPUfsImport node is the root node with the structure:

<DataObject ObjectType="DPUfsImport">
…
…
</DataObject>

The following table shows the child nodes part of the DPUfsImport.

Parent Data Object: DPUfsImport

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

DICOM_MANUFACTURER 0008 0070 IString
dicom:LO

Leaf DICOM data element
(0008,0070)
(Value Multiplicity:1)

“PHILIPS”

DICOM_ACQUISITION
_DATETIME

0008 002A IString Leaf Date & Time when slide
transfer started (XML
Header created).
DicomAcquisitionDate and
DicomAcquisitionTime are
combined into one single
element

Minimum:
1900-01-01T00:00:00

Maximum:
2154-12-31T23:59:59

DICOM_MANUFACTURERS
_MODEL_NAME

0008 1090 IString Leaf DICOM data element
(0008,1090)
(Value Multiplicity:1)

“UFS Scanner”

DICOM_DEVICE_SERIAL
_NUMBER

0018 1000 IString Leaf DICOM data element
(0018,1000)
(Value Multiplicity: 1)

“FMTOO19’

Note: Value is configurable
in UFS during
manufacturing

DICOM_SOFTWARE
_VERSIONS

0018 1020 IStringArra
y

Leaf Software versions of two
subcomponents.

Note: There are no
limitations on the number of
entries in the list but also no
limitations on format/values
of the strings in the software
versions list.

DICOM_DATE_OF_LAST
_CALIBRATION

0018 1200 IStringArra
y

Leaf Date & Time of last
calibration by a service
engineer

DICOM_TIME_OF_LAST
_CALIBRATION

0018 1201 IStringArra
y

Leaf Date &Time of last
calibration by a service
engineer

PIIM_DP_SCANNER_RACK
_NUMBER

101D 1007 IUInt16 Leaf UFS store position in which
the rack was placed and
from which the slide was
taken.

[1..15]

PIIM_DP_SCANNER_SLOT
_NUMBER

101D 1008 IUInt16 Leaf Position in the rack where
the slide was stored.

[1..20]

PIM_DP_UFS_INTERFACE
_VERSION

301D 1001 IString
dicom:LO

Leaf Unique identifier of the
entire image transfer format

“5.0”

PIM_DP_UFS_BARCODE 301D 1002 IString Leaf Base64 encoded Barcode
value

N/A

Pathology iSyntax image format 11

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

PIM_DP_SCANNED_IMAGE
S

301D 1003 IDataObje
ctArray

Array N/A

PIIM_DP_SCANNER
_OPERATOR_ID

101D 1009 IString Leaf “Operator ID”

PIIM_DP_SCANNER
_CALIBRATION_STATUS

101D 100A IString Leaf Boolean indicates whether
last calibration attempt
failed.

“OK” “NOT OK”

PIM_DP_SCANNER_RACK
_PRIORITY

301D 1010 IUInt16 Leaf

Table 3 DPUfsImport node attributes

Scanned Image node

Parent Data Object: DPScannedImage

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

DICOM_DERIVATION
_DESCRIPTION

0008 2111 IString Leaf Single string containing
image format description

RAW: ”Philips UFS V%s”
iSyntax: “Philips UFS V%s |
Quality=%d | DWT=%d |
Compressor=%d”

%s= UFS version
(RAW+iSyntax)
%d: Sucomponent quality
(iSyntax only)
%d: Transformation Method
(iSyntax only) use 1 for
legal53
%d: Compression Method
(iSyntax only) : use 16 for
hulsken

DICOM_LOSSY_IMAGE
_COMPRESSION

0028 2110 IString Leaf Boolean value:
0 means lossless
1 means lossy

“00”
“01”

DICOM_LOSSY_IMAGE
_COMPRESSION_RATIO

0028 2112 IDouble Leaf Describe lossy image
quality/bit reduction

Actual compression ratio
is unknown, value =1
means lossless:
Don’t use zero as
compression.
1 means no-
compression
2 means a factor of 2
compressed.

1 2 3 4

DICOM_LOSSY_IMAGE
_COMPRESSION
_METHOD

0028 2114 IString Leaf Specify custom
compression engine.
Combination of
ImageCompressionMeth
od and
BlockCompressionMetho
d defines exact
algorithm.

“PHILIPS_DP_1_0”

Pathology iSyntax image format 12

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

PIM_DP_IMAGE_TYPE 301D 1004 IString Leaf Identifies the image type:
Macro, label, WSI

“MACROIMAGE”
“LABELIMAGE”
“WSI”

PIM_DP_IMAGE_DATA 301D 1005 IString Leaf Contains encoded JPEG
file of Label Image or
Macro Image

NA

DP_COLOR
_MANAGEMENT

301D 1013 IDataObje
ctArray

Array Specify color
management per image.

At most 1 color management
object is available per
scanned image.

DP_WAVELET
_QUANTIZER_SETTINGS_
PER_COLOR

301D 1019 IDataObje
ctArray

Array Per color component a
list of quantizer settings.
First entry belongs to
first color component
etc… The typical order
for colors is either Y-Co-
Cg or R-G-B

Typical 2 objects: first for
luminance, second for the
other color components. Only
applicable to WSI.

UFS_IMAGE_GENERAL
_HEADERS

301D 2000 IDataObje
ctArray

Array General settings
regarding the WSI data
stream.
Image General headers
is allowed to contain only
one Image General
Header.

NA

UFS_IMAGE_BLOCK
_HEADER_TEMPLATES

301D 2009 IDataObje
ctArray

Array Settings shared by all
block headers, can be
overridden in individual
block headers.
Describes properties
common to all image
blocks(tiles). The
common properties are
all properties, except the
coordinate of the Image
block (tile). Image Block
Header templates is
allowed to contain only
one Image Block Header
Template.

N=1

Multiple templates may exit:
Each ImageBlockHeader
might reference to one of
these templates. A block
header can be fully described
by its content.

UFS_IMAGE_BLOCK
_HEADERS

301D 200D IDataObje
ctArray

Array Contains one
ImageBlockHeader
object for each image
block in the image. The
order of Image Block
Header objects in the list
corresponds to the order
of the image block pixel
data in the WSI data
stream.

1…n
ImageBlockHeaders and
ImageBlockheadertable are
mutually exclusive; exactly
one must be present

N must equal to
ImageNumberOfBlocks

UFS_IMAGE_BLOCK
_HEADER_TABLE

301D 2014 IString Leaf Similar to
ImageBlockHeaders
except that each
ImageBlockHeader is in
binary format: the entire
table is base64 encoded.

ImageBlockHeaders and
ImageBlockHeaderTable are
mutually exclusive; exactly
one must be present.
Number of
ImageBlockHeaders must
equal to
ImageNumberOfBlocks

Table 4 DPScannedImage node attributes

Pathology iSyntax image format 13

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Image General Header

Parent Data Object: UFSImageGeneralHeader

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

UFS_IMAGE_NUMBER_OF
_BLOCKS

301D 2001 IUInt32 Leaf Total number of
datablocks (tiles) in WSI
data stream.

0.. 2^32-1

UFS_IMAGE_DIMENSIONS
_OVER_BLOCK

301D 2002 IUInt16Arr
ay

Leaf Defines interpretation of
ImageBlockCoordinate
values; it tells for each
coordinate into which
dimension it maps

0..4
RAW:
Fixed value: [0 1 2] meaning
[x y color]
iSyntax:
Fixed value [0 1 2 3 4]
meaning [x y color scale
waveletcoef]

UFS_IMAGE_DIMENSIONS 301D 2003 IDataObje
ctArray

Array List of all dimensions in
WSI data stream.
Order of dimensions is
fixed by order in this list.
Dimension 0 is the
sequence number of the
first dimension in the list.

RAW: Only “x” “y”
“component”
iSyntax: Also include “scale”
and “waveletcoef” (in this
order)

UFS_IMAGE_DIMENSION_
RANGES

301D 200A IDataObje
ctArray

Array Specify the values for the
entire image

Table 5 UFSImageGeneralHeader node attributes

Image Dimensions

Parent Data Object: UFSImageDimension

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

UFS_IMAGE_DIMENSION_
NAME

301D

2004 IString Leaf Name of dimension. “x”
“y”
“component”
“scale”
“waveletcoef”

X = short side of slide
Y = long side of slide (see
appendix A)
Component refers to color
Scale=” length of coedfficient”
(use subcomponent
dwt_coefficient)
Waveletcoef = spatial frequency
component
(use subcomponent
coefficient_type)

Pathology iSyntax image format 14

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

UFS_IMAGE_DIMENSION_
TYPE

301D

2005 IString Leaf Physical
characteristics of
dimension

“spatial”
“colour component”
“scale”
“waveletcoef”

Spatial: continuous dimension
Colour: discrete named
dimension
Scale: discrete unnamed
dimension
waveletcoef: discrete named
dimension

UFS_IMAGE_DIMENSION_
UNIT

301D 2006 IString Leaf Unit of dimension
(S.I. name)

“CentiMeter”
“MilliMeter”
“MicroMeter”
“NanoMeter”
“PicoMeter”

Only “MicroMeter” is used

UFS_IMAGE_DIMENSION_
SCALE_FACTOR

301D 2007 IDouble Leaf Physical increment of
dimension

Greater than 0

Scientific format allowed
(Like: “250.0E-03”

UFS_IMAGE_DIMENSION_
DISCRETE_VALUES_
STRING

301D 2008 IStringArra
y

Leaf Names of discrete
dimension values

“R” “G” “B”
“Y” “Co” “Cg”
“LL” “LH” “HL” “HH”

RAW colors: Fixed value [“R” “G”
“B”].
iSyntax lossless colors: Fixed
value [“R” “G” “B”]
iSyntax lossy colors: Fixed value
[“Y” “Co” “Cg”]
iSyntax waveletcoefs: Fixed value
[“LL” “LH” “HL” “HH”]

Table 6 UFSImageDimension node attribute

Pathology iSyntax image format 15

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Image Dimension Ranges

Parent Data Object: UFSImageDimensionRange

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

UFS_IMAGE_DIMENSION_
RANGE

301D 200B IUInt32Arr
ay

Leaf Define a range by
specifying 3 values: -
start value
- step value
- end value

Applicable for
attributes within the
UFSImageGeneralhe
ader dataobject

UFSImageGeneralHeader:
calculate ranges for entire image:
Imagesize = MX x MY
Imagetopleft = (NX, NY)
Scale = max_dwt_level(0-based)

Max_dwt_level = (nrOfDwtLevels-
1)
For RAW 3 entries:
x coordinate: [NX 1 NX+MX-1]
y coordinate: [NY 1 NY+MY-1]
color coordinate: [0 1 2]
for iSyntax 5 entries:
x coordinate: [NX 1 NX+MX-1]
y coordinate: [NY 1 NY+MY-1]
color coordinate: RGB use [0 1 2]
color coordinate: YCoCg use [0 1
2]
scale coordinate: [0 1
max_dwt_level]
waveletcoef coordinate: use [0 1
3

UFS_IMAGE_DIMENSION_
RANGE

301D 200B IUInt32Arr
ay

Leaf Define a range by
specifying 3 values: -
start value
- step value
- end value

Applicable for
attributes within the
UFSImageBlockHea
derTemplate
dataobject

UFSImageBlockHeaderTemplate:
specify ranges for block template
For RAW 3 entries:
x coordinate: [0 1 1023]
y coordinate: [0 1 1023]
{blocksize 1024x1024}
color coordinate: [0 1 2]

for iSyntax 5 entries:
x coordinate: [0 1 127] *
(2^dwt_level)
y coordinate: [0 1 127] *
(2^dwt_level)
color coordinate:
R use [0 0 0],
G use [1 0 1], B use [2 0 2]
color coordinate:
Y use [0 0 0], Co use [1 0 1], Cg
[2 0 2]
scale coordinate: [dwt_level 0
dwt_level]
waveletcoef coordinate: LL use [0
0 0], else use [1 1 3]

Table 7 UFSImageDimension node attribute

Pathology iSyntax image format 16

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Block Header Templates

Parent Data Object: UFSImageBlockHeaderTemplate

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

DICOM_SAMPLES_PER_
PIXEL

0028 0002 IUInt16 Leaf The number of sample
within each pixel

1… n

Fixed value: 3

DICOM_BITS_ALLOCATED 0028 0100 IUInt16 Leaf The number of bits that
one sample occupies.

1… n

RAW: Fixed value 8
iSyntax: Fixed value 16

DICOM_BITS_STORED 0028 0101 IUInt16 Leaf The number of used bits
of one sample within the
occupied area

1 ... DicomBitsAllocated

RAW: Fixed value 8
iSyntax: Fixed value 16

DICOM_HIGH_BIT 0028 0102 IUInt16 Leaf The position of the MSB
of each sample within
the occupied area

(DicomBitsStored-1)
...(DicomBitsAllocated-1)

RAW: Fixed value 7
iSyntax: fixed value 15

DICOM_PIXEL_
REPRESENTATION

0028 0103 IUInt16 Leaf 1 indicating signed pixels
(2’s complement)
0 indicating un-signed
pixel values

0: unsigned bytes
1: signed bytes

UFS_IMAGE_DIMENSION_
RANGES

301D 200A IDataObje
ctArray

Array Contains an Image
Dimension range for
each dimension in the
block.
Length(ImageDimension
Ranges) =
length(ImageDimensions
)

Specify the values for all
blocks that inherit from this
BlockHeaderTemplate

UFS_IMAGE_DIMENSION_
IN_BLOCK

301D 200C IUInt16Arr
ay

Leaf Defines mapping from
linear sample space to
multidimensional space:
index of first iterating
dimension, …, until index
of last iterating
dimension

RAW: Fixed value: [2 1 0]
meaning [color y x]

iSyntax: Fixed value:[1 0 4]
meaning [y x waveletcoef]

UFS_IMAGE_BLOCK_
COMPRESSION_METHOD

301D 200F IString Leaf Specify used method of
compression

Numeric integer value

16 for hulsken compression
19 for hulsken2 compression

Table 8 UFSImageBlockHeaderTemplate node attribute

Pathology iSyntax image format 17

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Block Headers

Parent Data Object: UFSImageBlockHeader

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

UFS_IMAGE_BLOCK_
COORDINATE

301D 200E IUInt32
Array

Leaf Position of the image
block(tile) along the
dimensions specified in
the Image General
Header – Image
Dimensions Over Block,

x: 0... (108000-1024-1)
y: 0... (308000-1024-1)
component: 0 1 2
scale: 0 1...(ndwtLevels-1)
waveletcoef: 0...3
[x y] (in that order, see
DimensionOverBlock)

Note: max image size is
100000x240000 (25x60 mm)
but max slide size is 27x77
mm, and origin is defined at
corner of slide (and not at
corner of scanned image)

For RAW, component is
always 0

UFS_IMAGE_BLOCK_
TEMPLATE_ID

301D 2012 IUInt32 Leaf Index of template, given
in element Image Block
Header Template

0… (NrOfTemplates-1)

0-Based index

Table 9 UFSImageBlockHeader node attribute

Image Color Management

Parent Data Object: DPColorManagement

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

DICOM_ICCPROFILE 0028 2000 IString Leaf Base64 encoded ICC
profile

NA

Table 10 DPColorManagement node attribute

Pathology iSyntax image format 18

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Wavelet Quantizer Setting

Parent Data Object: DPWaveletQuantizerSettingsPerColor

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

DP_WAVELET_
QUANTIZER_SETTINGS_
PER_LEVEL

301D 101A IDataObje
ctArray

Array Per level a list of
quantizer settings.
First settings belong
to level 0, second to
level 1 etc..

NA

Table 11 DPWaveletQuantizerSettingsPerColor node attribute

Wavelet Quantizer Setting Per Level

Parent Data Object: DPWaveletQuantizerSettingsPerLevel

Attribute Group
tag

Element
tag

Value
type

Node
type

Description Range

DP_WAVELET_
QUANTIZER

301D 101B IUInt16 Leaf Wavelet coefficients
are rounded to
2^quantizer.

0 ... n

DP_WAVELET_
DEADZONE

301D 101C IUInt16 Leaf Wavelet coefficients
are pulled to zero for
absolute values
greater or equal to
dead zone.

0 … n

Table 12 DPWaveletQuantizerSettingsPerLevel node attribute

Pathology iSyntax image format 19

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

5 Codeblocks
The codeblocks section in the iSyntax file contains the compressed pixel data for the WSI. This data is
generated by a recursive DWT of the original image to create the multiresolution pyramid.

Figure 5 Three level recursive DWT

The transformed coefficients HL, LH and HH are spatially aligned and merged together to one block
[HL, LH, HH]. After merging, the LL and [HL, LH, HH] are divided into codeblocks of the respective
color channels. Each codeblock is compressed using the Hulsken compression method.

Figure 6 Spatially aligned coefficient blocks (HL, LH, HH)

All the attributes describing the WSI are part of the data object ‘ScannedImage’. For more
information see the table in section Scanned Image node where image type (PIM_DP_IMAGE_TYPE)
will be ‘WSI’.

Pathology iSyntax image format 20

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Codeblock structure
Each codeblock starts with a DICOM sequence tag (0xFF FE, 0xE0 00) followed by data size of 4-
bytes. The codeblock contains the compressed coefficients of the WSI. All codeblocks data varies in
size.

All values are stored in little-endian representation.

0xFFFE, 0xE000 SIZE
(4 BYTES) CODEBLOCK

Figure 7 Codeblock structure

Codeblock packaging scheme
An iSyntax file is composed of

• XML header: metadata related to the properties describing the WSI and other properties.
• EOT: 3 characters’ marker to delimit the XML Header and pixel data part.
• Start of pixel data: DICOM tag (0x7FE0, 0x0010) followed by a 4-byte length of pixel data.

Usually this will be filled with (0xFFFF, 0xFFFF) which means unknown length. It’s the start of
the pixel data.

• Seektable: DICOM serialized HeaderBlocks (optional).
• Codeblocks: the compressed coefficients.

All values are stored in little-endian representation

XML Header

EOT (3 bytes)

0x7FE0, 0x0010, 0xFFFF, 0xFFFF (Optional)

0x301D, 0x2015 SIZE (4 BYTES) SEEKTABLE
(Optional) 0xFFFE, 0xEODD 0x0000, 0x0000

0xFFFE, 0xE000 SIZE (4 BYTES) CODEBLOCK

0xFFFE, 0xE000 SIZE (4 BYTES) CODEBLOCK

…

0xFFFE, 0xE000 SIZE (4 BYTES) CODEBLOCK

Figure 8 iSyntax file detailed representation

Pathology iSyntax image format 21

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

After the DWT, the coefficients data is divided into 128x128 size codeblocks.
These codeblocks are packaged in the iSyntax files in a specific order.

Figure 9 Packaging order

The codeblocks lay on a grid, which can span a significantly larger area than the area that is scanned
by the UFS. This grid is a rounded multiple of the block dimensions of the top image in the base
image coordinates. Every grid of a higher level is reduced by factor of 2. The codeblocks are written
from left to right, from top to bottom, from top level to base level and finally the first to last color
channel.

Figure 10 Packaging structure

Pathology iSyntax image format 22

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Image block header structure
The attribute UFS_IMAGE_BLOCK_HEADER_TABLE (301D, 2014) for WSI’s, contain the base64
encoded DICOM serialized block header values. This attribute contains the information of all block
headers.
Each codeblock contains a block header, which is required to locate the codeblock in a file.
A block header is composed of:

• Block Coordinates: composed of x coordinate, y coordinate, color channel, scale (dwt level),
Coefficient (0 for LL, 1 for HL, LH, HH).

• Block data offset: file offset for codeblock.
• Block Size: size of the codeblock.
• Block Header Template Id: the properties common to all codeblocks (image blocks). See the

table in section Block Header Templates.

Figure 11 Image block header structure

The images generated by the UFS do not have full information in the image block header table. i.e.
Block Data Offset and Block Size information will not present. This information is stored as part of
the seektable.
It is essential to map this information by knowing the order of the codeblocks in the seektable. See
section Seektable structure.

Pathology iSyntax image format 23

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Codeblocks representation for WSI
WSI’s can have multiple scanned tissue regions as shown by the red color rectangles in the figure
below. A grid of codeblocks represent the WSI. The coordinates for the codeblocks that are outside
the scanned tissue boundaries (shown in a yellow color in the figure below) are set to zero in the
block header table. These codeblocks are not written in the iSyntax file.

Figure 12 Image block header structure

Pathology iSyntax image format 24

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

6 Seektable structure
Seektables refer to the serialized representation of headerblocks as per the DICOM standard.
Headerblocks contain the offset and size of the codeblocks. The seektable is an optional part in the
iSyntax file.
If the seektable is present, the image block header information is partly stored as part of the
attribute UFS_IMAGE_BLOCK_HEADER_TABLE (301D, 2014) and partly by the seektable. It is
essential to map the block header information and seektable information to read the codeblocks.
For more information, see section Image block header structure.

• Seektables start with a DICOM tag 0x301D, 0x2015.
• Seektables are composed of codeblock headers. Each codeblock header is composed of the

ImageBlockDataOffset (0x301D, 0x2010) and ImageBlockSize (0x301D, 0x2011).

Figure 13 Seektable structure

Zero padding
In order to map the spatial arrangement of codeblocks with respect to the WSI, it is useful to
understand the concept of zero padding. Zero padding is applied to the input image to create a WSI.

At first, the image is padded uniformly on all sides. The amount of padding depends on the number
of DWT levels. It is calculated as per the equation below.
The wavelet (PerLevelPadding) and the number of DWT-levels determine the number of padded
black pixels. Note that for the wavelet transformation Legall5/3 the PerLevelPadding is 3.

() ddingPerLevelPaNrLevelsddingPerLevelPaPadding −<<=

Equation 1 Codeblock grid dimensions

Secondly, the image is padded further on the right and bottom side. This to ensure that the
dimensions of the image are a multiple of the codeblock size. The base level image needs to be
sufficiently padded to make sure that the image dimensions for the highest DWT level are also a
multiple of the codeblock size
The codeblock grid dimensions (gridWidth x gridHeight) are a function of the image dimensions
(width x height), the codeblock dimensions (BlockWidth x BlockHeight) and the number of
DWT-levels performed.
The width and height are specified in the XML Header.

()() ()

()() ()11

11

−<<

<<

−<<+
=

−<<

<<
−<<+

=

NrLevels
NrLevelstBlockHeigh

NrLevelstBlockHeighheightgridHeight

NrLevels
NrLevelsBlockWidth

NrLevelsBlockWidthwidthgridWidth

Equation 2 Codeblock grid dimensions

Pathology iSyntax image format 25

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Figure 14 Padding and codeblock grid

The number of codeblocks that are encoded in the seektable can be significantly greater than the
actually stored codeblocks. The actual number of codeblocks is determined by the area that is
scanned by the scanner.
Every grid of a higher level is reduced by a factor 2. This grid also determines the IDs of the
codeblocks, which are the unique numbers that define the position of a codeblock. This codeblock ID
is counted from left to right, from top to bottom, from the base level to the top level and finally from
the first to the last color channel of the codeblock grid.

Pathology iSyntax image format 26

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

7 Reading macro images and label images
The macro image and the label image are a two-dimensional image. These images can be traversed
over the X and Y range (width and height respectively) with an incremental step size of 1 to access
pixel data.

Figure 15 Image representation by sub-images

Label image
The label image contains slide identification information. The label image is a JPEG image encoded
with base64 encoding.
All the attributes related to the label image are part of the data object ‘ScannedImage’. Refer to the
table in section Scanned Image node.

• The image type (PIM_DP_IMAGE_TYPE) will be ‘LABLEIMAGE’.
• The image data is part of the attribute ‘PIM_DP_IMAGE_DATA’.

<DataObject ObjectType="DPScannedImage">
 <Attribute Name="PIM_DP_IMAGE_DATA" Group="0x301D" Element="0x1005"
PMSVR="IString">
 ...
 </Attribute>
 <Attribute Name="PIM_DP_IMAGE_TYPE" Group="0x301D" Element="0x1004"
PMSVR="IString">LABELIMAGE</Attribute>
 ...
</DataObject>

NOTICE
The Python code sample ‘Extract label image’ demonstrates to extract the label image from an
iSyntax file.

$python extract_macro_label_image.py “<iSyntax file path>”

Pathology iSyntax image format 27

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Macro Image
The macro image provides a thumbnail view of the slide. The macro image is a JPEG image encoded
with base64 encoding.
All the attributes related to macro image are part of the data object ‘ScannedImage’. Refer to the
table in section Scanned Image node.

• The mage type (PIM_DP_IMAGE_TYPE) will be ‘MACROIMAGE’
• The image data is part of the attribute ‘PIM_DP_IMAGE_DATA’.

<DataObject ObjectType="DPScannedImage">
 <Attribute Name="PIM_DP_IMAGE_DATA" Group="0x301D" Element="0x1005"
PMSVR="IString">
 ...
 </Attribute>
 <Attribute Name="PIM_DP_IMAGE_TYPE" Group="0x301D" Element="0x1004"
PMSVR="IString">MACROIMAGE</Attribute>
 ...
</DataObject>

NOTICE
The Python code sample ‘Extract macro image’ demonstrates to extract the macro image from an
iSyntax file.

$python extract_macro_label_image.py “<iSyntax file path>”

Pathology iSyntax image format 28

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

8 Reading WSI images
The compressed pixel data are stored as codeblocks in the iSyntax file. This section demonstrates the
following with the help of sample codes:

1. Extraction of codeblocks from an iSyntax file, for more information see section Extract
codeblocks from the iSyntax file.

2. Reconstruction of original image from the codeblocks, for more information see section
Reconstruct the original image.

The lowest resolution image is reconstructed using LL coefficient codeblocks. To reconstruct the
image at the higher resolution levels, a recursive inverse DWT is required.

Figure 16 Reconstructing WSI image from an iSyntax file

The following image shows an iSyntax file containing 2 levels of inverse DWT.

Figure 17 Two-level inverse DWT

Pathology iSyntax image format 29

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Extract codeblocks from the iSyntax file
Codeblocks can be extracted from the iSyntax file, see the Python code sample in the NOTICE.
The transformed coefficients (LL2, [HL2 LH2, HH2] and [HL1, LH1, HH1]) are divided into a number of
codeblocks. The number of codeblocks depend on the width and height of the image. In this
example the size of each codeblock is 128x128.

The size of each codeblock may vary from scanner to scanner. The size of the codeblock is available
in the XML header in the metadata attribute ‘UFS_IMAGE_DIMENSION_RANGE’, data object
‘UFSImageBlockHeaderTemplate’, see section Image Dimension Ranges.

NOTICE
The Python code sample ‘Extract codeblocks’ demonstrates extractions all codeblocks from an
iSyntax file.

$python extract_codeblocks.py level -p

In this code sample:

• ‘level’ is an integer value that corresponds to the DWT level. You can pass ‘-1’ to extract all
the level’s codeblocks.

• the script internally de-serializes the Block Header Table, see section Image block header
structure. Codeblocks are written in different .ssv files with format: “Codeblock_
{x_coordinate}_{y_coordinate}_{color_component}_{scale}_{block_header_template}.ssv”

• the script reads the codeblocks using the block data offset and block size. The codeblocks
are written in .ssv files.

• option ‘–p’ generates the properties .csv file containing a number of DWT levels, codeblock
dimensions and width and height of the WSI image. These properties are required in Matlab
to reconstruct the original WSI image.

Reconstruct the original image
Pixel data can be reconstructed from the codeblocks according the specifications of the image
compression format described in the ‘Pathology iSyntax Compression’ from Dr. Bas Hulsken,
available on the webportal:
www.openpathology.philips.com/index.php/resources/#isyntax

To reconstruct the original image:

• decompress the codeblocks using the Hulsken decompression method
• identify the spatially related codeblocks by using the image block header structure (x

coordinate, y coordinate, color channel, scale (DWT level) and coefficient), see section Image
block header structure)

• stitch the spatially related codeblocks together to create the coefficients of the respective
color channels

• perform a two-level inverse DWT
• post-processing: transforms the YCoCg colorspace to an RGB colorspace (the color space of

the WSI image is stored in XML header, see section Image Dimensions)

In the following example, an inverse DWT is performed for the LL2, HL2, LH2, HH2 coefficients to
create LL1. An inverse DWT is then performed for this generated LL1 along with [HL1, LH1, HH1] to
create the original WSI.

http://www.openpathology.philips.com/index.php/resources/#isyntax

Pathology iSyntax image format 30

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Figure 18 Two-level inverse DWT

NOTICE
The following function in Matlab reference code demonstrates the decompression of the
codeblocks.

decompressed_block = hulskendecompress(double(load(file)), 16, [128, 128], 1)

The function parameters are:

• compressed codeblock file path
• number of bits, 16
• codeblock dimension (this value can vary), [128, 128]
• hulsken compression version, 1

The following function in Matlab reference code demonstrates the inverse DWT.

reconstructed_LL = wavelet2dilift(LL, HL, LH, HH, LS, width, height)

The function parameters are:

• coefficients, LL, HL, LH, HH
• lifting scheme (LS), iSyntax uses rbio2.2 (legall5/3)
• width
• height

Pathology iSyntax image format 31

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

The following function in Matlab reference code demonstrates post-processing: transforms YCoCg
color space to RGB color space

image_out = ycocg2rgb(image_in)

The function parameters are:

• pass image

The following function in Matlab reference code demonstrates post-processing: transforms RGB
color space to YCoCg color space

image_out = rgb2ycocg(image_in)

The function parameters are:

• pass image

The following function in Matlab reference code demonstrates decompressing of all the codeblocks
to the original image in one go. This reference code performs the decompression, then stiches the
codeblocks to generate the coefficients level wise and color channel wise, and then performs IDWT
to generate the original WSI.

reconstructed_image = reconstruct_image(<foldername>)

The function parameters are:

• folder name, containing all the codeblocks extracted from python sample along with the
properties of the iSyntax file

Pathology iSyntax image format 32

45
55

 2
07

 4
39

41
_2

02
0_

04
_2

4

Appendix
Coordinate system
The WSI and the macro image have the same orientation.

Figure 19 Coordinate system

 Printed in the Netherlands
4522 207 43941 * 2020-APR-24 en

Philips
Philips Medical Systems Nederland B.V.
Veenpluis 6
5684 PC Best
The Netherlands

www.openpathology.philips.com

http://www.openpathology.philips.com/

	1 Introduction
	Image pipeline overview
	About this document
	Notice
	Notice

	License

	2 iSyntax data model
	3 iSyntax file
	XML Header
	End of Table (EOT)
	Seektable
	Codeblocks

	4 XML Header
	Node types
	Leaf node
	Branch node
	Array node

	Metadata attributes
	DPUfsImport node
	Scanned Image node
	Image General Header
	Image Dimensions
	Image Dimension Ranges
	Block Header Templates
	Block Headers
	Image Color Management
	Wavelet Quantizer Setting
	Wavelet Quantizer Setting Per Level

	5 Codeblocks
	Codeblock structure
	Codeblock packaging scheme
	Image block header structure
	Codeblocks representation for WSI

	6 Seektable structure
	Zero padding

	7 Reading macro images and label images
	Label image
	Macro Image

	8 Reading WSI images
	Extract codeblocks from the iSyntax file
	Reconstruct the original image

	Appendix
	Coordinate system

