00 o oeooag

« Home -

From mainframe to personal computer
From habby to marketplace
Components of modern operating systems
Operating systems as gatekeepers
Teaching operatling systems
Unit skedch: Teaching operating systems critically

Conclusion: the kernel of computing culiure

0210 04 W AP
11111011

Q8000000600
AT
110 1101

122 211

This chapter claims that computers are responsible for
some of societies' ills (when really it's society which is
responsible for how computers work) : where is the cause
and where is the effect?

Since people are biased, the idea was that 'objective’
programs would improve things - and sometimes they do!
Of course, how 'objective’ the program is depends on who
programs it, but in theory at least a carefully designed and
transparent automatic system will be more fair than one
which has to go through human judgement. Sure, people
can individually correct for bad policy...but they can also
circumvent good policy.

Some of the critiques of this chapter from the book club
are that 'it seems angry about the problems but doesn't
suggest solutions'

For technical details, sources seem to be frequently
secondhand - it is suggested to get more primary sources.

Book club had a discussion about how much this chapter

ic nhAaiit AnAratina evictAame and haune miicrh ic ahAnit niear

This chapter claims that computers are responsible for some of societies' ills (when really it's society which is responsible for how computers work) : where is the cause and where is the effect?

Since people are biased, the idea was that 'objective' programs would improve things - and sometimes they do! Of course, how 'objective' the program is depends on who programs it, but in theory at least a carefully designed and transparent automatic system will be more fair than one which has to go through human judgement. Sure, people can individually correct for bad policy...but they can also circumvent good policy.

Some of the critiques of this chapter from the book club are that 'it seems angry about the problems but doesn't suggest solutions'

For technical details, sources seem to be frequently secondhand - it is suggested to get more primary sources.

Book club had a discussion about how much this chapter is about operating systems and how much is about user interface.

Relevant learning standards

References
ChﬂPfE!‘ ? Camjiuling

Operating Systems

by Amy [Ko, Mara Kirdani-Ryan

Key ideas

* The original computer operating systems were people who

managed a computers limited processing resources.
Have not heard

* The masculine culture of computing emerged from the creation that idea before!
of operating systems.

* . . sounds like it's
Modern operating systems use software components like kernels, all automatic

memory management, process management, network and doesn't give
management, and user interfaces to efficiently and automatically Much role to

: 7 user control
manage a computer's resources and enable multitasking.

not just speed, also
* Operating system design generally prioritizes speed over other protection of I.P. or

: T 3 z giving admins /
values like accessibility, security, privacy, and free speech, parents / bosses fine

grained control
* Teaching operating systems is an opportunity to link a technical

understanding of operating system components with student
values, which often are often in tension with efficiency.

The Eniac was digital

The first digital computers, released in the 19680's, fiilled entire rooms® iggovﬁi;r?v?/é;?he
IBM 610 and Olivetti
Elea, both of which
didn't need a whole
room.

Have not heard that idea before!

sounds like it's all automatic and doesn't give much role to user control

not just speed, also protection of I.P. or giving admins / parents / bosses fine grained control

The Eniac was digital and was 1945....in 1950s there was the IBM 610 and Olivetti Elea, both of which didn't need a whole room.

Thomas Hadgh, e al (318 ENIAC in Action Making and Bemaking the Modern Computer. MIT Pross

. Because they were s0 large, and so expensive, only a few companies and
universities had them — and they usually just had one. What was
essentially a big programmable calculator was therefore also a highly
protected, managed resource, and only some people were allowed access

Using a computer therefore involved the following:

1 First, you needed to think about the program you wanted to execute
on the computer. This might involve sketching that program out —

perhaps on paper — thinking through logic and calculations.

2 After you had a plan, you would translate that program onto paper
punch cards that encoded the logic of your program’s plan into
machine instructions that the computer could understand and

execute. A simple program might fit on a single punch card; more

cormplex programs might be hundreds of punch cards'

L Steven Lubar (197 s Hal Fold Sgindle oF Mutilape® & Cultiaral Hismary of the Puscl Card. b of
American Culture

3 Then, to execute the program, you had to physically carry those
punch cards to the room where the computer was stored, At the entry
to that room was typically a human computer "operator”. On a busy
day, you might wait in line before you could give the operator your
punch cards, or if you did not want to wait, you could come and

submit your program late at night, when demand was lower.

4 The operator’s job was to receive requests to execute programs,

maintain a queue of programs that were waiting to be run, insert

| think you could
also schedule
time?

I think you could also schedule time?

but Linux?

punch cards into the computer, wait for results, and then give the
printed results to the person who submitted the program. Operators
woarked in shifts, often 24/7 to maximize use of the computer’s
precious time, maintain the expensive computer’s hardware, and
respond to any urgent jobs that might take precedence over the

peaple waiting in line.

LA

If you were careful in your programming, after receiving the
program output from the operator, you were done. But more likely,
there was a defect in your program, and you'd have to carefully
analyze what you had encoded in the punch cards — debugging your
program — and once you found the mistake, recreate the punch cards

and follow this process all over again.

In this chapter, we examine this process, and chronicle the shift from
human operators to the modern operating systems we have today, in
which nearly every aspect of an operating system is automated and under
the contrel of a few large private businesses. We then discuss the ways
this shift created the dominant cultures of C5 we have today, and then
end with methods for engaging students in dialogue about these systems,
their creators, and the increasingly large effects these systems have on our

everyday lives

Highlight

but Linux?

From mainframe to personal computer

Early systems for managing a computer's precious resources was entirely a
human one. And because of this, culture crept its way into who used

computers. At the time in the United States, computer programming was really 'low value'?
I mean, NASA

viewed as low-level, low-value, repetitive work, and so operators, and the etc depended on
it...

people writing programs on punch cards, were often women, and often
Black women'®

%R Arvid Melsen (2006} Race and computing The prot
essan of Ebeny Magarine [EEE Anmalz af the Himory of Compuring

. By 1967 computer programming and computer operation was mostly

viewed as a women's profession, and a pood paying one, as women with

Highlight

really 'low value'? I mean, NASA etc depended on it...

rephrase? lots of clauses. Maybe: 'but a good paying
one. At that time, women with a mathmatics education
had few other options than teaching or working for an
insurance company.

education in mathematics were often barred from other professions, only
leaving them lower paying jobs in teaching or insurance companies.
Therefore, just as women were the first computers, and the first

programmers, they were also the first computer operators.

The transition from human operators to software followed the same

capitalist incentives that spurred the invention of cost-efficient digital
it wasn't just
computers researchers were economically incentivized to automalte cheaper: it was
also much faster

computer operation. The idea was to take all of the tasks that the human and more
accurate.

operator did, and write programs that would do them automatically. What

replaced those human operating systems were operating systems

aperaling syitem A computer program that automatically manages the hasdwane, nitowrl, and erergy resounoss
af a computer, maxmizing speed and enabling multitasking

o%
(O5): programs installed on a computer to manage a computer’s limited

resources and respond to requests to execute programs'

% andrew % Tanenbaum & Herbert Boes {2015). Modern Operating Systems Pearson

. This same shift away from human operators also led to a shift in who

used them. Personal computers (PCs) emerged in the 1970°, enabling an~ Therewas a
deliberate

individual to purchase a computer and operate it themselves, with an marketing
campaign to drive

operating system to manage the computer's CPU, memeory, storage, and personal computer
purchases instead

inputfoutput devices. Once it was possible for someone to purchase their ©f mainframes

own computer, mainframe computers slowly disappeared, and the need

for human eperators diminished®

! Thir jiob evantusly came bock: tha suparcomputers and dote cantars behind “cloud” computing require immanse
human labor to oporate and maintsin. Howewor, rather than maintaning just one la'go computer, they mantain tha
Fardhvare and sof teers of hundreds or mora computecs, ol retworked 16 Supgort complar compulalians or mil
e Sarveses 1het reach millions.

rephrase? lots of clauses. Maybe: 'but a good paying one. At that time, women with a mathmatics education had few other options than teaching or working for an insurance company.

it wasn't just cheaper: it was also much faster and more accurate.

There was a deliberate marketing campaign to drive personal computer purchases instead of mainframes

can we
draw this
causation?
(Check
unlocking
the
clubhouse)

Throughout this transformation from mainframe to PC, Hollywood
reinforced stereotypes of PCs as a boy's toy in movies like War Games,
which led marketers to advertise to boys and their parents. The result was
that parents were twice as likely to buy computers for their boys than

their girls, and if a family had a computer, it was often placed in the boy's

TCOIT, &5 d tD'!p"EE'

I Jane Margodis & Allan Fisher (2003 Unlecking the Clubhouss Women b Comi wing MIT Prezs

. Popular culture responded, creating an image of using computers as
mens work, rather than womens' University computer labs, and the C5
departments that ran them, were often elitist, sexist, racist, ableist, and

dominated by men, and created structures and policies that reinforced

those views

B yarhleen } Lebuman, et all {20300 Growing Ensollmients Beguare Us to Do Mare: Perspectives on Brosdening
Participation Dhiting ah Usidergraduiate Campuling Lnrellnisnt Boaim, ACM Techinian! Symipasivim o Coitputer
Erignee Educarian (SIGCSE]

. Most universities at the time wouldn't admit Black students or women,
and certainly not the Black women of color who had played such
significant roles in operating and programming mainframes For
instance, Dartmouth University was dedicated to providing free computer
access to all students, but these students were almost exclusively wealthy,
White men who had already paid for the privilege of attending
Dartmouth. At the Kiewit Computing Center, many Dartmouth students
played games that focused on football (FOOTBALL) or warfare (SALVO42Z),
centering sterectypically masculine expressions. Established men who
woarked as systems programmers at Kiewit would regularly prank and

belittle novices, and the “arcane deta..s of one's programming expertise”

Highlight

can we draw this causation? (Check unlocking the clubhouse)

became a point of pride that one could use to exert power over less-versed

peers'®

HJD"’ Lizi Bankin (200 Making a Macho Computing Culiure. A Pecples History of Compuling Educatian in the
Ulsvirad Seades

This masculine style of computing spread to other New England colleges
and high schools through Dartmouth's Kiewit Network Some women in
universities retained access to computers. For instance women at Mount

Holyoke used the burgeoning Dartmeuth network to correspond with In o;[]her (I:o;_ntries,
such as India,

women are
encouraged to go
into CS because

men at Dartmouth, arranging dates while avoiding expensive long-

distance calls'® it's seen as
® o Lisd Banlin (2018) Making a Macho Computing Culture. A Pooples History of Computing Education inthe CcONforming to
United Stotes gender stereotypes
about it being 'safe’
and ‘clean’

. But men, especially White, wealthy men, enjoyed greater access. As
computers became a widespread signal of social status, men, especially
those at wealthy single-sex private schools, had access at much higher
rates. Computing education was tied to mathematics, and, in general, men
were encouraged to take math courses, while women were encouraged to
become wives and homemakers. The history of women in computing and
their role as computer programmers and operators was thus forgotten
and replaced by a world shaped by wealthy elite men at Dartmouth
specifically, and higher education broadly This transition from
mainframes to personal computers produced the male-dominated

computing culture still found today in many CS learning contexts.

In other countries, such as India, women are encouraged to go into CS because it's seen as conforming to gender stereotypes about it being 'safe' and 'clean'

From hobby to marketplace

The transition from mainframe to hobbyist PC in academia produced a

variety of operating systems, all borrowing liberally from each others'

innovations. IBM created the System/360 operating system!

Gene M Amdahkl et al (15845 A [i i I8/ lournol of Ressarch and Dovelopmeant

, and was one of the first to allow multiple programs to be run on a single
computer at the same time. Dozens of other operating systems emerged,
each closely tied to a particular design of computer. AT&Ts Bell Labs
created an operating system named L nix for "mini” computers (50 named

because it was smaller than a room). Many of these research and

enterprise efforts inspired smaller consumer efforts, like Apple's operating
gystem for the Lisa computer and Microsoft’s Disk Operating System (MS-
DOS), which mirrored other operating systems at the time. These parsonal
computer operating systems grew rapidly, ultimately producing Apple's
Mac OS5 and Microsoft's Windows. Meanwhile, researchers at the
University of California, Berkeley, cloned Bell Lab's Unix, and created

the Berkeley Software Distribution (BSD), which Apple used with Carnegie
Mellon’s research on the Mach Kernel to create it's modern version of Mac
05 and 105, Linus Torvalds, dissatisfied with the copynght restrictions in
modifying these two commercial operating systems, created a clone of
Bell Lab’s Unix called Linux, which was open source, meaning that anyone
could read or modify its source code. Google eventually built upon Linux

to create the Android operating system.

This liberal copying and sharing was also accompanied by fierce, anti-
competitive practices, as each company looked to establish a permanent

foothold in the computing space through operating system platforms | mean. IBM

started these
markets,

; so...'used
used their market power to gain control over 70% of the punch card, market power to

_ _) build market
tabulating machine, and computer markets. In the early 1990s, Microsoft power?'

ATAT only allowed ATET devices to connect to their phone network. IBM

bundled their applications with their operating system, and barred users
all? Surely it was

from installing applications of com petitors® _some_
£ Micholas Econcmides B leannis Lianes (20059). The Elssive Antitrust Standard on Bundling in Euirope and in the appllcat_lonsr)of
Unsted States in the Aftermath of the Microsoft Cases Ambitrust Low fournal competltors '

. More recently, US. Department of Justice investigations into Amazon,
Apple, Facebook, and Google have shown that all engaged in anti-

competitive practices. Many of these business trends followed the

I mean, IBM started these markets, so...'used market power to build market power?'

all? Surely it was _some_ applications of competitors?

dominant economic ideology of the 1970's, often described

as neoliberalism”
" Davidd Harvey (2007 A Brief History of Meoliberalisem Osxford Universily Press

:a policy ideology that emphasized free-market policies through the
elimination of government regulation, privatization of public services
(e.g, the mainframes operated by NASA and universities) and

deemphasized social reforms and supports

These economic trends interacted closely with the creation of modern
operating systems. Before this shift, merging with a major competitor,
acquiring a smaller competitor before they could grow and creating
vertical monopolies would generally invite antitrust investigations. Today,
decades of acquisitions, mergers, and vertical integration have changed
the rich, complex, and diverse landscape of computer systems and
operating systems of the 1960s into a sterile and stable landscape today,
with only Microsoft, Apple, and Google dominating desktop and mobile
operating systems, along with most of the internet that we interact with
on a regular basis. All of these monopolies still have their roots in the
earliest problems that human computer operators had, of trying to
maximize use of a computer's CPU to execute programs, prioritize urgent
jobs over others, and maintain the hardware utilized by the CPU. In fact,
some of these operating systems still use source code written in the 1960's.
The history of operating systems is therefore not just a series of events,

but a set of artifacts, computer code, still used today by billions.
and

and

this seems a
stretch - more
complete OS
dose not mean
more fascy.
Didn't we just go
over these
problems
historically a few
pages ago?

Components of modern operating
systems

After these decades of innovation, competition, and monopolization,
several stable components of operating systems emerged. Each component
replaced the role of the human operator with an abstraction: something
that enabled computer programmers to use computing hardware without
having to understand the specifics of how that hardware was implicated,
but in the process, also eliminated the rich abilities of human operators to

understand the social context of how a computer was being used

this seems a stretch - more complete OS dose not mean more fascy. Didn't we just go over these problems historically a few pages ago?

Perhaps the most important component is the kernel

kernel The furst program Chal rons when & computer Bosts. mispandible for running all cther oo puter
programs, responding 1o input rom users, and producing cutpas

. When a computer first starts, the kernel is the first program loaded into
a computer's memory. It handles all requests for input and output from
software, much like a human operator of a mainframe might insert
punch cards (input) and pick up a printout to give to someone waiting for
results (output). It manages the execution of instructions in software by
the CPU, much like a human operator used to ensure that punch cards
were inserted in the correct order, or fix a jam if a punch card crumpled
because of too many holes. It handles communications between a
computer and its input and output devices (keyboards, displays, printers,
etc.), much like mainframe operators would check the connections
between a mainframe and it's printer The kernel, therefore, was like the
brain of the human mainframe operator, making sure the computer
continues to operate at full capacity, monitoring for issues that might
arise, and fixing them if possible. If not possible, kernels can send
exceptions to programs, signalling that an unrecoverable error might have
occurred and giving the program an oppertunity to recover. (Most of us
experience exceptions as messages that say that an unknown error has
occurred.) Kernels might also encounter issues that would force all
operations to stop. and signal that to us as a kernel panic, though these
are considerably more rare. Most of us experience kernel panics as a

message on a computer's display that says that the computer must be

restarted.”

U My karral panics in Windows ane caused by devices breaking assumptions mada by thi kermel: the kemel gives
dericas some amount of axacuban tims, the softwame runming on the device rurs for longar, the kemel notes that
@ jpromise was broken, ond seands o panic, This is differant from a “freane”, whech is usually crused by multpls
programs warting far oach othar to finish o task or gat aocess 19 6 locked rescurce. snd thus urable to procoed.

Kernels also manage memory

random accesl memary A lemparary place to dore dats wihiibe & compuler i rapning when the compater &
alvis alf. i s eraend

marman R

. Memory, as we discussed in the Chapter B, is used to store computer
programs while they are executing, as well as any data they are
processing. Memory is, in the simplest terms, a long list of bytes, each byte
a list of 8 bits. Each of these bytes is given an address, like a street address,
meaning one can refer to a specific byte by a specific address. Modern
computers may have many gigabytes of memory = 1 gigabyte 15
1,000,000000 bytes, but even that may not be enough for all of the
applications a user wants to run. Therefore, the kernel's job is to
coordinate memory usage between different programs, ensuring that one
program doesn't overwrite data being used by another. Mainframe
computers, while they did much of this memory management
automatically too, still relied on human operators to coordinate memaory
usage and respond to situations where the computer ran out and needed

more memory to complete a program.

Using the memory it manages, kernels are responsible for

execuling programs

program A series of instractions [ar taking Enpal, compuiing semetving ard producing sulput, including
anything from a ward processed, & game, or AN apSTEling sysem

app, opplicatron
not all programs

i)) are written by
. which are a collection of instructions that human programmers write, humans

much like the simple ones we showed in Chapter & (In modern terms, we

not all programs are written by humans

might also call these applications, or just "apps™). When a program is
loaded into memory (just like mainframe operators loaded in punch
cards), the kernel keeps track of information about the program executing,
including where the executing program is stored, who's executing it, who
has permission to see its results, what other resources it is using (fles,
external devices like a printer), the current program instruction being
executed, and other details. This information is stored in a record of

metadata called a process

pesed Data sared by & Rornel Shout b RECErmen s CEFRON eneution sLae, inehsling whibh inaerictica is haing
eacuied, wihat daga it s using, who has permission oo e ics reslis

. In the mainframe era, the human operator stored this information in
their human memory, keeping track of who'd submitted the punch cards
so they could return the cards and the program output te the right
person, track the progress of a program executing, and resume it if it pot
interrupted or needed to be restarted; if there were a lot of programs to

run, they might write down this information on a paper log.

While mainframes only had one process executing a time, a modern
personal computer might be executing thousands of processes: every
application we are running in parallel, as well as other background
processes like messaging applications. timers, and anti-virus software.
Operating systems, therefore, enable a higher degree of multitasking than
a human operator of a mainframe would have been able to manage, and
could be run 24/7 just as operators worked in shifts. An OS tries to give a
user the same abstraction as a human operator — presenting your
program, waiting for your program to be scheduled, and receiving results,

but sometimes that abstraction breaks down. A process, for example,

might hang, getting stuck waiting for input, or trapped in a never ending
infinite loop of data processing Therefore, operating systems, much like
their human counterparts, have to monitor for stuck processes and decide
what to do with them, before they disrupt the execution of other
processes. We often experience this now as an operating system
interrupting us with a message like, "This program is not responding,; do
yvou want to stop it¥™, much like a human operator might have done with

a program that didn’t seem to be finishing on a mainframe.

As computers were utilized to perform more complex tasks, programs

utilized more and more computer memory so storage devices

spcondary storape A somi-permantent place 19 stoe data such ag files and aperating sysiems common media
include hard drives, solid state drives, Mash memory, and disks When the compuster is shu off, the data is not
lost

startge
such as magnetic tape, hard drives, and floppy disks proliferated. As these
became more common, mainframe operators needed to manage the use
of these storage devices, tracking which programs needed which storage
devices. Even the storage devices themselves needed kernel help to keep
data organized on the device, leading to the concept of a file, which is a
collection of data with a name and location on the storage device. Modern
software operating systems manage storage devices and hles
automatically, allowing programs to read from and write to any device
that is connected to a computer. To do this, kernels have to manage lists of
all of the devices that are connected, have device-specific software

called device drivers for communicating with them, and keep track of

which programs are using them in process meta-data, to avoid conflicts

when multiple programs are trying to use the same device at the same

time.

As computers connected to the internet, operating systems also needed
ways of managing data coming in from other computers, and managing
data being sent to other computers. In the mainframe era, this would be
like a mainframe operator receiving physical shipments of punch cards
and storage devices from other computers via mail, deciding where to
store them while it was decided what to do with them. Modern operating
systems do the same thing with network management, receiving data,
storing it in memory until it can be processed by a program, which might
store it on a storage device (saving a copy of an email just received) or do
some computation on it (rendering a web page that was just sent by

another computer on a display).

Throughout all of these shifts from human operator to computer

operating system, the interface

interface A program and input and culpui devices that recelves input from users and produces ouf put,
including comimand Line merfaces, graphical user interfaoe and veaoe interface

user ierfoce L
to using a computer changed. In the mainframe era, one would say to the
human operator, “Can you run this program® and the human operator
would say “Sure, but there are a few more programs before you Give me
an hour? Operating systems first replaced this human interaction

with command line interfaces (CLIs), where one would engage in a more
restricted dialog with a computer. Fo. example, to run a program in Unix,

one needs to simply navigate to the file folder containing the program

semicolon?

aned then type its name (if one wanted to run the popular text editor vim,

and programs were stored in a folder named programs, one would type cd

programs; [0 open the programs folder, and . /vim to run the program®

* Trir =" precoding the program nama signals that the program & leontod in tha cumontly apon foldor, which s
raprasenbod by & ° " in Unix

). These command line interfaces required users to remember many

commands and follow their syntax precisely.

Early conceptions of computer interfaces, however, went well beyond
command lines, and actually became the dominant way we interact with
computers through operating systems, through graphical user

interfaces (GUIs). The earliest visions of these interfaces came in 1945 by

Vannevar Bush, who headed the US. Office of Scientific Research and

Development!’

" from Memex To Hypertest (1991) fames M Myoe. Myce, Paul Eahn Elsevier Science

.He imagined a machine called a Memex"

""ul':all.lll'rra.r Blisaly (1985 A4 We May Think The Arkantie Manphly

, which would allow people to freely explore a collection of documents,
follow links between them, and create documents of their own. His notion
of computers as a workstation for working with information was radically
different from the mainframes at the time, which all required carefully
constructed computer programs, written in programming languages.
Programming was slow, laborious, and error prone, and Bush imagined
computing to be something much more interactive and aceessible than

code. Bush's vision inspired a series of innovations, including Douglas

semicolon?

connection
between
NLS and
demo could
be confusing

why do we

say 'jobs brought
to Apple' but
then not 'Gates
brought to
microsoft?

Englebart's NLS system, which contributed a networked computer with

keyboard, mouse, display, and applications’

' Dowglas Engelban (1962 Augmenting Human Intellect: A Conceptual Framewaork. Bleamsbuny Publizhing

. Englebart's demo inspired inventors at Xerox PARC, an industry research
lab, who created the first GUIs and envisioned ideas like windows, scroll

bars, buttons, files, folders, and application g0

" Michael A Hilizik (3009 Dealers of Lightning Mesex PARC and the Davwn of the Camputer Age. HarpenCalling

Xerow PARCs demonstrations inspired Steve Jobs, who brought the ideas
to Apple Computer, which inspired Microsoft, and led to the ubiquity of

GUIs that we all use today.

And interface innovation continues, including the voice interfaces often
found in smart speakers, the many physical controls and feedback
mechanisms found in modern cars, as well as pestural interfaces found in

many video games and modern televisions

connection between NLS and demo could be confusing

why do we say 'jobs brought to Apple' but then not 'Gates brought to microsoft?

L L I'lllid.l

& This iem ko nol o
oLy,

Operating systems as gatekeepers

Mone of these design choices about how to organize an operating system

This is the

key point! were inevitable: operating system designers across history have had

particular values, which served particular visions for how computers

might be used

The single most important value in the history of operating systems,

much like the rest of C5, was efficiency

efficlency: The tinme s cake [oF o coamputer 1o Sorm pute saamething more el ficben oom pauter hardwane amd
CpFTAANE SPS1eImd SRsOin e MmO ENEEFLICIERaS [S8 'm.'l.'h can blen redor (o mermany afficienoy whikch is how

miary bits of momary Same compatation requires o make 0% calcwlations

This is the key point!

. This value stemmed [rom the underlying value behind the invention of
computers, which was to replacing slower human computers with faster Z(r:]gurrnac'ztrj
machines. Operating systems carried that value into the operation and
maintenance of computers, replacing the slower and less reliable human

operators of mainframes with significantly faster operating systems.

Speed, of course, is in service of other values: faster computers are

ultimately intended to make “faster” people and faster people are

ultimately intended to advance economic productivity in capitalist

economic systems. It might be strange to imagine operating systems that

value anything but speed, but that is more because of the ubiquity of the

value than because other values are impossible to prioritize. For example, .
| would not like

I mean, outlook jmapine an operating system that slowed users down to make them more 21 0Of these

now nags me suggestions.
gf?’]?i] :)3?2? mindful of their work, or an operating system that mandated work breaks YXQ? ;ﬁgﬁtlij;eools
business hours to encourage users physical health. Such o ti t 15t, th privacy (actually
to fake delay it B phys . perating systems can exist, they see pelow!), or
till morning so . , i) . electricity
that people can 145t don't, because they have been counter to operating system designers usage, or
rest... beauty of the
core value of efficiency. user
experience?
N ; Also IP
Accessibility is Some values other than efficiency have emerged as secondary values in protection is
better now than becoming a
it ever has been operating system design. For example, accessibility major design

with computers,
and computers
have expanded

sibility: The extent to which a computer programs and wuser interfaces can be used by someane priority
independenl of their physical aid cogiitive abilitles For estanple. graphical user piviesTices that regiaire 1ise ol a
TR A0 il Aceessible- (o pocple with nwar impalrmenes that limal thads abilicy perforem Nine meveeents of

accessible thedr hands
options

enormously 1y

over options

before

computers. — the axtent to which people of varying abilities can use a computer and
its applications — has largely been an afterthought in operating system
design. Graphical user interfaces, for vxample, are a powerful and now

ubiquitous idea for how to operate a computer, freeing many computer

and more accurate!

I would not like any of these suggestions. What about OS that prioritized privacy (actually see below!), or electricity usage, or beauty of the user experience?

Also IP protection is becoming a major design priority

I mean, outlook now nags me when I send email out of business hours to fake delay it till morning so that people can rest...

Accessibility is better now than it ever has been with computers, and computers have expanded accessible options enormously over options before computers.

users from having to memorize complex commands, understand

you just said text
confusing error messages, and navigate an invisible hierarchy of folders based OS

had 'invisible
and documents. In this sense, this concept for computer operation was a hierarchy of

folders' but then

great success. However, requiring visual interaction with a computer longed for them for
blind or visually
fundamentally excluded people who are blind or have low vision. impaired people?

Maybe a different

Therefore, tens of millions of people in the world cannot use modern choice of words?

operating systems without cumbersome screen reading software, which
translates the visual contents of the operating system’s display into
spoken text. For many blind and low vision people, this is harder to use
than a command line interface, because they can't as easily find and open
programs and files, navigate the complex two-dimensional layouts of
graphical user interfaces, or use interactions like drag and drop, which

depend heavily on sight. And even command lines are harder to use than _
but command lines are

more precise! And
yes, affordable and

Operating system designers therefore have immense power in de::lclingg‘;fsfgirglsconom'ca"y

simply having a conversation with a human computer operator.

who can and can't easily operate a computer, and egually immense
responsibility in ensuring that operating systems provide universal,

diverse forms of access.

Another value that has emerged in operating system design is privacy

privacy. The abilicy o indiveduals to eonirel infarmatian abon ther sentity and ativity

. As we discussed earlier in Encoding Information, computing is often
used to gather private data without consent; operating systems are no
exception, and are in fact a key enabler of privacy invasion

The Windows operating system, for . ample, tracks which programs you

run, when you run them, and when they start and stop. and sends all of

you just said text based OS had 'invisible hierarchy of folders' but then longed for them for blind or visually impaired people? Maybe a different choice of words?

but command lines are more precise! And yes, affordable and therefore economically accessible

App store
seems out of
scope for this
chapter,
which already
has a lot!

that data to engineers in Redmond, Washington to be analyzed by data
scientists for problems in the operating system, but also trends in how
software is being used. This process is often referred to as telemetry,
which refers to logs of all of the applications that people are running on
their computers, when they are opened or closed, and when they crash or
hang Microsoft asks for your permission to be watched — but only once,
when you first installed the operating system, and you probably didn't
notice, since it was in an innocuous pop-up dialog prompt. The same is
true of the Android operating system, which allows apps that run on it to
gather all kinds of private information without first transparently asking
for consent. Apple is somewhat more restrictive in its App Store, auditing
programs before they are allowed to run on its operating system, in an
effort to prevent private data from being shared with other companies,
but only requires that apps comply with existing privacy laws, which
typically means presenting users with a complicated privacy policy that
must be accepted before using the app Therefore, when we choose an
operating system, we're not only making a choice about the speed,
reliability, compatibility, usability, and accessibility of our computer, but
also the trustworthiness of the company that has designed its operating
systerm, requiring us to place great faith in its transparency around what

data it collects about our computer use and how that data is used.

While operating systems themselves can erode privacy, they are also

responsible for protecting it through security

security: Strategies that compubers. operating system: programs use io preserve data privacy, such as
passwords, biametrie aul henlicaticn, hle permissian

Taldeigatib cal g WA vl) e

App store seems out of scope for this chapter, which already has a lot!

The breathalizer code being bunk would be a great example to bring up here!

worked

. For example, the human computer mainframe operators working for the
US. military in the 1960%, running programs that computed where a
missile was to fire next. This information was highly sensitive: only
certain pecple were to know that a missile was going to be fired and
where, and only certain people were allowed to know the logic of that
program. Even fewer were allowed access to the program itself, because
maliciously medifying it would have led to incorrect trajectory
calculations. Therefore, human mainframe operators had to be mindful of
security policies, both on the programs themselves, the data that went
into the programs, and the data that came out. The same is true of
modern operating systems: if any program were able to modify the
behavior of any other program or read its data, your data would no longer
be private, leaving you vulnerable to identity theft, and disclosure of
private communications. Vulnerabilities in operating systems include
defects in the operating system software itself, which may allow people to
gain access to everything on the computer, defects in how the operating
system executes programs, which may allow one program (e.g., your email
client) to access data used in another program (eg, your banking
application); or defects in the software used to build applications for a
particular operating system. These vulnerabilities can be exploited with

COMPULET jpyysee. Which are programs that use defects in operating systems

to gain access to private data; but also with malware, which is software
that users themselves install, without realizing that they are stealing
private information, including passwords, which we all use to authorize
access to our private data. Operating systems can also be kept secure

by encrypting all data, which involves encoding it using a secret cipher

worked

The breathalizer code being bunk would be a great example to bring up here!

that only a user can unlock with a password, and by Dixing security

defects regularly But even these measures are not perfect, as a user might

disclose the password to someone malicious, or might not install software

updates regularly Therefore, many security measures are outside of an

operating system's control: it is up to everyone to use unigque passwords,

keep those passwords secure, install updates, and be skeptical of

applications that request passwords. When we fail to do such things,

operating systems suffer major hacks, like the 2020 SclarWinds hack, was this
password related?

where Russian hackers accessed Solarwind's security software, and

secretly changed its behavior,

Because operating system providers determine the rules for which
programs can run, they are also central in speech rights For example, after
the January 6, 2021 US. capital insurrection, many operating system
providers decided to disallow particular programs from being installed.

This included, most notably, the Parler app, which had been central in

supporting the coordination of the insurrection. Apple removed it from

important to
make clear
dist\inction
between free
speech by govt
and private

. . . - companies: can
critical of the insurrection, they might have seen these decisions as this kFJJe stronger?

its App Store, then Google removed it from the Android store. For those

supportive of the insurrection, these decisions by operating system

providers might be seen as censorship and a limiting of speech. For those

organizations leveraging their free speech rights to decide what kinds of

information and programs would run on their private systems, drawing

the line at those used to promote insurrection.

was this password related?

important to make clear dist\inction between free speech by govt and private companies: can this be stronger?

private ones?
linux doesnt
have this
problem?

Because operating systems are 5o central in shaping how we use
computers, and yet they have become so privatized and monopolized,
operating systems are now gatekeepers, centralizing power, resulting in a
single monolithic leverage point for determining policy about what
programs and data are allowed on computers. Most operating systems
privatize these decisions, shifting them from individual moral judgment
or public policy to private decisions by CEOs and boards, shielded by
software licenses that regulate who can use operating systems, and
copyrights that protect the source code behind operating system policy.
And, as we began this chapter discussing, they automate, replacing
nuanced human intelligence with algorithms that promise speed, often
ignoring human values. Therefore, far from being a mundane, almost

invisible interface between hardware and software, operating systems are

solid point! g center of power and conflict in our increasingly digital world.

private ones? linux doesnt have this problem?

solid point!

Teaching operating systems

Operating systems hold a unigque position in computer science education
In higher education computer science degrees, it is sometimes a full
required course, where students learn the many technical concepts abhove
in greater depth. But it’s rarely taught until after students have taken a
few programming courses, and in many CS curricula, it is not required at
all. And yet, the K-12 CS learning standards, broadly adopted around the
world, do include some learning standards related to the

hardware/software interface, including the different layers of abstraction

involved in hardware/software communication. This creates a bit of a
tension: when should students learn about operating systems, if at all, and
in what depth? And how might teaching at secondary and post-secondary

levels differ?

One key difference between secondary and post-secondary is the
audience. Most C5 majors in college aspire to some kind of position
designing and engineering computing technologies, and some depth of
understanding about operating system implementation can be helpful in
these positions. But in secondary, the goals might be different: a school
might, for example, have a CS module that all students take at some point.
Should operating systems be part of that instruction, and if so, how
aligned should it be with the K-12 C5 standards, which are strictly

technical?

One argument that secondary should address operating systems
universally is that from the first time a student learns to use a computer,
whether at home, school, or a third place such as a library, they

are interacting with an operating system, and learning its ideas of
programs and apps, windows and multitasking, crashing and freezing,
And indirectly, operating systems are shaping their rights and privileges,
exposing them to corporate surveillance, marketing, and whatever content
maoderation policies operating system designers have built in. And so
while post-secondary students might need a bit of depth into precisely
what a kernel is and how to build o. to avoid creating software that

crashes, a secondary student might need a kind of critical operating

system literacy that connects the design choices that OS companies create

to their digital lives.

Unfortunately, research has yet to offer much guidance on teaching
operating systems in this way, or even in general. Most research has
focused on post-secondary and follows the same basic pedagogy: engage
students in creating or modifying operating system behavior, without

eritically examining the broader social context of operating system

designs =i

E Jerermy Andras & Jason Hieh (M2 Teaching operating systems using Andros] ACM Techiricod Sympostnm on
Campudor Seopned Edwcalicn (SIGCSE)

'Handal E Bryant & David B OHallarom 2004} Introduning comiputer system:s from o programimers perspectioe
ACM Techinmoo! Symiposiem on Computer Scigrice Educotion (SMGCSEN

Y Poter | Desnoyers (200} Teaching operating systems as how computers work. ACM Technion Sympasimm on
Compuler Scrence Edwcotion (HIGCSE)

i Orwdl Lasdlan, & @l (2081) Srructysesd] Linus karns projects (o eaihing opseatiing sy eins capiepis ACM
Technical Symposium on Complater Sotence Edunarion (SIGCSE)

. One exception to this is a study that taught hardware/software interface

concepts socioculturally, through the metaphor of a house!

il Moara Kirdane-Rysn B Ay [Ko (3023 The Hesize ol Camputing Integrating Coliptermarrativés inle Compiaes
Systems Edumation. ACM Technion Sympasiam on Compliter Science Education [SMECSE)

. This approach to teaching operating systems centered students’ critical
consciousness of 08 design choices and the values that shaped them,
challenging students to reconsider those cheoices in line with their own
values. This class was taught to CS majors in college, and yet most reported
that they had never considered most of the choices that O3 designers
made, or that those choices could have individual or societal

consequences,

Unit sketch: Teaching operating systems critically

Book club had a
whole debate
about design vs
engineering and
how much do the
engineers have
the ability to push
back on bad
design? Many
decisions are
product design
level, engineers
wouldn't have a
say : however
perhaps CS
ought to have a
system of
professional
ethics (like
medicine?)

Book club had a whole debate about design vs engineering and how much do the engineers have the ability to push back on bad design? Many decisions are product design level, engineers wouldn't have a say : however perhaps CS ought to have a system of professional ethics (like medicine?)

To explore the possibilities at the secondary level, here we present a unit
sketch that illustrates one way of making the power of operating systems
visible. The approach is to introduce a diversity of narratives around
operating systems: students’ own narratives, disciplinary computer science
narratives, and then narratives around disability justice, privacy, and free
speech. The unit ends with a discussion of policy, challenging students to
reconcile these many different narratives and propose rules that they
think should regulate (or deregulate) the power of operating systems.
Throughout, the lessons enpgage the core components of operating systems

at a conceptual level, linking them to the social issues,

The learning objectives for the unit are:

1. Students will be able to describe the major components of an

operating system,

2 Students will be able to explain how operating systems create

structural barriers to computer use by people with disabilities

3 Students will be able to explain how operating system maintainers

determine what data can and can't be gathered by computer

pPrograms.

4. Students will be able to explain how operating system maintainers

determine what programs can and can't be run on a computer.

The first unit begins by stirring up @ Late about students’ OS5 preferences:

Session I My operating system is betfer

* Begin the session by describing operating systems as something
we penerally know by name: eg, Windows, Mac 05, 105, Android,
Chrome 05

* Divide the class into small groups of 2-3 and prompt them to
discuss what operating systems they use, which they prefer, and
why

* Bring the class back together and elicit the preferences and
reasons, writing names of operating systems in columns with
reasons why they like it in the rows of columns. Students will
likely share reasons such as liking particular apps that are only
available on a platform, liking how they look, or liking particular
features of a device.

* Identify the two most popular computing operating systems,
then arrange the class in a philesophical chairs discussion
format, dividing the class into two sides. For each facet in the
brainstormed list (appearance, speed, functionality), ask for a
student representing a side to come forward and defend their
position

* End the debate by observing that operating systems aren't better
or worse in absolute terms, but better or worse at particular
things, and that these things are shaped by the designers of the
operating system.

* Give an overview of the coming sessions, connecting it with
these different dimensions along which operating systems can
be better or worse.

Students should leave the first session with a sense of identity around the
operating system they defended, perhaps believing in their preference
even more strongly This creates a stronger contrast for later sessions,
which complicate what operating systems are, who makes them, and the

values that shape their choices

The next session offers the first complicating narrative, the disciplinary
one from computer science. To engage students in the relatively technical
concepts, the lesson uses an "unplugged” approach that has students

embaody the components of an operating system.

Session Z; Operating system algorithms

* Characterize the first session’s discussion as one particular
consumer narrative about operating systems, shaped by our
experiences with them as users Contrast it with the topic of this
session, which deconstructs operating systems from the
designers' perspective, as something to be created and
maintained to make computer applications work

* Explain that the session will try to simulate a chat program
executing alongside two other programs,

* Explain the concept of a kernel and applications, then ask four
students to come to the front to act out the work of a kernel. One
plays the role of the kernel, one plays the role of applications.
The kernel's job is to *run” a few instructions of an application
and then stop, switching to another application. The applications’
job can be any multi-step activity, like a dance, or some
pantomimed activity like making a sandwich.

* Explain the concept of a memory Ask an additional four
students to come to the front. The original four students keep

their roles. One of the new students is memory and the other
three represent data A B, and C When the applications execute,
they should now request data A, B, or C from the kernel, and the
kernels should ask memory to retrieve the corresponding data.

* Explain the concept of a network interface. Ask two students’
volunteer to be network interfaces, sending data that will be
stored in A, B. and C. One sends a message, and the other receives
it, giving it to the kernel, which decides whether to store in A, B,
and C, and the applications, when they execute, can request the
Mmessages.

* Finally, explain the concept of a user interface. Ask one student
to represent the screen that displays information. Applications
can ask the kernel to display a message received; when that
student receives a message, it yells it out.

* Thank everyone for modeling an operating system's behavior,
then synthesize what everyone observed, summarizing the core
components of the operating system, using an example from
another application (such as presentation software) to step
through the ideas Explain why computers are often better at
multitasking than people, because they can save the context of
what they were doing exactly and come back to it later.

* Finally, ask the class how the computer science notion of an
operating system relates to their experience with operating
systems. How are they different? How are they related?

After the second session, students should have a clearer sense of their

own personal perspective on operatine systems, but also a sense of the

technical mechanics of an operating system as a mindless, procedural

process that happens very quickly (meeting the first learning objective).

The next session begins to bridge the abstract technical understanding of
operating systems with students’ personal sense of operating systems by

offering the perspective of people with disabilities.

Session 3: Accessibility

* Remind students that one part of an operating system is
receiving inputs from a user interface, and providing outputs.

* Formative assessment. Ask students to brainstorm the different
ways that computers allow us to provide input and receive
output (eg, mouse, keyboard, display, touchscreen, speakers). For
each of the brainstormed input and output devices, ask students
to brainstorm the assumptions that they make about our abilities
(eg seeing hearing, pointing, grasping). For each of the
brainstormed assumptions, ask students to speculate how
someone who lacks the ability would provide input to a
computer, or receive output. Engage students in shaping where
the brainstorms will be captured and shared.

* This is responsive because it asks students to reflect on their
own abilities and the abilities of the people around them.

* This is participatory because it gives students agency in
shaping the collective brainstorming project.

* This is educative because students may only see some
assumptions from their own view, but can learn of others from
their peers’ diverse perspectives.

Begin a socratic seminar, asking whether it is fair that operating
systems exclude people with particular disabilities, and why
operating system designers might have decided to exclude.

* Explain that more modern operating systems try to include some
people with disabilities, then give a demonstration of the screen
reading software built into an operating system (eg, Mac OS or
108 VoiceOver, Google Talk Back).

* Continue the Socratic seminar, asking whether screen readers
adequately include people who are blind or have low vision

* End by explaining that some operating systems are better than
others at supporting different disabilities, giving examples of
operating systems that provide high levels of support {(eg. Apple),
and operating systems that provide minimal support (eg.
Google),

After this session, students should begin to recognize that operating
systems are more than just apps and features, but also more than just
algorithms: they are also the pateways between people and applications,
determining who can and cannot access them. Students should begin to
wonder whether their original preference for an operating system
incorporated other people's experiences, meeting the second learning

objective.

The next session builds upon this more complicated narrative by raising

questions about privacy and security.

Session 4! Privacy and securify

* Remind students about session 2's demonstration of an operating
systermn executing a chat application, and how information was
passed from the network interface to the kernel, and then from
the kernel to memory, and then finally the program.

* Pose the question: what if that information was private, like most
chats are? What stops someone from seeing the private message?
Ask students to speculate about the role the kernel, applications,
memory, network interfaces, and user interfaces play

* Discuss how companies that create operating systems have access
to our data and often use it to monitor our activities, personalize
advertisements, and sometimes share that data with the
government to surveil our activities.

* Shift from privacy to security, explaining that security is about
ensuring only people with permission to see information can
access it, privacy is about who has that permission.

* Explain that all components play a role in keeping the
information secure, Provide direct instruction on examples
where part of an operating system was not secure (eg, a video on
the Solarwinds hack), explaining what kind of data was
breached, and what the consequences of that might be. Connect
the break to software updates, which can repair security defects,
but also create security defects.

* Poll the students on whether they update their phones when
there is an update. Discuss why they do or don't, and discuss the
consequences of that on privacy (e.g, release of secrets, identity
theft).

* Return to the first session's debate of operating systems. and raise
the question: how does one know if an operating system is
secure” What makes one trust an operating system?

* End the session showing that all companies have had data
breaches, showing examples of data breaches of the two most
popular operating systems in the class

Building upon students’ conception of operating systems as both
technical and social, this session should reconnect it to students’ personal
data, and raise questions of trust in operating systems and operating
system maintainers. Students should begin to wonder about what
operating system software updates are doing to their devices, and where
they are getting information about which operating systems to trust

{meeting the third learning objective).

The next session presents the last narrative, connecting operating systems

to speech.

Session 5: Free speech

* Recall the discussion about privacy and security, and connect it
to an application that is privacy-invasive, such as Faceboolk,
WeChat, or TikTok. Explain how those applications invade
privacy.

* Explain that on January 6, 2021, some operating system
maintainers (Apple, Google, Amazon), decided to remove some
applications from their platforms because they were used to
incite a violent insurrection on the US. capital Frame those
decisions as a choice about what applications would be allowed
to run on each operating system.

* Remind students of free speech laws in the United States, which
bar the US. government from limiting speech, except in

particular circumstances (speech that harms, speech that is
obscene, speech that defames).

* Summative assessment. Begin a philosophical chairs discussion
with the question: should operating system companies have the
right to decide which applications run on their operating
systems? Discuss with students how they want to organize
presentations and how they want to judge each others’
presentations. Then facilitate discussion about both sides of this
issue, one the position that companies are protected by free
speech law to decide to disallow an application, and the other
position that the companies are limiting speech by removing
applications that support speech. Focus the discussion on who
should decide

* This is responsive because it centers students’ interaction with
the operating systems in their family and school's devices.

* This is participatory because it gives students agency in
shaping the terms of debate success

* This is educative because it reveals diverse student perspectives
on the role of private companies in speech.

After the discussion, break the class into small proups, and
prompt them to draft a new law that would clarify this debate
about who decides They should draft some language, and a
justification for the rule.

* Students then present their laws and rationale and students vote
on whether they would pass the law

This last session meets the fourth learning objective, while also linking

operating systems to law, policy, free speech, and power. Students should

leave this lesson seeing the operating systems on the computers that they
use as far more than colors on a screen, and an exclusionary pateway to
computer applications, but also a gateway controlled by powerful
technology companies that are not currently beholden to the public in
any way (and continue to utilize their wealth to maintain their power to

decide).

While this unit gives a basic introduction to operating systems concepts, it
does not attempt to build a robust understanding of operating systems
algorithms or issues This might leave students fluent with the basic
concept of an operating system, but it will not develop the kind of
detailed technical understanding needed to even troubleshoot operating
system problems, let alone discuss the nuanced differences between
operating system designs. Such knowledge is not part of most learning
standards, though it does appear in higher education computer science
courses on operating systems, and is even discussed in popular technology
journalism about operating systems Instead of depth, the unit focuses on
critically conscious breadth, helping students see the many diverse and

surprising ways that operating systems connect to society

Conclusion: the kernel of computing
culture

In some ways, operating systems are a remarkable feat of engineering:
they transformed what once was a 1. nly secure, highly inaccessible

scarce resource — the mainframe — into world full of billions of little

personal computing devices, each “operated” by one or more people, often
without incident. And all of this digital world, with all of its wonders and
all of its harms, was only possible by replacing the small group of mostly
women who tended to this large machines with an even smaller group of
complex operating system programs — Windows, mac O5, Unix, Linux,
Android, 105 - carefully engineered over the course of a half century to
provide near limitless computing on demand, anywhere. From an
engineering standpoint, this is profound, incomprehensible social impact

at a scale rarely seen.

The price we've paid for this digital world comes in multiple currencies.
The history of operating system development in academia and industry
has given us a C5 education culture often centered in masculinity, elitism,
exclusion, and shame. The capitalism that fueled OS creation has grown a
handful of corporations, now the most wealthy and powerful in the
world, who shape our digital experiences with little oversight and
accountability in the world, let alone the nations in which they reside.
And the complexity of these operating systems have produced a public
that is largely unaware of this centralized, privatized power and its
influence over our daily lives. Teachers are one of the few in a position to
make this history and status quo visible to students, in ways that are

culturally and critically situated.

Relevant learning standards

This chapter covered the concepts in the following learning standards:

CETA Original Standard

Learming

Standards

Impacts of Computing

2=1C-20 Compare tradecifs asseciated with
computing technelogies that affect
pecple’s everyday activities and career
aptions.

2-1C-13 Describe tradeoffs between allowing
information to be public and keeping
infermation private and secure

Ah-10-24 Evaluate the wiays compuling impacts
personal, ethical, secial, economic, and
cultural practices.

AN-1C-29 Explain the privacy concerns related to
the collection and generation of data
through automated processes that
may not be evident (o users

IA-1C-30 Evaluate the social and economic
implicaticns of privacy in the contest
af safety, law, or ethics

AB-1C-27 Predict how computational

innovations that have revelutionized
aspects of our euliure might evolve,

Hetworks & the Internet

2=M1-05

Explain how physical and digial
security measures protect electronic

information.

Critically Conscious Revizion

Exarrireg power imbalonces in the
design of computing systems that
create, amplify, and reinforce

ineguities and imfustices in sociely

Describe individual and collect ive

tradecffs of surveillaonce capitalism

Critigue how computing amplifres,
centralizes, privatizes, and
autemaies social processes in society
impacting individuals, communities,

and culture

Explain how orgonizations use
software to survell users in order to
leverage thedr activity data for profic
arnd power

Evaluate the interaction befween

privacy, computing, and power

Predict how computational
innavations will shape culture
power, and equity in global sociery:

Explatn how physical and digital
security megsures trade usability for
dota protection, and who controls

thase measures

2-M1-0%

3A-MI-05

AA-NI-06

AA-NI-07

AA-NI-08

IB-NI-0%

Apply multiple methods of encryption
1o rvoclel the secure transmission of

informatlon.

Give examples to illustrate how
sensitive data can be affected by

malware and ather attacks

Recommend securily measures 1o

address various scenarios based on
factors such as efficiency, feasibality,

and ethical impacts

Compare variows security Imeasures,
considering tradectfs betwesn the
usability and security of a computing

SySlern.

Explain tradeoffs when selecting and
implementing cybersecurity

recommendations.

Compare ways software developers
pretict devices and information from

unauthorized access

Algorithms and Programming

IB-AP-18

IB-AP-20

Explain security ssues that might lead

to cormpromised computer programs.

Lse version control systems, int. .ated

development environments (IDES),
and collaborative tools and practices

Apply multiple methods of
aneryption to secure data, while
examining how encryphicn can be a

tocl for bath safety and extortion.

Give examples to ilfustrate how
sensitive data can be exploited by
rmalware, mnsemwore, and

harassers

Recommend security measures

appropriate for seenarios with

varying balonces of power

Compare various Security measures,
considering tradecffs between the
usability security, and acoessibility
af a compuling syshem.

Explain tradeaffs to wha haolds
power to data and services when
selecting and implementing

cybersecurity recommendations

Compare the learmobility, usability,
accessibility, and security of various
aLithorizat ion technlgues

Explatn how security valnerabilities
might lead to individual,
cormmunity, and sociopolitical

consequences

Use version control, 1DEs,
documentation, and collaboration
tocls te feciliote commmuniny-based,

software project.

Computing Systems

2502 Design projects that combine
collect and exchange data.

IA-C5-02 Compare levels of abstraction and
interactions between application
software, system software, and
hardware lapers.

IB-C5-M Categorize the roles of operating
system software.

Social Original Standard

Justice

HMandards

Justice

2 Students will develop language

(code documentation) in a group

collabarative iterative softwarg

design and development

Design and eritigue projests thal

hardware and software components (o combine hardware and soffware fo

and historical and cultural
knowledge that affirm and
accurately describe their
membership i multiple identity
BFaLps.

gather, structure, analyze and store

data.

Examine how levels of abstraction
in cperating systems and hardware
shape and constrain what
applicaltons are erealed and whe

can use them.

Explaim how distinct functions
within operating system soffware
create borriers to who can acoess

ared wie compulers and soffwarg

Computing Revision

Students will develop language and
historical and cultural knowledge that
affirm and accurately describe their
megmbgrship in multiple identity groups
by examining how saftware exludes

5 Students will recognize traits of Students will recognize traits of the
the dominant culture, their home dominant culture, their home culture
culture and other cultures and ard cfher cultures i compLiling
understand how they negotiate artifacts amd understand how they
their own identity in multiple negatiate their own identity in
Spaces, compuling spaces

14 Recognize that power and Recognize that the power and privifege
privilege influence relationships irmbreed inte computing infTusnces
an lnterpersanal, intergeoup, and redationships an interpersonal,
institutional levels and consider intergroup, and institutional levels and
how they have been affected by consider how they have been affected by
those dynamics thase dynamics

15 [dentify figures, groups, events Tdentify figures, groups, events and a
and a variety of strategies and variely of strotegies and philosophies
philosophies relevant 1o the relevant to the computing and soctal
history of sccial justice around the justice
wrld

18 Students will speak up with Students will speak up with couwrage and
courage and respect when they or respec! when they or someone else hos
sameane else has been hurt ar been hurt or wranged by algarithmic ar
wronged by bias data blas

CATA Original Standard Critically Conscious Revision

Tiracher

Standards

€5 Knowledge and Skills

la Apply C5 practices

Apply C5 practices im ways that center equity and

juestice for marginalized grouwps

{]:]

1f

Apply knowledge of
COmMpPULing systems

Medel netwearks and the

Intermet.

Analyze impacts of

computing.

Equity and Inclusion

2a

2y

Examine issues of eqguity
in C5

Minimize threats to

inclusion.

Represent diverse

perspociives

Professional Growth and Identity

b Medel continuous
learming,

Instructional Design

4e Design inclusive
learming experiences.

4 Plam projects that have
personal meaning to
students

4f Plam instruction to foster
student understanding

48 Inferm instruction

through assessment.

Develop critical consciousness of computing

systems knowlege

Explaire Frow the intermer shapes its aceessibilitg

access, and impact on soctaly

Analyze the interaciion between compuling,

power, oppression, and justioe

Examineg issues of equity and justice in C5

Create culturally responsive and sustaining

learning envirenmeants for all students

Make spoce for diverse perspectives, volues, and
asiets from both students and broader sociaty

Learn alongside students, modeling sociatechnisal

hurmiliey, vulngrability, and curtasing

Design culturally responsive and sustaining

learning experiences that advance justice

Sitwate C5 learning in students’ identities, values,

goals, and communities

Co-construct learning and assessment to foster

student interest, identity and agency:

Co=design culturally responsive, participatony: and
educative farmative as3essmaents [o Support

learning.

Classroom Practice

La Usa imquiny to facihiate Lise inguiry and discourse (o faciliote stwedents”
student learning eritical consciousnes

Gk Cultivale a pasitive Erziire all students fqu;-r 3:1]'5'-_ ,::I.:pmr.l'yd_ wirliged
claseroom climate. artd Peard,

A Promcte student salf- Center stwedont agency, aeeels, vales, and culture
afficacy

5d Support student Center stwdent coflaboraticn and discourse to
collaboration. faster critical consciousness

S Encourage student Encourage student communication, reffection,
communication writing, and speaking about C5 eguily and justice

&f Guide students’ use of Guide studerits to both seak and learn from
feedback Feadback, as well provicde it to those with power

References

1 Gene M. Amdahl, Gerrit A Blaauw, and Frederick F Brooks (1964).
Architecture of the 1BM System/360. IBM Journal of Research and

Development.

2. Jeremy Andrus, Jason Nieh {2012). Teaching operating systems using
Android. ACM Technical Symposium on Computer Science Education

(5IGCSE).

3. Randal E Bryant, David R. O'Hallaron (2001). Introducing computer
systems from a programmer's perspective. ACM Technical Symposium

on Computer Science Education (SIGCSE)
4. Vannevar Bush (1945) As We May Think The Atlantic Monthly.

5. Peter |. Desnoyers (2011). Teaching operating systems as how
computers work. ACM Technical Symposium on Computer Science

Education (SIGCSE)

6, Nicholas Economides, loannis Lianos (2009). The Elusive Antitrust
Standard on Bundling in Europe and in the United States in the

Aftermath of the Microsoft Cases. Antitrust Law Journal

7. Douglas Engelbart (1962). Augmenting Human Intellect: A Conceptual

Framework. Bloomsbury Publishing.

B8 Thomas Haigh, Peter Mark Priestley, Mark Priestley, Crispin Rope

{2016). ENIAC in Action: Making and Remaking the Modern Computer.
MIT Press.

9. David Harvey (2007). A Brief History of Necliberalism. Oxford

University Press

10. Michael A Hiltzik {2009). Dealers of Lightning Xerox PARC and the

Dawn of the Computer Age. HarperCollins

11. Mara Kirdani-Ryan, Amy | Ko (2022). The House of Computing:
Integrating Counternarratives into Computer Systems Education. ACM

Technical Symposium on Computer Science Education (SIGCSE)

12. Oren Laadan, Jason Nieh, Nicolas Viennot (2011). Structured Linux
kernel projects for teaching operating systems concepts. ACM

Technical Symposium on Computer Science Education (SIGCSE).

13, Kathleen] Lehman, Julia Rose Karpicz, Veronika Rozhenkova, Jamelia
Harris, and Tomoko M. Nakajima (2021). Growing Enrollments Require
Us to Do More; Perspectives on Broadening Participation During an
Undergraduate Computing Enrellment Boom. ACM Technical

Sympaosium on Computer Science Education (SIGCSE).

14. Steven Lubar (1992). "Do Not Fold, Spindle or Mutilate® A Cultural

History of the Punch Card. Journal of American Culture

15. Jane Margolis, Allan Fisher (2003). Unlocking the Clubhouse: Women

in Computing, MIT Press.

16. R. Arvid Nelsen (2016). Race and computing: The problem of sources,
the potential of prosopography, and the lesson of Ebony Magazine,

IEEE Annals of the History of Computing.

17. From Memex To Hypertext (1991). James M. Nyce, Nyee, Paul Kahn.

Elsevier Science.

18. Joy Lisi Rankin (2018). Making a Macho Computing Culture. A People’s

History of Computing Education in the United States

19. Andrew 5. Tanenbaum, Herbert Bos (2015). Modern Operating Systems.
Pearson.

+ Saved

