
Assignment 2: Markov and Hidden Markov Models for Text
Due Oct. 19 by 12:00 noon

This assignment is to be done individually.

Introduction

In this assignment you will develop Markov and hidden Markov models for English text. You may
use any programming language you wish to complete this assignment.

Start by downloading the assignment data files from http://www.cim.mcgill.ca/~jer/courses/ai/as2 .
There are 4 data files: vocab.txt, unigram counts.txt, bigram counts.txt, and trigram
counts.txt.

The format for these files is as follows. vocab.txt contains the vocabulary, one word per line:

1 word1

2 word2

...

n wordn

There are two special words in the vocabulary. The words <s> and </s> denote the beginning
and end of a sentence respectively.

The files *gram counts.txt contain a 3-gram probability model, with one conditional probability
table entry per line. For unigram counts.txt, each line of the file contains:

i log10 P (xt = i)

For bigram counts.txt, each line of the file contains:

i j log10 P (xt = j|xt−1 = i)

For trigram counts.txt, each line of the file contains:

i j k log10 P (xt = k|xt−1 = j, xt−2 = i)

Assume that any conditional probability table entry not given in the data file is 0.

The probability distributions may not sum to 1, due to missing (small) values.

These specifications were taken verbatim from an assignment prepared by Prof. Greg Mori of
SFU. All credit is due to the original author.

Part 1: Generating Text Using a Markov Model

The first task in this assignment is to generate sentences using the trigram model depicted above.
In this model, each Xt is a discrete random variable denoting the tth word in a sentence, taking
values from the vocabulary defined above.

The joint probability distribution

This is a Markov model, a special case of a Bayesian Network. The probability distribution
P (Xt|Xt−1, Xt−2) is assumed stationary (same for all t), having the values given in the trigram
data file specified above.

Use the bigram distribution for P (X1|X0).

For P (X0), note that all sentences start with <s>. P (X0 = <s>) = 1.

Sampling from the network

Generate sentences using this model by implementing the prior-sample routine on this network. The
probability that prior-sample generates a particular event is given by the formula:

You should start by setting X0 = <s>, then successively generate values for {Xt, t = 1, 2, . . .},
stopping when Xt = </s>.

Note that you may generate a sample (Xt−1 = i,Xt−2 = j) for which there are no non-zero entries
in the trigram data file. In this case, you should back-off, and attempt to sample from the bigram
model P (Xt|Xt−1 = i). If again there are no non-zero entries, back-off to the unigram model P (Xt).

where probabilities for n=1 are given by the entries in the bigram data file and those for n=2 are given by the
entries in the trigram data file.

Part 2: Sentence Correction Using a Hidden Markov Model

Many real-world tasks, such as optical character recognition (OCR), or spelling correction, can
benefit from the use of a language model. Consider the nonsensical OCR output Us he said nit word
by, or the sentence she haf heard them with a misspelled word. In the OCR case, we could ask which
sentence is likely to be the real sentence, given this OCR output (of real words). In the spelling
correction case, we could ask which sentence is most likely, given this user input (containing real
words and incorrectly spelled words).

The second task in this assignment is to use the language model to clean up such imperfect sentences.

The joint probability distribution

We will use a first-order hidden Markov model, depicted above, to model the joint probability
distribution. The variables Xt are the unobserved actual words intended by the writer of the text
that was input. The variables Et are the observed words which were obtained from the OCR
software, or input into a word processor.

Use the same probability distributions for Xt as in part 1 (you only need the bigram P (Xt|Xt−1)).
For P (Et|Xt) we will use the notion of edit distance between strings. The edit distance (or Leven-
shtein distance) between two strings is the minimum number of operations (add character, delete
character, change character) needed to convert one string into the other. Let k = d(u, v) denote
the edit distance between strings u and v. We will define

P (Et = u|Xt = v) =
λke−λ

k!

known as a Poisson distribution, where λ is a parameter that is the expected number of mistakes
made per word. Use λ = 0.01.

To use the logsum trick, the forumla for P (Et = u|Xt = v) becomes:

log10 P (Et = u|Xt = v) = k log10 λ− log10 k! + c

where c is a constant that does not depend on k and can be omitted.

You may download and use code for computing the edit distance in your language of
choice. Please cite the source in your report.

Correcting noisy input

Write a program to correct noisy (incorrect) input sentences using this model by implementing the
Viterbi algorithm for most likely sequence computation. i.e., for an input sequence e1:t, compute

arg max
x0:t

P (X0:t = x0:t|E1:t = e1:t)

Submitting Your Assignment

You must submit your assignment via Moodle. For each part of the assignment, include the source code.
In addition, submit a brief report with the following components:
• Examples of sentences generated in Part 1
• Source (where you obtained it) for edit distance code

• Examples of decoded sentences in Part 2 (below)

For Part 2, please provide your results on the following inputs:

I think hat twelve thousand pounds

she haf heard them

She was ulreedy quit live

John Knightly wasn’t hard at work

he said nit word by

assume X0 for each of these is < s >, and do not add a trailing < /s >

Grading Scheme

• Prior-sample sentence generation (30 marks)

• Viterbi decoding sentence correction (60 marks)

• Coding style (10 marks)

