o
i

Philips’ iSyntax for Digital Pathology
Image format

1 Introduction

Digital pathology requires large amounts of gigapixel images to be generated, stored, and delivered
with medical grade image quality and high performance to provide a seamless digital workflow.
Philips uses the iSyntax format, which is leveraging Philips’ leading IntelliSpace’s iSyntax image
representation for radiology images. The iSyntax format has distinguished features for storing
pathology Whole Slide Images (WSI).

Philips is committed to an open pathology platform, enabling pathologists and researchers to unlock
the power of digital pathology using Philips IntelliSite Pathology Solution (PIPS). All information and
resources about the iSyntax format can be found on the Open Pathology Portal at
www.openpathology.philips.com.

Image pipeline overview

The image pipeline utilized in Philips’ solutions for digital pathology such as PIPS is built on iSyntax.
The pipeline encompasses all the steps from creating and storing WSI data when scanning to
displaying them to users. The following three steps are the main parts of the iSyntax image pipeline:

1. Write — compression of data in the iSyntax format and storing it

2. Read —reading of iSyntax data and decompressing it to create a source image

3. Post processing — processing of the source image to optimize for display to users

(1) iSyntax Write

i VCo | . Discrete Wavelet e
W oy (e lialr ettt eln) Transformation (DWT) e

Scan
= | iSyntax
s==| File

(2) iSyntax Read

RGB color conversion inverse Discrete Wavelet Decompression
Transformation (IDWT) P
F Source
Y Image
(3) Post-Processing for Image Viewing

Local Contrast Sharpenin
Enhancement (LCE) pening

Figure 1 iSyntax image pipeline

Pathology iSyntax image format

4555 207 43941_2020_04_24

https://www.openpathology.philips.com/

About this document

This document describes the file format of iSyntax, i.e. the structure of iSyntax files generated by
PIPS.

For more information on the iSyntax image format, refer to the white paper 'Philips iSyntax for
Digital Pathology' from Dr. Bas Hulsken, available on the webportal:
www.openpathology.philips.com/index.php/resources/#isyntax

Notice

This document contains source code, which is available as code samples compatible with Python and
reference codes compatible with Octave and Matlab. The code samples/reference codes are verified
with:

e Python3.7
e (Octave5.1
e Matlab9.8

All code samples and reference codes listed in this document are available for download from the
Open Pathology Portal at www.openpathology.philips.com.

Please note that the implementation provided in this document is for demonstration purposes and
not optimized for maximum performance, nor can it handle very large inputs.

Notice

All the brand and product names are trademarks of their respective companies.

License
Copyright 2020 Koninklijke Philips N.V.

Subject to the conditions recited below, a free copyright license is hereby granted to you to copy and
redistribute this document as a whole only (you shall not copy or redistribute parts of this
document). Your redistribution(s) of this document as a whole must retain the above copyright
notice, this license and the following disclaimer.

THIS LICENSE AND THE CONTENT IN THIS DOCUMENT ARE PROVIDED "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL PHILIPS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS LICENSE
OR DOCUMENT IN ANY FORM, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Pathology iSyntax image format 3

4555 207 43941_2020_04_24

http://www.openpathology.philips.com/index.php/resources/#isyntax
http://www.openpathology.philips.com/

iSyntax data model

The iSyntax data model represents the whole slide as three images:
e |abel image, containing slide identification information.
e macro image, providing a thumbnail view of the slide.
e Whole Slide Image (WSI), representing the tissues region of interests, which are scanned at
high resolution and stored using the iSyntax compression format.

The data model also contains metadata related to the parameters necessary for image acquisition
e.g. scanning protocol, DICOM attributes and acquisition attributes.

T “ e

Macro origin Q: Label origin

~
£
s
e

Macro image * ‘ ‘ “ B3 |Label image

£ . . —

WSl image ‘ ‘

Figure 2 Image representation by sub-images

Pathology iSyntax image format

4555 207 43941_2020_04_24

3 iSyntax file

The iSyntax file is designed to contain both metadata and pixel data corresponding to the iSyntax
data model. An iSyntax file is represented by an XML header, End of Table (EOT), optionally a
seektable and codeblocks.

XML EOT SEEKTABLE

CODEBLOCKS
HEADER 3 bytes (optional) © 0

Figure 3 Primary representation of an iSyntax file

XML Header

The XML Header contains the metadata related to the properties describing:
e JPEG image data for the label image, see section Label image
e JPEG image data for the macro image, see section Macro Image
o the WSI

The metadata is stored in UTF-8 encoded XML format.

For more information, see section XML Header.

End of Table (EOT)

The EOT is a marker to indicate that the stream containing the XML Header has ended. EOT
represented by 3 characters.

Hex Representation

“\r \n \x04” 0D 0A 04

Table 1 EOT characters

Seektable

The Seektable is a serialized representation of the block headers as per DICOM standard. It contains

the offset and size of the codeblocks.
For more information, see section Seektable structure.

Pathology iSyntax image format

4555 207 43941_2020_04_24

Codeblocks

The recursive Discrete Wavelet Transform (DWT) of the RAW pixel data creates a multiresolution
pyramid. Each level in the pyramid is divided into N x N size codeblocks. The codeblocks contain the
compressed coefficients. For more information, see section Codeblocks.

Note that the size of the codeblock may vary from scanner to scanner. You can get the size of the
codeblock from the XML header in UFS_IMAGE_DIMENSION_RANGE in
UFSImageBlockHeaderTemplate dataobject.

For more information, see section Image Dimension Ranges.

Figure 4 WSI-images pyramid representation

Pathology iSyntax image format

4555 207 43941_2020_04_24

4 XML Header

The XML Header contains the metadata related to the properties describing the WSI and the JPEG
image data for both label image and macro image
The metadata is stored in UTF-8 encoded XML format.

The XML Header of the iSyntax file uses three different types of nodes: leaf nodes, branch nodes and
array nodes, see Node types.

The root node is a branch node, type ‘DataObject’ and named ‘DPUfsimport’. For more information,
see section DPUfsImport node.

Node types

Leaf node

A leaf node is a node with no child nodes. Generally, a leaf node contains an element named
‘Attribute’. Each leaf node contains four attributes in the same order: Name, Group, Element and
PMSVR.

Example of a leaf node:

<Attribute Name="DICOM_MANUFACTURER" Group="0x0008" Element="0x0070"
PMSVR="IString">PHILIPS</Attribute>

Branch node

A branch node is a node with child nodes, it contains leaf nodes. Generally, a branch node contains
an element named ‘DataObject’ and has one attribute: ‘ObjectType’.

Example of a branch node:

<DataObject ObjectType="DPScannedImage">

</DatalObject>

Array node

Array nodes contains one or more similar type of leaf/branch nodes.

Example of an array node

<Attribute Name="UFS_IMAGE_DIMENSION_RANGES" Group="0x301d" Element="0x200a"
PMSVR="IDataObjectArray">
<Array>
<DataObject ObjectType="UFSImageDimensionRange">
<Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0@ 1 9215</Attribute>
</DataObject>
<DataObject ObjectType="UFSImageDimensionRange">
<Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 8191</Attribute>
</DataObject>

Pathology iSyntax image format 7

4555 207 43941_2020_04_24

<DataObject ObjectType="UFSImageDimensionRange">
<Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 2</Attribute>
</DatalObject>
<DataObject ObjectType="UFSImageDimensionRange">
<Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 3</Attribute>
</DataObject>
<DataObject ObjectType="UFSImageDimensionRange">
<Attribute Name="UFS_IMAGE_DIMENSION_RANGE" Group="0x301d" Element="0x200b"
PMSVR="IUInt32Array">0 1 3</Attribute>
</DataObject>
</Array>
</Attribute>

Metadata attributes

All the attributes with a name starting with ‘DICOM’ are taken from the DICOM standard. For these
attributes, the Group and Element form the 4-byte DICOM tag.

All the attributes with a name not starting with ‘DICOM’ are tags which do not exist in the DICOM
standard. These are Philips private tags, required for specifying the digital pathology WSI format.

Attributes are composed of:
e Name: the name of the attribute.
e Group: in the format (0xXXXX) in hexadecimal value.
e Element: in the format (0OxXXXX) in hexadecimal value,
e PMSVR: describes the data type and format of the attribute value.
e Value: contains the attribute’s data.
Group and Element identify an attribute.

The basic attribute structure is:

<Attribute Name="DICOM_MANUFACTURER" Group="0x0008" Element="0x0070"
PMSVR="IString">PHILIPS</Attribute>

The following table shows the list of attributes with group tag, element tag and value type.

Attribute Name Group Element Value type
tag tag

DICOM_ACQUISITION_DATETIME 0008 002A IString
DICOM_MANUFACTURER 0008 0070 IString
DICOM_MANUFACTURERS_MODEL_NAME 0008 1090 IString
DICOM_DERIVATION_DESCRIPTION 0008 2111 IString
DICOM_DEVICE_SERIAL_NUMBER 0018 1000 IString
DICOM_SOFTWARE_VERSIONS 0018 1020 IStringArray
DICOM_DATE_OF _LAST_CALIBRATION 0018 1200 IStringArray
DICOM_TIME_OF_LAST_CALIBRATION 0018 1201 IStringArray
DICOM_SAMPLES_PER_PIXEL 0028 0002 IUINt16
DICOM_BITS_ALLOCATED 0028 0100 IUInt16
DICOM_BITS_STORED 0028 0101 IUINt16
DICOM_HIGH_BIT 0028 0102 IUInt16

Pathology iSyntax image format

4555 207 43941_2020_04_24

Attribute Name Group Element Value type

tag tag
DICOM_ICCPROFILE 0028 2000 IString
DICOM_LOSSY_IMAGE_COMPRESSION 0028 2110 IString
DICOM_LOSSY_IMAGE_COMPRESSION_RATIO 0028 2112 IDouble
DICOM_LOSSY_IMAGE_COMPRESSION_METHOD 0028 2114 IString
PIIM_DP_SCANNER_RACK_NUMBER 101D 1007 IUInt16
PIIM_DP_SCANNER_SLOT_NUMBER 101D 1008 IUInt16
PIIM_DP_SCANNER_OPERATOR_ID 101D 1009 IString
PIIM_DP_SCANNER_CALIBRATION_STATUS 101D 100A IString
PIM_DP_UFS_INTERFACE_VERSION 301D 1001 IString
PIM_DP_UFS_BARCODE 301D 1002 IString
PIM_DP_SCANNED_IMAGES 301D 1003 IDataObjectArray
PIM_DP_IMAGE_TYPE 301D 1004 IString
PIM_DP_IMAGE_DATA 301D 1005 IString
PIM_DP_SCANNER_RACK_PRIORITY 301D 1010 IUInt16
DP_COLOR_MANAGEMENT 301D 1013 IDataObjectArray
DP_WAVELET_QUANTIZER_SETTINGS_PER_COLOR 301D 1019 IDataObjectArray
DP_WAVELET_QUANTIZER_SETTINGS_PER_LEVEL 301D 101A IDataObjectArray
DP_WAVELET_QUANTIZER 301D 101B IUInt16
DP_WAVELET_DEADZONE 301D 101C IUInt16
UFS_IMAGE_GENERAL_HEADERS 301D 2000 IDataObjectArray
UFS_IMAGE_NUMBER_OF BLOCKS 301D 2001 UInt32
UFS_IMAGE_DIMENSIONS_OVER_BLOCK 301D 2002 UInt16Array
UFS_IMAGE_DIMENSIONS 301D 2003 IDataObjectArray
UFS_IMAGE_DIMENSION_NAME 301D 2004 IString
UFS_IMAGE_DIMENSION_TYPE 301D 2005 IString
UFS_IMAGE_DIMENSION_UNIT 301D 2006 IString
UFS_IMAGE_DIMENSION_SCALE_FACTOR 301D 2007 IDouble
UFS_IMAGE_DIMENSION_DISCRETE_VALUES_STRING 301D 2008 IStringArray
UFS_IMAGE_BLOCK_HEADER_TEMPLATES 301D 2009 IDataObjectArray
UFS_IMAGE_DIMENSION_RANGES 301D 200A IDataObjectArray
UFS_IMAGE_DIMENSION_RANGE 301D 200B UInt32Array
UFS_IMAGE_DIMENSIONS_IN_BLOCK 301D 200C IUInt16Array
UFS_IMAGE_BLOCK_HEADERS 301D 200D IDataObjectArray
UFS_IMAGE_BLOCK_COORDINATE 301D 200E IUInt32Array
UFS_IMAGE_BLOCK_COMPRESSION_METHOD 301D 200F IString
UFS_IMAGE_BLOCK_DATA_OFFSET 301D 2010 IUint64
UFS_IMAGE_BLOCK_SIZE 301D 2011 IUint64
UFS_IMAGE_BLOCK_HEADER_TEMPLATE_ID 301D 2012 IUInt32
UFS_IMAGE_BLOCK_HEADER_TABLE 301D 2014 IString

Table 2 List of Attributes

Pathology iSyntax image format

4555 207 43941_2020_04_24

DPUfsimport node

De DPUfsImport node is the root node with the structure:

<DataObject ObjectType="DPUfsImport">

</DatalObject>

The following table shows the child nodes part of the DPUfsImport.

Parent Data Object: DPUfsimport

Attribute Group Element Value Node | Description Range
tag tag type type
DICOM_MANUFACTURER 0008 0070 I1String Leaf DICOM data element “PHILIPS”
dicom:LO (0008,0070)

(Value Multiplicity:1)

DICOM_ACQUISITION 0008 002A I1String Leaf Date & Time when slide Minimum:
_DATETIME transfer started (XML 1900-01-01T00:00:00

Header created).

DicomAcquisitionDate and | Maximum:

DicomAcquisitionTime are | 2154-12-31T23:59:59

combined into one single
element
DICOM_MANUFACTURERS |0008 1090 I1String Leaf DICOM data element “UFS Scanner”
_MODEL_NAME (0008,1090)

(Value Multiplicity:1)
DICOM_DEVICE_SERIAL 0018 1000 I1String Leaf DICOM data element “FMTOO19’
_NUMBER (0018,1000)

(Value Multiplicity: 1) Note: Value is configurable
in UFS during
manufacturing

DICOM_SOFTWARE 0018 1020 IStringArra | Leaf Software versions of two
_VERSIONS y subcomponents.

Note: There are no

limitations on the number of

entries in the list but also no

limitations on format/values
of the strings in the software
versions list.
DICOM_DATE_OF_LAST 0018 1200 IStringArra | Leaf Date & Time of last
_CALIBRATION y calibration by a service

engineer
DICOM_TIME_OF_LAST 0018 1201 IStringArra | Leaf Date &Time of last
_CALIBRATION y calibration by a service

engineer
PIIM_DP_SCANNER_RACK |101D 1007 IUInt16 Leaf UFS store position in which |[1..15]
_NUMBER the rack was placed and

from which the slide was

taken.

PIIM_DP_SCANNER_SLOT |101D 1008 IUInt16 Leaf Position in the rack where [1..20]
_NUMBER the slide was stored.
PIM_DP_UFS_INTERFACE |301D 1001 I1String Leaf Unique identifier of the “5.0”
_VERSION dicom:LO entire image transfer format
PIM_DP_UFS_BARCODE 301D 1002 IString Leaf Base64 encoded Barcode N/A

value

Pathology iSyntax image format

10

4555 207 43941_2020_04_24

Attribute Group Element Value Node | Description Range

tag tag type type
PIM_DP_SCANNED_IMAGE |301D 1003 IDataObje |Array N/A
S ctArray
PIIM_DP_SCANNER 101D 1009 I1String Leaf “Operator ID”
_OPERATOR_ID
PIIM_DP_SCANNER 101D 100A I1String Leaf Boolean indicates whether |“OK” “NOT OK”
_CALIBRATION_STATUS last calibration attempt

failed.

PIM_DP_SCANNER_RACK |301D 1010 IUINnt16 Leaf
_PRIORITY

Table 3 DPUfsImport node attributes

Scanned Image node

Parent Data Object: DPScannedimage

Attribute

Group
tag

Element
tag

Value
type

Node
type

Description

DICOM_DERIVATION 0008 2111 IString Leaf Single string containing | RAW: "Philips UFS V%s”
_DESCRIPTION image format description |iSyntax: “Philips UFS V%s |
Quality=%d | DWT=%d |
Compressor=%d”
%s= UFS version
(RAW+iSyntax)
%d: Sucomponent quality
(iSyntax only)
%d: Transformation Method
(iSyntax only) use 1 for
legal53
%d: Compression Method
(iSyntax only) : use 16 for
hulsken
DICOM_LOSSY_IMAGE 0028 2110 IString Leaf Boolean value: “00”
_COMPRESSION 0 means lossless “01”
1 means lossy
DICOM_LOSSY_IMAGE 0028 2112 IDouble Leaf Describe lossy image 1234
_COMPRESSION_RATIO quality/bit reduction
Actual compression ratio
is unknown, value =1
means lossless:
Don’t use zero as
compression.
1 means no-
compression
2 means a factor of 2
compressed.
DICOM_LOSSY_IMAGE 0028 2114 IString Leaf Specify custom “PHILIPS _DP_1 0"
_COMPRESSION compression engine.
_METHOD Combination of
ImageCompressionMeth
od and
BlockCompressionMetho
d defines exact
algorithm.

Pathology iSyntax image format

11

4555 207 43941_2020_04_24

Attribute

Element
tag

Value
type

Description

PIM_DP_IMAGE_TYPE 301D 1004 IString Leaf Identifies the image type: | “MACROIMAGE”
Macro, label, WSI “LABELIMAGE”
“WSI”
PIM_DP_IMAGE_DATA 301D 1005 IString Leaf Contains encoded JPEG | NA
file of Label Image or
Macro Image
DP_COLOR 301D 1013 IDataObje |Array | Specify color At most 1 color management
_MANAGEMENT ctArray management per image. |object is available per
scanned image.
DP_WAVELET 301D 1019 IDataObje |Array |Per color componenta | Typical 2 objects: first for
_QUANTIZER_SETTINGS _ ctArray list of quantizer settings. |luminance, second for the
PER_COLOR First entry belongs to other color components. Only
first color component applicable to WSI.
etc... The typical order
for colors is either Y-Co-
Cg or R-G-B
UFS_IMAGE_GENERAL 301D 2000 IDataObje |Array |General settings NA
_HEADERS ctArray regarding the WSI data
stream.
Image General headers
is allowed to contain only
one Image General
Header.
UFS_IMAGE_BLOCK 301D 2009 IDataObje |Array | Settings shared by all N=1
_HEADER_TEMPLATES ctArray block headers, can be
overridden in individual | Multiple templates may exit:
block headers. Each ImageBlockHeader
Describes properties might reference to one of
common to all image these templates. A block
blocks(tiles). The header can be fully described
common properties are | by its content.
all properties, except the
coordinate of the Image
block (tile). Image Block
Header templates is
allowed to contain only
one Image Block Header
Template.
UFS_IMAGE_BLOCK 301D 200D IDataObje |Array |Contains one 1l...n
_HEADERS ctArray ImageBlockHeader ImageBlockHeaders and
object for each image ImageBlockheadertable are
block in the image. The | mutually exclusive; exactly
order of Image Block one must be present
Header objects in the list
corresponds to the order | N must equal to
of the image block pixel |ImageNumberOfBlocks
data in the WSI data
stream.
UFS_IMAGE_BLOCK 301D 2014 IString Leaf Similar to ImageBlockHeaders and

_HEADER_TABLE

ImageBlockHeaders
except that each
ImageBlockHeader is in
binary format: the entire
table is base64 encoded.

ImageBlockHeaderTable are
mutually exclusive; exactly
one must be present.
Number of
ImageBlockHeaders must
equal to
ImageNumberOfBlocks

Table 4 DPScannedimage node attributes

Pathology iSyntax image format

12

4555 207 43941_2020_04_24

Image General Header

Parent Data Object: UFSImageGeneralHeader
Attribute Group Element ‘ Value Node ‘ Description Range
tag tag type type
UFS_IMAGE_NUMBER_OF | 301D 2001 IUInt32 Leaf Total number of 0..2732-1
_BLOCKS datablocks (tiles) in WSI
data stream.
UFS_IMAGE_DIMENSIONS | 301D 2002 IUInt16Arr | Leaf Defines interpretation of |0..4
_OVER_BLOCK ay ImageBlockCoordinate |RAW:
values; it tells for each Fixed value: [0 1 2] meaning
coordinate into which [xy color]
dimension it maps iSyntax:
Fixed value [0 1 2 3 4]
meaning [x y color scale
waveletcoef]
UFS_IMAGE_DIMENSIONS | 301D 2003 IDataObje |Array |List of all dimensions in | RAW: Only “x” “y”
ctArray WSI data stream. “component”
Order of dimensions is | iSyntax: Also include “scale”
fixed by order in this list. |and “waveletcoef” (in this
Dimension 0 is the order)
sequence number of the
first dimension in the list.
UFS_IMAGE_DIMENSION_ | 301D 200A IDataObje |Array Specify the values for the
RANGES ctArray entire image

Table 5 UFSImageGeneralHeader node attributes

Image Dimensions

Parent Data Object: UFSImageDimension

Attribute

UFS_IMA
NAME

Group
tag

GE_DIMENSION_ |301D

Element
tag

2004

Value
type
IString

Node Description

type
Leaf

Name of dimension.

Y
“component”

“scale”
“waveletcoef”

X = short side of slide

Y = long side of slide (see
appendix A)

Component refers to color
Scale=" length of coedfficient”
(use subcomponent
dwt_coefficient)

Waveletcoef = spatial frequency
component

(use subcomponent
coefficient_type)

Pathology iSyntax image format

13

4555 207 43941_2020_04_24

Attribute Group

UFS_IMAGE_DIMENSION_ |301D
TYPE

Element

tag tag

2005

Value
type
IString

Node
type
Leaf

Description

Physical
characteristics of
dimension

Range

“spatial”

“colour component”
“scale”
“waveletcoef”

Spatial: continuous dimension
Colour: discrete named
dimension

Scale: discrete unnamed
dimension

waveletcoef: discrete named
dimension

UFS_IMAGE_DIMENSION_ | 301D
UNIT

2006

IString

Leaf

Unit of dimension
(S.I. name)

“CentiMeter”
“MilliMeter”
“MicroMeter”
“NanoMeter”
“PicoMeter”

Only “MicroMeter” is used

UFS_IMAGE_DIMENSION_ |301D
SCALE_FACTOR

2007

IDouble

Leaf

Physical increment of
dimension

Greater than 0

Scientific format allowed
(Like: “250.0E-03"

UFS_IMAGE_DIMENSION_ | 301D
DISCRETE_VALUES_
STRING

2008

IStringArra
y

Leaf

Names of discrete
dimension values

“RY 4GP B
“y" “Co” “Cg”
“L L7 “LH” “HL” “HH"

RAW colors: Fixed value [‘R” “G”
“B"],

iSyntax lossless colors: Fixed
Value [HRH HGH HBH]

iSyntax lossy colors: Fixed value
[HYH HCOH “Cg"]

iSyntax waveletcoefs: Fixed value
[HLLH HLH" HHL“ HHH“]

Table 6 UFSImageDimension node attribute

Pathology iSyntax image format

14

4555 207 43941_2020_04_24

Image Dimension Ranges

Parent Data Object: UFSImageDimensionRange

Attribute Group Element |Value Node Description Range
tag tag type type
UFS_IMAGE_DIMENSION_ | 301D 200B IUINt32Arr | Leaf Define a range by UFSImageGeneralHeader:
RANGE ay specifying 3 values: - | calculate ranges for entire image:
start value Imagesize = MX x MY
- step value Imagetopleft = (NX, NY)
- end value Scale = max_dwt_level(0-based)
Applicable for Max_dwt_level = (nrOfDwtLevels-
attributes within the | 1)
UFSImageGeneralhe | For RAW 3 entries:
ader dataobject x coordinate: [NX 1 NX+MX-1]
y coordinate: [NY 1 NY+MY-1]
color coordinate: [0 1 2]
for iSyntax 5 entries:
x coordinate: [NX 1 NX+MX-1]
y coordinate: [NY 1 NY+MY-1]
color coordinate: RGB use [0 1 2]
color coordinate: YCoCg use [0 1
2]
scale coordinate: [0 1
max_dwt_level]
waveletcoef coordinate: use [0 1
3
UFS_IMAGE_DIMENSION_ | 301D 200B IUInt32Arr | Leaf Define a range by UFSImageBlockHeaderTemplate:
RANGE ay specifying 3 values: - | specify ranges for block template

start value
- step value
- end value

Applicable for
attributes within the
UFSImageBlockHea
derTemplate
dataobject

For RAW 3 entries:

x coordinate: [0 1 1023]
y coordinate: [0 1 1023]
{blocksize 1024x1024}
color coordinate: [0 1 2]

for iSyntax 5 entries:

x coordinate: [0 1 127] *
(2™dwt_level)

y coordinate: [0 1 127] *
(2™dwt_level)

color coordinate:

R use [0 0 0],
Guse[101],Buse[20 2]
color coordinate:

Y use [000], Couse [101], Cg
[202]

scale coordinate: [dwt_level O
dwt_level]

waveletcoef coordinate: LL use [0
00], elseuse [11 3]

Table 7 UFSImageDimension node attribute

Pathology iSyntax image format

15

4555 207 43941_2020_04_24

Block Header Templates

Parent Data Object: UFSImageBlockHeaderTemplate

Attribute Group Element ‘ Value Node Description Range
tag tag type type
DICOM_SAMPLES_PER_ |0028 0002 IUInt16 Leaf The number of sample 1...n
PIXEL within each pixel
Fixed value: 3
DICOM_BITS_ALLOCATED |0028 0100 IUInt16 Leaf The number of bits that |1... n
one sample occupies.
RAW: Fixed value 8
iSyntax: Fixed value 16
DICOM_BITS_STORED 0028 0101 IUInt16 Leaf The number of used bits |1 ... DicomBitsAllocated
of one sample within the
occupied area RAW: Fixed value 8
iSyntax: Fixed value 16
DICOM_HIGH_BIT 0028 0102 IUInt16 Leaf The position of the MSB | (DicomBitsStored-1)
of each sample within ...(DicomBitsAllocated-1)
the occupied area
RAW: Fixed value 7
iSyntax: fixed value 15
DICOM_PIXEL_ 0028 0103 IUInt16 Leaf 1 indicating signed pixels | 0: unsigned bytes
REPRESENTATION (2's complement) 1: signed bytes
0 indicating un-signed
pixel values
UFS_IMAGE_DIMENSION_ | 301D 200A IDataObje |Array |Contains an Image Specify the values for all
RANGES ctArray Dimension range for blocks that inherit from this
each dimension in the BlockHeaderTemplate
block.
Length(ImageDimension
Ranges) =
length(ImageDimensions
UFS_IMAGE_DIMENSION_ | 301D 200C IUInt16Arr | Leaf Defines mapping from RAW: Fixed value: [2 1 0]
IN_BLOCK ay linear sample space to meaning [color y X]
multidimensional space:
index of first iterating iSyntax: Fixed value:[1 0 4]
dimension, ..., until index | meaning [y x waveletcoef]
of last iterating
dimension
UFS_IMAGE_BLOCK _ 301D 200F IString Leaf Specify used method of | Numeric integer value
COMPRESSION_METHOD compression
16 for hulsken compression
19 for hulsken2 compression

Table 8 UFSImageBlockHeaderTemplate node attribute

Pathology iSyntax image format

16

4555 207 43941_2020_04_24

Block Headers

Parent Data Object: UFSImageBlockHeader

Attribute Group Element ‘ Value Node Description Range
tag tag type type
UFS_IMAGE_BLOCK _ 301D 200E IUInt32 Leaf Position of the image x: 0... (108000-1024-1)
COORDINATE Array block(tile) along the y: 0... (308000-1024-1)
dimensions specified in | component: 01 2
the Image General scale: 0 1...(ndwtLevels-1)
Header — Image waveletcoef: 0...3
Dimensions Over Block, |[xy] (in that order, see
DimensionOverBlock)
Note: max image size is
100000x240000 (25x60 mm)
but max slide size is 27x77
mm, and origin is defined at
corner of slide (and not at
corner of scanned image)
For RAW, component is
always 0
UFS_IMAGE_BLOCK _ 301D 2012 IUInt32 Leaf Index of template, given |0... (NrOfTemplates-1)
TEMPLATE_ID in element Image Block
Header Template 0-Based index

Table 9 UFSImageBlockHeader node attribute

Image Color Management

Parent Data Object: DPColorManagement

Attribute Group Element |Value

tag tag type
DICOM_ICCPROFILE 0028 2000 IString

Node
type
Leaf

Description

Base64 encoded ICC
profile

NA

Table 10 DPColorManagement node attribute

Pathology iSyntax image format

17

4555 207 43941_2020_04_24

Wavelet Quantizer Setting

Parent Data Object: DPWaveletQuantizerSettingsPerColor

Attribute Element |Value

Node

tag type type

Description

DP_WAVELET _ 301D 101A IDataObje |Array |Per level a list of NA
QUANTIZER_SETTINGS_ ctArray guantizer settings.
PER_LEVEL First settings belong
to level O, second to
level 1 etc..
Table 11 DPWaveletQuantizerSettingsPerColor node attribute
Wavelet Quantizer Setting Per Level
Parent Data Object: DPWaveletQuantizerSettingsPerLevel
Attribute Group Element |Value Node Description Range
tag tag type type
DP_WAVELET _ 301D 101B IUInt16 Leaf Wavelet coefficients |0 ...n
QUANTIZER are rounded to
27quantizer.
DP_WAVELET _ 301D 101C IUInt16 Leaf Wavelet coefficients |0 ... n
DEADZONE are pulled to zero for
absolute values
greater or equal to
dead zone.

Table 12 DPWaveletQuantizerSettingsPerLevel node attribute

Pathology iSyntax image format

4555 207 43941_2020_04_24

5 Codeblocks

The codeblocks section in the iSyntax file contains the compressed pixel data for the WSI. This data is
generated by a recursive DWT of the original image to create the multiresolution pyramid.

HL HL
LL HL HL
LH | HH
S = = =
LH HH LH HH LH HH
Original DWT -1 DWT -2 DWT -3

Figure 5 Three level recursive DWT

The transformed coefficients HL, LH and HH are spatially aligned and merged together to one block
[HL, LH, HH]. After merging, the LL and [HL, LH, HH] are divided into codeblocks of the respective
color channels. Each codeblock is compressed using the Hulsken compression method.

LL HL

LH HH

Figure 6 Spatially aligned coefficient blocks (HL, LH, HH)

All the attributes describing the WSI are part of the data object ‘Scannedlmage’. For more
information see the table in section Scanned Image node where image type (PIM_DP_IMAGE_TYPE)
will be ‘WSI’.

Pathology iSyntax image format 19

4555 207 43941_2020_04_24

Codeblock structure

Each codeblock starts with a DICOM sequence tag (OxFF FE, OxEO 00) followed by data size of 4-
bytes. The codeblock contains the compressed coefficients of the WSI. All codeblocks data varies in

size.

All values are stored in little-endian representation.

SIZE

OxFFFE, OXxEOOO (4 BYTES)

CODEBLOCK

Figure 7 Codeblock structure

Codeblock packaging scheme

An iSyntax file is composed of

e XML header: metadata related to the properties describing the WSI and other properties.

e EOT: 3 characters’ marker to delimit the XML Header and pixel data part.

e Start of pixel data: DICOM tag (0x7FEO, 0x0010) followed by a 4-byte length of pixel data.
Usually this will be filled with (OxFFFF, OxFFFF) which means unknown length. It’s the start of

the pixel data.
e Seektable: DICOM serialized HeaderBlocks (optional).
e Codeblocks: the compressed coefficients.

All values are stored in little-endian representation

XML Header

EOT (3 bytes)

0x7FEOQ, 0x0010, OxFFFF, OXFFFF (Optional)

0x301D, 0x2015 | SIZE (4 BYTES) SEEKTABLE OxFFFE, OXEODD | 0x0000, 0x0000
(Optional)

OxFFFE, OXEOQO | SIZE (4 BYTES) CODEBLOCK

OxFFFE, OXEOQO | SIZE (4 BYTES) CODEBLOCK

OxFFFE, OXEOQO | SIZE (4 BYTES) CODEBLOCK

Figure 8 iSyntax file detailed representation

Pathology iSyntax image format

20

4555 207 43941_2020_04_24

After the DWT, the coefficients data is divided into 128x128 size codeblocks.
These codeblocks are packaged in the iSyntax files in a specific order.

For each block in LL
— Per Channel : Y, Co, Cg

= Per Level : NumLevels to O (increasing resolution)

* Per Spatially aligned block: Block 1,
HL, LH, HH: coefficients

= L block

Figure 9 Packaging order

The codeblocks lay on a grid, which can span a significantly larger area than the area that is scanned
by the UFS. This grid is a rounded multiple of the block dimensions of the top image in the base
image coordinates. Every grid of a higher level is reduced by factor of 2. The codeblocks are written
from left to right, from top to bottom, from top level to base level and finally the first to last color

channel.

Coeff =2 | Coeffl=1 | Coeff =0 LL(0,0)
Coeffl=2 | Coeffl=1 | Coeffl=0 | 1L(0,0)
Coeffl=2 | Coeffl=1 | Coeff =0 LL(0,0)
Y/R Coeffl=2 | Coeffl=1 | Coeff=0 LL(0,1)
Co/G Coeffl=2 | Coeffl=1 | CoeffL=0 LL(0,1)
Cg/B Coeffl=2 | Coeffl=1 | Coeffl=0 LL(O,l)
|Y/R—| Coeffl=2 | Coeffl=1 | Coeffl=0 | LL(1,0)
W Coeffl=2 | Coeffl=1 | Coeffl=0 | 11(1,0)
Cg/B Coeff Ll=2 | Coeffl=1 | CoeffL=0 LL(l,O)
|Y,q;—| Coeffl=2 | Coeffl=1 | Coeffl=0 | LL(1,1)
m Coeffl=2 | Coeffl=1 | Coeffl=0 | LL(1,1)
Cg/B Coeffl=2 | Coeffl=1 | Coeff =0 |_]_(1,1)

— Grid 1

L Grid 2

—Grid 3

= Grid 4

Figure 10 Packaging structure

Pathology iSyntax image format

0,0

01

Level 2
10 | 11
/ f/ \
/
D,d 01 | 02 ,3
Level 1])[0 11|12 lk-
ﬁ,a 21 | 22 2,3\
30 |31 |02 |33
/ \
J':l ‘\
0 9(1 02|03 |04(05 0\5 07
1,0 ﬁ,1 12|13 | 14|15 1‘% 17
20 || 2P1%% | 25 | 24 | 26086 07
30/ 3102]|33]|34]|35]|06 [07
Level 0 4, 41|02 |43 | 44|45 | 06 |07
5;5 51|02 |53 |54]55]|06 d,\-,r
GFiff 3 AT
ﬁ-ﬂ 61[02)]|63)|64]65]06 0,;\
70|71 |02|73 |74]| 75|06 |07

21

4555 207 43941_2020_04_24

Image block header structure

The attribute UFS_IMAGE_BLOCK_HEADER_TABLE (301D, 2014) for WSI’s, contain the base64
encoded DICOM serialized block header values. This attribute contains the information of all block

headers.

Each codeblock contains a block header, which is required to locate the codeblock in a file.

A block header is composed of:

e Block Coordinates: composed of x coordinate, y coordinate, color channel, scale (dwt level),

Coefficient (0 for LL, 1 for HL, LH, HH).

e Block data offset: file offset for codeblock.
e Block Size: size of the codeblock.
e Block Header Template Id: the properties common to all codeblocks (image blocks). See the

table in section Block Header Templates.

Sequence element Block Coordinates
Size of block oL Color
FFFE, EO0O Abiies 301D,200E 4 bytes X coordinate | Y coordinate Combornt Scale Coefficient
4 bytes (size=72) 4 bytes (size = 20) 4 bytes 4 bytes Abytes 4 bytes 4 bytes)
o
|
ock Data Offset Block Size Block 3,
ize Size Size I
01D, 2010 ; 301D, 2011 4 bytes Value 301D, 2012 4bytes Value SI
b 4 4 bytes 4b o
e (size = 8) Bl il (size = 4) yige b
¢
~
Q
I
<

Figure 11 Image block header structure

The images generated by the UFS do not have full information in the image block header table. i.e.
Block Data Offset and Block Size information will not present. This information is stored as part of

the seektable.

It is essential to map this information by knowing the order of the codeblocks in the seektable. See

section Seektable structure.

Pathology iSyntax image format

22

Codeblocks representation for WSI

WSI’s can have multiple scanned tissue regions as shown by the red color rectangles in the figure
below. A grid of codeblocks represent the WSI. The coordinates for the codeblocks that are outside
the scanned tissue boundaries (shown in a yellow color in the figure below) are set to zero in the
block header table. These codeblocks are not written in the iSyntax file.

=1

Figure 12 Image block header structure

Pathology iSyntax image format

23

4555 207 43941_2020_04_24

6 Seektable structure

Seektables refer to the serialized representation of headerblocks as per the DICOM standard.
Headerblocks contain the offset and size of the codeblocks. The seektable is an optional part in the
iSyntax file.
If the seektable is present, the image block header information is partly stored as part of the
attribute UFS_IMAGE_BLOCK_HEADER_TABLE (301D, 2014) and partly by the seektable. It is
essential to map the block header information and seektable information to read the codeblocks.

For more information, see section Image block header structure.
Seektables start with a DICOM tag 0x301D, 0x2015.
Seektables are composed of codeblock headers. Each codeblock header is composed of the
ImageBlockDataOffset (0x301D, 0x2010) and ImageBlockSize (0x301D, 0x2011).

Description

Start of seektable

Start

Codeblock 0

ImageBlockDataOffset

ImageBlockSize

Codeblock 1

Codeblock N-1

Endoftable

N e

group

element

size

group

element

size

oD

elerment

sire

data

proup

alement

size

data

group

elament

size

Size [bytes]

2

2

4

2

2

2

4

2

4

B

2

2

Value

3010

2015

OxFFFFFEFF

OuFFFE

OEQOD

32

3010

2010

B

<offset>

Ox3010

Ox2011

8

<sipe>

OuFFFE

OMEODD

Figure 13 Seektable structure

Zero padding

In order to map the spatial arrangement of codeblocks with respect to the WSI, it is useful to
understand the concept of zero padding. Zero padding is applied to the input image to create a WSI.

At first, the image is padded uniformly on all sides. The amount of padding depends on the number
of DWT levels. It is calculated as per the equation below.
The wavelet (PerLevelPadding) and the number of DWT-levels determine the number of padded
black pixels. Note that for the wavelet transformation Legall5/3 the PerLevelPadding is 3.

Padding = (PerLevelPadding<< NrLevels)— PerLevelPadding

Equation 1 Codeblock grid dimensions

Secondly, the image is padded further on the right and bottom side. This to ensure that the

dimensions of the image are a multiple of the codeblock size. The base level image needs to be

sufficiently padded to make sure that the image dimensions for the highest DWT level are also a

multiple of the codeblock size
The codeblock grid dimensions (gridWidth x gridHeight) are a function of the image dimensions

(width x height), the codeblock dimensions (BlockWidth x BlockHeight) and the number of
DWT-levels performed.
The width and height are specified in the XML Header.

gridWidth = ((

gridHeight :(

width + (BlockWidth<< NrLevels)-1)

BlockWidth << NrLevels

(height + (BlockHeight<< NrLevels)—1)

j << (NrLevels —1)

BlockHeight << NrLevels

Equation 2 Codeblock grid dimensions

Pathology iSyntax image format

} << (NrLevels - 1)

24

4555 207 43941_2020_04_24

Grid Width
A

— . X Grid Height

o

/

/
/ 2]

Padded black pixels /

Codeblocks /

Figure 14 Padding and codeblock grid

The number of codeblocks that are encoded in the seektable can be significantly greater than the
actually stored codeblocks. The actual number of codeblocks is determined by the area that is
scanned by the scanner.

Every grid of a higher level is reduced by a factor 2. This grid also determines the IDs of the
codeblocks, which are the unique numbers that define the position of a codeblock. This codeblock ID
is counted from left to right, from top to bottom, from the base level to the top level and finally from
the first to the last color channel of the codeblock grid.

Pathology iSyntax image format 25

4555 207 43941_2020_04_24

7 Reading macro images and label images

The macro image and the label image are a two-dimensional image. These images can be traversed
over the X and Y range (width and height respectively) with an incremental step size of 1 to access

pixel data.
0y
LA U

o+ - o L

Macro origin Q: Label origin

’L_.i 1|
‘ ‘ “ B |Label image

WSl image ‘ ‘

Figure 15 Image representation by sub-images

Macro image ~

Label image

The label image contains slide identification information. The label image is a JPEG image encoded
with base64 encoding.
All the attributes related to the label image are part of the data object ‘Scannedimage’. Refer to the
table in section Scanned Image node.

e The image type (PIM_DP_IMAGE_TYPE) will be ‘LABLEIMAGE’.

e The image data is part of the attribute ‘PIM_DP_IMAGE_DATA'.

<DataObject ObjectType="DPScannedImage">
<Attribute Name="PIM_DP_IMAGE_DATA" Group="0x301D" Element="0x1005"
PMSVR="IString">

</Attribute>
<Attribute Name="PIM DP_IMAGE_TYPE" Group="0x301D" Element="0x1004"
PMSVR="IString">LABELIMAGE</Attribute>

</DataObject>

NOTICE
The Python code sample ‘Extract label image’ demonstrates to extract the label image from an

iSyntax file.
$python extract_macro_label image.py “<iSyntax file path>”

Pathology iSyntax image format 26

4555 207 43941_2020_04_24

Macro Image

The macro image provides a thumbnail view of the slide. The macro image is a JPEG image encoded
with base64 encoding.
All the attributes related to macro image are part of the data object ‘Scannedimage’. Refer to the
table in section Scanned Image node.

e The mage type (PIM_DP_IMAGE_TYPE) will be ‘MACROIMAGE’

e The image data is part of the attribute ‘PIM_DP_IMAGE_DATA'.

<DataObject ObjectType="DPScannedImage">

<Attribute Name="PIM DP_IMAGE_DATA" Group="0x301D" Element="0x1005"
PMSVR="IString">

</Attribute>

<Attribute Name="PIM_DP_IMAGE_TYPE" Group="0x301D" Element="0x1004"
PMSVR="IString" >MACROIMAGE</Attribute>

</DataObject>

NOTICE
The Python code sample ‘Extract macro image’ demonstrates to extract the macro image from an

iSyntax file.
$python extract_macro_label image.py “<iSyntax file path>”

Pathology iSyntax image format

27

4555 207 43941_2020_04_24

8 Reading WSI images

The compressed pixel data are stored as codeblocks in the iSyntax file. This section demonstrates the

following with the help of sample codes:

1. Extraction of codeblocks from an iSyntax file, for more information see section Extract

codeblocks from the iSyntax file.

2. Reconstruction of original image from the codeblocks, for more information see section

Reconstruct the original image.

The lowest resolution image is reconstructed using LL coefficient codeblocks. To reconstruct the
image at the higher resolution levels, a recursive inverse DWT is required.

Extract codeblocks from
iSyntax file —) iSyntax file
(Python scripts)

Figure 16 Reconstructing WSI image from an iSyntax file

Reconstruct Original

image —)

(Matlab reference code)

The following image shows an iSyntax file containing 2 levels of inverse DWT.

Reconstructed
Image file

LL2 HL2
HL1 IDWT LL1 HL1 IDWT
LH2 HH2
=) = Original
Image
LH1 HH1 LH1 HH1

LL2 Coefficients
Per color channel

I:I CodeBlock

Figure 17 Two-level inverse DWT

Pathology iSyntax image format

28

4555 207 43941_2020_04_24

Extract codeblocks from the iSyntax file

Codeblocks can be extracted from the iSyntax file, see the Python code sample in the NOTICE.

The transformed coefficients (LL2, [HL2 LH2, HH2] and [HL1, LH1, HH1]) are divided into a number of
codeblocks. The number of codeblocks depend on the width and height of the image. In this
example the size of each codeblock is 128x128.

The size of each codeblock may vary from scanner to scanner. The size of the codeblock is available
in the XML header in the metadata attribute ‘UFS_IMAGE_DIMENSION_RANGE’, data object
‘UFSImageBlockHeaderTemplate’, see section Image Dimension Ranges.

NOTICE
The Python code sample ‘Extract codeblocks” demonstrates extractions all codeblocks from an

iSyntax file.
$python extract_codeblocks.py level -p

In this code sample:

e ‘level’ is an integer value that corresponds to the DWT level. You can pass ‘-1’ to extract all
the level’s codeblocks.

e the script internally de-serializes the Block Header Table, see section Image block header
structure. Codeblocks are written in different .ssv files with format: “Codeblock_
{x_coordinate}_{y_coordinate} {color_component} {scale} {block_header_template}.ssv”

e the script reads the codeblocks using the block data offset and block size. The codeblocks
are written in .ssv files.

e option ‘-p’ generates the properties .csv file containing a number of DWT levels, codeblock
dimensions and width and height of the WSI image. These properties are required in Matlab
to reconstruct the original WSI image.

Reconstruct the original image

Pixel data can be reconstructed from the codeblocks according the specifications of the image
compression format described in the ‘Pathology iSyntax Compression’ from Dr. Bas Hulsken,
available on the webportal:

www.openpathology.philips.com/index.php/resources/#isyntax

To reconstruct the original image:

e decompress the codeblocks using the Hulsken decompression method

e identify the spatially related codeblocks by using the image block header structure (x
coordinate, y coordinate, color channel, scale (DWT level) and coefficient), see section Image
block header structure)

e stitch the spatially related codeblocks together to create the coefficients of the respective
color channels

e perform a two-level inverse DWT

e post-processing: transforms the YCoCg colorspace to an RGB colorspace (the color space of
the WSl image is stored in XML header, see section Image Dimensions)

In the following example, an inverse DWT is performed for the LL2, HL2, LH2, HH2 coefficients to
create LL1. An inverse DWT is then performed for this generated LL1 along with [HL1, LH1, HH1] to
create the original WSI.

Pathology iSyntax image format 29

4555 207 43941_2020_04_24

http://www.openpathology.philips.com/index.php/resources/#isyntax

iy

Hulsken
Decompression

CodeBlocks

[LL2]

Inverse Transform

Figure 18 Two-level inverse DWT

NOTICE

[HL2 LH2 HH2]
[Perform IDWT Level 2
ﬂ LL1
[HL1 LH1 HH1] \
[Perform IDWT Level 1
:::H;:::

Y

Color Space Transform
{YCoCg to RGB)

h 4

Original Image

The following function in Matlab reference code demonstrates the decompression of the

codeblocks.

decompressed_block = hulskendecompress(double(load(file)), 16, [128, 128], 1)

The function parameters are:
e compressed codeblock file path
e number of bits, 16

e codeblock dimension (this value can vary), [128, 128]

e hulsken compression version, 1

The following function in Matlab reference code demonstrates the inverse DWT.

reconstructed_LL = wavelet2dilift(LL, HL, LH, HH, LS, width, height)

The function parameters are:
e coefficients, LL, HL, LH, HH

e lifting scheme (LS), iSyntax uses rbio2.2 (legall5/3)

e width
o height

Pathology iSyntax image format

30

4555 207 43941_2020_04_24

The following function in Matlab reference code demonstrates post-processing: transforms YCoCg
color space to RGB color space

image_out = ycocg2rgb(image_in)

The function parameters are:
e passimage

The following function in Matlab reference code demonstrates post-processing: transforms RGB
color space to YCoCg color space

image_out = rgb2ycocg(image_in)

The function parameters are:
e passimage

The following function in Matlab reference code demonstrates decompressing of all the codeblocks
to the original image in one go. This reference code performs the decompression, then stiches the
codeblocks to generate the coefficients level wise and color channel wise, and then performs IDWT
to generate the original WSI.

reconstructed_image = reconstruct_image(<foldername>)

The function parameters are:
o folder name, containing all the codeblocks extracted from python sample along with the
properties of the iSyntax file

Pathology iSyntax image format 31

4555 207 43941_2020_04_24

Appendix

Coordinate system

The WSI and the macro image have the same orientation.

la

©O Slide origin

Figure 19 Coordinate system

Pathology iSyntax image format

32

4555 207 43941_2020_04_24

Philips
Philips Medical Systems Nederland B.V.

Veenpluis 6
5684 PC Best
The Netherlands

www.openpathology.philips.com

Printed in the Netherlands

4522 207 43941 * 2020-APR-24 en

http://www.openpathology.philips.com/

	1 Introduction
	Image pipeline overview
	About this document
	Notice
	Notice

	License

	2 iSyntax data model
	3 iSyntax file
	XML Header
	End of Table (EOT)
	Seektable
	Codeblocks

	4 XML Header
	Node types
	Leaf node
	Branch node
	Array node

	Metadata attributes
	DPUfsImport node
	Scanned Image node
	Image General Header
	Image Dimensions
	Image Dimension Ranges
	Block Header Templates
	Block Headers
	Image Color Management
	Wavelet Quantizer Setting
	Wavelet Quantizer Setting Per Level

	5 Codeblocks
	Codeblock structure
	Codeblock packaging scheme
	Image block header structure
	Codeblocks representation for WSI

	6 Seektable structure
	Zero padding

	7 Reading macro images and label images
	Label image
	Macro Image

	8 Reading WSI images
	Extract codeblocks from the iSyntax file
	Reconstruct the original image

	Appendix
	Coordinate system

