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Fig. 5. Martlet-1’s ground station system architecture.

teams have attempted in the past, a reinforcement learn-
ing approach has been investigated to address the un-
certainty in the UAV’s and moving obstacles’ dynamics
models.

1) Deep Q-Networks: Google DeepMind [2] man-
aged to bring deep reinforcement learning to human-
level control when playing a variety of arcade games.
Despite training their agent on raw images and us-
ing deep convolutional neural networks (CNN), their
methods can still be applied to problems such as path
planning and control for a UAV.

The basic idea of Google DeepMind [2] is to use a
Deep Q-Network (DQN) to approximate the utility of
different actions. For this to work, they simply assume
that there exists a function Q

⇤
(s, a) that accurately

approximates the Q-value of any state-action pair (s, a).
As with any reinforcement learning technique, such a
function would need to address the credit assignment
problem [3]. The credit assignment problem is the prob-
lem of determining which of the preceding actions was
responsible for getting a reward and to what extent. This
is especially important in the case of an autonomous
path planner since reaching an unavoidable crash state
could have usually only been prevented several actions
prior. This problem can be mitigated simply by dis-
counting future rewards with a constant factor �. This
discount allows us to represent the approximate function
Q

⇤
(s, a) as in Equation 4,
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which is the maximum sum of rewards r discounted
by � at every time step t given a policy ⇡.

To approximate Equation 4, [2] uses a deep CNN.
Intuitively, the inputs to the neural network would be
a state-action pair (s, a) and the output would be the
corresponding Q-value Q

⇤
(s, a). However, since we’re

dealing with a finite and discrete action space A, we
can optimize the network such that it simply takes the
state s as input and outputs the Q-value Q

⇤
(s, a) for

every possible action a 2 A at once. The agent can
then simply select to play the action with the maximal
Q-value.

Such a network needs a slightly different approach
to back-propagation, however, since we cannot infer the
actual reward for actions the agent did not take. Instead,
we only correct the network’s estimate of the action the
agent does take. For all other actions, we simply feed
the network the same value as it had output such that
their error is 0. As for the action taken, we update the
network similarly to in Q-learning, but noting that the
learning rate ↵ and the update is now addressed directly
by the back-propagation algorithm. This yields Equation
5.
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We can finally back-propagate the error using the

mean square error L as in Equation 6 with a learning
rate ↵. This can be shown to yield an equivalent update
rule as in Q-learning.
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After sufficient iterations, the result is a DQN agent
that can accurately approximate Q

⇤
(s, a) and that was

trained using a model-free and generalizable method.
2) Assumptions: For preliminary results, to simplify

the problem, the UAV was constricted to a two-
dimensional plane by fixing its altitude, roll and pitch.
It was also assumed that the UAV will be maintaining a
fixed forward velocity. Both of these assumptions allow
for a greatly reduced action space. This leaves the action
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as simply a control of the UAV’s yaw rate. However,
DQNs require a discretized action space, and this needs
to be done with care.

3) Dubins Path: In the field of robotics, a common
approach to solving this type of path planning problem
is trying to solve for Dubins path [4]. Dubins path refers
to the shortest curve that a vehicle can take to travel
between two points in the two-dimensional Euclidean
plane when the vehicle is constrained as follows:

1) The vehicle has a maximum turning rate.
2) The initial and terminal headings to the path are

defined.
3) The vehicle can only travel forward.
A key point of this method is that Dubins proved that

such a path will only consist of a sequence segments of
either maximum curvature or straight lines [4]. In other
words, a path can be represented by a simple series of
either a left turn (L), a straight line (S) or a right turn
(R). Figure 6 shows example optimal paths from points
A to B.

Fig. 6. Sample Dubins paths from left to right: RSL, RSR, and LRL.

In two-dimensions, the kinematics of such a vehicle
can be defined as in Equation 7, where v is the velocity
of the vehicle, which, for simplicity, is usually kept
constant, and u is the rate of the heading ✓. For a Dubins
path, u need only be limited to one of {��, 0,�}
radians per second, where � is the maximum turning
rate of the vehicle. An optimal controller that yields a
Dubins path would then simply be controlling u as a
function of the vehicle’s current state (x, y, ✓) and its
target. This approach is often also dubbed Dubins Car.

ẋ = v cos ✓

ẏ = v sin ✓

˙

✓ = u

(7)

4) Simulation: A simulation environment was built
using the Director visualization package developed at
MIT [5]. A UAV with simple dynamics was modeled
along with stationary and moving obstacles. A virtual
range sensor was also developed to receive feedback
from the environment. The sensor works similarly to
light detection and ranging (LIDAR): rays protrude from
the plane as seen in Figure 7 and measure the distance
to the nearest object on their path. The UAV then uses
the data to inform its decisions. The model currently
uses 16 rays evenly distributed across a forward-facing
90 degrees FOV and the rays have a 40 meter range.

Obstacles and target set-points were also generated at
random during the training process.

Fig. 7. Visualization of plane’s sensor in red, obstacles in black, and
target set-point in green.

5) State & Action Space: In order to simplify the
problem and reduce training time, the state space has
been reduced to a 19-element vector. This vector is
comprised of the 16 rays’ distances normalized to the
range [0, 1] followed by the relative x, y and heading ✓

to the target set-point.
The action space is inspired by Dubins curves which

proved that the optimal path would only consist of
a sequence segments of either maximum curvature or
straight lines [4]. Hence, the action space A was limited
as such with A = {��, 0,�} radians per second, where
� is the maximum turning rate. In this model, we used
a � of ⇡

2 radians per second.
6) Implementation: The DQN was implemented us-

ing Google’s TensorFlow framework, [6].
Following the DQN neural network model, we set up

a neural network with 19 input nodes for the state and
3 output nodes for the Q-values of each action in the
action space. Hidden layer nodes were rectified linear
unit (ReLU) activated whereas the output layer uses
simple linear activation. A list of the hyperparameters
used and their values can be found in Table IV. No
convolutional layers were necessary.

TABLE IV. DQN HYPERPARAMETERS

Hyperparameter Value
Learning rate (↵) 0.01
Discount factor (�) 0.9
Exploration factor 0.5
Hidden layer 1 node count 11
Hidden layer 2 node count 7

The final result would be a small light-weight neural
network that can compute a locally optimal policy for
avoiding obstacles and reaching a target set-point. The
neural network’s small footprint has the added benefit
of being able to run in real-time.
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