1711.09286v1 [cs.PL] 25 Nov 2017

arxXiv

Total Haskell is Reasonable Coq

Antal Spector-Zabusky Joachim Breitner

Christine Rizkallah ~ Stephanie Weirich

{antals,joachim,criz,sweirich}@cis.upenn.edu
University of Pennsylvania
Philadelphia, PA, USA

Abstract

We would like to use the Coq proof assistant to mechan-
ically verify properties of Haskell programs. To that end,
we present a tool, named hs-to-coq, that translates total
Haskell programs into Coq programs via a shallow embed-
ding. We apply our tool in three case studies — a lawful Monad
instance, “Hutton’s razor”, and an existing data structure li-
brary - and prove their correctness. These examples show
that this approach is viable: both that hs-to-coq applies
to existing Haskell code, and that the output it produces is
amenable to verification.

CCS Concepts -« Software and its engineering — Soft-
ware verification;

Keywords Coq, Haskell, verification

ACM Reference Format:

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. 2018. Total Haskell is Reasonable Coq. In Pro-
ceedings of 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP’18). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3167092

1 Introduction

The Haskell programming language is a great tool for produc-
ing pure, functional programs. Its type system tracks the use
of impure features, such as mutation and IO, and its standard
library promotes the use of mathematically-inspired struc-
tures that have strong algebraic properties. At the same time,
Haskell development is backed by an industrial-strength
compiler (the Glasgow Haskell Compiler, GHC) [21], and
supported by mature software development tools, such as
IDEs and testing environments.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP’18), https://doi.org/10.1145/3167092.

However, Haskell programmers typically reason about
their code only informally. Most proofs are done on paper,
by hand, which is tedious, error-prone, and does not scale.

On the other hand, the Coq proof assistant [22] is a great
tool for writing proofs. It allows programmers to reason
about total functional programs conveniently, efficiently, and
with high confidence. However, Coq lacks GHC’s extensive
ecosystem for program development.

Therefore, we propose a multimodal approach to the veri-
fication of total functional programs: write code in Haskell
and prove it correct in Coq. To support this plan, we have
developed an automatic translator, called hs-to-coq, that
allows this approach to scale.

For example, consider the standard map function on lists
(from the Haskell Prelude), and the list Functor instance.

map :: (a->b) ->[a] ->[b]
map f [] =1
map f (x:xs) =f x:map f xs

instance Functor [] where fmap = map

Our tool translates this Haskell program automatically to
the analogous Coq definitions. The map function becomes
the expected fixpoint.

Definition map {a} {b}:(a->b)->1list a->1listb:=
fix map arg_62__arg_63__
:=match arg_62__,arg_63__with
| -,nil=>nil
| f, cons x xs =>cons (f x) (map f xs)
end.

Similarly, the Functor type class in Haskell turns into a Coq
type class of the same name, and Haskell’s Functor instance
for lists becomes a type class instance on the Coq side.

Once the Haskell definitions have been translated to Coq,
users can prove theorems about them. For example, we pro-
vide a type class for lawful functors:

Class FunctorLaws (t: Type ->Type) ‘{Functor t}:=
{functor_identity:
forall a (x: t a), fmap id x = x;
functor_composition:
forallabc(f:a->b)(g:b->c) (x:t a),
fmap g (fmap f x) = fmap (go f) x3}.

A list instance of the FunctorLaws type class is a formal
proof that the 1ist type, using this definition of map, is a
lawful functor.

https://doi.org/10.1145/3167092
https://doi.org/10.1145/3167092

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

This process makes sense only for inductive data types
and total, terminating functions. This is where the semantics
of lazy and strict evaluation, and hence of Haskell and Coq,
coincide [8]. However, the payoff is that a successful transla-
tion is itself a termination proof, even before other properties
have been shown. Furthermore, because Coq programs may
be evaluated (within Coq) or compiled (via extraction) these
properties apply, not to a formal model of computation, but
to actual runnable code.

Our overarching goal is to make it easy for a Haskell pro-
grammer to produce Coq versions of their programs that are
suitable for verification. The Coq rendition should closely
follow the Haskell code — the same names should be used,
even within functions; types should be unaltered; abstrac-
tions like type classes and modules should be preserved - so
that the programmer obtains not just a black-box that hap-
pens to do the same thing as the original Haskell program,
but a live Coq version of the input.

Furthermore, the development environment should in-
clude as much as possible of total Haskell. In particular, pro-
grammers should have access to standard libraries and lan-
guage features and face few limitations other than totality.
Also, because programs often change, the generated Coq
must be usable directly, or with declarative modifications, so
that the proofs can evolve with the program.

Conversely, an additional application of hs-to-coq is as
a Haskell “rapid prototyping front-end” for Coq. A poten-
tial workflow is: (1) implement a program in Haskell first,
in order to quickly develop and test it; (2) use hs-to-coq
to translate it to the Coq world; and (3) extend and verify
the Coq output. This framework allows diverse groups of
functional programmers and proof engineers to collaborate;
focusing on their areas of expertise.

Therefore, in this paper, we describe the design and im-
plementation of the hs-to-coq tool and our experiences
with its application in several domains. In particular, the
contributions of this paper are as follows.

o We describe the use of our methodology and tool in
three different examples, showing how it can be used
to state and prove the monad laws, replicate textbook
equational reasoning, and verify data structure invari-
ants (Section 2).

o We identify several design considerations in the devel-
opment of the hs-to-coq tool itself and discuss our
approach to resolving the differences between Haskell
and Coq (Section 3).

e We discuss a Coq translation of the Haskell base li-
brary for working with translated programs that we
have developed using hs-to-coq (Section 4).

We discuss related work in Section 5 and future directions in
Section 6. Our tool, base libraries, and the case studies are
freely available as open source software.!

Lhttps://github.com/antalsz/hs-to-coq

Spector-Zabusky, Breitner, Rizkallah, and Weirich

class Applicative m => Monad m where \ # Source

The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as
category theory. From the perspective of a Haskell
programmer, however, it is best to think of a monad as an
abstract datatype of actions. Haskell's do expressions
provide a convenient syntax for writing monadic
expressions.

Instances of Monad should satisfy the following laws:

e return a >>= k = k a
e m >>= return = m

e m>>= (\X ->k X >>=h) = (m>>= k) >>=h

Furthermore, the Monad and Applicative operations
should relate as follows:

e pure = return

o (<*>) = ap

Figure 1. The documentation of the Monad type class lists
the three monad laws and the two laws relating it to
Applicative (screenshot).?

2 Reasoning About Haskell Code in Coq

We present and evaluate our approach to verifying Haskell
in three examples, all involving pre-existing Haskell code.

2.1 Algebraic Laws

Objective The Functor type class is not the only class with
laws. Many Haskell programs feature structures that are not
only instances of the Functor class, but also of Applicative
and Monad as well. All three of these classes come with laws.
Library authors are expected to establish that their instances
of these classes are lawful (respect the laws). Programmers
using their libraries may then use these laws to reason about
their code.

For example, the documentation for the Monad type class,
shown in Figure 1, lists the three standard Monad laws as well
as two more laws that connect the Monad methods to those
of its superclass Applicative. Typically, reasoning about
these laws is done on paper, but our tool makes mechanical
verification available.

In this first example, we take the open source successors
library [3] and show that its instances of the Functor,
Applicative, and Monad classes are lawful. This library pro-
vides a type Succs that represents one step in a nondetermin-
istic reduction relation; the type class instances allow us to
combine two relations into one that takes a single step from
either of the original relations. Figure 2 shows the complete,

Zhttp://hackage.haskell.org/package/base-4.9.1.0/docs/Prelude.html#t:
Monad

https://github.com/antalsz/hs-to-coq
http://hackage.haskell.org/package/base-4.9.1.0/docs/Prelude.html#t:Monad
http://hackage.haskell.org/package/base-4.9.1.0/docs/Prelude.html#t:Monad

Total Haskell is Reasonable Coq

module Control.Applicative.Successors where
data Succs a = Succs a [a] deriving (Show, Eq)

getCurrent :: Succs t >t
getCurrent (Succs x _) = x

getSuccs :: Succs t —>[t]
getSuccs (Succs _ xs) = xs

instance Functor Succs where
fmap f (Succs x xs) = Succs (f x) (map f xs)

instance Applicative Succs where
pure x = Succs x []
Succs f fs <*> Succs x xs
= Succs (f x) (map ($x) f's ++ map f xs)

instance Monad Succs where
Succs x xs>>=f
= Succs y (map (getCurrent.f) xs ++ys)
where Succs y ys = f x

Figure 2. The successors library

unmodified code of the library. The source code also con-
tains, as a comment, 80 lines of manual equational reasoning
establishing the type class laws.

Experience Figure 3 shows the generated Coq code for
the type Succs and the Monad instance. The first line is the
corresponding definition of the Succs data type. Because
the Haskell program uses the same name for both the type
constructor Succs and its single data constructor, hs-to-coq
automatically renames the latter to Mk_Succs to avoid this
name conflict.®

The rest of the figure contains the instance of the Monad
type class for the Succs type. This code imports a Coq ver-
sion of Haskell’s standard library base that we have also
developed using hs-to-coq (see Section 4). The Monad type
class from that library, shown below, is a direct translation
of GHC’s implementation of the base libraries.

Class Monad m “{Applicative m}:={
op_zgzg__:forall {a} {b},ma->mb->mb;
op_zgzgze__: forall {a} {b},ma->(a->mb)->mb;
return_: forall {a},a->ma}.

Infix " >>":=(op_zgzg__) (at level 99).

Notation "'_>>_'":=(op_zgzg__).
Infix " >>=":=(op_zgzgze__) (at level 99).
Notation "'_>>=_'":=(op_zgzgze__).

As in Haskell, the Monad class includes the return and
>>= methods, which form the mathematical definition of a

3The prefix Mk_ is almost never used for Haskell names, so this heuristic is
very unlikely to produce a constructor name that clashes with an existing
Haskell name. The hs-to-coq tool includes the ability to customize renam-
ing, which can be used in case there are name clashes; see Section 4.1 for
more details.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

Inductive Succs a: Type :=
Mk_Succs:a->1list a->Succs a.

(* Instances for Functor and Applicative omitted. *)

Local Definition instance_Monad_Succs_op_zgzgze__
: forall {a} {b}, Succs a ->(a -> Succs b) ->Succs b
:= fun {a} {b}=>funarg_4__arg 5__=>
match arg_4__,arg_5__ with
| Mk_Succs x xs, f =>match f x with
| Mk_Succs y ys =>Mk_Succs y
(app (map (compose getCurrent f) xs) ys)
end
end.

Local Definition instance_Monad_Succs_return_
: forall {a},a ->Succs a:= fun {a} =>pure.

Local Definition instance_Monad_Succs_op_zgzg__
: forall {a} {b}, Succs a ->Succs b -> Succs b
:= fun {a} {b}=>op_ztzg__.

Instance instance_Monad_Succs : Monad Succs :={
op_zgzg__:= fun {a} {b} =>
instance_Monad_Succs_op_zgzg__;
op_zgzgze__:= fun {a} {b}=>
instance_Monad_Succs_op_zgzgze__;
return_:= fun {a} =>
instance_Monad_Succs_return_}.

Figure 3. Excerpt of the Coq code produced from Figure 2.
(To fit the available width, module prefixes are omitted and
lines are manually re-wrapped.)

monad, as well as an additional sequencing method >>. Again
due to restrictions on naming, the Coq version uses alter-
native names for all three of these methods. As returnisa
keyword, it is replaced with return_. Furthermore, Coq does
not support variables with symbolic names, so the bind and
sequencing operators are replaced by names starting with
op_. In Figure 3, we can see: op_zgzgze__, the translation of
>>=; op_zgzg__, the translation of >>; and op_ztzg__, the
translation of *> from the Applicative type class. These
names are systematically derived using GHC’s “Z-encoding”.
Haskell’s ++ operator is translated to the pre-existing Coq
app function, so it does not receive an op_ name.

Note that our version of the Monad type class does not
include the infamous method fail::Monad m=>String->m a.
For many monads, including Succs, a function with this
type signature is impossible to implement in Coq - this
method is frequently partial.* As a result, we have instructed
hs-to-coq to skip this method when translating the Monad
class and its instances.

“In fact, this is considered to be a problem in Haskell as well, so the method
is currently being moved into its own class, MonadFail; we translate this
class (in the module Control.Monad.Fail) as well, for monads that have
total definitions of this operation.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

Class MonadLaws (t : Type -> Type)

“{!Functor t, !Applicative t, !Monad t,

!FunctorlLaws t, 'ApplicativelLaws t}:=
{monad_left_id: forall AB (a:A) (k:A->tB),

(return_a>>=k) = (k a);

monad_right_id: forall A (m: t A),
(m>>=return_) =m;

monad_composition: forall ABC
m:tA)(k:A->tB)(h:B->tC),
(m>>= (fun x =>k x >>=h)) = ((m >>=k) >>=h);

monad_applicative_pure: forall A (x:A),
pure x = return_ x;

monad_applicative_ap: forall AB
(f:t(A->B)) (x:tA),
(f<x>x) =ap f x}.

Figure 4. Coq type class capturing the Monad laws.

The instance of the Monad class in Figure 3 includes defini-
tions for all three members of the class. The first definition is
translated from the >>= method of the input file; hs-to-coq
supplies the other two components from the default defini-
tions in the Monad class.

Our base library also includes an additional type class
formalizing the laws for the Monad class, shown in Fig-
ure 4. These laws directly correspond to the documenta-
tion in Figure 1. Using this definition (and similar ones for
FunctorLaws and Applicativelaws), we can show that the
Coq implementation satisfies the requirements of this class.
These proofs are straightforward and are analogous to the
reasoning found in the handwritten 80 line comment in the
library.

Conclusion The proofs about Succs demonstrate that we
can translate Haskell code that uses type classes and in-
stances using Coq’s support for type classes. We can then
use Coq to perform reasoning that was previously done
manually, and we can support this further by capturing the
requirements of type classes in additional type classes.

2.2 Hutton’s Razor

Objective Our next case study is “Hutton’s razor”, from
Programming in Haskell [16]. It includes a small expression
language with an interpreter and a simple compiler from this
language to a stack machine [16, Section 16.7]. We present
our version of his code in Figure 5.

Hutton uses this example to demonstrate how equational
reasoning can be used to show compiler correctness. In other
words, Hutton shows that executing the output of the com-
piler with an empty stack produces the same result as evalu-
ating an expression:

exec (comp e) [] = Just [eval e]

Spector-Zabusky, Breitner, Rizkallah, and Weirich

module Compiler where
data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Valn) =n
eval (Add x y) = eval x +eval y

type Stack = [Int]

type Code = [Op]

data Op = PUSH Int | ADD

exec :: Code -> Stack ->Maybe Stack

exec [] s = Just s

exec (PUSHNn:c) s =execc(n :s)
exec (ADD :c)(m:n:s)=execc(n+m:s)
exec (ADD :c) _ = Nothing

comp :: Expr > Code
comp e = comp' e []

comp' :: Expr -> Code -> Code
comp' (Valn)c=PUSHn:c
comp' (Add x y) c = comp' x (comp' y (ADD: c))

Figure 5. Hutton’s razor

Experience Even in this simple example, the design of the
compiler and its correctness proof are subtle. In particular, in
Hutton’s original presentation, the exec function is partial:
it does not handle stack underflow. This partiality guides
Hutton’s design; he presents and rejects an initial version of
the comp function because of this partiality.

Since Coq does not support partial functions, this posed an
immediate problem. This is why the code in Figure 5 has been
modified: we changed exec to return a Maybe Stack, not
simply a Stack, and added the final equation. Once we made
this small change and translated the code with hs-to-coq,
the proof of compiler correctness was easy. In fact, in Coq’s
interactive mode, users can follow the exact same (small)
steps of reasoning for this proof that Hutton provides in his
textbook — or use Coq’s proof automation to significantly
speed up the proof process.

Conclusion We were successfully able to replicate a text-
book correctness proof for a Haskell programs, but along the
way, we encountered the first significant difference between
Coq and Haskell, namely partiality (Section 3.7 provides
more details). Since we only set out to translate total code,
we needed to update the source code to be total; once we did
so, we could translate the textbook proofs to Coq directly.

2.3 Data Structure Correctness

Objective In the last case study, we apply our tool to self-
contained code that lives within a large, existing code base.

Total Haskell is Reasonable Coq

The Bag module’ from GHC [21] implements multisets with
the following data type declaration.

dataBag a
= EmptyBag
| UnitBag a
| TwoBags (Bag a) (Bag a)
—— INVARIANT: neither branch is empty
| ListBag [a]
—— INVARIANT: the list is non-empty

The comments in this declaration specify the two invariants
that a value of this type must satisfy. Furthermore, at the top
of the file, the documentation gives the intended semantics of
this type: a Bag is “an unordered collection with duplicates”.
In fact, the current implementation satisfies the stronger
property that all operations on Bags preserve the order of
elements, so we can say that their semantics is given by the
function bagToList :: Bag a -> [a], which is defined in the
module.

Experience The part of the module that we are interested
in is fairly straightforward; in addition to the Bag type, it
contains a number of basic functions, such as

isEmptyBag :: Bag a -> Bool
unionBags :Bag a->Baga->Baga

We formalize the combined invariants as a boolean predi-
cate well_formed_bag. Then, for each translated function,’
we prove up to two theorems:

1. We prove that each function is equivalent, with respect
to bagTolList, to the corresponding list function.

2. If the function returns a Bag, we prove that it preserves
the Bag invariants.

Thus, for example, we prove the following three theorems
about isEmptyBag and unionBags:

Theorem isEmptyBag_ok {A} (b:Bag A):
well_formed_bag b ->
isEmptyBag b = null (bagToList b).

Theorem unionBags_ok {A} (b1 b2:BagA):
bagToList (unionBags b1 b2) =
bagTolList b1 ++ bagToList b2.

Theorem unionBags_wf {A} (b1 b2:Bag A):
well_formed_bag b1 ->well_formed_bag b2 ->
well_formed_bag (unionBags b1 b2).

Interestingly, we can see that isEmptyBag’s correctness the-
orem requires that its argument satisfy the Bag invariants,
but unionBags’s does not.

> http://git.haskell.org/ghc.git/blob/ghc-8.0.2- release:/compiler/utils/Bag.hs
®We skipped monadic functions such as mapBagM, along with three further
functions that referred to code we did not translate.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

Verifying Bag The verification effort proceeded just as
though we were verifying any data structure library written
in Coq. We verified nineteen different functions on Bags, and
no proof was longer than eight lines (using the ssreflect
tactic library [12]).

Along the way, we discovered a minor omission in the
documentation of the foldBag function. This function has

type
foldBag: (r->r->r)->(a->r)->r->Baga->r

The expression foldBag t u e maps u over every element
of the bag and then, starting with e, combines these results
from the right using the operator t, a la foldr.

The documentation for foldBag requires that t be asso-
ciative, and says that it is then a “more tail-recursive” ver-
sion of a commented-out reference implementation which
combines the results according the internal structure of the
Bag instead of from the right. However, as we discovered
when attempting to prove the two implementations equal,
the reference implementation is not the same as foldBag
in all cases — they are only the same when e is the identity
for t. This discrepancy is minor, but has been present for
over 21 years [25].

Selectively translating Bag As a part of GHC, the Bag mod-
ule cannot stand on its own; it imports a number of other
modules from GHC, such as Outputable and Util. However,
there is a great deal of code we don’t care about in GHC. For
example, the Outputable module contains infrastructure
for pretty printing. For our verification goals, this module is
completely irrelevant, so it would be unfortunate if we could
not proceed without translating it into Coq. But it would be
equally unfortunate if we had to edit the GHC sources to
remove code that we were not interested in.

It is for these sorts of reasons that hs-to-coq supports
declaratively configuring the translation process: it can take
as input a file of declarative instructions, called edits, that
influence the translation process. One such instruction is to
skip translating a module:

skip module Outputable

Similar instructions exist to skip functions, type classes, in-
stances and type class methods; for example, the Util mod-
ule contains a number of utility functions that aren’t used
by Bag, and so are unnecessary.

Conclusion Because hs-to-coq’s translation is configur-
able, we were able to slice the code of interest out of a large,
existing codebase, without having to translate irrelevant
parts or change the original source code. Once translated,
the code was pleasant and straightforward to work with,
and we completed both invariant preservation and semantic
correctness proofs. We also saw that specifications are sub-
tle, and edge cases in documentation can be caught by such
verification.

http://git.haskell.org/ghc.git/blob/ghc-8.0.2-release:/compiler/utils/Bag.hs

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

3 The Design and Implementation of
hs-to-coq

The previous section describes hs-to-coq in action: it pro-

cesses a Haskell program, along with a separate files of

“edits”, which are commands that modify the translation in

well-defined ways, and produces verifiable Coq code. Our

design goals for hs-to-coq include:

1. Produce output resembling the original input;

2. Produce output amenable to interactive proof devel-
opment;

3. Handle features commonly found in modern Haskell
developments; and

4. Apply to source code as is, even if it is part of a larger
development.

We have made the somewhat controversial choice to focus
on total Haskell programs. This choice follows from our first
two goals above: total programs require fewer modifications
to be accepted by Coq (for example, there is no need to use
a monad to model partiality) and provide more assurances
(if a translation is successful we know that the code is total).
At the same time, reasoning about total functions is simpler
than reasoning about partial ones, so we encourage Haskell
proof development by concentrating on this domain.

The configurable edits support this design. Example ed-
its include skipping functions that aren’t being verified, or
renaming a translated type or value to its Coq equivalent
for interoperability. By providing this in a separate file, this
per-project changes do not need to be applied to the code
itself, and do not have to be re-done as the code evolves.

We use the Glasgow Haskell Compiler (GHC), version
8.0.2, as a library [21]. By using its parser, hs-to-coq can
process most Haskell code as seen in the wild. In fact, our
tool adopts the first two stages of GHC. First, the source
code passes through the parser and an AST is produced. This
AST then goes through the renamer, which resolves name
references and ensures that programs are well scoped. Based
on this, the tool generates the Coq output.

Note that hs-to-coq generates the Coq output before the
typechecking and desugaring phases. Going after the desug-
aring, and hence translating GHC’s intermediate language
Core, would certainly simplify the translation. But the result-
ing code would look too different from the Haskell source
code, and go against our first goal.

Many of the syntactic constructs found in Haskell have
direct equivalents in Coq: algebraic data types, function def-
initions, basic pattern matching, function application, let-
bindings, and so on. Translating these constructs is immedi-
ate. Other syntactic constructs may not exist in Coq, but are
straightforward to desugar: where clauses become match or
let expressions, do notation and list comprehensions turn
into explicit function calls, etc.

However, many complex Haskell features do not map so
cleanly onto Coq features. In the following we discuss our

Spector-Zabusky, Breitner, Rizkallah, and Weirich

resolution of these challenging translations in the context of
our design goals.

3.1 Module System

Haskell and Coq have wildly different approaches to their
module systems, but thankfully they both have one. The
largest point of commonality is that in both Haskell and Cogq,
each source file creates a single module, with its name de-
termined by the file name and the path thereto. The method
for handling modules is thus twofold:

o translate each Haskell file into a distinct Coq file; and
e always refer to all names fully qualified to avoid any
differences between the module systems.

In each Coq module, we make available (through Require)
all modules that are referenced by any identifiers. We do
this instead of translating the Haskell import statements
directly because of one of the differences between Haskell
and Coq: Haskell allows a module to re-export identifiers
that it imported, but GHC’s frontend only keeps track of
the original module’s name. So the fully-qualified name we
generate refers to something further back in the module tree
that must itself be imported.

3.2 Records

In Haskell, data types can be defined as records. For example,
the definition of the functions getCurrent and getSuccs in
Figure 2 could be omitted if the data type were defined as

data Succs a = Succs {getCurrent :: a,getSuccs :: [a]}

The type is the same, but naming the fields enables some ex-
tra features: (1) unordered value creation, (2) named pattern
matching, (3) field accessors, and (4) field updates [20]. In
addition, with GHC extensions, it also enables (5) record wild
cards: a pattern or expression of the form Succs { .. } binds
each field to a variable of the same name.

Coq features support for single-constructor records that
can do (1-3), although with minor differences; however, it
lacks support for (4-5). More importantly, however, Haskell
records are per-constructor — a sum type can contain fields
for each of its constructors. Coq does not support this at all.
Consequently, hs-to-coq keeps track of record field names
during the translation process. Constructors with record
fields are translated as though they had no field names, and
the Coq accessor functions are generated separately. During
pattern matching or updates - particularly with wild cards -
the field names are linked to the appropriate positional field.

3.3 Patterns in Function Definitions

Haskell function definitions allow the programmer to have
patterns as parameters:

uncurry = (a->b->c)->(a,b)->c¢
uncurry f (x,y)=f xy

Total Haskell is Reasonable Coq

This code is not allowed in Coq; pattern matching is only
performed by the match expression. Instead, programmers
first have to name the parameter, and then perform a separate
pattern match:

Definition uncurry {a} {bJ} {c}:
(@a->b->c)->axb->c:=
funarg_10__arg_11__=>

match arg_10__,arg_11__ with
| f,pairxy=>fxy
end.

This translation extends naturally to functions that are
defined using multiple equations, as seen in the map function
in Section 1.

3.4 Pattern Matching With Guards

Another pattern-related challenge is posed by guards, and
translation tools similar to ours have gotten their semantics
wrong (see Section 5).

Guards are side conditions that can be attached to a func-
tion equation or a case alternative. If the pattern matches,
but the condition is not satisfied, then the next equation
is tried. A typical example is the take function from the
Haskell standard library, where take n xs returns the first n
elements of xs:

take :: Int ->[a] ->[a]

taken _|n<=0=1]

take _[] =1

take n (x:xs) x : take (n = 1) xs

The patterns in the first equation match any argument; how-
ever, the match only succeeds if n<=0 as well. If n is positive,
that equation is skipped, and pattern matching proceeds to
the next two equations.

Guards occur in three variants:

1. A boolean guard is an expression expr of type Bool, as
we saw in take. It succeeds if expr evaluates to True.
2. A pattern guard is of the form pat < expr. It suc-
ceeds if the expression expr matches the pattern pat,
and brings the variables in pat into scope just as any
pattern match would.
3. A local declaration of the form let x = e. This binds x
to e, bringing x into scope, and always succeeds.
Each equation can be guarded by a multiple guards, sepa-
rated by commas, all of which must succeed in turn for this
equation to be used.

Coq does not support guards, so hs-to-coq’s translation
has to eliminate them. Conveniently, the Haskell Report [20]
defines the semantics of pattern matching with guards in
terms of a sequence of rewrites, at the end of which all
guards have been removed and all case expressions are of
the following, primitive form:

casee of K x1 ... xN->el
_ ->e2

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

According to these rules, the take function defined above
would be translated to something like

take :: Int ->[a] ->[a]
takenxs =ifn<=0
then []
else case xs of
[1->[]
_ —>case xs of
x:xs->x:take (n—1) xs
->error "No match"

Unfortunately, this approach is unsuitable for hs-to-coq
as the final pattern match in this sequence requires an catch-
all case to be complete. This requires an expression of arbi-
trary type, which exists in Haskell (error ...), but cannot
exist in Coq. Additionally, since Coq supports nested pat-
terns (such as Just (x:xs)), we want to preserve them when
translating Haskell code.

Therefore, we are more careful when translating case ex-
pressions with guards, and we keep mutually exclusive pat-
terns within the same match. This way, the translated take
function performs a final pattern match on its list argument:

Definition take {a}:Int ->1list a->1list a:=
fix take arg_10__arg_11__
:=let j_13__:=
match arg_10__,
| -, nil=>nil
| n,cons x xs =>
cons x (take (op_zm__ n (fromInteger 1)) xs)
end in

arg_11__ with

match arg_10__,arg_11__with
| n,_=>if op_zlze__ n (fromInteger 0)
then nil
else j_13__

end.

The basic idea is to combine multiple equations into a single
match statement, whenever possible. We bind these match
expressions to a name, here j_13__, that earlier patterns
return upon pattern failure. We cannot inline this definition,
as it would move expressions past the pattern of the sec-
ond match expression, which can lead to unwanted variable
capture.
In general, patterns are translated as follows:

1. We split the alternatives into mutually exclusive groups.
We consider an alternative a; to be exclusive with a,
if a; cannot fall through to a,. This is the case if
a. a; has no guards, or
b. an expression matched by the pattern in a; will

never be matched by the pattern in a;.

2. Each group turns into a single Coq match statement
which are bound, in reverse order, to a fresh identifier.
In this translation, the identifier of the next group is
used as the fall-through target.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

The last of these groups has nothing to fall-through
to. In obviously total Haskell, the fall-through will
not be needed. Partial code uses patternFailure as
discussed in Section 3.7.

If the patterns of the resulting match statement are
not complete, we add a wild pattern case (using _) that
returns the fall-through target of the current group.

3. Each alternative within such a group turns into one
branch of the match. We translate nested patterns di-
rectly, as the semantics of patterns in Coq and Haskell
coincide on the subset supported by hs-to-coq, which
excludes incomplete irrefutable patterns, view pat-
terns, and pattern synonyms [27].

At this point, a where clause in the Haskell code (which
spans multiple guards) gets translated to a let that
spans all guarded right-hand-sides.

4. Each guarded right-hand-side of one alternative gets
again bound, in reverse order, to a fresh identifier. The
last guard uses the fall-through target of the whole
mutually exclusive group; the other guards use the
next guard.

5. The sequence of guards of a guarded right-hand-side
are now desugared as follows:

a. A boolean guard expr turns into

if expr then ...
else j

b. A pattern guard pat < expr turns into

match expr with | pat=> ...
|- =]

c. Alet guard turns into a let expression scoping over
the remaining guards.

Here, ... isthe translation of the remaining guards or,

if none are left, the actual right-hand side expression,

and j is the current fall-through target.

This algorithm is not optimal in the sense of producing the
fewest match expressions; for example, a more sophisticated
notion of mutual exclusivity could allow an alternative a;
even when it has guards, as long as these guards cannot fail
(e.g., pattern guards with complete patterns, let-guards).
This issue has not yet come up in our test cases.

3.5 Type Classes and Instances

Type classes [33] are one of Haskell’s most prominent fea-
tures, and their success has inspired other languages to im-
plement this feature, including Coq [29]. As shown in the
successors case study (Section 2.1), we use this familial re-
lation to translate Haskell type classes into Coq type classes.

As can be seen in Figure 3, hs-to-coq lifts the method
definitions out of the Instance. While not strictly required
there, this lifting is necessary to allow an instance method
to refers to another method of the same instance.

Spector-Zabusky, Breitner, Rizkallah, and Weirich

Superclasses Superclass constraints are turned into ar-
guments to the generated class, and these arguments are
marked implicit, so that Coq’s type class resolution mecha-
nism finds the right instance. This can be seen in the defini-
tion of Class Monad in Section 2.1, where the Applicative
superclass is an implicit argument to Monad.

Default Methods Haskell allows a type class to declare
methods with a default definition. These definitions are in-
serted by the compiler into an instance if it omits them. For
example, the code of the successors library did not give a
definition for Monad’s method return, and so GHC will use
the default definition return = pure.

Since Coq does not have this feature, hs-to-coq has to
remember the default method’s definition and include it in
the Instance declarations as needed. This is how the method
instance_Monad_Succs_return_ in Figure 3 arose.

Derived Instances The Haskell standard provides the abil-
ity to derive a number of basic type classes (Eq, Ord, ...): the
Haskell compiler can optionally synthesize whole instances
of these type classes. GHC extends this mechanism to ad-
ditional type classes (Functor, Foldable, ...). To translate
derived instances, we simply take the instance declarations
synthesized by the compiler and translate them just as we
do for user-provided instances.

Self-referential Instances Haskell type class instances are
in scope even in their own declaration, and idiomatic Haskell
code makes good use of that. Consider the standard instance
for list equality:

instance Eq a=>Eq [a] where

[] ==] =True
(x:xs)==(y:ys) =x==y && xs==ys
_ ==_ = False

Xs /=ys =not (xs==ys)

The operator == occurs three times on the right hand side
of method definitions, and all three occurrences have to be
treated differently:

1. In x ==y, which compares list elements, we want to
use the polymorphic op_zeze__ method, so that Coq’s
instance resolution picks up the instance for Eq a.

2. For the first xs == ys, where lists are compared, we
cannot use the polymorphic method, because the in-
stance Eq [a] is not yet in scope. Instead, we want to
refer to the very function that we are defining, so we
have to turn that function into a fixed point.

3. The second xs==ys, in the definition of /=, also cannot
be the polymorphic method. Instead, we want to refer
to the method function for list equality that we have
just defined.

Unfortunately, hs-to-coq does not have the necessary type
instance resolution information to reliably detect which vari-
ant to use. Therefore, we use following heuristic: By default,

Total Haskell is Reasonable Coq

the polymorphic method is used. But in a method definition
that is generated based on a default method, the currently
defined methods are used. When this heuristic fails (produc-
ing code that Coq does not accept), the user can inject the
correct definition using redefine edits.

Recursion Through Instances We found that nested re-
cursion through higher-order type class methods is a com-
mon Haskell idiom. A typical example is

data RoseTree a = Node a [RoseTree a]

allT :: (a ->Bool) ->RoseTree a ->Bool
allT p (Node x ts) = p x && all (allT p) ts

Here, the recursive call to allT occurs (partially applied) as
an argument to all; all itself is defined in terms of foldMap,
amethod of the Foldable type class. The Foldable instance
for the list type then defines foldMap in terms of foldr.
With the naive type class translation outlined above, Coq
rejects this. During termination checking, Coq unfolds defi-
nitions of called functions, but not of pattern matched values;
thus, it gets stuck when expanding foldr, which becomes

match instance_Foldable_list with
| Build_Foldable ... list_foldr ... => ...
end

as foldr must be extracted from the type class instance.

We circumvent this issue by using the following gener-
ally applicable trick: Instead of the usual class and instance
declarations such as

Class C a:={method: t a}.
Instance instance_C_T:CT:={method:=e}
we transform the class into continuation-passing style:

Record C_dict a:= {method_:t a}.
Definition C a:= forall r,(C_dicta->r)->r.
Existing Class C.
Definition method {a} {H:Ca}:ta
:=H _ (method_ a).

Instance instance_C_T:CT:=
fun _k=>k {| method_:=e [}.

This neither changes the types of the class methods nor af-
fects instance resolution, so existing code that uses the type
class does not need to be modified. Now all method and
instance definitions are functions, which allows the termi-
nation checker to look through them and accept recursive
definitions, such as allT, as structurally recursive.

3.6 Order of Declarations

In Haskell, the order of declarations in a source file is irrel-
evant; functions, types, type classes, and instances can be
used before they are defined. Haskell programmers often
make use of this feature. Coq, however, requires declarations
to precede their uses. In order to appease Coq, hs-to-coq

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

detects the dependencies between the sentences of the Coq
file — a sentence that uses a name depends on it — and uses
this to sort the sentences topologically so that definitions
precede uses. Mutual recursion is currently unsupported,
although this technique naturally generalizes to include it
by treating mutually-recursive groups as a single node.

While this works in most cases, due to the desugaring of
type class constraints as invisible implicit arguments (Sec-
tion 3.5), this process does not always yield the correct order.
In such cases, the user can declare additional dependencies
between definitions by adding an order like

order instance_Functor_Dual instance_Monad_Dual

to the edit file.

3.7 Partial Haskell

Another feature” of Haskell is that it permits partial functions
and general recursion. We have only discussed verifying total
Haskell. Nevertheless, as one starts to work on an existing or
evolving Haskell code base, making every function total and
obviously terminating should not have to be the first step.
Therefore, hs-to-coq takes liberties to produce some-
thing useful, rather than refusing to translate partial func-
tions. This way, verification can already start and inform
further development of the Haskell code. When the design
stabilizes, the code can be edited for making totality obvious.
We can classify translation problems into four categories:

1. Haskell code with genuinely partial pattern matches;
for example,

head:: [a] ->a
head (x: _) = x

which will crash when passed an empty list.

2. Haskell code with pattern matches that look partial,
but are total in a way that Coq’s totality checker cannot
see. For example, we can define a run-length encoding
function in terms of group :: Eq a=>[a] ->[[a]]:

runLengthEncoding ::Eq a=>[a] ->[(a, Int)]
runLengthEncoding =
map (\(x : xs) =>(x,1 + length xs)).group

Since the group function returns a list of nonempty
lists, the partial pattern in the lambda will actually
always match, but this proof is beyond Coq’s automatic
reasoning.

3. Haskell code with genuinely infinite recursion, at least
when evaluated strictly; for example,

repeat ::a->[a]
repeat x = x: repeat x

produces an infinite list in Haskell, but would diverge
in Coq using the inductive definition of lists.

’Some might prefer quotes around this word.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

4. Haskell code with recursion that looks infinite, but
terminates in a way that Coq’s termination checker
cannot see. For example, we can implement a sort
function in terms of the standard functional quicksort-
like algorithm:

sort = 0rd a=>[a]->[a]

sort [] =[]

sort (p:xs) = sort lesser ++[p] ++ sort greater
where (lesser, greater) = partition (<p) xs

This function recurses on two lists that are always
smaller than the argument, but not syntactically, so it
would be rejected by Coq’s termination checker.

Our tool recognizes partial pattern matches, as described
in Section 3.4. If these occur, it adds the axiom

Local Axiom patternFailure: forall {a},a.

to the output and completes the pattern match with it, e.g.:

Definition head {a}:list a->a:=
fun arg_10__=>match arg_10__ with
| cons x _=>x
| — =>patternFailure
end.

Naturally, this axiom is glaringly unsound. But it does allow
the user to continue translating and proving, and to revisit
this issue at a more convenient time - for example, when
they are confident that the overall structure of their project
has stabilized. In the case of genuinely partial functions, the
user might want to change their type to be more precise,
as we did in Section 2.2. In the case of only superficially
partial code like runLengthEncoding, small, local changes
to the code may avoid the problem. At any time, the user
can use Coq’s Print Assumptions command to check if any
provisional axioms are left.

For non-structural recursion, we follow a similar path.
Since hs-to-coq itself does not perform termination check-
ing, it translates all recursive definitions to Coq fixpoints,
which must be structurally recursive. If this causes Coq
to reject valid code, the user can use an edit of the form
nonterminating sort to instruct hs-to-coq to use the fol-
lowing axiom to implement the recursion:

Local Axiom unsafeFix: forall {a},(a->a)->a.

Again, this axiom is unsound, but allows the programmer
to proceed. In fact, after including the computation axiom

Axiom unroll_unsafeFix: forall a (f:a-> a),
unsafeFix f = f (unsafeFix f).

in the file with the proofs, we were able to verify the partial
correctness of the sort function above (i.e., if the equation
for sort indeed has a fixed point, as per the above axioms,
then it always terminates and produces a sorted version of
the input list).

Spector-Zabusky, Breitner, Rizkallah, and Weirich

Eventually, though, the user will have to address this issue
to consider their proofs complete. They have many options:
e They can apply the common Coq idiom of adding
“fuel”: an additional argument that is structurally de-
creasing in each iteration.

e They can tell hs-to-coq to define this function with
Program Fixpoint, using the termination edit to
indicate the termination argument and proof.

e They can replace the translated definition with a
handwritten Coq definition. The aforementioned
Program Fixpoint command, the Function com-
mand [2], and the Equations package [19] can all be
useful for this, as they allow explicit termination proofs
using measures or well-founded relations.

e Or, of course, they can refactor the code to avoid the
problematic functions at all.

Thus, the intended workflow around partiality and general
recursion is to begin with axioms in place, which is not
an unusual approach to proof development, and eliminate
them at the end as necessary. For example, the correctness
theorem about Hutton’s razor in Section 2.2 goes through
even before changing the exec function to avoid the partial
pattern match! The reason is that the correctness theorem
happens to only make a statement about programs and stacks
that do not trigger the pattern match failure.

3.8 Infinite Data Structures

As a consequence of Haskell’s lazy evaluation, Haskell data
types are inherently coinductive. For example, a value of
type [Int] can be an infinite list. This raises the question
of whether we should be making use of Coq’s support for
coinductive constructions, and using CoInductive instead
of Inductive in the translation of Haskell data types. The
two solutions have real tradeoffs: with corecursion, we would
gain the ability to translate corecursive functions such as
repeat (mentioned in Section 3.7) using cofix, but at the
price of our present ability to translate recursive functions
such as filter and length.

We conjecture, based on our experience as Haskell pro-
grammers, that there is a lot of Haskell code that works
largely with finite values. Moreover, many idioms that do use
infinite data structures (e.g., zipWith [0..]) can be rewrit-
ten to work only with finite values. And reasoning about
coinduction and corecursion is much trickier than reasoning
about induction and recursion, especially in Coq.

3.9 Unsupported Language Features

There are language constructs that hs-to-coq simply does
not yet support, such as mutually recursive definitions, in-
complete irrefutable patterns, and a number of language
extensions. If hs-to-coq detects these, then it outputs an
axiom with the name and type of the problematic definition
and an explanatory comment, so that it does not hold up the
translation of code using this function.

Total Haskell is Reasonable Coq

Primitive types and operations
GHC.Prim*, GHC.Tuple*, GHC.Num*, GHC.Char*,
GHC.Base

Prelude types and classes
GHC.Real*, GHC.Enum*, Data.Bits*, Data.Bool,
Data.Tuple, Data.Maybe, Data.Either, Data.Void,
Data.Function, Data.Ord

List operations
GHC.List,Data.List, Data.OldList

Algebraic structures
Data.Functor, Data.Functor.Const®,
Data.Functor.Identity, Data.Functor.Classes,
Control.Applicative, Control.Monad,
Control.Monad.Fail, Data.Monoid,
Data.Traversable, Data.Foldable,
Control.Category, Control.Arrow,
Data.Bifunctor

Figure 6. Coq base library modules (starred modules are
handwritten, all others are translated)

4 GHC’s base Library

The case studies in Section 2 build upon a Coq version of
GHC’s base library [7] that we are developing as part of this
project. This section discusses the design questions raised
by constructing such a library. This process also stress-tests
hs-to-coq itself.

4.1 What is in the Library?

Our base library consists of a number of different modules as
shown in Figure 6. These modules include definitions of prim-
itive types (Int, Integer, Char, Word) and their primitive
operations, and common data types ([|, Bool, Maybe, Either,
Void, Ordering, tuples) and their operations from the stan-
dard prelude. They also include prelude type classes (Eq, Ord,
Enum, Bounded) as well as classes for algebraic structures
(Monoid, Functor, Applicative, Monad, Arrow, Category,
Foldable, Traversable) and data types that assist with
these instances.

During the development of this library we faced the design
decision of whether we should translate all Haskell code to
new Coq definitions, or whether we should connect Haskell
types and functions to parts of the Coq standard library. We
have chosen to do the latter, mapping basic Haskell types
(such as Bool, [], Maybe, and Ordering) to their Coq coun-
terparts (respectively bool, list, option, and comparison).
This makes the output slightly less recognizable to Haskell
programmers — users must know how these types and con-
structors match up. However, it also makes existing Coq
proofs about these data structures available.

Support for this mapping in hs-to-coq is provided via
rename edits, which allow us to make that decision on a

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

per-type and per-function basis, as the following excerpt of
the edit file shows:

rename type GHC.Types.[]= list
rename value GHC.Types.[]
rename value GHC.Types.: = cons

nil

The library also includes (handwritten) modules that spec-
ify and prove properties of this code, including type classes
that describe lawful functors, applicative functors, and mon-
ads, as discussed in Section 2.1. We include proofs that the
type constructors list and option are lawful functors, ap-
plicative functors, and monads by instantiating these classes.

4.2 How Did We Develop the Library?

Because of the nature of this library, some modules are more
amenable to automatic translation than others. We defined
most of the modules via automatic translation from the GHC
source (with the assistance of edit instructions). The remain-
der were handwritten, often derived via modification of the
output of automatic translation.

We were forced to manually define modules that define
primitive types, such as GHC.Word, GHC. Char, and GHC. Num,
because they draw heavily on a feature that Coq does not
support: unboxed types. Instead, we translate primitive nu-
meric types to signed and unsigned binary numbers in Coq
(z and N, respectively). Similarly, we translate Rational
to Coq’s type Q of rational numbers.> Modules that make
extensive use of these primitive types, such as GHC.Enum
and Data.Bits were also handwritten. Finally, one mod-
ule (Data.Functor.Const) was handwritten because it uses
features that are beyond the current scope of our tool.

On the other hand, we are able to successfully generate
several modules in the base library, including the primary file
GHC.Base and the list libraries GHC.List and GHC.OldList.
Other notable successes include translating the alge-
braic structure libraries Data.Monoid, Data.Foldable,
Data.Traversable, and Control.Monad.

Translating these modules requires several forms of edits.
As we describe below, some of these edits are to skip defi-
nitions that we do not wish to translate. We also use edits
to augment the translation with additional information, in
order to make the Coq output type check. For example, these
include annotations on the kinds of higher-order datatype
parameters or explicit type instantiations. Other redefine
edits are necessary to patch up type class instances when
the heuristics described in Section 3.5 fail. Still others are
necessary to reorder definitions, as described in Section 3.6.

8In the case of fixed precision types, we have chosen these mappings for
expediency; in future work, we plan to switch these definitions so that we
can reason about underflow and overflow.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

4.3 What is Skipped?

During the translation process, the edits allow us to skip
Haskell definitions. Most modules had at least one skipped
definition, and under a quarter had more than twenty.

Many of the skipped definitions are due to partiality. For
example, we do not translate functions that could trigger
pattern match failure, such as head or maximum, or that could
diverge, such as repeat or iterate.

Some type classes have methods that are often instanti-
ated with partial functions. We also removed such members,
such as the fail method of the Monad class (as mentioned
in Section 2.1), the foldl1, foldr1, maximum and minimum
methods of the Foldable class, and the enumFromThen and
enumFromThenTo methods of the Enum class. In the last case,
this is not all of the partial methods of the class; for exam-
ple, the pred and succ methods throw errors in instances
for bounded types, and the enumFrom method diverges for
infinite types. To solve this problem, we have chosen to sup-
port the Enum class only for bounded types. In this case, we
modified the pred and succ methods so that they return the
minBound and maxBound elements, respectively, at the end
of their ranges. For enumFrom, we use maxBound to provide
an end point of the enumeration.

Some functions are total, but it is difficult for Coq to deter-
mine that they are. For example, the eftInt function in the
Enum module enumerates a list of integers from a starting
number x to an ending number y. This function is not struc-
turally recursive, so we use the Program Fixpoint extension
to provide its termination proof in our redefinition.

Some parts of these modules are skipped because they
relate to operations that are out of scope for our tool. We do
not translate any definitions or instances related to I0, so we
skip all functionality related to Read and Show. We also do
not plan to support reflection, so we skip all instances related
to GHC.Generics. Similarly, we do not include arrays, so we
skip instances related to array types and indexing.

5 Related Work

Advanced Function Definitions Translating Haskell id-
ioms into Coq pushes the limits of the standard vernacular to
define functions, especially when it comes to the expressive-
ness of pattern matching (see Section 3.4) and non-structural
recursion (see Section 3.7). A number of Coq extensions aim
to alleviate these limitations:

e The Program Fixpoint and Function vernacular
commands, which are part of the Coq distribution,
permit non-structural recursion by specifying a de-
creasing termination measure or a well-founded rela-
tion. We found that Program Fixpoint works better
in the presence of nested recursion through higher-
order functions, and hs-to-coq supports generating
Program Fixpoint definitions.

Spector-Zabusky, Breitner, Rizkallah, and Weirich

e The Equations plugin [19] provides Coq support
for well-founded recursion to and Agda-style depen-
dent pattern matching. It supports nested recursion
through higher-order functions as least as well as
Program Fixpoint, and furthermore produces more
usable lemmas (e.g., unfolding equations). However, its
changes to the pattern matching syntax, while improv-
ing support for dependent pattern matching, do not
include support for guards with fall-through semantics
and do not support non-top-level match expressions,
both of which are important for our translation.

5.1 Haskell and Coq

Extraction The semantic proximity of (total) Haskell and
Coq, which we rely on, is also used in the other direction
by Coq’s support for code extraction to Haskell [18]. Several
projects use this feature to verify Haskell code [6, 17]. How-
ever, since extraction starts with Coq code and generates
Haskell, it cannot be used to verify pre-existing Haskell code.
Although in a certain sense, hs—to-coq and extraction are in-
verses, round-tripping does not produce syntactically equiv-
alent output in either direction. On the one hand, hs-to-coq
extensively annotates the resulting Coq code; on the other,
extraction ignores many Haskell features and inserts unsafe
type coercions. In future work, we hope to use testing to
verify that round-tripping produces operationally equiva-
lent output; this would provide greater assurance about the
correctness of both hs-to-coq and extraction.

Manual Translation The coq-haskell library [34] is a
hand-written Coq library designed to make it easier for
Haskell programmers to work in Coq. In many ways, it serves
a similar purpose to our translation of base (Section 4). In ad-
dition to enabling easier Coq programming, it also provides
support for extracting Coq programs to Haskell.

5.2 Haskell and First-order Logic

LiquidHaskell LiquidHaskell [31] augments the Haskell
programming language with refinement types: all types can
be coupled with a predicate that the inhabitants must satisfy.
These refinements are then automatically checked by an SMT
solver; a successful solution means that all functions are total
and conform to these new, richer, specifications. In practice,
when proving theorems in Coq, we can take advantage of a
mature environment and proof automation techniques; this
can allow for faster verification than LiquidHaskell, given a
corresponding Coq program [30].

Halo The prototype contract checker halo [32] takes a
Haskell program, uses GHC to desugar it into the intermedi-
ate language Core, and then translates the Core program into
a first-order logic formula. It then invokes an SMT solver
such as Z3 [9] or Vampire [28] to prove this formula; a suc-
cessful proof tells us that the original program is crash-free.

Total Haskell is Reasonable Coq

5.3 Translating Haskell to Higher-order Logic

Haskabelle 1IntheIsabelle/HOL ecosystem, hs-to-coq has
a direct correspondence in Haskabelle [13], which translates
total Haskell code into equivalent Isabelle function defini-
tions. Like our tool, it parses Haskell, desugars syntactic
constructs, configurably adapts basic types and functions to
their counterpart in Isabelle’s standard library. It used to be
bundled with the Isabelle release, but it has not been updated
recently and was dropped from Isabelle.

While Isabelle/HOL is, like Cogq, a logic of total functions,
all types in HOL are non-empty and inhabited by the poly-
morphic value undefined. Therefore, Haskabelle can trans-
late partial patterns like described in Section 3.4, but without
introducing inconsistency by relying on axioms.

Haskabelle supports boolean guards in simple cases, but
does not implement fall-through on guard failure. In par-
ticular, the take function shown in Section 3.4 would be
translated to a function that is undefined when n > 0.

HOLCF-Prelude A translation of Haskell into a total logic,
as performed by hs-to-coq and Haskabelle, necessarily
hides the finer semantic nuances that arise due to laziness,
and does not allow reasoning about partially defined or infi-
nite values. If that is a concern, one might prefer a translation
into the Logic of Computable Functions (LCF) [26], where
every type is a domain and every function is continuous.
LCF is, for example, implemented in Isabelle’s HOLCF pack-
age [15, 23]. Parts of the Haskell standard library have been
manually translated into this setting [4] and used to verify
the rewrite rules applied by HLint, a Haskell style checker.

seL4 Haskell has been used as a prototyping language for
formally verified systems in the past. The seL4 verified mi-
crokernel started with a Haskell prototype that was semi-
automatically translated to Isabelle/HOL [10]. As in our work,
they were restricted to the terminating fragment of Haskell.

The authors found that the availability of the Haskell
prototype provided a machine-checkable formal executable
specification of the system. They used this prototype to refine
their designs via testing, allowing them to make corrections
before full verification. In the end, they found that starting
with Haskell led to a “productive, highly iterative develop-
ment” contributing to a “mature final design in a shorter
period of time”

5.4 Haskell and Dependently-typed Languages

Programmatica/Alfa The Programmatica project [14] in-
cluded a tool to translate Haskell into the proof editor Alfa.
As in our work, their tool only produces valid proofs for
total functions over finite data structures. They state: “When
the translation falls outside that set, any correctness proofs
constructed in Alfa entail only partial correctness, and we
leave it to the user to judge the value of such proofs”

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

The logic of the Alfa proof assistant is based on dependent
type theory, but without as many features as Coq. In particu-
lar, the Programmatica tool compiles away type classes and
nested pattern matching, features retained by hs-to-coq.

Agda 1 Dyber, Haiyan, and Takeyama [11] developed a
tool for automatically translating Haskell programs to the
Agda/Alfa proof assistant. Their solution to the problem
of partial pattern matching is to synthesize predicates that
describe the domain of functions. They explicitly note the
interplay between testing and theorem proving and show
how to verify a tautology checker.

Agda 2 Abel et al. [1] translate Haskell expressions into
the logic of the Agda 2 proof assistant. Their tool works
later in the GHC pipeline than ours; instead of translating
Haskell source code, they translate Core expressions. Core
is an explicitly typed internal language for Haskell used by
GHC, where type classes, pattern matching and many forms
of syntactic sugar have been compiled away.

Their translation explicitly handles partiality by introduc-
ing a monad for partial computation. Total code is actually
polymorphic over the monad in which it should execute,
allowing the monad to be instantiated by the identity monad
or the Maybe monad as necessary. Agda’s predicativity also
causes issues with the translation of GHC’s impredicative,
System F-based core language.

5.5 Translating Other Languages to Coq

Chargueraud’s CFML [5] translates OCaml source code to
characteristic formulae expressed as Coq axioms. This sys-
tem has been used to verify many of the functional programs
from Okasaki’s Purely Functional Data Structures [24].

6 Conclusions and Future Work

We presented a methodology for verifying Haskell pro-
grams, built around translating them into Coq with the
hs-to-coq tool. We successfully applied this methodology
to pre-existing code in multiple case studies, as well as in
the ongoing process of providing the base Haskell library
for these and other examples to build on.

Looking forward, there are always more Haskell features
that we can extend the tool to support; we plan to apply
this tool to larger real-world software projects and will use
that experience to prioritize our next steps. We also would
like to develop a Coq tactic library that can help automate
reasoning about the patterns found in translated Haskell
code as well as extend the proof theory of our base library.

Acknowledgments Thanks to John Wiegley for discussion
and support, and to Leonidas Lampropoulos and Jennifer
Paykin for their helpful comments. This material is based
upon work supported by the National Science Foundation
under Grant No. 1319880 and Grant No. 1521539.

CPP’18, January 8-9, 2018, Los Angeles, CA, USA

References

(1]

—
oo
—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell.
2005. Verifying Haskell Programs Using Constructive Type Theory. In
Haskell Workshop. ACM, 62-73. DOI : http://dx.doi.org/10.1145/1088348.
1088355

Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu. 2006.
Defining and Reasoning About Recursive Functions: A Practical Tool
for the Coq Proof Assistant. In FLOPS (LNCS), Vol. 3945. Springer,
114-129. DOI: http://dx.doi.org/10.1007/11737414_9

Joachim Breitner. 2017. successors: An applicative functor to manage
successors. https://hackage.haskell.org/package/successors-0.1. (1
February 2017).

Joachim Breitner, Brian Huffman, Neil Mitchell, and Christian Ster-
nagel. 2013. Certified HLints with Isabelle/HOLCF-Prelude. In Haskell
and Rewriting Techniques (HART). arXiv:1306.1340

Arthur Charguéraud. 2010. Program verification through characteris-
tic formulae. In ICFP. ACM, 321-332. DOI: http://dx.doi.org/10.1145/
1932681.1863590

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic
for Certifying the FSCQ File System. In SOSP. ACM, 18-37. DOIL:
http://dx.doi.org/10.1145/2815400.28 15402

Haskell Core Libraries Comittee. 2017. base: Basic libraries. https:
//hackage.haskell.org/package/base-4.9.1.0. (14 January 2017).

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. 2006. Fast and loose reasoning is morally correct. In POPL.
ACM, 206-217. DOI: http://dx.doi.org/10.1145/1111037.1111056
Leonardo Mendonga de Moura and Nikolaj Bjerner. 2008. Z3: An
Efficient SMT Solver. In TACAS (LNCS), Vol. 4963. Springer, 337-340.
DOI: http://dx.doi.org/10.1007/978-3-540-78800-3_24

Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and
Manuel M. T. Chakravarty. 2006. Running the Manual: An Approach
to High-assurance Microkernel Development. In Haskell Symposium.
ACM, 60-71. DOI: http://dx.doi.org/10.1145/1159842.1159850

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. 2004. Verifying
Haskell programs by combining testing, model checking and interac-
tive theorem proving. Information & Software Technology 46, 15 (2004),
1011-1025. DOI: http://dx.doi.org/10.1016/j.infsof.2004.07.002
Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2016. A Small
Scale Reflection Extension for the Coq system. Research Report RR-6455.
Inria Saclay Ile de France. https://hal.inria.fr/inria-00258384

Florian Haftmann. 2010. From higher-order logic to Haskell: there
and back again. In ’10. ACM, 155-158. DOI: http://dx.doi.org/10.1145/
1706356.1706385

Thomas Hallgren, James Hook, Mark P. Jones, and Richard B. Kieburtz.
2004. An overview of the programatica toolset. In HCSS.

Brian Huffman. 2012. HOLCF ’11: A Definitional Domain Theory for
Verifying Functional Programs. Ph.D. Dissertation. Portland State Uni-
versity. DOI: http://dx.doi.org/10.15760/etd.113

Graham Hutton. 2016. Programming in Haskell (2nd ed.). Cam-
bridge University Press. 241-246 pages. DOI: http://dx.doi.org/10.1017/
CB09780511813672

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Spector-Zabusky, Breitner, Rizkallah, and Weirich

Adam Megacz Joseph. 2014. Generalized Arrows. (May 2014). http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-130.html
also see http://www.megacz.com/berkeley/cog-in-ghc/.

Pierre Letouzey. 2002. A New Extraction for Coq. In TYPES
(LNCS), Vol. 2646. Springer, 200-219. DOI : http://dx.doi.org/10.1007/
3-540-39185-1_12

Cyprien Mangin and Matthieu Sozeau. 2017. Equations Reloaded.
(2017). http://www.irif.fr/~sozeau/research/publications/drafts/
Equations_Reloaded.pdf (submitted).

Simon Marlow (Ed.). 2010. Haskell 2010 Language Report.

Simon Marlow and Simon Peyton Jones. 2012. The Glasgow Haskell

Compiler. In The Architecture of Open Source Applications, Volume 2.
Lulu. http://www.aosabook.org/en/ghc.html

The Coq development team. 2016. The Coq proof assistant reference
manual. LogiCal Project. http://coq.inria.fr Version 8.6.1.

Olaf Miiller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch.
1999. HOLCF = HOL + LCF. Journal of Functional Programming 9
(1999), 191-223. DOI: http://dx.doi.org/10.1017/S095679689900341X
Chris Okasaki. 1999. Purely functional data structures. Cambridge
University Press. DOI: http://dx.doi.org/10.1017/CB0O9780511530104
Will Partain. 1996. GHC commit 6¢381e873e. http://git.haskell.org/
ghc.git/commit/6¢381e873e. (19 March 1996).

Lawrence C. Paulson. 1987. Logic and Computation: Interactive Proof
with Cambridge LCF. Cambridge University Press. DOI : http://dx.doi.
org/10.1017/CB0O9780511526602

Matthew Pickering, Gergo Erdi, Simon Peyton Jones, and Richard A.
Eisenberg. 2016. Pattern synonyms. In Haskell. ACM, 80-91. DOI:
http://dx.doi.org/10.1145/2976002.2976013

Alexandre Riazanov and Andrei Voronkov. 1999. Vampire. In CADE-16
(LNCS), Vol. 1632. Springer, 292-296. DOI : http://dx.doi.org/10.1007/
3-540-48660-7_26

Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In
TPHOLSs (LNCS), Vol. 5170. Springer, 278-293. DOI : http://dx.doi.org/
10.1007/978-3-540-71067-7_23

Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. 2017. A Tale of
Two Provers: Verifying Monoidal String Matching in Liquid Haskell
and Coq. In Haskell Symposium. ACM, 63-74. DOI: http://dx.doi.org/
10.1145/3122955.3122963

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. 2014. Refinement Types for Haskell. In ICFP. ACM,
269-282. DOI: http://dx.doi.org/10.1145/2628136.2628161

Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan
Rosén. 2013. HALO: Haskell to Logic Through Denotational Seman-
tics. In POPL. ACM, 431-442. DOI: http://dx.doi.org/10.1145/2429069.
2429121

Philip Wadler and Stephen Blott. 1989. How to Make ad-hoc Polymor-
phism Less ad-hoc. In POPL. ACM, 60-76. DOI: http://dx.doi.org/10.
1145/75277.75283

[34] John Wiegley. 2017. coq-haskell: A library for formalizing Haskell

types and functions in Coq. https://github.com/jwiegley/coq-haskell.
(2017).

http://dx.doi.org/10.1145/1088348.1088355
http://dx.doi.org/10.1145/1088348.1088355
http://dx.doi.org/10.1007/11737414_9
https://hackage.haskell.org/package/successors-0.1
http://arxiv.org/abs/1306.1340
http://dx.doi.org/10.1145/1932681.1863590
http://dx.doi.org/10.1145/1932681.1863590
http://dx.doi.org/10.1145/2815400.2815402
https://hackage.haskell.org/package/base-4.9.1.0
https://hackage.haskell.org/package/base-4.9.1.0
http://dx.doi.org/10.1145/1111037.1111056
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1159842.1159850
http://dx.doi.org/10.1016/j.infsof.2004.07.002
https://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1145/1706356.1706385
http://dx.doi.org/10.1145/1706356.1706385
http://dx.doi.org/10.15760/etd.113
http://dx.doi.org/10.1017/CBO9780511813672
http://dx.doi.org/10.1017/CBO9780511813672
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-130.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-130.html
http://www.megacz.com/berkeley/coq-in-ghc/
http://dx.doi.org/10.1007/3-540-39185-1_12
http://dx.doi.org/10.1007/3-540-39185-1_12
http://www.irif.fr/~sozeau/research/publications/drafts/Equations_Reloaded.pdf
http://www.irif.fr/~sozeau/research/publications/drafts/Equations_Reloaded.pdf
http://www.aosabook.org/en/ghc.html
http://coq.inria.fr
http://dx.doi.org/10.1017/S095679689900341X
http://dx.doi.org/10.1017/CBO9780511530104
http://git.haskell.org/ghc.git/commit/6c381e873e
http://git.haskell.org/ghc.git/commit/6c381e873e
http://dx.doi.org/10.1017/CBO9780511526602
http://dx.doi.org/10.1017/CBO9780511526602
http://dx.doi.org/10.1145/2976002.2976013
http://dx.doi.org/10.1007/3-540-48660-7_26
http://dx.doi.org/10.1007/3-540-48660-7_26
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1145/3122955.3122963
http://dx.doi.org/10.1145/3122955.3122963
http://dx.doi.org/10.1145/2628136.2628161
http://dx.doi.org/10.1145/2429069.2429121
http://dx.doi.org/10.1145/2429069.2429121
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/75277.75283
https://github.com/jwiegley/coq-haskell

	Abstract
	1 Introduction
	2 Reasoning About Haskell Code in Coq
	2.1 Algebraic Laws
	2.2 Hutton's Razor
	2.3 Data Structure Correctness

	3 The Design and Implementation of hs-to-coq
	3.1 Module System
	3.2 Records
	3.3 Patterns in Function Definitions
	3.4 Pattern Matching With Guards
	3.5 Type Classes and Instances
	3.6 Order of Declarations
	3.7 Partial Haskell
	3.8 Infinite Data Structures
	3.9 Unsupported Language Features

	4 GHC's base Library
	4.1 What is in the Library?
	4.2 How Did We Develop the Library?
	4.3 What is Skipped?

	5 Related Work
	5.1 Haskell and Coq
	5.2 Haskell and First-order Logic
	5.3 Translating Haskell to Higher-order Logic
	5.4 Haskell and Dependently-typed Languages
	5.5 Translating Other Languages to Coq

	6 Conclusions and Future Work
	References

