ANCHORAGE
@ PROGRAMMING
WORKSHOP

Introduction to the Command Line

Navigate

See the white rectangle (or it may display as a blinking cursor, on some browsers)?

That's the place where you enter commands, also known as the "command prompt."

In the directions below, when we say "Type a command," we want you to type the part
in bold into the command prompt. Unless we add more information after the bold part,
go ahead and hit "enter" after each command. There will be a few places where we have

you wait, but not many.
pwd

Type pwd into the terminal and hit enter. (The "enter" is going to be assumed after all

of your commands, from this point.)
You should see output that looks something like /home/action

This tells you where you are in the file structure. Linux, like Windows, organizes files
into folders (also called directories) and subfolders (subdirectories). So
if pwd returns /home/action, you're in a directory called action, which is in a directory

called home
cd

Let's say you don't want to be in the /action directory anymore. You want to go up a

level and be in /home.
Type cd ..
Type pwd

The output should be /home

ANCHORAGE
@ PROGRAMMING
WORKSHOP

nmon

You've changed directories ("cd" - get it?), up a level (that's what ".." means). But what if
you didn't really want to do that? What if you think, "No, [want to be

in /home/action now"? No problem!

Type cd action

Type pwd

Now, as you can see, you're back where you started, in /home/action.

Make stuff

mkdir

What if you aren't satisfied with the directories that are available to you? (Long-term,
this is inevitable, right? You probably won't want to store all of your files in one place.)

No problem!

Type mkdir [your name] — but don't literally type that; replace "[your name]" with

your actual first name :)

Now change directory into the directory with your name. Scroll up for a reminder about
changing directories, if you need it. Remember to use pwd to make sure you're in the

right place.
nano

It's time to make a text file! There are lots of text editors available—and lots of strong
opinions about which is the best one—but for today, we're going to use a simple one.

[t'll work great for anything you want to do, from writing to-do lists to writing code.

Type nano myfile — (go ahead and hit "enter”, but don't panic when the screen

changes entirely!)

You're inside an application, on a text-only interface. (How cool is that?) As you can see,

there are commands along the bottom. Where you see a caret ("), it means you hold

ANCHORAGE
@ PROGRAMMING
WORKSHOP

down the ctrl key along with that letter to execute that command. But first let's enter

some text, before we worry about any of the commands.

Type whatever you like. | typed "Hi, my name is Coral. I like birds and chinchillas and
coffee." Pretty much anything will do.

Once you've entered some text, hold down the ctrl key and hit X (shortened from now

on to ctrl-x)

A prompt appears at the bottom of the screen: Save modified buffer (ANSWERING "No"
WILL DESTROY CHANGES)?

Typey
The prompt now asks if this is the filename you want to write. It is, so
Hit enter

Congratulations! You just made a text file!
Look at stuff

Is

How do you know you made a file, though? Not a problem. Let's have a look!
Typels

The output should be myfile

You have just listed ("Is" - list) the contents of the current directory.

For fun, let's change directory up one level and look at what's inside that directory:
cd..

Is

The output should be [your name] README.md workspace — the order might vary,

based on where your name falls in the alphabet; that's fine

ANCHORAGE
[gl PROGRAMMING
WORKSHOP

Now, change directory back into [your name], and make sure you're in the right place

with pwd
One more thing: you can list the contents of directories other than the one you're in.
Typels..

The output should match what happened when you changed directory up a level and
listed its contents, a moment ago, but you didn't have to change directory to see it!

(Type pwd and confirm you're still in the same place, if you have doubts. :))
more / less

Let's say you want to know what's in myfile without opening it up in nano. That's totally

doable.

Type more myfile

And, just to compare,

Type less myfile — you can escape the screen that comes up by typing q

[t turns out, less is a bit more complex. For big files, more will let you go through it all in

order, where lesswill let you scroll through it, both forward and backward.

If you use either more or less on a file (or any stream of data — we'll do something fancy
with more later, so you can see what [mean), you can escape by hitting q (short for

"quit").

file

Let's say you don't know what type of file myfile is. No biggie.
Type file myfile

The output should be myfile: ASCII text

ANCHORAGE
El PROGRAMMING
WORKSHOP
Move stuff

cp

Oh, but we forgot to add an extension, showing that it's a text file, didn't we? Not a

problem.
Type cp myfile myfile.txt

And then, to see how it worked, list the contents of the current directory. The output

should be myfile myfile.txt

Now you have the original, myfile, plus an exact copy ("cp" - copy) with a different

name, myfile.txt
rm
Now you have a file you don't need. No problem!

Type rm myfile — and then list the contents of the directory; the output should
be myfile.txt

You've just removed ("rm" - remove) myfile.

This is a command to use carefully! Removing things is serious business.

Copying and deleting every time you want to rename a file is a little tedious. There's a

way to do the same thing in one step:

Type mv myfile.txt mynewfile.txt — and then list the contents of the directory; the
output should bemynewfile.txt

You just moved ("mv" - move) a file. (You might ask why the command isn't "change
name," or something. Valid question. This command is used for changing filenames, but

it is also used for moving files between directories.)

ANCHORAGE
EI PROGRAMMING
WORKSHOP
If you want to try copying or moving your file out of /home/action/[your name] and
into /home/action, for instance, here's the command: cp mynewfile.txt

../mynewfile.txt — you can replace 'cp' with 'mv' — and then you can move it back by

typing mv ../mynewfile.txt mynewfile.txt
Find stuff

To show you how to find things, we're going to have to go further afield. And we're

going to digress for a moment.
Type cd /usr/bin

Typels

Whoa, right? Here, try this:

Is | more — that character in the middle is the horizontal line, usually located above the

"enter" key on your keyboard

WHOA, RIGHT? — This technique is referred to as "piping output to more", which is a
very useful thing to keep in your toolbox when you're faced with large files, or, in this
case, large output streams from commands. (It is totally reasonable to have questions
about this. Ask!) As you can see, you can hit enter to keep scrolling through the whole
file list; when you're tired of looking at the list, remember, you can type q to get out

of more.
One more tool for our toolset, before we move on:

Did you see the sequence of files, pygettext, pygettext2.5, pygettext2.6, etc.? (They're
later in the alphabet, so you're more likely to see them on an Is than on an Is [more. No

biggie if you don't go looking for them. Just believe me that they're there, OK?)

Type more pyg and then hit the tab key. — your command should now say more

pygettext.

That's right; it will try to complete file names for you after you've started typing them, if

you hit tab. Tab completion is AMAZING and makes every command line user’s life

ANCHORAGE
EI PROGRAMMING
WORKSHOP
better. But it's got limits, of course. The file you actually want is pygettext2.7; but

because there are multiple files that all start with "pygettext”, it completed as far as it

could, and you'll have to specify further by finishing the filename yourself.
Make sure the command line says more pygettext2.7 and hit enter

You can browse the file if you want, and hit g at any point to get out of more — big file,

right? It would be awful to have to look for a specific word in that file, wouldn't it?

grep

Type grep verbose pygettext2.7 — remember that you can use tab completion on the

filename!

You'll see output something like this (but better-indented): --verbose
'style=", 'verbose', 'version', 'width=", 'exclude-file="',

verbose = 0

elifoptin (-v', --verbose’):

options.verbose = 1

if options.verbose:

if options.verbose:

What's happening? The command grep searches within a file for instances of a
particular set of characters, in this case "verbose". (It doesn't have to be a whole word.
Any character string will work. And, yes, capitalization DOES matter.) The output shows

you all of the places "verbose" appears within the filepygettext2.7.
[t's time to learn another important tool: flags.
Type grep -n verbose pygettext2.7

Now the output has line numbers! The -n flag told the command grep that you want to

know what line number each instance of the character string "verbose" appeared on.

(There are flags for Is; I usually use the flags a, h, and 1, so when I list the contents of a
directory, I do it by typing Is -ahl — see how the flags are combined? It's fine to go

ahead and try that command in this or any directory. Is -ahl /home/action will give

ANCHORAGE
@ PROGRAMMING
WORKSHOP

you a full list of all of the files in the directory we started in, for instance! I also like to

use the -c tag with nano, so that I can see line and column numbers as [work.)
man

Want to know more about how to use grep, or any other command? Use man
Type man grep

As you can see, there are a number of flags and options available.

Feel free to scroll through, or to hit q to exit.

(Real talk: I usually Google any command I want to use, if that option is available to me,
rather than usingman. Different people have different preferences for finding

information.)
Just a couple more things....

up arrow
Hit the up arrow (1)

The last command you typed (probably man grep) is now on the command line! If you
keep hitting the up arrow, you can scroll through your command history. This saves a

lot of time when you're typing long commands that you need to use more than once!
ctrl-c

You can stop the current command from running by hitting ctrl-c

