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FUNCTORIAL DATA MIGRATION

DAVID I. SPIVAK

Abstract. In this paper we present a simple database definition language:
that of categories and functors. A database schema is a small category and
an instance is a set-valued functor on it. We show that morphisms of schemas
induce three “data migration functors”, which translate instances from one
schema to the other in canonical ways. These functors parameterize projec-
tions, unions, and joins over all tables simultaneously and can be used in
place of conjunctive and disjunctive queries. We also show how to connect a
database and a functional programming language by introducing a functorial
connection between the schema and the category of types for that language.
We begin the paper with a multitude of examples to motivate the definitions,
and near the end we provide a dictionary whereby one can translate database
concepts into category-theoretic concepts and vice-versa.

Contents

1. Introduction 1
2. Virtues by Example 5
3. Definitions 13
4. Data migration functors 21
5. Data types and filtering 23
References 28

1. Introduction

This paper has two main goals. The first goal is to present a straightforward
category-theoretic model of databases under which every theorem about small cat-
egories becomes a theorem about databases. To do so, we will present a category
Sch of database schemas, which has three important features:

• the category Sch is equivalent to Cat, the category of small categories,
• the category Sch is a faithful model for real-life database schemas, and
• the category Sch serves as a foundation upon which high-level database

concepts rest easily and harmoniously.

The second goal is to apply this category-theoretic formulation to provide new
data migration functors, so that for any translation of schemas F : C → D, one can
transport instances on the source schema C to instances on the target schema D and
vice versa, with provable “round-trip” properties. For example, homomorphisms of
instances are preserved under all migration functors. While these migration func-
tors do not appear to have been discussed in database literature, their analogues

This project was supported by ONR grant N000141010841.
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are well-known in modern programming languages theory, e.g. the theory of de-
pendent types ([Mar]), and polynomial data types ([Kan]). This is part of a deeper
connection between database schemas and kinds (structured collections of types,
see [SH], [Ham]) in programming languages. See also Section 3.6.

An increasing number of researchers in an increasing variety of disciplines are
finding that categories and functors offer high-quality models, which simplify and
unify their respective fields.1 The quality of a model should be judged by its
efficiency as a proxy or interface—that is, by the ease with which an expert can work
with only an understanding of the model, and in so doing successfully operate the
thing itself. Our goal in this paper is to provide a high-quality model of databases.

Other category-theoretic models of databases have been presented in the past
([JoM],[BCW],[JRW],[IP],[PS],[DC],[Tui]). Almost all of them used the more ex-
pressive notion of sketch where we have used categories. The additional expressivity
came at a cost that can be cast in terms of our two goals for this paper. First,
the previous models were more complex and this may have created a barrier to
wide-spread understanding and adoption. Second, morphisms of sketches do not
generally induce the sorts of data migration functors that morphisms of categories
do.

It is our hope that the present model is simple enough that anyone who has an
elementary understanding of categories (i.e. who knows the definition of category,
functor, and natural transformation) will, without too much difficulty, be able
to understand the basic idea of our formulation: database schemas as categories,
database instances as functors. Moreover, we will provide a dictionary (see Section
3.7, Table 1) whereby the main results and definitions in this paper will simply
correspond to results or definitions of standard category theory; this way, the reader
can rely on tried and true sources to explain the more technical ideas presented
here. Moreover, one may hope to leverage existing mathematical theory to their
own database issues through this connection.

Before outlining the plan of the paper in Section 1.2 we will give a short introduc-
tion to the fundamental idea on which the paper rests, and provide a corresponding
“categorical normal form” for databases, in Section 1.1.

1.1. Categorical normal form. A database schema may contain hundreds of
tables and foreign keys. Each foreign key links one table to another, and each
sequence of foreign keys T1 → T2 → · · · → Tn results in a function f from the set
of records in T1 to the set of records in Tn. It is common that two different foreign
key paths, both connecting table T1 to table Tn, may exist; and they may or may
not define the same mapping on the level of records. For example, an operational
“landline” phone is assigned a phone number whose area code corresponds to the

1Aside from mathematics, in which category-theoretic language and theorems are indispensable
in modern algebra, geometry, and topology, category theory has been successful in: program-
ming language theory [Mog],[Pie]; physics [BS],[DI]; materials science [SGWB],[GSB]; and biology
[Ros],[EV].
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region in which the physical phone is located. Thus we have two paths OLP → R:

N

phoneNum
has //

C

areaCode

≃
correspondsTo

��
OLP

operationalLandlinePhone

assigned
66❧❧❧❧❧❧❧❧❧❧❧❧❧

is
//

P

physicalPhone
locatedIn

//
R

region

(1)

and the data architect for this schema knows whether or not these two paths should
always produce the same mapping. In (1), the two paths OLP → R do produce
the same mapping, and the ≃ sign is intended to record that fact. For contrast,
if we replace operationalLandlinePhone with operationalMobilePhone (OMP), the
two paths OMP → R would not produce the same mapping, because a cellphone
need not be currently located in the region indicated by its area code. Thus we
would get a similar but different diagram,

N

phoneNum
has //

C

areaCode

correspondsTo

��
OMP

operationalMobilePhone

assigned
66♠♠♠♠♠♠♠♠♠♠♠♠♠

is
//

P

physicalPhone
locatedIn

//
R

region

(2)

We are emphasizing here that the notion of path equivalence is an important
and naturally-arising integrity constraint, which provides a crucial clue into the
intended semantics of the schema. Its enforcement is often left to the application
layer, but it should actually be included as part of the schema ([JD]). Including
path equivalence information in the database schema has three main advantages:

• it permits the inclusion of “hot” query columns without redundancy,
• it provides an important check for creating schema mappings, and
• it promotes healthy schema evolution.

A category (in the mathematical sense) is roughly a graph with one additional bit
of expressive power: the ability to declare two paths equivalent. We now have the
desired connection between database schemas and categories: Tables in a schema
are specified by vertices (or as we have drawn them in Diagram (1), by boxes);
columns are specified by arrows; and functional equivalence of foreign key paths
are specified by the category-theoretic notion of path equivalence (indicated by the
≃ symbol). The categorical definition of schema will be presented rigorously in
Section 3.

The above collection of ideas leads us to the following normal form for databases.

Definition 1.1.1. A database is in categorical normal form if

• every table t has a single primary key column IDt, chosen at the outset.
The cells in this column are called the row-ids of t;
• for every column c of a table t, there exists some target table t′ such that

the value in each cell of column c refers to some row-id of t′. We denote
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this relationship by
c : t→ t′;

• in particular, if some column d of t consists of “pure data” (such as strings
or integers), then its target table t′ is simply a 1-column table (i.e. a
controlled vocabulary, containing at least the active domain of column d),
and we still write d : t→ t′; and
• when there are two paths p, q through the database from table t to table u

(denoted p : t → u, q : t → u) and it is known to the schema designer that
p and q should correspond to the same mapping of row-ids, then this path
equivalence must be declared as part of the schema. We denote this path
equivalence by

p ≃ q.

1.2. Plan of the paper. We begin in Section 2 by giving a variety of examples,
which illustrate the virtues of the category-theoretic approach. These include con-
ceptual clarity, simplified data migration, updatable views, interoperability with
RDF data, and a close connection between data and program. In Section 3 we
will give the precise definitions of categorical schemas and translations, and show
that the category thereof, denoted Sch, is equivalent to Cat, the category of small
categories. In this section we will also define the category of database instances on
a given schema. In Section 4 we will define the data migration functors associated
to a translation and begin to wrap up our tour by returning to the examples from
Section 2 for a more in-depth treatment. We finish this work in Section 5, where
we discuss data types and filtering.

1.3. Terminology and notation. One obstacle to writing this paper is a certain
overlap in terminology between databases and categories: the word “object” is com-
monly used in both contexts. While object databases are interesting and perhaps
relevant to some of the ideas presented here, we will not discuss them at all, hence
keeping the namespace clear for categorical terminology. Unless otherwise spec-

ified, the word object will always be intended in the category-theoretic

sense.

Say we have maps A
f
−→ B

g
−→ C; we may denote their composite A → C in

one of two ways, depending on what seems more readable. The first is called
“diagrammatic order” and is written as f ; g. The second is called “classical order”
and is written as g ◦ f . We may sometimes choose not to write a symbol between
f and g, and in that case we use diagrammatic order fg : A→ C.

1.4. Acknowledgments. The present paper is a total revamping of [Sp1], which,
in an attempt to accommodate two disjoint communities (mathematicians and data-
base experts), ended up as a sprawling and somewhat incoherent document. My
thanks go to the referees and to Bob Harper for pointing me toward a streamlined
presentation. I would also like to thank Peter Gates, Dave Balaban, John Launch-
bury, and Greg Morrisett for many useful conversations. I appreciate very much the
encouragement of Jack Morava, especially in the form his vision ([Mor]) of how ideas
from this paper may be useful for exposing patterns in pure mathematics. Special
thanks also go to Scott Morrison for coding many of the ideas from this paper into
working form, available online for demonstration or open-source participation at
http://categoricaldata.net/.

http://categoricaldata.net/
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2. Virtues by Example

In what follows we illustrate the merits of the category-theoretic approach by
way of several examples. One thing to note is that each of these features flows
naturally from our compact mathematical definitions of schemas and translations.
These definitions will be given in Section 3.

2.1. Conceptual clarity. In a categorical schemas (Definition 3.2.6), every table

is a vertex and every column is an arrow. An arrow
T
•

c
−−−→

U
• represents a column of

table T, with target table U, i.e. a foreign key constraint declaring that each cell in
column c refers to a row-id in table U. We draw a box around our system of vertices
and arrows, and the result is a categorical representation of the schema2.

Example 2.1.1. The following picture represents a schema S with six tables, two of
which are multi-column “fact tables” and four of which are 1-column “leaf” tables.

C :=

SSN
•

First
•

T1
•

FF✌✌✌✌✌✌✌✌✌
==⑤⑤⑤⑤⑤

!!❇
❇❇

❇
T2
•

aa❇❇❇❇❇

}}⑤⑤
⑤⑤

��✌✌
✌✌
✌✌
✌✌
✌

Last
•

Salary
•

(3)

The fact table T1 has three columns (pointing to SSN, First, Last), in addition
to its ID column; the fact table T2 also has three non-ID columns (pointing to
First, Last, Salary). The leaf tables, SSN, First, Last, and Salary have only ID
columns, as is seen by the fact that no arrows emanate from them.

As a set of tables, an instance on schema C may look something like this:

T1

ID SSN First Last

T1-001 115-234 Bob Smith
T1-002 122-988 Sue Smith
T1-003 198-877 Alice Jones

T2

ID First Last Salary

T2-A101 Alice Jones $100
T2-A102 Sam Miller $150
T2-A104 Sue Smith $300
T2-A110 Carl Pratt $200

(4)

2A system of vertices and arrows of this sort is called a graph. A graph can be considered as a
kind of category (a so-called free category) in which no path equivalences have been declared.
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SSN

ID

115-234
118-334
122-988
198-877
342-164

First

ID

Adam
Alice
Bob
Carl
Sam
Sue

Last

ID

Jones
Miller
Pratt
Richards
Smith

Salary

ID

$100
$150
$200
$250
$300

(5)

The thing to recognize here is that each column header c of T1 (respectively, of
T2) points to some target table, in such a way that every cell in column c refers to
a row-id in that target table.3 The leaf tables serve as controlled vocabularies for
the fact tables.

Notation 2.1.2. In Example 2.1.1, we wrote out all four leaf tables (Display 5).
In the future we will not generally write out leaf tables for space reasons. In fact,
any table that does not add explanatory power to a given example may be left out
from our displays.

Example 2.1.3. In this example we present a schema C that includes path equiva-
lences, and hence takes advantage of the full expressivity of categories. We imagine
a company with employees and departments; every employee is in a department,
every employee has a manager employee, and every department has a secretary
employee. Using path equivalences, we enforce the following facts:

• the manager of an employee is in the same department as that employee,
and
• the secretary of a department is in that department.

These facts are recorded as equations at the top of the following diagram:

C :=

Mgr isIn ≃ isIn Secr isIn ≃ idDepartment

Employee
•

isIn //

Mgr

��

First

��✂✂
✂✂
✂✂
✂

Last

��❁
❁❁

❁❁
❁❁

Department
•

Secr
oo

Name
��

String1
•

String2
•

String3
•

(6)

As a set of tables, an instance on C may look something like this:

3In the case that c is the ID column of T1, the target table to which c points is T1, and each cell
in column c is a row-id in T1 that refers to itself.
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Employee

ID First Last Mgr isIn

101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department

ID Name Secr

q10 Sales 101
x02 Production 102

It is no coincidence that there are a total of six non-ID columns in the two tables
and a total of six arrows in the schema C. The equations can be checked on these
cells; for example we can check the first equation on row-id 101:

101.Manager.isIn = 103.isIn = q10 and 101.isIn = q10.

An instance I on C is only valid if the two equations hold for every row in I.

2.2. Simplified data migration. A translation F : C → D of schemas (Definition
3.3.1) is a mapping that takes vertices in C to vertices in D and arrows in C to
paths in D; in so doing, it must respect arrow sources, arrow targets, and path
equivalences. We will be using the following translation F : C → D throughout
Section 2.2.

C :=

SSN
•

First
•

T1
•

FF✌✌✌✌✌✌✌✌✌✌
==⑤⑤⑤⑤⑤⑤

!!❈
❈❈

❈
T2
•

aa❈❈❈❈❈❈

}}⑤⑤
⑤⑤

��✌✌
✌✌
✌✌
✌✌
✌✌

Last
•

Salary
•

F
−−−→

SSN
•

First
•

T
•

FF✍✍✍✍✍✍✍✍✍✍
>>⑥⑥⑥⑥⑥⑥

  ❆
❆❆

❆

��✵
✵✵
✵✵
✵✵
✵✵
✵

Last
•

Salary
•

=: D(7)

The mapping F is drawn as suggestively as possible. In the future, we will rely
on this “power of suggestion” to indicate the translations, but this time we will
be explicit. Each of the four leaf vertices, SSN, First, Last, and Salary in C is
mapped to the vertex in D of the same label. The two other vertices in C, namely
T1 and T2, are mapped to vertex T in D. Since translations must respect arrow
sources and targets, there is no additional choice about where the arrows in C are
sent; for example F sends the arrow T1 → First in C to the arrow T → First in
D.

We have now specified a translation F from schema C to schema D, pictured in
Diagram 7. Springing forth from this translation are three data migration functors,
which we will discuss in turn in Examples 2.2.1, 2.2.3, and 2.2.5. They migrate
instance data onD to instance data on C and vice versa. Instances on C (respectively
on D) form a category, which we denote by C–Inst (respectively by D–Inst); they
are defined in Definition 3.5.1. We have the following chart, the jargon of which
will be introduced shortly:
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Data migration functors induced by a translation F : C → D

Name Symbol Long symbol Idea of definition

Pullback ∆F ∆F : D–Inst→ C–Inst Composition with F

Right Pushforward ΠF ΠF : C–Inst→ D–Inst Right adjoint to ∆F

Left Pushforward ΣF ΣF : C–Inst→ D–Inst Left adjoint to ∆F

Everything in the chart will be defined in Section 4. For now we give three examples.
In each, we will be starting with the translation F : C → D, given above in Diagram
(7).

Example 2.2.1 (Pullback). Let F : C → D be the translation given in Diagram (7).
In this example, we explore the data migration functor ∆F : D–Inst → C–Inst4

by applying it to a D-instance J . Note that even though our translation F points
forwards (from C to D), our migration functor ∆F points “backwards” (from D-
instances to C-instances). We will see why it works that way, but first we bring the
discussion down to earth by working with a particular D-instance.

Consider the instance J , on schema D, defined by the table

J:=

T

ID SSN First Last Salary

XF667 115-234 Bob Smith $250
XF891 122-988 Sue Smith $300
XF221 198-877 Alice Jones $100

(8)

and having the four leaf tables from Example 2.1.1, Display (5). Pulling back along
the translation F , we are supposed to get an instance ∆F (J) on schema C, which
we must describe. But the description is easy: ∆F (J) splits up the columns of
table T according to the translation F . The four leaf tables will be exactly the
same as above (i.e. the same as in Example 2.1.1 (5)), and the two fact tables will
be something like5

T1

ID SSN First Last

XF667T1 115-234 Bob Smith
XF891T1 122-988 Sue Smith
XF221T1 198-877 Alice Jones

T2

ID First Last Salary

A21 Alice Jones $100
A67 Bob Smith $250
A91 Sue Smith $300

(9)

The fact that T1 and T2 are simply projections of T is a result of our choice of
translation F .

Remark 2.2.2. We have seen that the pullback functor ∆F , which arises naturally
for any translation F between schemas, automatically produces projections.

In the next two examples, we will explore the right and left pushforward migra-
tion functors induced by the translation F : C → D given in Diagram (7). These
functors, denoted ΠF and ΣF , send C-instances to D-instances. Thus we start with
the instance I (which was presented in Example 2.1.1) and explain its pushforwards
ΠF (I) and ΣF (I) below in Examples 2.2.3 and 2.2.5, respectively.

4We have not defined ∆F yet; this will be done in Section 4.1.
5There may be choice in the naming convention for row-ids.
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Example 2.2.3 (Right Pushforward). Let F : C → D be the translation given in
Diagram (7). In this example, we explore the data migration functor ΠF : C–Inst→
D–Inst6 by applying it to the C-instance I shown in Displays (4) and (5). Note that
our migration functor ΠF points in the same direction as F : it takes C-instances
to D-instances. We now describe the D-instance ΠF (I), which has four leaf tables
ΠF (I)(SSN), etc., and one fact table ΠF (I)(T).

The four leaf tables of ΠF (I) will be as in Display (5). The fact table of ΠF (I)
will be the join of T1 and T2:

T

ID SSN First Last Salary

T1-002T2-A104 122-988 Sue Smith $300
T1-003T2-A101 198-877 Alice Jones $100

Remark 2.2.4. We have seen that the right pushforward functor ΠF , which
arises naturally for any translation F between schemas, automatically produces

joins.

Example 2.2.5 (Left Pushforward). Let F : C → D be the translation given in
Diagram (7). In this example, we explore the data migration functor ΣF : C–Inst→
D–Inst7 by applying it to the C-instance I shown in Displays (4) and (5). Note that
our migration functor ΣF points in the same direction as F : it takes C-instances
to D-instances. We now describe the D-instance ΣF (I), which has four leaf tables
ΣF (I)(SSN), etc., and one fact table ΣF (I)(T).

Instead of being a join, as in the case of ΠF (I) above, the fact table T in instance
ΣF (I) will be the union of T1 and T2. One may wonder then how the category
theoretic construction will deal with the fact that records in T1 do not have salary
information and the records in T2 do not have SSN information. The answer is
that the respective cells are Skolemized. In other words, the universal answer is to
simply add a brand new “variable” wherever one is needed in and downstream of
T. Thus in instance ΣF (I), table T looks like this:

T

ID SSN First Last Salary

T1-001 115-234 Bob Smith T1-001.Salary
T1-002 122-988 Sue Smith T1-002.Salary
T1-003 198-877 Alice Jones T1-003.Salary
T2-A101 T2-A101.SSN Alice Jones $100
T2-A102 T2-A102.SSN Sam Miller $150
T2-A104 T2-A104.SSN Sue Smith $300
T2-A110 T2-A110.SSN Carl Pratt $200

The Skolem variables (such as T1-001.Salary) can be equated with actual values
later. They can also be equated with each other; for example we may know that
T1-001.Salary=T2-002.Salary, without knowing the value of these salaries.

Remark 2.2.6. We have seen that the left pushforward functor ΣF , which
arises naturally for any translation F between schemas, automatically produces

unions and automatically Skolemizes unknown values.

6We have not defined ΠF yet; this will be done in Section 4.2.
7We have not defined ΣF yet; this will be done in Section 4.3.
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2.3. Updatable views and linked multi-views. Suppose we have a translation
F : C → D. In this case we can consider D as a view on C and consider C a view
on D. Unlike the classical version of views, our definition allows for arbitrarily
many foreign keys between view tables; indeed, both C and D can be arbitrary
schemas. Typical relational databases management systems such as SQL do not
support “linked multi-views”, i.e. multiple view tables with foreign keys between
them. For our data migration functors ΠF , ΣF and ∆F , this is no problem.

In fact, by the very nature of these three migration functors (i.e. by definition
of the fact that they are functors), we have access to powerful theorems relating
updates of C-instances to updates of D-instances. For example, given an instance I

on D whose ∆F -view is the instance J = ∆F (I) on C, and given an update J → J ′

on C, there is a unique update I → ΠF J ′, of instances on D. A similar result holds
for ΣF in place of ΠF : these facts follow from the fact that Π (respectively ΣF ) is
“adjoint” to ∆F . See Section 4.

The view update problem is often phrased as asking that “the round trips are
equivalences,” ([BCFGP]), which for us amounts to the composites ∆F ΠF and
ΠF ∆F (respectively ΣF ∆F and ∆F ΣF ) being isomorphisms. This will only happe
in case F is an equivalence of categories. However, our data migration adjunctions
provide view updates in more general circumstances, and these have provable formal
properties (e.g. ΣF and ∆F commute with inserts and ΠF and ∆F commute with
deletes). But of course the best formal properties occur when F is an equivalence.

The following example shows two things. First, it gives an example of a linked
multi-view (foreign keys between views). Second, the translation F is an equivalence
of categories (a fact which relies essentially on the fact that C has path equivalences
declared), and so the data migration functors ∆, Π, and Σ are also equivalences—
they exhibit no information loss.

Example 2.3.1. Consider the two schemas drawn here:

C :=

i12i21 ≃ idT1

i21i12 ≃ idT2

SSN
•

First
•

T1
•

i12

66

FF✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆
❆❆

❆ ≃
T2
•

i21

vv

``❆❆❆❆❆❆❆❆❆

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍

Last
•

Salary
•

F
−−−→

SSN
•

First
•

T
•

GG✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

  ❅
❅❅

❅❅
❅❅

❅

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

Last
•

Salary
•

=: D(10)
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The arrows i12 and i21, which are declared to be mutually inverse, ensure that
the data which can be captured by schema C is equivalent to that which can be
captured by schema D. The translation F sends i12 and i21 to the trivial path idT

on T (see Definitions 3.2.1 and 3.3.1, and Example 3.3.3).
If table T is as in Example 2.2.1 (8), then its pullback under ∆F to an instance

on C is similar to (9), but with additional columns i12 and i21 (because our schema
has additional arrows i12 and i21):

T1

ID SSN First Last i12

XF667T1 115-234 Bob Smith A67
XF891T1 122-988 Sue Smith A91
XF221T1 198-877 Alice Jones A21

T2

ID First Last Salary i21

A21 Alice Jones $100 XF221T1
A67 Bob Smith $250 XF667T1
A91 Sue Smith $300 XF891T1

(11)

The foreign key columns i12 and i21 on the C-view keep track of the data necessary
for successful round-tripping. An update to a D-instance will yield a corresponding
update to a C-instance and vice versa. The fact that F is an equivalence of categories
implies that ΣF , ΠF , and ∆F are also equivalences of categories, and roundtrip
isomorphisms will hold for all possible updates.

2.4. Interoperability with RDF data. The Resource Descriptive Framework
(RDF) is the semantic web standard data format [KC]. The basic idea is to encode
all facts in terms of basic

(Subject Predicate Object)

triples, such as (Bob hasMother Sue). There are papers devoted to understanding
the transformation from relational databases to RDF triple stores, and vice versa
([ASX],[KT]). In this section we will assume a basic familiarity with the jargon of
that field, such as URI (uniform resource identifier).

Category-theoretically, the formulation of RDF triple stores is quite simple.
Given a schema C, a triple store over C is a category S (representing the triples)
and a functor π : S → C (representing their types). The objects in S are URIs; the
arrows in S are triples

Subject
•

Predicate
−−−−−−→

Object
•

Given an object c ∈ C in the schema, the inverse-image π−1(c) ⊆ S consists of all
URIs of type c. Given an arrow f : c→ c′ in C, the inverse image is the f -relation
between π−1(c) and π−1(d).8

There is a basic category-theoretic operation that converts a relational data-
base instance into an RDF triple store (and a straightforward inverse as well, con-
verting an RDF triple store into a relational database instance). It is called the
Grothendieck construction. Consider for example the instance I from Example 2.1.3
Display (6):

Employee

ID First Last Mgr isIn

101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department

ID Name Secr

q10 Sales 101
x02 Production 102

8This relation can be functional or inverse functional, as dictated by the RDF schema; the subject
can be understood category-theoretically by so-called “lifting constraints” (see [Sp4]).
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Taking the Grothendieck construction yields the following triple store S = Gr(I),
where each arrow designates a RDF triple, as above:

S =

101
•

First

��

Last

11

Mgr

==

isIn

))102
•

103
•

q10
•

x02
•

Secr

hh

Name

||

Alan
•

Hilbert
•

Production
•

Bertrand
•

Russell
•

Sales
•

David
•

Turing
•

π

��

(12)

C =

Employee
•

isIn //

Mgr

��

First

��✂✂
✂✂
✂✂
✂

Last

��❁
❁❁

❁❁
❁❁

Department
•

Secr
oo

Name
��

String1
•

String2
•

String3
•

In Display (12), ten arrows have been left out of the picture of S, (e.g. the arrow
102
•

Last
−−−−−→

Russell
• is not pictured) for readability reasons. The point is that the

RDF triple store associated to instance I is nicely represented using the standard
Grothendieck construction.

2.5. Close connection between data and program. Currently, there is an
“impedance mismatch” between databases and programming languages; their re-
spective formulations and underlying models do not cohere as well as they should
([CI]). Whereas the programming languages (PL) community has embraced cate-
gory theory for the conceptual clarity and expressive power it brings, most database
theorists tend to concentrate on practical considerations, such as speed, reliability,
and scalability. The importance of databases in the modern world cannot be over-
stated, and yet in order for databases to reach their full potential, better theoretical
integration with applications must be developed.

As stated in the Introduction (Section 1), the first goal of this paper is to present
a straightforward model of databases under which every theorem about small cat-
egories becomes a theorem about databases. Thus the favorite category of PL
theorists, namely the category Type of types and terms (for some fixed λ-calculus,
see [Awo, Section 6.5]), is a kind of infinite database schema: its tables correspond
to types and its foreign key columns correspond to terms. Of course, unlike real-
world databases in which tables model real-world entities and their relationships
(such as people and their heights), the schema Type models mathematical entities
and their relationships (such as integers and their factorials). However, these ideas
clearly live in the same platonic realm, so to speak, and this notion is expressed by
saying that both database schemas and Type can be considered as categories and
related by functors.



FUNCTORIAL DATA MIGRATION 13

This leads to nice integration between data and program. For example many
spreadsheet capabilities, such summing up the values in two columns to get the
value in a third, can be included at the schema level. At this point in the paper, we
do not yet have the necessary machinery to show exactly how that should work (see
Section 5.1), but in the following diagram one can see the schematic presentation
of the relevant subcategory of Type:

P := (Int,Int)
•

+ //

outl

$$

outr

;;
Int
•(13)

The point is to simultaneously see two different things within this one diagram (like
an optical illusion). The first thing to see in Diagram (13) is a database schema.
In schema P , we have two tables:

(Int,Int)

ID outl outr +

P0c0 0 0 0
P1c0 1 0 1
P1c1 1 1 2
P0c1 0 1 1
P2c0 2 0 2
P2c1 2 1 3
P2c2 2 2 4
P1c2 1 2 3
P0c2 0 2 2
.
.
.

.

.

.
.
.
.

.

.

.

Int

ID

0
1
2
3
4
...

The second thing to see in Diagram (13) is a subcategory P ⊆ Type, i.e. a close
connection to standard PL theory. The same category P is viewed extensionally in
the context of databases and intentionally in the context of programs. This dual
citizenship of categories makes category theory a good candidate for solving the
impedance mismatch between databases and programming languages.

3. Definitions

In this section, our main goal is to define a category of schemas and translations,
and to show that it is equivalent to Cat, the category of small categories. Along
the way we will define the category of instances on a given schema. Finally, we
will give a dictionary that one can use to translate between database concepts (e.g.
found in [EN]) and category-theoretic concepts (e.g. found in [Mac]).

3.1. Some references. Throughout this section, we will assume the reader has
familiarity with the fundamental notions of category theory: objects, morphisms,
and commutative diagrams within a category; as well as categories, functors, and
natural transformations. There are many good references on category theory, in-
cluding [LS], [Sic], [Pie], [BW1], [Awo], and [Mac]; the first and second are suited
for general audiences, the third and fourth are suited for computer scientists, and
the fifth and sixth are suited for mathematicians (in each class the first reference
is easier than the second). One may also see [SK] for a different perspective.
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3.2. Graphs, Paths, Schemas, and Instances. A graph (sometimes called a
directed multi-graph) is a collection of vertices and arrows, looking something like
this:

A
•

f // B•

h

??

g

  C
•

D
•

i �� j

  E
•

k

__

(14)

This is one graph with two connected components; it has five vertices and six
arrows.

Definition 3.2.1. A graph G is a sequence G = (A, V, src, tgt), where A and V

are sets (respectively called the set of arrows and the set of vertices of G), and
src : A→ V and tgt : A→ V are functions (respectively called the source function
and the target function for G). If a ∈ A is an arrow with source src(a) = v and
target tgt(a) = w, we draw it as

v
a
−−−→ w.

Definition 3.2.2. Let G = (A, V, src, tgt) be a graph. A path of length n in G,

denoted p ∈ Path
(n)
G is a head-to-tail sequence

p = (v0
a1−→ v1

a2−→ v2
a3−→ . . .

an−−→ vn)(15)

of arrows in G. In particular, Path
(1)
G = A and Path

(0)
G = V ; we refer to the path

of length 0 on vertex v as the trivial path on v and denote it by idv. We denote by
PathG the set of all paths on G,

PathG :=
⋃

n∈N

Path
(n)
G .

Every path p ∈ PathG has a source vertex and a target vertex, and we may abuse
notation and write src, tgt : PathG → V . If p is a path with src(p) = v and
tgt(p) = w, we may denote it by p : v → w. Given two vertices v, w ∈ V , we write
PathG(v, w) to denote the set of all paths p : v → w.

There is a composition operation on paths. Given a path p : v → w and q : w → x,
we define the composition, denoted pq : v → x in the obvious way. In particular,
if p (resp. r) is the trivial path on vertex v (resp. vertex w) then for any path
q : v → w, we have pq = q (resp. qr = q). Thus, for clarity, we may always denote
a path as beginning with a trivial path on its source vertex; e.g. the path p from
Diagram (15) may be denoted p = idv0

a1a2 · · · an.

Example 3.2.3. In Diagram (14), there are no paths from A to D, one path (f)
from A to B, two paths (fg and fh) from A to C, and infinitely many paths
{ip1(jk)q1 · · · ipn(jk)qn | n, p1, q1, . . . , pn, qn ∈ N}) from D to D.

We now define the notion of categorical equivalence relation on the set of paths of
a graph. Such an equivalence relation (in addition to being reflexive, symmetric, and
transitive) has two sorts of additional properties: equivalent paths have the same
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source and target, and the composition of equivalent paths with other equivalent
paths must yield equivalent paths. Formally we have Definition 3.2.4.

Definition 3.2.4. Let G = (A, V, src, tgt) be a graph. A categorical path equiva-
lence relation (or CPER) on G is an equivalence relation ≃ on PathG that has the
following properties:

(1) If p ≃ q then src(p) = src(q).
(2) If p ≃ q then tgt(p) = tgt(q).
(3) Suppose p, q : b → c are paths, and m : a → b is an arrow. If p ≃ q then

mp ≃ mq.
(4) Suppose p, q : a → b are paths, and n : b → c is an arrow. If p ≃ q then

pn ≃ qn.

Lemma 3.2.5. Suppose that G is a graph and ≃ is a CPER on G. Suppose
p ≃ q : a→ b and r ≃ s : b→ c. Then pr ≃ qs.

Proof. The picture to have in mind is this:

• // · · · // •

��❀
❀❀

❀❀
• // · · · // •

��❀
❀❀

❀❀

a
• ≃

AA✄✄✄✄✄

��❀
❀❀

❀❀

p
%%♣

❥ ❡ ❴ ❨ ❚
◆

q

99◆
❚ ❨ ❴ ❡ ❥

♣

b
• ≃

AA✄✄✄✄✄

��❀
❀❀

❀❀

r
%%♣

❥ ❡ ❴ ❨ ❚
◆

s

99◆
❚ ❨ ❴ ❡ ❥

♣

c
•

• // · · · // •

AA✄✄✄✄✄
• // · · · // •

AA✄✄✄✄✄

Applying condition (3) from Definition 3.2.4 to each arrow in path p, it follows by
induction that pr ≃ ps. Applying condition (4) to each arrow in path s, it follows
similarly that ps ≃ qs. Because ≃ is an equivalence relation, it follows that pr ≃ qs.

�

Definition 3.2.6. A categorical schema C consists of a pair C := (G,≃) where G

is a graph and ≃ is a categorical path equivalence relation on G. We sometimes
refer to a categorical schema as simply a schema.

Example 3.2.7. Consider the schema, i.e. the graph together with the indicated
equivalence9, pictured in the box below:

C :=

fg ≃ fh

A
•

f // B•

g

  

h

??
C
•

This schema models, for example, the phenomenon of sending an email to oneself.
Suppose we populate B with emails, C with people, g and h with the sender and
receiver fields, respectively. Then for fg to equal fh we must have that senders
equal receivers on the image of f , and thus the subset of self-emails is a perfect fit
for A. See example 3.2.9.

9More precisely, consider the graph with the categorical equivalence relation generated by the set
{fg = fh}.
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More on the subject of categorical schemas, including a picture of a schema and
an associated set of tables, can be found in Example 2.1.3.

In the following, we will define what it means to be an instance of a categorical
schema C. We consider the case in which our instances are set-models of C, but the
same idea works in much more generality (see Definition 3.5.1).

Definition 3.2.8. Let C := (G,≃) be a categorical schema, where G = (A, V, src, tgt).
An instance on C, denoted I, consists of the following

(1) For every vertex v ∈ V , a set I(v).
(2) For every arrow a : v → v′ in A, a function I(a) : I(v)→ I(v′)
(3) For every path equivalence p ≃ q a guarantee that the equation I(p) = I(q)

holds.10

Example 3.2.9. We now return to Example 3.2.7, and write down a sample instance
I for schema C = (G,≃).

A

ID f

SEm1207 Em1207
SEm1210 Em1210
SEm1211 Em1211

B

ID g h

Em1206 Bob Sue
Em1207 Carl Carl
Em1208 Sue Martha
Em1209 Chris Bob
Em1210 Chris Chris
Em1211 Julia Julia
Em1212 Martha Chris

C

ID

Bob
Carl
Chris
Julia
Martha
Sue

For each vertex v in G, the set I(v) is given by the set of rows in the corresponding
table (e.g. I(A) = {SEm1207, SEm1210, SEm1211}). For each arrow a : v → w

in G the function I(a) : I(v) → I(w) is also evident as a column in the table.
For example, I(g) : I(B) → I(C) sends Em1206 to Bob, etc. Finally, the path
equivalence fg = fh is borne out in the fact that for every row-id in table A,
following f then g returns the same result as following f then h.

3.3. Translations. A translation is a mapping from one categorical schema to
another. Vertices are sent to vertices, arrows are sent to paths, and all path equiv-
alences are preserved. More precisely, we have the following definition.

Definition 3.3.1. Let G = (AG, VG, srcG, tgtG) and H = (AH , VH , srcH , tgtH) be
graphs (see Definition 3.2.1), and let C = (G,≃C) and D = (H,≃D) be categorical
schemas. A translation F from C to D, denoted F : C → D consists of the following
constituents:

(1) a function VF : VG → VH , and
(2) a function AF : AG → PathH

subject to the following conditions:

10Once I is defined on arrows, as it is in item (2), we can extend it to paths in the obvious way:
if p = a1a2 · · · an, then the function I(p) is the composition I(p) = I(a1)I(a2) · · · I(an).
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(a) the function AF preserves sources and targets; in other words, the following
diagrams of sets commute:

AG
AF //

srcG

��

PathH

srcH

��
VG

VF

// VH

AG
AF //

tgtG

��

PathH

tgtH

��
VG

VF

// VH

(b) the function AF preserves path equivalences.11 Precisely, suppose we are
given lengths m, n ∈ N and paths p = idv0

f1f2 · · · fm and q = idv0
g1g2 · · · gn

in G. Let v′
0 = VF (v0) and for each i ≤ m (resp. j ≤ n), let f ′

i =
AF (fi) (resp. g′

j = AF (gj)), and let p′ = idv′

0
f ′

1f ′
2 · · · f

′
m (resp. q′ =

idv′

0
g′

1g′
2 · · · g

′
n). If p ≃C q then p′ ≃D q′.

Two translations F, F ′ : C → D are considered identical if they agree on vertices
(i.e. VF = VF ′) and if, for every arrow f in C, there is a path equivalence

AF (f) ≃D AF ′(f).

In the following two examples we will reconsider translations discussed in Section
2.

Example 3.3.2. Recall the mapping F given in Diagram (7). The schemas C and D
are just graphs in the sense that there are no declared path equivalences in either
of them. The mapping F sends vertices in C to vertices in D and arrows in C to
arrows in D. Since an arrow is a particular sort of path, and since there are no
path equivalences to be preserved, F : C → D is indeed a translation.

Example 3.3.3. Recall the mapping F given in Example 2.3.1, Diagram (10). In
this setup, C has declared path equivalences and D does not; however D still has a
categorical path equivalence relation ≃D on it, the minimal reflexive relation. The
mapping F on vertices (VF ) is self-explanatory; the only arrows on which AF is
not self-explanatory are i12 and i21, both of which are sent to the trivial path idT

on vertex T.
Because VF (T1) = VF (T2) = T, it is clear that AF preserves sources and tar-

gets. The path equivalence i12i21 = idT1 and i21i12 = idT2 are preserved because
AF (i12) = AF (i21) = idT, and the concatenation of a trivial path with any path p

yields p.

3.4. The equivalence Sch ≃ Cat. We assume familiarity with categories and
functors, and in particular the category Cat of small categories and functors (a list
of references is given in Section 3.1). In this section we will define the category Sch

and show it is equivalent to Cat. It is this result that justifies our advertisement
in the introduction that “every theorem about small categories becomes a theorem
about databases”.

Definition 3.4.1. Recall the notions of categorical schemas and translations from
Definitions 3.2.6 and 3.3.1. The category of categorical schemas, denoted Sch,
is the category whose objects are categorical schemas and whose morphisms are
translations.

11This is easier to understand conceptually than to write down.
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Construction 3.4.2 (From schema to category). We will define a functor L : Sch→
Cat. Let C = (G,≃C) be a categorical schema, where G = (A, V, src, tgt). Define C′

to be the free category with objects V generated by arrows A. Define L(C) ∈ Cat

to be the category defined as the quotient of C′ by the equivalence relation ≃C (see
[Mac, Section 2.8]). This defines L on objects of Sch.

Given a translation F : C → D, there is an induced functor on free categories
F ′ : C′ → D′, sending each generator f ∈ A to the morphism in D′ defined as the
composite of the path AF (f). The preservation of path equivalence ensures that
F ′ descends to a functor L(F ) : L(C)→ L(D) on quotient categories. This defines
L on morphisms in Sch. It is clear that L preserves composition, so it is a functor.

Construction 3.4.3 (From category to schema). We will define a functor R : Cat→
Sch. Let C be a small category with object set Ob(C), morphism set Mor(C), source
and target functions s, t : Mor(C)→ Ob(C), and composition law ◦ : Mor(C)×Ob(C)

Mor(C)→ Mor(C). Let R(C) = (G,≃) where G is the graph

G = (Mor(C), Ob(C), s, t)

and with ≃ defined as follows: for all f, g ∈Mor(C) with t(f) = s(g) we put

fg ≃ (g ◦ f).(16)

This defines R on objects of Cat.
A functor F : C → D induces a translation R(F ) : R(C)→ R(D), because vertices

are sent to vertices, arrows are sent to arrows, and path equivalence is preserved
by (16) and the fact that F preserves the composition law. This defines R on
morphisms in Cat. It is clear that R preserves compositions, so it is a functor.

Theorem 3.4.4. The functors

L : Sch
//
Cat : Roo

are mutually inverse equivalences of categories.

Sketch of proof. It is clear that there is a natural isomorphism ǫ : idCat → L ◦ R;
i.e. for any category C, there is an isomorphism C � L(R(C)). Thus the functor L

is essentially surjective. We first show that L is fully faithful.
Choose schemas X and Y , and suppose X = (AX , VX , srcX , tgtX); we must

show that the function L1 : HomSch(X, Y ) → HomCat(LX, LY ) is a bijection. It
is clearly injective. To show that it is surjective, choose a functor G : LX → LY ;
we will define a translation F : X → Y with L1(F ) = G. Define F on vertices of X

as G is defined on objects of LX . Define F on arrows of X via the function AX →

PathX → Mor(LX)
G
−→ Mor(LY ), and choose a representative for its equivalence

class from PathLY (note that any two choices result in the same translation: see
Definition 3.3.1). Two equivalent paths in X compose to the same element of
Mor(LX), so F preserves path equivalence. This defines F , completing the proof
that L an equivalence of categories.

By similar reasoning one proves that R is fully faithful, and concludes that it is
inverse to L.

�
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3.5. The category of instances on a schema. Given Theorem 3.4.4, the com-
pound notion of categorical schemas and translations is equivalent to that of cate-
gories and functors. In the remainder of the paper, we elide the difference between
Sch and Cat, using nomenclature from each interchangeably.

One sees easily (c.f. Definition 3.2.8) that an instance I on a schema C is the
same thing as a functor C → Set, where Set is the category of sets. Thus we have
a ready-made concept of morphisms between instances: natural transformations
of functors. This is an established notion in database literature, often called a
homomorphism of instances (see e.g. [DNR]).

Definition 3.5.1. Let C be a schema and let I, J : C → Set be instances on C. A
morphism m from I to J , denoted m : I → J , is simply a natural transformation
between these functors. We define the category of instances on C, denoted C–Inst,
to be the category of instances and morphisms, as above.

More generally, let S denote any category; we define the category of S-valued in-
stances on C, denoted C–InstS := SC , to be the category whose objects are functors
C → S and whose morphisms are natural transformations. We refer to S as the
value category in this setup.

Remark 3.5.2. It appears that programming language theorists do not include ho-
momorphisms between instances in their conception of database instances as ele-
ments of a type, preferring instead to work with just the set Ob(C–Inst) of instances
on a schema C. Doing so makes it easier to define aggregate functions, such as sums
and counts; see e.g. [LT].

In the rest of the paper, we will generally work with C–Inst, the category of
Set-valued instances. However, most of the results go through more generally for
C–InstS, provided that S is complete and cocomplete (i.e. has all small limits and
all small colimits). Obviously, given a functor S → S′ there is an induced functor
C–InstS → C–InstS′ , so the choice of value-category can be changed without much
cost.

Example 3.5.3. Given a schema C, there are many categories S, other than S = Set,
for which one might be interested in C–InstS. For example, given a lambda calculus,
the associated category S = Type of types and terms is a good choice ([Awo,
Section 6.5]). One can also use the category Fin of finite sets, cpo of complete
partial orders, Cat of small categories, or Top of topological spaces.

The choice of value-category is based on how one chooses to view the collection of
rows in each table. We usually consider this collection to be a set, but for example
one can imagine instead a topological space of rows, and in this case each column
would consist of a continuous map from one space to another.

Toposes, invented by Grothendieck and Verdier [GV] and extended by Lawvere
[?], are categories that mimic the category of sets in several important ways (see
[MM]). In Proposition 3.5.4, we show that the instance categories are often toposes.

Proposition 3.5.4. If S = Set then for any schema C ∈ Sch, the category
C–Inst = C–InstSet is a topos. If C is a finite category then for any topos S
(e.g. S = Fin, the category of finite sets), the category C–InstS is a topos. If S is
complete (resp. cocomplete) then C–InstS is also complete (resp. cocomplete).

Proof. The first pair of claims are [JoP, A.2.1.3]. The second pair of claims are
found in [Bor1, Theorem 2.15.2] and [Awo, Proposition 8.8], respectively.
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�

Given a database instance I, updates on I include deletion of rows, insertion
of rows, splitting (one row becoming two), and merging (two rows becoming one).
In fact, we classify insertions and merges together as progressive updates and we
classify deletions and splits together as regressive updates. Then every update can
be considered as a regressive update followed by a progressive update.

Definition 3.5.5. Let C be a schema and I ∈ C–Inst an instance. A progressive
update on I consists of an instance J and a natural transformation p : I → J .
A regressive update on I consists of an instance J and a natural transformation
r : J → I. That is, a regressive update is just a progressive update in reverse. An
update is a finite sequence of progressive and regressive updates.

Proposition 3.5.6. Let C be a schema and I an instance on C. Any update on I

can be obtained as a single regressive update followed by a single progressive update.

Proof. The composition of two progressive (resp. regressive) updates is a progres-
sive (resp. regressive) update. Hence any update on I0 := I can be written as a
diagram D in C–Inst:

I01

r1

��☛☛
☛☛
☛☛
☛☛

p1

��✸
✸✸

✸✸
✸✸

✸ I12

r2

��☛☛
☛☛
☛☛
☛☛

p2

��✸
✸✸

✸✸
✸✸

✸ I23

r2

��☛☛
☛☛
☛☛
☛☛

· · · In1,n

pn

��✻
✻✻

✻✻
✻✻

✻

I0 I1 I2 · · · In

But the limit of this diagram (which can be taken, if one wishes, by taking fiber

products such as Ij−1,j → Ij ← Ij,j+1, and repeating n2−n
2 times), is what we need:

I0 ← lim D → In.

�

Remark 3.5.7. Another way to understand deletes is via filtering—one filters out
all rows of a certain form. Filtering will be discussed in Section 5.3.

3.6. Grothendieck construction. In Section 2.4 we showed how to convert an
instance I : C → Set to a new category Gr(I), called the Grothendieck construction
or category of elements of I. This construction models the conversion from relational
to RDF forms of data. There is a reverse construction that is described in [Sp4,
Proposition 2.3.9].

We note here that there is a more general Grothendieck construction that may be
useful in the context of federated databases. In programming languages theory, one
may hear of a category of kinds, each object of which is itself a category of types.
Here, each kind is analogous to a schema, and each type in that kind is analogous
to a table in that schema. Given a category of kinds, we can “throw all their types
together” by applying the generalized Grothendieck construction. This is akin to
taking a federated database (i.e. a schema of related schemas) and merging them
all into a single grand schema. One can apply this construction at the data level
as well, merging all the instances into an instance over the single grand schema.

The version of the Grothendieck construction given in Section 2.4 is for functors
I : C → Set. Each object c ∈ Ob(C) corresponds to a table whose set of rows is I(c).
One can find a description of this construction in [MM, Section 1.5]. The version of
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Table 1. Dictionary between database terminology and category
theory terminology.

Dictionary between DB and CT terminology

Database concept Category-theory concept

Database schema, C Category, C
Table T ∈ C Object T ∈ Ob(C)
Column f of T Outgoing morphism, f : T → ?
Foreign key column f of T pointing to U Morphism f : T → U

Sequence of foreign keys Composition of morphisms
Primary key column ID of T Identity arrow, idT : T → T

Controlled vocabulary (i.e. one-column
table D)

Object D without outgoing mor-
phisms (except idD : D → D)

Foreign key path equivalence in C Commutative diagram in C
Instance I on schema C Functor I : C → Set (or I : C → S

for some other “nice” category S)
Conversion of Relational to RDF Grothendieck construction
Insertion update u : I0 → I1 Natural transformation u : I0 → I1

Deletion update u : I0 → I1 Natural transformation u : I1 → I0

Schema mapping C → D Functor F : D → C
Basic ETL process C–Inst→ D–Inst Pullback functor, often denoted

∆F or F ∗ : C–Set→ D–Set

the Grothendieck construction in which federated schemas are combined into one
big schema is for functors D : C → Cat. Each object c ∈ Ob(C) corresponds to
a database whose category of tables is D(c). One can find a description of this
construction in [JoP, B.1.3.1].

3.7. Dictionary. Our hope is that this paper will serve as a dictionary, whereby
results from category theory literature can be imported directly into database the-
ory. In Section 4 we will see such a result: translations between schemas provide
data migration functors that have useful and provable properties. In Table 1 we
gather some of the foundational links between databases and categories, as pre-
sented throughout the paper.

4. Data migration functors

Given schemas C and D, a data migration functor is tasked with transforming
any C-instance I into some D-instance J (or vice versa). Moreover, it must do so
in a natural way, meaning that progressive (resp. regressive) updates on I must
result in progressive (resp. regressive) updates on J . Data migration functors were
concretely exemplified in Section 2.2.

In this section we will start with a translation between schemas F : C → D.
Recall from Definition 3.3.1 that this is simply a mapping from vertices in C to
vertices in D and arrows in C to paths in D, respecting path equivalence. Any
translation F generates three data migration functors. These will be denoted

ΣF : C–Inst→ D–Inst ∆F : D–Inst→ C–Inst ΠF : C–Inst→ D–Inst.



22 DAVID I. SPIVAK

One may notice that ∆F seems to go backwards—the direction opposite to that
of F . Although this may seem counter-intuitive, in fact ∆F is the simplest of the
three data migration functors and the most straightforward to describe.

Before we do so, let us quickly discuss value categories. Recall from Definition
3.5.1 that for any category S, we have a category C–InstS of C-instances valued in
S, i.e. the category of functors C → S. The migration functor ∆F : D–InstS →
C–InstS exists regardless of ones choice of S. For ΣF to exist, Smust be cocomplete,
and for ΠS to exist, S must be complete. To fix ideas, most readers should simply
take S = Set, unless they are compelled to do otherwise. This is the case where
the rows of each table form a set.

4.1. The pullback data migration functor ∆. Suppose we have a translation
F : C → D. Given a D-instance, I ∈ D–InstS, we need to transform it to a C-
instance in a natural way. But this is simple, because I : D → S is a functor and
the composition of functors is a functor, so the composite

C
F
−→ D

I
−→ S,

is an object of C–InstS, as desired. Similarly, a natural transformation m : I → J

is whiskered with F to yield a natural transformation (m ◦F ) : (I ◦F ) −→ (J ◦F ).
Thus we have defined a functor

∆F : D–InstS → C–InstS, ∆F (−) := (− ◦ F )

The slogan is “∆F is given by composition with F .”
We have now defined the pullback functor ∆F : D–InstS → C–InstS. It was

explicitly discussed in Example 2.2.1. Roughly, it can accommodate: renaming ta-
bles, renaming columns, deleting tables, projecting out columns, duplicating tables,
and duplicating columns.

4.2. The right pushforward data migration functor Π. Suppose we have a
translation F : C → D. Given a C-instance, I ∈ C–InstS, we need to transform it
to a D-instance in a natural way. We will do so by using the right adjoint of ∆F ;
however, to do this we will need to assume that S is complete (i.e. that S has small
limits). Note that S = Set is complete.

Proposition 4.2.1. Let F : C → D be a functor, and let S be a complete category.
Then the functor ∆F : D–InstS → C–InstS has a right adjoint, which we denote by

ΠF : C–InstS → D–InstS.

Proof. This is [Mac, Corollary X.3.2].
�

We have now defined the right pushforward functor ΠF : C–InstS → D–InstS. It
was explicitly discussed in Example 2.2.3. Roughly, it can accommodate: renaming
tables, renaming columns, and joining tables. To see this, one applies the “pointwise
formula” for right Kan extensions, e.g. as given in [Mac, Theorem X.3.1]; a more
explicit formulation is given in [Sp3].
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4.3. The left-pushforward data migration functor Σ. Suppose we have a
translation F : C → D. Given a C-instance, I ∈ C–InstS, we need to transform it
to a D-instance in a natural way. We will do so by using the left adjoint of ∆F ;
however, to do this we will need to assume that S is cocomplete (i.e.that S has
small colimits). Note that S = Set is cocomplete.

Proposition 4.3.1. Let F : C → D be a functor, and let S be a cocomplete category.
Then the functor ∆F : D–InstS → C–InstS has a left adjoint, which we denote by

ΣF : C–InstS → D–InstS.

Proof. This follows from [Bor1, Theorem 3.7.2] and [BW2, Proposition 9.11].
�

We have now defined the left pushforward functor ΣF : C–InstS → D–InstS. It
was explicitly discussed in Example 2.2.5. Roughly, it can accommodate: renaming
tables, renaming columns, taking the union of tables, and creating Skolem variables.
To see this, one applies the “pointwise formula” for left Kan extensions, e.g. as given
in [Bor1, Theorem 3.7.2]; a more explicit formulation is given in [Sp3].

5. Data types and filtering

In this section we will formulate the typing relationship that holds between ab-
stract data and its representation. Until now, we have been considering data as
simply a collection of interconnected elements—an instance in the sense of Defini-
tion 3.2.8 keeps track of various sets of abstract elements, segregated into tables
and connected together in precise ways. However, in reality, each such element is
represented in its table by way of a datatype, such as strings or integers. Seman-
tically, each cell in a given column c : t → t′ of a table t should have the same
datatype, namely they should all have the datatype of the target table, t′.

However, datatypes not only give a uniform method for displaying each data
element, but they can also carry a notion of value. For example, salaries are numbers
that can be added together to give meaningful invariants. It is for this reason
that we must find a connection between database formalism and programming
language formalism, as was discussed in Section 2.5. Category theory provides such
a connection: both database schemas and programming languages form categories,
and these categories can be related by functors.

Below we will explain these concepts, in particular how to attach datatypes from
a programming language to tables in a categorical schema. To do so, we will make
use of the concepts in Section 4. After defining type signatures on schemas we will
proceed to define morphisms of type signatures, which will enable us to filter data.
For example, to filter all names that start with the letter R, we might pull back
along an inclusion {R} → Str, where Str is the set of strings.

5.1. Assigning data types via natural transformation. We begin with two
examples to motivate the definition.

Example 5.1.1. What is meant mathematically by the phrase “a set of integers”?
Consider that it is a set labeled X , together with a function f : X → Z. Allowing
our set of integers to change, we get different sets labeled X and different functions
labeled f , but the set Z of integers is unchanged. From the categorical perspective
we can understand “a set X of integers” in a couple different ways:
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(1) as a database instance I : C → Set on the schema

C := X
•

f // Z• ,

such that the image on
Z

• is fixed as I(
Z

•) = Z; or
(2) as a database instance J : D → Set on the schema

D :=
X
•

equipped with a natural transformation f : J → {Z} (where {Z} is short-

hand for the functor D → Set given by D(
X
•) = Z).

Example 5.1.2. Suppose we have a database and that we would like to enforce a
mathematical relationship between two columns, say t and d, in a certain table X.
For example, it might be that column t, say “time spent” (in an integer number of
hours) is related to column d, say “debt owed” (as a dollar-figure) by a mathematical
function d = r(t), say

d(x) = r(t(x)) := $50 ∗ t(x)

for each x ∈ X . Just as in Example 5.1.1, this situation could be categorically
represented in a couple ways, but we will focus on only one. Namely, we understand
it as the collection of database instances J : D → Set on schema D as exemplified
below

D :=

d = tr

X
•

t //

d
��✿

✿✿
✿✿

✿✿
✿

Y
•

r

��
Z
•

J(X) :=

X

ID t d

CtrX13 4 $200
CtrX14 7 $350
CtrX15 2 $100

(17)

The fact that the d has dollar-figure datatype and that d = $50 ∗ t are enforced by
a certain natural transformation, f : J → P , where P is a typing instance. We will
give more details in Example 5.1.7.

Definition 5.1.3. Let C be a schema and let P ∈ Ob(C–Inst) be an instance. The
category of P -typed instances on C, denoted C–Inst/P , is defined to be the “slice”
category of instances over P (see, e.g. [MM, Categorical Preliminaries]). In other
words, a P -typed instance on C is a pair (I, τ) where I is an instance and τ : I → P

is a natural transformation; and a morphism of P -typed instances is a commutative
triangle.

Remark 5.1.4. Given a schema C we may refer to any instance P ∈ Ob(C–Inst)
as a typing instance if our plan is to consider P -typed instances, i.e. the category
C–Inst/P .

Remark 5.1.5. Fix a schema C and a category S and let E := C–InstS denote the
category of S-valued instances on C. In practice E is often a topos (see Proposition
3.5.4). In case it is, then for any instance P ∈ Ob(E), the category E/P of P -typed
S-valued instances on C is again a topos (see [MM, Theorem IV.7.1]).
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Construction 5.1.6. Suppose given a category Type of types for some program-
ming language and an S-valued functor V : Type→ S which sends each type to its
set (or S-object) of values. We often wish to use a fragment of Type to add typing
information to our database schema C. If the fragment is given by the functor

B
F
−→ Type and B is associated to the schema via a functor B

G
−→ C,

S
V

←−−− Type
F

←−−− B
G
−−−→ C,

then P := ΠG◦∆F(V ) is the implied typing instance. We call the sequence (B, F, G)
the typing auxiliary in this setup.

Example 5.1.7. We return to Example 5.1.2 with the language from Construction
5.1.6. We will now describe a typing auxiliary. Let B be one-arrow category drawn
below, and let G : B → D be the suggested functor

B :=

Y′

•

r′

��
Z′

•

G
−−−→

d = tr

X
•

t //

d
��✿

✿✿
✿✿

✿✿
✿

Y
•

r

��
Z
•

=: D

Consider also the functor F : B → Type sending Y′ to Int, the type of integers,
Z′ to Dollar the type of dollar figures, and r′ to the function that multiplies an
integer by 50.

With V : Type → S as in Construction 5.1.6, the implied typing instance P :=
ΠG ◦∆F (V ) : D → S has

P (X) = Int× Dol; P (Y) = Int; P (Z) = Dollar,

and P (r) : P (Y)→ P (Z) is indeed the multiplication by 50 map.
Now a P -typed instance τ : I → P is exactly what we want. For each of X, Y,

Z it is a set with a map to the given data type, and the naturality of τ ensures the
properties described in Example 5.1.2 (i.e. that d = $50 ∗ t in the table J(X) from
Display (17)). In other words, it ensures that for any row in J(X), the value of the
cell in column d will be 50 times the value of the cell in column t.

5.2. Morphisms of type signatures. Each data migration functor discussed in
Section 4 is a kind of tool for schema evolution. As new tables and columns are
created and others are discarded, the translation between old schema and new will
induce data migration functors that convert seamlessly from old data to new (and
vice versa) and from queries against the old schema to queries against the new one
(see also [Sp4]).

There is a slightly different kind of schema evolution that comes up often, namely
changing data types. For example, if a company surpasses around 32,000 employees,
they may need to change the datatype on their Employee table from a smallint to a
bigint. More complex changes include cutting the price for every share of stock by
half, or concatenating a first and a last name pair to form a new field. Importantly,
one needs to be able to reason about how queries against today’s schema will
differ from those against yesterday’s. Change-of-types functors are just like data
migration functors, and the formal nature of their description allows one to reason
about their behavior.
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Let C be a schema and let E be the topos C–Inst. Given a morphism of typing
instances k : P → Q, there are induced adjunctions

E/P

Σ̂k //E/Q

∆̂k

oo E/Q

∆̂k //E/P
Π̂k

oo

In other words, k induces an essential geometric morphism of toposes ([MM, The-
orem IV.7.2]).

Definition 5.2.1. Let C be a schema and k : P → Q a morphism of typing in-
stances. We refer to the induced functors

Σ̂k, Π̂k : C–Inst/P → C–Inst/Q ∆̂k : C–Inst/Q → C–Inst/P

as type-change functors. To be more specific, Σ̂k will be called the left pushforward

type-change functor, Π̂k will be called the right pushforward type-change functor,

and ∆̂k will be called the pullback type-change functor.

Example 5.2.2. We return to Example 5.1.2 withD and P as defined there. Consider

the left pushforward type-change functor Σ̂k in the case that k : P → Q sends a

dollar figure x to True if x ≥ $200 and False if x < $200. The functor Σ̂k converts
the table on the left to the table on the right below:

τ :=

X

ID t d

CtrX13 4 $200
CtrX14 7 $350
CtrX15 2 $100

Σ̂k(τ) =

X

ID t d

CtrX13 4 True
CtrX14 7 True
CtrX15 2 False

The other type-change functors, Π̂k and ∆̂k not have useful results in the context
of this particular example, but see Examples 5.2.3 and 5.3.1.

The right type-change functor Π̂ handles what might be called “group satisfac-
tion.” Suppose we have a bunch (P ) of people and a set (I) of items are distributed
among them (τ : I → P ). If the people are then subdivided into groups (k : P → Q),
then we can ask each group q ∈ Q, “how many ways are there for each of your

members to offer up one of their items?” (cardinality of Π̂k(τ)−1(q) ⊆ Π̂k(I)). For
example, if one of the people was handed an empty set of items then his or her

group will have no such joint offering (Π̂k(τ)−1(q) = ∅). We now explain this by
example.

Example 5.2.3. Let S be a complete category and write C–Inst instead of C–InstS.
In this example we explain how, given a morphism of typing instances k : P → Q

on a schema C, the type-change functor Π̂k : C–Inst/P → C–Inst/Q operates on a
P -typed instance to return a Q-typed instance by what we called group satisfaction
above. Suppose we have C and B as drawn,

B =
L′

• , C =
L
•

f
−−−→

M
•

with the functor G : B → C given by L′ 7→ L and the functor P ′ : B → S given by
P ′(L′) = {1, 2, 3, 4}. Let Q′ : B → S be given by Q′(L′) = {x, y} and let k′ : P ′ → Q′

be the map sending 1, 2 7→ x; 3, 4 7→ y. Finally, let

P := ΠG(P ′), Q = ΠG(Q′), and k := ΠG(k′) : P → Q.
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We are ready to compute the right type-change functor along k on any P -typed
instance I → P ; we just need to write down some such instance. So, if I ∈ C–Inst

is the table on the left then Π̂k(I) is the table in the middle:

I :=

L
ID f

a 1
b 2
c 1
d 3
e 2
f 4
g 2

Π̂k(I) =

L
ID f

(a,b) x
(a,e) x
(a,g) x
(c,b) x
(c,e) x
(c,g) x
(d,f) y

b
a e
c g d f
1 2 3 4︸  ︷︷  ︸ ︸  ︷︷  ︸

x y

and a sketch of the reasoning is given on the right.

5.3. Filtering data. In this section we show how to use pullback type-change

functor ∆̂ to filter data (e.g. answer queries like “return the set of employees whose
salary is less than $100.”

In fact, given a morphism of instances k : P → Q, the associated pullback type-

change functor ∆̂k can either filter or multiply data (or both) depending on the
injectivity or surjectivity of k. In this short section we concentrate only on filtering,
because it appears to be more useful in practice. We work entirely by example; the

definition of D̂elta is given in Section 5.2 or in the literature ([MM, Section IV.7]).

Example 5.3.1. As advertised above, we show how to filter employees by their
salaries, in particular showing only those with salaries less than $100.

Suppose we have a schema C and two typing auxiliaries, (B, P, G) and (B, P ′, G),
shown below:

Type

Q′

ff

P ′

xx
⇓k′

B :=
Salary
•

G
−−−→

C :=

Name
•

Employee
•

77♦♦♦♦♦♦♦

''❖❖
❖❖❖

❖❖❖

Salary
•

Here we want Q′(Salary) to be the dollar-figure data type, we want P ′(Salary) to
be the subtype given by requiring that a dollar figure x be less than $100, and we
want k′ : P ′ → Q′ to be the inclusion. These typing auxiliaries induce a morphism
of typing instances

k := ΠG(k′) : P → Q, where P := ΠG(P ′) and Q := ΠG(Q′).

Now suppose that I ∈ C–Inst is the Q-typed C-instance shown to the left below.

Then Π̂k(I) is the P -typed instance to the right below.

I :=

Employee

ID Name Salary

Em101 Smith $65

Em102 Juarez $120

Em103 Jones $105

Em104 Lee $90

Em105 Carlsson $80

Π̂k(I) =

Employee

ID Name Salary

Em101 Smith $65

Em104 Lee $90

Em105 Carlsson $80
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Thus we see that filtering is simply an application of the same data migration
functor story.

5.4. A normal form for data migration. We have seen several different forms of
data migration functors throughout this paper. One may perform a sequence of data
migration functors, e.g. moving data from one schema to another, then changing
the data types, and finally filtering the result. In many cases, such combination
of data migration functors can be rewritten as a sequence of three: a pullback, a
right pushforward, and a left pushforward; see [SW]. 12 This means that there
is a normal form for a quite general class of queries. Any combination of such
queries can be written in the form ∆F ΠGΣH for some F, G, H . This form may not
be optimal in terms of speed, but it can serve as a single input format for query
optimizers.
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