
Chapter 10

Comonadic functional
attribute evaluation
Tarmo Uustalu1 and Varmo Vene2

Abstract: We have previously demonstrated that dataflow computation is co-
monadic. Here we argue that attribute evaluation has a lot in common with
dataflow computation and admits a similar analysis. We claim that this yields
a new, modular way to organize both attribute evaluation programs written di-
rectly in a functional language as well as attribute grammar processors. This is
analogous to the monadic approach to effects. In particular, we advocate it as a
technology of executable specification, not as one of efficient implementation.

10.1 INTRODUCTION

Following on from the seminal works of Moggi [Mog91] and Wadler [Wad92],
monads have become a standard tool in functional programming for structuring
effectful computations that are used both directly in programming and in language
processors. In order to be able to go also beyond what is covered by monads,
Power and Robinson [PR97] invented the concept of Freyd categories. Hughes
[Hug00] proposed the same, unaware of their work, under the name of arrow
types. The showcase application example of Freyd categories/arrow types has
been dataflow computation, which, for us, is an umbrella name for various forms
of computation based on streams or timed versions thereof and characterizes, in
particular, languages like Lucid [AW85], Lustre [HCRP91] and Lucid Synchrone
[CP96].

In two recent papers [UV05a, UV05b], we argued that, as far as dataflow
computation is concerned, a viable alternative to Freyd categories is provided by
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something considerably more basic and standard, namely comonads, the formal
dual of monads. In fact, comonads are even better, as they explicate more of
the structure present in dataflow computations than the laxer Freyd categories.
Comonads in general should be suitable to describe computations that depend on
an implicit context. Stream functions as abstractions of transformers of discrete-
time signals turn out to be a perfect example of such computations: the value of
the result stream in a position of interest (the present of the result signal) may
depend not only on the value in the argument stream in the same position (the
present of the argument signal), but also on other values in it (its past or future
or both). We showed that general, causal and anticausal stream functions are de-
scribed by comonads and that explicit use of the appropriate comonad modular-
izes both stream-based programs written in a functional language and processors
of stream-based languages.

In this paper, we demonstrate that attribute evaluation from attribute grammars
admits a similar comonadic analysis. In attribute grammars [Knu68], the value of
an attribute at a given node in a syntax tree is defined by the values of other
attributes at this and other nodes. Also, an attribute definition only makes sense
relative to a suitable node in a tree, but nodes are never referenced explicitly in
such definitions: context access happens solely via operations for relative local
navigation. This hints that attribute grammars exhibit a form of dependence on an
implicit context which is quite similar to that present in dataflow programming.
We establish that this form of context-dependence is comonadic and discuss the
implications. In particular, we obtain a new, modular way to organize attribute
evaluation programs, which is radically different from the approaches that only
use the initial-algebraic structure of tree types.

Similarly to the monadic approach to effects, this is primarily to be seen as an
executable specification approach. As implementations, our evaluators will nor-
mally be grossly inefficient, unless specifically fine-tuned, but as specifications,
they are of a very good format: they are concise and, because of their per-attribute
organization, smoothly composable (in the dimension of composing several at-
tribute grammars over the same underlying context-free grammar). Systematic
transformation of these reference evaluators into efficient implementations ought
to be possible, we conjecture, but this is a different line of work. This is highly
analogous to the problem of efficient compilation of dataflow programs (not very
hard in the case of causal languages, but a real challenge in the case of languages
that support anticipation).

We are not aware of earlier comonadic or arrow-based accounts of attribute
evaluation. But functional attribute evaluation has been a topic of research for
nearly 20 years, following on from the work of Johnsson [Joh87]. Some of this
work, concerned with per-attribute compositional specification of attribute gram-
mars, is mentioned in the related work section below.

The paper is organized as follows. In Section 10.2, we overview our co-
monadic approach to dataflow computation and processing of dataflow languages.
In Section 10.3, we demonstrate that the attribute evaluation paradigm can also be
analyzed comonadically, studying separately the simpler special case of purely
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synthesized attributed grammars and the general case. We also provide a discus-
sion of the strengths and problems with the approach. Section 10.4 is a brief re-
view of the related work whereas Section 10.5 summarizes. Most of the develop-
ment is a carried out in the programming language Haskell, directly demonstrating
that the approach is implementable (on the level of executable specifications). The
code is Haskell 98 extended with multiparameter classes.

10.2 COMONADS AND DATAFLOW COMPUTATION

We begin by mentioning the basics about comonads to then quickly continue with
a dense review of comonadic dataflow computation [UV05a, UV05b].

Comonads are the formal dual of monads, so acomonadon a categoryC is
given by a mappingD : |C | → |C | (by |C | we mean the collection of the objects
of C ) together with a|C |-indexed familyε of mapsεA : DA→ A (counit), and
an operation−† taking every mapk : DA → B in C to a mapk† : DA → DB
(coextension operation) such that

1. for anyk : DA→ B, εB◦k† = k,

2. εA
† = idDA,

3. for anyk : DA→ B, ` : DB→C, (`◦k†)† = `†◦k†.

Any comonad(D,ε,−†) defines a categoryCD where|CD|= |C | andCD(A,B)=
C (DA,B), (idD)A = εA, `◦D k = `◦k† (coKleisli category) and an identity on ob-
jects functorJ : C → CD whereJ f = f ◦ εA for f : A→ B.

CoKleisli categories make comonads relevant for analyzing notions of context-
dependent function. If the objectDA is viewed as the type of contextually situated
values ofA, a context-dependent function fromA to B is a mapDA→B in the base
category, i.e., a map fromA to B in the coKleisli category. The counitεA : DA→A
discards the context of its input whereas the coextensionk† : DA→DB of a func-
tion k : DA → B essentially duplicates it (to feed it tok and still have a copy
left). The functionJ f : DA→ B is a trivially context-dependent version of a pure
function f : A→ B.

In Haskell, we can define comonads as a type constructor class.

class Comonad d where
counit :: d a -> a
cobind :: (d a -> b) -> d a -> d b

Some examples are the following:

• DA = A, the identity comonad,

• DA = A×E, the product comonad,

• DA = StrA = νX.A×X, the streams comonad (ν denoting the greatest fixed-
point operator)
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The stream comonadStr is defined as follows:

data Stream a = a :< Stream a -- coinductive

instance Comonad Stream where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

(Note that we denote the cons constructor of streams by :<.)
This comonad is the simplest one relevant for dataflow computation. Intu-

itively, it is the comonad of future. In a value of typeStrA∼= A×StrA, the first
component of typeA is the main value of interest while the second component of
typeStrA is its context. In our application, the first is the present and the second
is the future of anA-signal. The coKleisli arrowsStrA→ B represent those func-
tionsStrA→ StrB that are anticausal in the sense only the present and future of
an input signal can influence the present of the output signal. The interpretation of
these representations as stream functions is directly provided by the coextension
operation:

class SF d where
run :: (d a -> b) -> Stream a -> Stream b

instance SF Stream where
run k = cobind k

A very important anticausal function is unit anticipation (cf. the ’next’ opera-
tor of dataflow languages):

class Antic d where
next :: d a -> a

instance Antic Stream where
next (_ :< (a’ :< _)) = a’

To be able to represent general stream functions, where the present of the out-
put can depend also on the past of the input, we must employ a different comonad
LS. It is defined byLSA = ListA×StrA whereListA = µX.1+X×A is the type
of (snoc-)lists overA (µ denoting the least fixedpoint operator). The idea is that
a value ofLSA∼= ListA× (A×StrA) can record the past, present and future of
a signal. (Notice that while the future of a signal is a stream, the past is a list: it
must be finite.) Note that, alternatively, we could have definedLSA= StrA×Nat
(a value in a context is the entire history of a signal together with a distinguished
time instant). This comonad is Haskell-defined as follows. (Although in Haskell
there is no difference between inductive and coinductive types, in the world of
sets and functions the definition of lists below should be read inductively.)

data List a = Nil | List a :> a -- inductive
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data LS a = List a :=| Stream a

instance Comonad LS where
counit (_ :=| (a :< _)) = a
cobind k d = cobindL k d :=| cobindS k d

where cobindL k (Nil :=| _ ) = Nil
cobindL k (az :> a :=| as) = cobindL k d’ :> k d’

where d’ = az :=| (a :< as)
cobindS k d@(az :=| (a :< as)) = k d :< cobindS k d’

where d’ = az :> a :=| as

(We denote the snoc constructor of lists by :> and pairing of a list and a
stream by := |. Now the visual purpose of the notation becomes clear: in values
of typeLS A, both the snoc constructors of the list (the past of a signal) and the
cons constructors of the stream (the present and future) point to the present which
follows the special marker := |.)

The interpretation of coKleisli arrows as stream functions and the representa-
tion of unit anticipation are defined as follows:

instance SF LS where
run k as = bs where (Nil :=| bs) = cobind k (Nil :=| as)

instance Antic LS where
next (_ :=| (_ :< (a’ :< _))) = a’

With theLS comonad it is possible to represent also the important parameter-
ized causal function of initialized unit delay (the ‘followed-by’ operator):

class Delay d where
fby :: a -> d a -> a

instance Delay LS where
a0 ‘fby‘ (Nil :=| _) = a0
_ ‘fby‘ (_ :> a’ :=| _) = a’

Relevantly for “physically” motivated dataflow languages (where computa-
tions input or output physical dataflows), it is also possible to characterize causal
stream functions as a coKleisli category. The comonadLV is defined byLVA =
ListA×A, which is obtained fromLSA∼= ListA× (A× StrA) by removing the
factor of future. This comonad is Haskell-implemented as follows.

data LV a = List a := a

instance Comonad LV where
counit (_ := a) = a
cobind k d@(az := _) = cobindL k az := k d

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)
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instance SF LV where
run k as = run’ k (Nil :=| as)

where run’ k (az :=| (a :< as))
= k (az := a) :< run’ k (az :> a :=| as)

instance Delay LV where
a0 ‘fby‘ (Nil := _) = a0
_ ‘fby‘ ((_ :> a’) := _) = a’

Various stream functions are beautifully defined in terms of comonad opera-
tions and the additional operations of anticipation and delay. Some simple ex-
amples are the Fibonacci sequence, summation and averaging over the immediate
past, present and immediate future:

fib :: (Comonad d, Delay d) => d () -> Integer
fib d = 0 ‘fby‘

cobind (\ e -> fib e + (1 ‘fby‘ cobind fib e)) d

sum :: (Comonad d, Delay d) => d Integer -> Integer
sum d = (0 ‘fby‘ cobind sum d) + counit d

avg :: (Comonad d, Antic d, Delay d) => d Integer -> Integer
avg d = ((0 ‘fby‘ d) + counit d + next d) ‘div‘ 3

In a dataflow language, we would write these definitions like this.

fib = 0 fby (fib+(1 fby fib))
sum x = (0 fby sum x)+x

avg x = ((0 fby x)+x+nextx)/3

In [UV05b], we also discussed comonadic processors of dataflow languages,
in particular the meaning of higher-order dataflow computation (the interpretation
of lambda-abstraction); for space reasons, we cannot review this material here.

10.3 COMONADIC ATTRIBUTE EVALUATION

We are now ready to describe our comonadic approach to attribute evaluation.
Attribute evaluation is similar to stream-based computation in the sense that there
is a fixed (skeleton of a) datastructure on which computations are done. We will
build on this similarity.

10.3.1 Attribute grammars

An attribute grammar as a specification of an annotation (attribution) of a syntax
tree [Knu68] is a construction on top of a context-free grammar. To keep the
presentation simple and to circumvent the insufficient expressiveness of Haskell’s
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type system (to be discussed in Sec. 10.3.5), we consider here a fixed context-free
grammar with a single nonterminalSwith two associated production rules

S −→ E

S −→ SS

whereE is a pseudo-nonterminal standing for some set of terminals.
An attribute grammar extends its underlying context-free grammar with at-

tributes and semantic equations. These are attached to the nonterminals and the
production rules of the context-free grammar. A semantic equation determines
the value of an attribute at a node in a production rule application via the values
of other attributes at other nodes involved. We explain this on examples. Let us
use superscripts̀, b and subscriptsL, R as a notational device to tell apart the
different occurrences of the nonterminalS in the two production rules as follows:

S` −→ E

Sb −→ Sb
LSb

R

Now we can, for example, equip the nonterminalS with two boolean attributes
avl, locavl and a natural-number attributeheight and govern them by semantic
equations

S`.avl = tt

Sb.avl = Sb
L.avl∧Sb

R.avl∧Sb.locavl

S`.locavl = tt

Sb.locavl = |Sb
L.height−Sb

R.height| ≤ 1

S`.height = 0

Sb.height = max(Sb
L.height,Sb

R.height)+1

This gives us an attribute grammar for checking if anS-tree (a syntax tree whose
root is anS-node) is AVL.

We can also, for example, equip the nonterminalS with natural-number at-
tributesnumin, numoutand subject them to equations

Sb
L.numin = Sb.numin+1

Sb
R.numin = Sb

L.numout+1

S`.numout = S`.numin

Sb.numout = Sb
R.numout

This is a grammar for pre-order numbering of the nodes of a tree. The attribute
numincorresponds to the pre-order numbering, the attributenumoutis auxiliary.

We can see that the value of an attribute at a node can depend on the values
of that and other attributes at that node and the children nodes (as in the case of
avl, locavl, height, numout) or on the values of that and other attributes at that
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node, the parent node and sibling nodes (numin). Attributes of the first kind are
called synthesized. Attributes of the second kind are called inherited. Attribute
grammars are classified into purely synthesized attribute grammars and general
attribute grammars (where there are also inherited attributes).

The problem of attribute evaluation is to compute the full attribution of a given
grammatical tree (given the values of the inherited attributes at the root), but one
may of course really care about selected attributes of selected nodes. E.g., in the
case of AVLness, we are mostly interested in the value ofavl at the root, while, in
the case of pre-order numbering, our concern is the attributenumin.

The type of attributed grammaticalS-trees is

TreeE A = µX.A× (E +X×X)
∼= A× (E +TreeE A×TreeE A)

whereA is the type ofS-attributes of interest (aggregated into records). In Haskell,
we can define:

data Tree e a = a :< Trunk e (Tree e a)

data Trunk e x = Leaf e | Bin x x

(Now :< is a constructor for making an attributed tree.)
An attribute evaluator in the conventional sense is a tree transformer of type

TreeE1→ TreeE AwhereA is the type of records of allS-attributes of the gram-
mar.

10.3.2 Comonadic purely synthesized attributed grammars

In the case of a purely synthesized attribute grammar, the local value of the defined
attribute of an equation can only depend on the local and children-node values of
the defining attributes. This is similar to anticausal stream-computation. The
relevant comonad is the comonad structure onTreeE. The idea that the second
component of a value inTreeE A∼= A× (E +TreeE A×TreeE A) (the terminal
at a leaf or the subtrees rooted by the children of a binary node) is obviously the
natural datastructure to record the course of an attribute below a current node and
in a purely synthesized grammar the local value of an attribute can only depend on
the values of that and other attributes at the given node and below. The comonad
structure is Haskell-defined as follows, completely analogously to the comonad
structure onStr.

instance Comonad (Tree e) where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< case as of

Leaf e -> Leaf e
Bin asL asR -> Bin (cobind k asL) (cobind k asR)

The coKleisli arrows of the comonad are interpreted as tree functions by the
coextension operation as in the case ofStr. Looking up the attribute values at
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the children of a node (which is needed to define the local values of synthesized
attributes) can be done via an operation similar to ‘next’.

class TF e d where
run :: (d e a -> b) -> Tree e a -> Tree e b

instance TF e Tree where
run = cobind

class Synth e d where
children :: d e a -> Trunk e a

instance Synth e Tree where
children (_ :< as) = case as of

Leaf e -> Leaf e
Bin (aL :< _) (aR :< _) -> Bin aL aR

10.3.3 Comonadic general attributed grammars

To be able to define attribute evaluation for grammars that also have inherited
attributes (so the local value of an attribute can be defined through the values
of other attributes at the parent or sibling nodes), one needs a notion of context
that can store also store the upper-and-surrounding course of an attribute. This is
provided by Huet’s generic zipper datastructure [Hue97], instantiated for our tree
type constructor. The course of an attribute above and around a given node lives
in the type

PathE A = µX.1+X× (A×TreeE A+A×TreeE A)
∼= 1+PathE A× (A×TreeE A+A×TreeE A)

of path structures, which are snoc-lists collecting the values of the attribute at the
nodes on the path up to the root and in the side subtrees rooted by these nodes.
A zipperconsists of a tree and a path structure, which are the subtree rooted by
a node and the path structure up to the root of the global tree, and records both
the local value and lower and upper-and-surrounding courses of an attribute: we
define

ZipperE A = PathE A×TreeE A
∼= PathE A× (A× (E +TreeE A×TreeE A))

(Notice thatZipperE is analogous to the type constructorLS, which is the zipper
datatype for streams.) In Haskell, we can define:

data Path e a = Nil | Path e a :> Turn a (Tree e a)
type Turn x y = Either (x, y) (x, y)

data Zipper e a = Path e a :=| Tree e a
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(:> is a snoc-like constructor for path structures. := | is the pairing of a path
structure and a tree into a zipper.)

The zipper datatype supports movements both up and sideways as well as
down in a tree (redoingandundoingthe zipper). The following upward focus
shift operation in Haskell returns the zippers corresponding to the parent and the
right or left sibling of the local node (unless the local node is the root of the global
tree). (So we have put the parent and sibling functions into one partial function,
as both are defined exactly when the local node is not the global root. This will
be convenient for us.)

goParSibl :: Zipper e a
-> Maybe (Turn (Zipper e a) (Zipper e a))

goParSibl (Nil :=| as) = Nothing
goParSibl (az :> Left (a, asR) :=| as)

= Just (Left (az :=| (a :< Bin as asR),
(az :> Right (a, as) :=| asR)))

goParSibl (az :> Right (a, asL) :=| as)
= Just (Right (az :=| (a :< Bin asL as),

(az :> Left (a, as) :=| asL)))

The downward focus shift operation returns the terminal, if the local node is a
leaf, and the zippers corresponding to the children, if the local node is binary.
(We use a Trunk structure to represent this information.)

goChildren :: Zipper e a -> Trunk e (Zipper e a)

goChildren (az :=| (a :< Leaf e)) = Leaf e
goChildren (az :=| (a :< Bin asL asR))

= Bin (az :> Left (a, asR) :=| asL)
(az :> Right (a, asL) :=| asR)

This does not seem to have been mentioned in the literature, but the type con-
structorZipperE is a comonad (just asLS is; in fact, the same is true of all zipper
type constructors). Notably, the central operation of coextension is beautifully de-
finable in terms of the operations goParSibl and goChildren. This is only natural,
since a function taking a tree with a focus to a local value is lifted to a tree-valued
function by applying it to all possible refocussings of an input tree, and that is
best organized with the help of suitable operations of shifting the focus.

instance Comonad (Zipper e) where
counit (_ :=| (a :< _)) = a
cobind k d = cobindP k d :=| cobindT k d

where cobindP k d = case goParSibl d of
Nothing -> Nil
Just (Left (d’, dR)) ->

cobindP k d’ :> Left (k d’, cobindT k dR)
Just (Right (d’, dL)) ->

cobindP k d’ :> Right (k d’, cobindT k dL)

154



cobindT k d = k d :< case goChildren d of
Leaf e -> Leaf e
Bin dL dR -> Bin (cobindT k dL) (cobindT k dR)

Of course,ZipperE is the comonad that structures general attribute evaluation,
similarly toLS in the case of general stream-based computation.

The interpretation of coKleisli arrows as tree functions and the operation for
obtaining the values of an attribute at the children are implemented essentially as
for TreeE.

instance TF e Zipper where
run k as = bs where Nil :=| bs = cobind k (Nil :=| as)

instance Synth e Zipper where
children (_ :=| (_ :< as)) = case as of

Leaf e -> Leaf e
Bin (aL :< _) (aR :< _) -> Bin aL aR

For the children operation, we might even choose to reuse the implementation
we already had forTreeE:

instance Synth e Zipper where
children (_ :=| d) = children d

But differently fromTreeE, the comonadZipperE makes it possible to also
query the parent and the sibling of the current node (or to see that it is the root).

class Inh e d where
parSibl :: d e a -> Maybe (Turn a a)

instance Inh e Zipper where
parSibl (Nil :=| _) = Nothing
parSibl (_ :> Left (a, aR :< _) :=| _) =

Just (Left (a, aR))
parSibl (_ :> Right (a, aL :< _) :=| _) =

Just (Right (a, aL))

Notice that the locality aspect of general attribute grammars (attribute values
at a node are defined in terms of values of this and other attributes at neighbor-
ing nodes) is nicely supported by the local navigation operations of the zipper
datatype. What is missing in the navigation operations is support for uniformity
(the value of an attribute is defined in the same way everywhere in a tree). But this
is provided by the coextension operation of the comonad structure on the zipper
datatype. Hence, it is exactly the presence of the comonad structure that makes
the zipper datatype so fit for explaining attribute evaluation.

10.3.4 Examples

We can now implement the two example attribute grammars. This amounts to
rewriting the semantic equations as definitions of coKleisli arrows from the unit
type.
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The first grammar rewrites to the following three (mutually recursive) def-
initions parameterized over a comonad capable of handling purely synthesized
attribute grammars (so they can be instantiated for bothTreeE andZipperE).

avl :: (Comonad (d e), Synth e d) => d e () -> Bool
avl d = case children d of

Leaf _ -> True
Bin _ _ -> bL && bR && locavl d

where Bin bL bR = children (cobind avl d)

locavl :: (Comonad (d e), Synth e d) => d e () -> Bool
locavl d = case children d of

Leaf _ -> True
Bin _ _ -> abs (hL - hR) <= 1

where Bin hL hR = children (cobind height d)

height :: (Comonad (d e), Synth e d) => d e () -> Integer
height d = case children d of

Leaf _ -> 0
Bin _ _ -> max hL hR + 1

where Bin hL hR = children (cobind height d)

The second grammar is rewritten completely analogously, but the definitions
require a comonad that can handle also inherited attributes (so that, of our two
comonads, onlyZipperE qualifies). Notice that the definition of the root value of
the inherited attributenuminbecomes part of the grammar description here.

numin :: (Comonad (d e), Synth e d, Inh e d)
=> d e () -> Int

numin d = case parSibl d of
Nothing -> 0
Just (Left _) -> ni + 1

where Just (Left (ni, _ )) = parSibl (cobind numin d)
Just (Right _) -> noL + 1

where Just (Right (_, noL)) = parSibl (cobind numout d)

numout :: (Comonad (d e), Synth e d, Inh e d)
=> d e () -> Int

numout d = case children d of
Leaf e -> numin d
Bin _ _ -> noR

where Bin _ noR = children (cobind numout d)

We can conduct some tests, which give the desired results:

> let t = () :< Bin
(() :< Bin

(() :< Leaf 100)
(() :< Bin

(() :< Leaf 101)
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(() :< Leaf 102)))
(() :< Leaf 103)

> run (\ (d :: Tree Int ()) -> (avl d, height d)) t
(False,3) :< Bin

((True,2) :< Bin
((True,0) :< Leaf 100)
((True,1) :< Bin

((True,0) :< Leaf 101)
((True,0) :< Leaf 102)))

((True,0) :< Leaf 103)

> run (\ (d :: Zipper Int ()) -> (numin d, numout d)) t
(0,6) :< Bin

((1,5) :< Bin
((2,2) :< Leaf 100)
((3,5) :< Bin

((4,4) :< Leaf 101)
((5,5) :< Leaf 102)))

((6,6) :< Leaf 103)

We observe that the definitions of the coKleisli arrows match the semantic
equations most directly. That is, a simple attribute evaluator is obtained just by
putting together a tiny comonadic core and a straightforward rewrite of the seman-
tic equations. It is obvious that the rewriting is systematic and hence one could
easily write a generic comonadic attribute evaluator for attribute grammars on our
fixed context-free grammar. We refrain from doing this here.

10.3.5 Discussion

We now proceed to a short discussion of our proposal.
1. Our approach to attribute evaluation is very denotational by its spirit and

our code works thanks to Haskell’s laziness. There is no need for static planning
of the computations based on some analysis of the grammar, attribute values are
computed on demand. In particular, there is no need for static circularity checking,
the price being, of course, that the evaluator will loop when a computation is
circular.

But this denotational-semantic simplicity has severe consequences on effi-
ciency. Unless some specific infrastructure is introduced to cache already com-
puted function applications, we get evaluators that evaluate the same attribute
occurrence over and over. It is very obvious from our example of AVL-hood:
evaluation oflocavl at some given node in a tree takes evaluation ofheightat all
nodes below it. If we need to evaluatelocavl everywhere in the tree, we should
evaluateheighteverywhere below the root just once, but our evaluator will com-
pute the height of each node anew each time it needs it. The very same prob-
lem is present also in the comonadic approach to dataflow computation. Simple
comonadic code illustrates the meaning of dataflow computation very well, but
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to achieve efficiency, one has to put in more care. Luckily, there are methods for
doing so, ranging from memoization infrastructures to total reorganization of the
evaluator based on tupling and functionalization transformations. We refrain from
discussing these methods in the present paper.

2. Instead of relying on general recursion available in Haskell, we could for-
bid circularity on the syntactic level (essentially saying that an attribute value at a
node cannot be defined via itself). This is standard practice in attribute grammar
processors, but for us it means we can confine ourselves to using structured re-
cursion schemes only. For purely synthesized attribute grammars, where attribute
evaluation reduces to upward accumulations, we presented a solution based on
structured recursion in our SFP ’01 paper [UV02]. Obviously here is an analogy
to syntactic circularity prevention in dataflow languages, which is also standard
practice.

3. In the examples, we used incomplete pattern matches (in the where-clauses).
These are guaranteed to never give a run-time error, because the coextension op-
eration and the operations children and parSibl remember if a focal node is leaf
or parent, root, left child or right child. But the type system is unaware of this.
This aesthetic problem can be remedied with the generalized algebraic datatypes
(GADTs) of GHC [PJWW04] (in combination with rank-2 polymorphism). For
example, trees and trunks can be classified into leaves and parents at the type level
by defining

data Tree ty e a = a :< Trunk ty e (UTree e a)
data UTree e a = forall ty . Pack (Tree ty e a)

data Leaf
data Bin

data Trunk ty e x where
Leaf :: e -> Trunk Leaf e x
Bin :: x -> x -> Trunk Bin e x

An analogous refinement is possible for the path structure datatype. Under this
typing discipline, our pattern matches are complete.

These finer datatypes do however not solve another aesthetic problem. When
trees and trunks have been made leaves or parents at the type level, it feels unnat-
ural to test this at the level of values, as is done in the case-constructs of our code.
One would instead like a typecase construct. This situation arises because our
types Leaf and Bin should really be values from a doubleton type, but in Haskell
value-indexed types have to be faked by type-indexed types. A real solution would
be to switch to a dependently typed language and to use inductive families.

4. We finish by remarking that GADTs or inductive families are also needed to
deal with multiple nonterminals in a generic attribute grammar processor capable
of handling any underlying context-free grammar. For a fixed context-free gram-
mar, mutually recursive Haskell datatypes are enough (one attributed syntax tree
datatype for every nonterminal). But in the case where the underlying context-
free grammar becomes a parameter, these syntax tree datatypes must be indexed
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by the corresponding nonterminals, whereby each datatype in the indexed family
has different constructors. In this situation, GADTs become inevitable.

10.4 RELATED WORK

The uses of coKleisli categories of comonads to describe notions of computation
have been relatively few. The idea has been put forward several times, e.g., by
Brookes and Geva [BG92] and by Kieburtz [Kie99], but never caught on because
of a lack of compelling examples. The example of dataflow computation seems
to appear first in our papers [UV05a, UV05b].

The Freyd categories / arrow types of Power and Robinson [PR97] and Hughes
[Hug00] have been considerably more popular, see, e.g., [Pat03, Hug05] for over-
views. The main application is reactive functional programming.

From the denotational point of view, attribute grammars have usually been
analyzed proceeding from the initial algebra structure of tree types. The central
observation is that an attribute evaluator is ultimately a fold (if the grammar is
purely synthesized) or an application of a higher-order fold (if it also has inher-
ited attributes) [CM79, May81]; this definition of attribute evaluation is straight-
forwardly implemented in a lazy functional language [Joh87, KS86]. Gibbons
[Gib93, Gib00] has specifically analyzed upward and downward accumulations
on trees.

Finer functional attribute grammar processors depart from the denotational
approach; an in-depth analysis of the different approaches to functional attribute
grammar evaluation appears in Saraiva’s thesis [Sar99]. Some realistic functional
attribute grammar processors are Lrc [KS98] and UUAG [BSL03].

One of the salient features of our approach is the per-attribute organization of
the evaluators delivered. This is not typical to functional attribute grammar eval-
uators. But decomposability by attributes has been identified as desirable in the
works on “aspect-oriented” attribute grammar processors by de Moor, Peyton-
Jones and Van Wyk [dMPJvW99] and de Moor, K. Backhouse and Swierstra
[dMBS00]. These are clearly related to our proposal, but the exact relationship
is not clear at this stage. We conjecture that use of the comonad abstraction is
orthogonal to the techniques used in these papers, so they might even combine.

The zipper representation of trees with a distinguished position is a piece of
folklore that was first documented by Huet [Hue97]. Also related are container
type constructors that have been studied by McBride and his colleagues [McB00,
AAMG05].

The relation between upward accumulations and the comonad structure on
trees was described by in our SFP ’01 paper [UV02]. In that paper, we also
discussed a basic theorem about compositions of recursively specified upward
accumulations. We are not aware of any work relating attribute evaluation to
comonads or arrow types.
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10.5 CONCLUSIONS AND FUTURE WORK

We have shown that attribute evaluation bears a great deal of similarity to dataflow
computation in that computation happens on a fixed datastructure and that the
result values are defined uniformly throughout the structure with the help of a
few local navigation operations to access the contexts of the argument values.
As a consequence, our previous results on comonadic dataflow computation and
comonadic processing of dataflow languages are naturally transported to attribute
evaluation. We are very pleased about how well comonads explicate the funda-
mental locality and uniformity characteristics of attribute definitions that initial
algebras fail to highlight. In the case of the zipper datatype, we have seen that the
only thing needed to make it directly useable in attribute evaluation is to derive an
explicit coextension operation from the focus shift operations.

In order to properly validate the viability of our approach, we plan to develop a
proof-of-concept comonadic processor of attribute grammars capable of interpret-
ing attribute extensions of arbitrary context-free grammars. The goal is to obtain a
concise generic reference specification of attribute evaluation. We predict that the
limitations of Haskell’s type system may force a solution that is not as beautiful
than it should ideally be, but GADTs will provide some help.

We also plan to look into systematic ways for transforming the comonadic
specifications into efficient implementations (cf. the problem of efficient compi-
lation of dataflow languages). For purely synthesized attribute grammars, a rel-
atively straightforward generic tupling transformation should solve the problem,
but the general case will be a challenge.
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