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Motivation
I Concurrent programs are everywhere.

Relied on for efficiency and correctness:
- databases, phones, banks, industry, autonomous vehicles

I Ensuring correctness of concurrent programs is hard:
- “The major problem facing software developers. . . ”

Behavior depends on whether threads cooperate or interfere.

I We need formal methods and automated tools.
And we would benefit from compositional reasoning:

- Exploit modularity, focus on local analysis, reduce complexity

I Big gap between theory and practice.
- Modern hardware is incompatible with traditional semantics.
- Current tools lack generality and scalability.

Foundational research is essential.
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Themes

Shared-memory parallel programs
I concurrent threads or processes
I reading and writing to shared state
I using locks to avoid data races

Denotational semantics
I choose an appropriate semantic domain

- abstract, but computationally accurate
- tailored to program behavior

I syntax-directed (compositional) semantic clauses
- structural induction
- recursion = fixed-point

Past, present, future
I status quo, limitations and defects

- historical context
I new ideas and directions

- further research
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Compositionality Principle
from Wikipedia

... the meaning of a complex expression is
determined by the meanings of its constituent
expressions and the rules used to combine them.

I Also called Frege’s principle, because G. Frege (1848-1925)
is widely credited with the first modern formulation.

I However, the idea appears among early Indian philosophers
and in Plato’s work.

I Moreover the principle was never explicitly stated by Frege,
and was assumed by Boole decades earlier.

Boole, G. (1854). An investigation of the laws of thought

Serves as a methodological principle to guide the
development of theories of syntax and semantics.

The characteristic principle of denotational semantics
and of structural operational semantics.
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The Art of Denotational Semantics
I The right foundations (a good choice of denotation)

and the right definitions (encapsulation of key concepts)
should lead naturally to the right theorems.

I The right development (a good choice of notation)
should help, not hinder, program design and analysis.

I Not as easy as it sounds, especially for concurrent programs. . .
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Prologue

“Of the many forms of false culture, a premature
converse with abstractions is perhaps the most likely
to prove fatal . . . ” George Boole (1859)
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Shared-memory programs

I Threads or processes, reading and writing to shared state
I threads may be sequential (simple case)
I threads may fork and join (nested parallelism)
I may have private local variables

I Race condition, causing unpredictable behavior,
when one thread writes to a variable being used by another

x :=x + 1 ‖ y :=x + x

I Synchronization primitives such as
locks, conditional critical regions, compare-and-swap, . . .

can be used to ensure mutually exclusive access

(lock r ; x :=x + 1; unlock r)‖(lock r ; y :=x + x ; unlock r)

7 / 120



Denotational Semantics
Shared-memory programs

Historically, concurrency is viewed as difficult to deal with
I early approaches limited to “simple” programs (no heap)
I issues such as fairness and unbounded non-determinism

Need a suitably abstract semantic domain
I not tied to specific hardware
I based on machine-independent view of “state”
I abstracting away from thread id’s and schedulers
I yet concrete enough to yield accurate information

I Want semantics to support compositional reasoning
about program properties

in any reasonable implementation. . .
(while avoiding implementation details)
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Program Properties

I Partial correctness {p}c{q}
Every terminating execution of c from a state satisfying p
ends in a state satisfying q.

I Total correctness
Every execution of c from a state satisfying p terminates,
and ends in a state satisfying q.

I Safety
Something bad never happens,
e.g. “In every execution of c, the value of x never decreases.”

I Liveness
Something good eventually happens,
e.g. “In every execution of c, x is eventually set to 1.”
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Sequential Consistency
Traditional semantics for shared-memory programs
assume sequential consistency (SC)

“The result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
processor appear in the order specified by its
program.”

Leslie Lamport (1979)

I Instructions are executed in program order.
I Each write operation becomes instantly visible to all threads.
I As if running on a uniprocessor. . .
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SC Semantics

I Assuming SC leads naturally to models based on
global states, traces and interleaving .

I Can give a denotational semantics, in which:
I programs denote sets of traces
I traces are finite or infinite sequences of actions,

allowing for “environment” interaction
I parallel composition is fair interleaving Park 1979

T (c1‖c2) =
⋃
{α1‖α2 | α1 ∈ T (c1) & α2 ∈ T (c2)}

I Can also give an operational semantics, in which:
I states are global, steps are atomic actions

〈c1, σ〉 → 〈c ′1, σ′〉
〈c1‖c2, σ〉 → 〈c ′1‖c2, σ′〉

〈c2, σ〉 → 〈c ′2, σ′〉
〈c1‖c2, σ〉 → 〈c1‖c ′2, σ′〉
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Compositionality
I Program properties such as

partial and total correctness, safety and liveness
are based on (interference-free) execution, e.g.

{p}c{q} : ∀α ∈ T (c). if σ |= p & σ
α

==⇒ σ′ then σ′ |= q

I Fairness crucial for liveness; infinite traces for safety, liveness.
I These properties involve sequentially executable traces.
I To determine the (sequential) traces of c1‖c2,

need to include non-sequential traces of c1 and c2.
The sequential traces of c1‖c2 are not always obtained
by interleaving sequential traces of c1 and c2.

I So T (c) includes non-sequential traces and we can define

T (c1‖c2) =
⋃
{α1‖α2 | α1 ∈ T (c1) & α2 ∈ T (c2)}

To support compositional reasoning,
we must allow for interaction with environment. . .
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Advantages
I A simple action trace semantics supports compositional

reasoning about simple shared-memory programs

{p1}c1{q1} {p2}c2{q2}
{p1 ∧ p2}c1‖c2{q1 ∧ q2}

Owicki ,Gries 1976

I An action trace semantics incorporating heap, race detection
and resource-awareness serves as foundation for
Concurrent Separation Logic

{p1}c1{q1} {p2}c2{q2}
{p1 ? p2}c1‖c2{q1 ? q2}

O′Hearn,Brookes 2007

I {p}c{q} interpreted as “in all (suitable) environments. . . ”
- rely/guarantee trade-off between process and environment
- local reasoning, separability and ownership transfer

I Provability implies no races.
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Historical Snapshots

Trace-based denotational semantics have been widely used,
for shared memory and for channel-based communication:
I Park: steps (σ, σ′) as atomic assignments [1979]

- fixed-point characterization of fairmerge
I Hoare: steps h?v , h!v as communication events [1983]

- led to failures/divergences, FDR model checker for CSP
I B: steps (σ, σ′) as finite sequences of actions [1993]

- transition traces with stuttering and mumbling
- simpler characterization of fairmerge
- fully abstract w.r.t observing histories

I B: fair communicating processes [2002]
I B: steps as store and heap operations, race detection [2007]

- soundness of Owicki-Gries
- soundness of Concurrent Separation Logic, permissions, . . .
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Limitations and Defects

I Traces are simple
But it was surprisingly difficult to develop
a tractable account of fairness!

I Traces are too simple
Premature converse with an abstraction?

I SC is “false concurrency”
parallel 6= non-deterministic interleaving

I SC is impractical
“. . . achieving sequential consistency may not be
worth the price of slowing down the processors.”

Leslie Lamport (1979)

I Trace semantics is only appropriate for SC
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Reality

I Modern multi-processors provide memory models with
weaker guarantees and faster results

- reads may see stale values, because of buffering or caches
- memory operations may get re-ordered, for optimization
- there may be no persistent “global” state
- results may be inconsistent with SC

I All processors are not equal
- ARM, x86, Power, Sparc, . . .

and they offer a range of memory models (stronger to weaker)
- SC, Total Store Order (TSO), release/acquire (C11),

I Mostly informal, unclear specifications.

I Is your PC really SC?
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Status Quo

Foundational work on C11 uses operational semantics,
execution graphs, and weak memory axioms

Alglave, Batty, Sewell, et al

sb: sequenced-before
mo: modification order
rf: reads-from
hb: happens-before

(CohRR) : ¬∃a, b. hb(a, b) ∧ mo(rf(b), rf(a))
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Execution graphs

I An execution graph has nodes labelled with memory
operations, and four kinds of relational edges

(sb,mo, rf , hb)

that satisfy weak memory axioms
sb is the “program order”
mo is a “modification order”

for each variable i a linear order on the writes to i
rf maps each read to the write it “reads from”
hb is the “happens before” relation

I The axioms impose impossibility constraints
e.g. (mo ∪ rf −1 ∪ sb)+ must have no cycles.

I An execution (σ, σ′) is an execution graph whose initial reads
are consistent with σ, and mo-final writes determine σ′.
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Program Analysis

I To determine which weak memory executions are possible
for a given program:

Generate the possible execution graphs. . .
. . . and find edge relations constrained to obey the axioms.
Extract the initial-final state pairs (σ, σ′).

I Can be combinatorially explosive:
- which values might a read “see”?
- many potential writes for a given read
- many possible choices for modification order
- axioms involve complex interweaving of edge relations
- expensive checking for cycles
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Example

(z1:=xacq; z2:=yacq)‖(yrel :=2; xrel :=1)‖(xrel :=2; yrel :=1)

The execution graph

describes a (non-SC) execution from [x : 0, y : 0] to [x : 2, y : 2]

I Wrel x=2, Wrel y=2 are latest in modification order
I Wrel x=1, Wrel y=1 are latest in program order
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Analysis Tools

I Obviously we need automated tools
- to tame the combinatorial explosion
- to reduce the chance of human error
- to manage complexity

I Some impressive and useful tools have been built
that deal with execution graphs, including:

cppmem, diy, litmus, . . . Alglave, Sewell, et al.
I cppmem was used to generate the picture earlier.

(Not the error message!)

I But existing tools are only usable on small examples.
I And are execution graphs and axioms the only approach?

The axiomatic methodology has some inherent limitations. . .
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Issues
I Not compositional

An execution graph describes an entire program.
No interaction with environment.

I Complex constraints
Must find, or rule out, relations that satisfy axioms.

I Correctness and completeness
How do we know the axioms are “correct” and sufficient?

Still under investigation. . .
Problematic “out-of-thin-air” examples.
Axiomatics not always true to runtime behavior.
Recent proposal to modify C11 axioms (Vafeiadis, 2016).

I Limited applicability
Current tools only handle small finite graphs.
Mainly for partial correctness.
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Desiderata

We can benefit from a compositional semantics
I modular, to help tame complexity
I abstract, to avoid machine-dependence
I truly concurrent, to allow for weak memory
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Our Plan
A truly concurrent denotational semantic framework
for weak memory with the following characteristics:
(1) Writes to the same variable appear to happen

in the same order, to all threads.
(2) Reads always see the most recently written value1.
(3) The actions of each thread happen in program order.
(4) Non-atomic code in a race-free program can be optimized,

without affecting execution.

Similar to the characteristics of C11 release/acquire,
the weak memory model assumed in recent logics

Relaxed Separation Logic Vafeiadis, Narayan 2013
GPS Turon, Dreyer, Vafeiadis 2014

1modulo delays attributable to buffering or caching
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release/acquire

A write instruction may not write directly to RAM, but write
first to a cache. This may cause other threads to “see” the
write later, and it can be hard to predict when.

Some processors (e.g. Itanium) offer primitives with
acquire/release semantics, and stronger guarantees:

I A read always sees the writes cached by other threads.
I A write is guaranteed to write to RAM (not just to the cache).

In more abstract, less hardware-specific terms:
I An “acquire read” always happens prior to any memory

references that occur after it in program order.
I A “release write” always happens after any memory references

that occur before it in program order.
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Warnings and Promises

I Our approach is abstract and independent of hardware
- no caches or store buffers

I We focus on foundations for “true concurrency” semantics
- generalizing from trace-based semantics

I We discuss weak memory models such as
SC, TSO, release/acquire

only informally; you should get the main ideas without details.

I Vague, intuitive-sounding terminology, such as
happens, occurs, sees, perceives
before, after, prior to, simultaneously

may be difficult to make precise, and usually isn’t.
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Rationale

I We will deal with “simple” shared-memory programs:
- no heap or mutable state

just shared variables
- only two kinds of memory access

atomic, non-atomic
- one synchronization construct

mutex locks, or binary semaphores

I Sufficient to introduce main issues and concepts:
- truly concurrent semantics
- weak memory phenomena

I Our framework can be adapted and generalized:
- heap, mutable state
- other synchronization primitives, e.g. CCR, CAS
- additional memory access levels, e.g. sc (“Java volatile”)
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Program Syntax

I Abstract grammar

i ∈ Ide, r ∈ Res, e ∈ Expint , b ∈ Expbool , c ∈ Com

e ::= n | iα | e1 + e2
b ::= true | ¬b | b1 ∨ b2 | e1 = e2 | e1 < e2
c ::= skip | iα:=e | c1; c2 | c1‖c2
| if b then c1 else c2 | while b do c
| lock r | unlock r | resource r in c

α ::= at | na
I Read and write variable occurrences are tagged α

I Atomic at, non-atomic na
I May omit α when na
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Program Behavior
Without getting into the details yet. . .

I Truly concurrent execution of threads
iat :=v behaves like release-write
iat=v behaves like acquire-read

I Atomic accesses don’t race

xat :=1 ‖ xat :=2

I Non-atomic races get detected

xat :=1 ‖ yna:=xna

I Locks are mutually exclusive

(lock r ; xna:=1; . . .) ‖ (lock r ; yna:=xna; . . .)

I Blocks are statically scoped

(resource r in c1) ‖ c2
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Outline
I Litmus tests SC X TSO 7 rel/acq 7

I small programs exhibiting weak memory behavior
I examples of optimization

I A denotational framework for weak memory
I not global, but local state
I not sequences, but partial orders

I Weak memory execution, semantically
I litmus tests, revisited
I optimization theorem

I Semantic properties
I laws of program equivalence

I Conclusions
I advantages and limitations
I topics for further research
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Litmus Test 1
Store Buffering SC 7 TSO 3 rel/acq 3

(xat :=1; z1:=yat) ‖ (yat :=1; z2:=xat)

I Each thread writes one shared variable, then reads the other.
I From initial state

[x : 0, y : 0, z1 : v1, z2 : v2]

this program can terminate in

[x : 1, y : 1, z1 : 0, z2 : 0].

Reads may see stale values.
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Litmus Test 2
Message Passing SC 3 TSO 3 rel/acq 3

(x :=37; yat :=1) ‖ (while yat = 0 do skip; z :=x)

I From initial state
[x : 0, y : 0, z : v ]

this program is race-free,
even though the accesses to x are not atomic,
and ends with z = 37.

I The while-loop only terminates after the write to y .

If a thread sees a write, it sees everything that
happened before that write.
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Litmus Test 3
Independent Reads of Independent Writes SC 7 TSO 7 rel/acq 3

xat :=1 ‖ yat :=1 ‖ (z1:=xat ; z2:=yat) ‖ (w1:=yat ; w2:=xat)

I From an initial state with

x = y = 0

this program can terminate with

z1 = w1 = 1, z2 = w2 = 0.

I In this execution
one thread sees the write to x before the write to y ,
one thread sees the write to y before the write to x .

No total ordering on writes to different variables.
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Litmus Test 4
Coherence SC 3 TSO 3 rel/acq 3

xat :=1 ‖ xat :=2 ‖ (z1:=xat ; z2:=xat) ‖ (w1:=xat ; w2:=xat)

I When started with all variables equal to 0,

x = z1 = z2 = w1 = w2 = 0

this program has no execution that ends with

z1 = w2 = 1, z2 = w1 = 2.
I Both threads see the writes to x in the same order.

Total ordering on the writes to a single variable.

Not true in some even weaker memory models,
but desirable for effective reasoning, as in GPS, RSL.
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Litmus Test 5
Optimization SC 3 TSO 3 rel/acq 3

I If c uses r to access x ,

c ‖ lock r ; x :=x + 1; x :=x + 1; unlock r
≡ c ‖ lock r ; x :=x + 2; unlock r

I Non-atomic writes to different variables can be re-ordered

c ‖ (c11; x :=1; y :=2; c12)
≡ c ‖ (c21; y :=2; x :=1; c22)

Here, informally, ≡ means “has same execution results”.

In a race-free program, non-atomic code can be
optimized without affecting execution.
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Taking stock

I Traditional semantics only works for SC.
I Modern architectures don’t behave like SC.
I Instead they provide weak or relaxed memory access.
I Litmus tests exhibit characteristic weak memory “features”:

- stale reads
- no total order on all writes
- total order per single variable

I We need good semantics for “truly concurrent” programs
- suitable for exploring the weak memory spectrum
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A denotational framework for weak memory

framework = semantics + execution

I An abstract denotational semantics
I states and actions
I footprints and effects
I partially ordered multisets

I A semantically-based definition of execution
I exhibiting weak memory behaviors

I A framework for exploration
I alternative forms of execution
I embodying other weak memory models
I classification and clarification
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States σ, τ ∈ Σ = Ide ⇀fin Vint

I A state is a finite partial function from identifiers to values.

[x1 : v1, . . . , xn : vn] {(xi , vi ) | 1 ≤ i ≤ n}

I We write [σ | τ ] for the state obtained by updating σ with τ

[σ | τ ] = (σ\dom τ) ∪ τ

[σ | τ ](i) = τ(i) if i ∈ dom(τ)
= σ(i) if i ∈ dom(σ)− dom(τ)

I States σ1 and σ2 are consistent, written as σ1 ⇑ σ2,
iff they agree on dom(σ1) ∩ dom(σ2), i.e.

∀i ∈ dom(σ1) ∩ dom(σ2). σ1(i) = σ2(i).

When this happens, we have

[σ1 | σ2] = [σ2 | σ1] = σ1 ∪ σ2 ∈ Σ.
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Actions

λ, µ ∈ Λ

λ ::= δ | iα=v | iα:=v | lock r | unlock r
α ::= at | na

I δ is an idle action.
I Reads iα=v and writes iα:=v

are tagged as atomic at or non-atomic na.
We may omit α when non-atomic.

I The lock and unlock actions are atomic.
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Traces

I A trace is a finite or infinite sequence of actions

α, β ∈ Λ∞ = Λ∗ ∪ Λω

I We write αβ for the trace obtained by concatenating β onto α

αβ = α if α infinite

I Examples
xat :=1 xat=1 y :=1
xat :=1 xat=0 y :=0

consecutive reads and writes
need not be sequentially executable

I A trace is sequential iff its actions are sequentially executable
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Footprints
Definition
The footprint of an action

[[λ]] ⊆ Σ× Σ>

is given by

[[δ]] = {([ ], [ ])}
[[iα=v ]] = {([i : v ], [ ])}
[[iα:=v ]] = {([i : v0], [i : v ]) | v0 ∈ Vint}
[[lock r ]] = {([r : 0], [r : 1])}
[[unlock r ]] = {([r : 1], [r : 0])}

I Describes minimal state needed by, and affected by, an action.
I λ is enabled in σ iff there is a (σ1, τ1) ∈ [[λ]] such that σ ⊇ σ1.
I When (σ1, τ1) ∈ [[λ]] we say that λ reads σ1, writes τ1.
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Effects
Definition
The effect of an action

E(λ) ⊆ Σ× Σ>

is given by

E(λ) = {(σ, [σ | τ1]) | ∃σ1 ⊆ σ. (σ1, τ1) ∈ [[λ]]}

Theorem
Actions have the following effects:

E(δ) = {(σ, σ) | σ ∈ Σ}
E(iα=v) = {(σ, σ) | i : v ∈ σ}
E(iα:=v) = {(σ, [σ | i : v ]) | i ∈ dom(σ)}
E(lock r) = {(σ, [σ | r : 1]) | r : 0 ∈ σ}
E(unlock r) = {(σ, [σ | r : 0]) | r : 1 ∈ σ}
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Sequential execution

For actions and traces, we define:

σ
λ

==⇒ σ′ iff (σ, σ′) ∈ E(λ)

σ
λ1···λn======⇒ σ′ iff σ

λ1===⇒ · · · · λn===⇒ σ′

Basic facts:

σ
δ

==⇒ σ always
σ

iα=v
=====⇒ σ iff (i , v) ∈ σ

σ
iα:=v

=====⇒ σ′ iff i ∈ dom(σ) & σ′ = [σ | i : v ]

σ
lock r

======⇒ σ′ iff σ(r) = 0 & σ′ = [σ | r : 1]

σ
unlock r

=======⇒ σ′ iff σ(r) = 1 & σ′ = [σ | r : 0]

We say α ∈ Λ∗ is (sequentially) executable from σ if ∃σ′. σ α
==⇒ σ′
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Checkpoint

I We introduced traces, states and effects.
I The chosen basis for traditional SC denotational semantics.
I But now let’s reconsider and reflect . . .
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True Concurrency

I Traces were used to model SC concurrency.
- A trace is a linearly ordered (multi-)set of actions.
- Parallel composition = non-deterministic interleaving.

I That’s false concurrency . It’s not always reasonable to
conflate concurrency with non-determinism.

I To handle weaker memory models, and obtain
a more philosophically defensible semantics,
we must embrace true concurrency
. . . by abandoning linearity .

I This leads to a natural generalization of traces:
- A pomset is a partially ordered (multi-)set of actions.
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Action Pomsets cf. Pratt 1986 2

Definition
An action pomset (P, <) is a multiset P of actions,
with a partial order < on P such that
(a) < is irreflexive, transitive, cycle-free
(b) < has locally finite height:

For every λ ∈ P there are finitely many µ ∈ P such that µ < λ.

We use < to represent a “program order”
on the set P of atomic actions of a program.

Let Pom be the set of action pomsets.

2Pratt does not require (b).
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Pomset Representation
A pomset (P, <) can be seen as a directed acyclic graph

G = (V ,E ,Φ)

with nodes V , edges E , and labeling function Φ : V → Λ.
I “occurrence of λ in P” = “node labelled λ in G”
I “λ < µ in P” = “nodes a, b labelled λ, µ such that (a, b) ∈ E∗

Example
V = {a, b, c, d}
E = {(a, c), (b, c), (c, d)}
Φ = {(a, λ1), (b, λ2), (c, λ), (d , µ)})

λ1

λ

λ2

µ

@@R

?

��	

Transitivity edges omitted. . .
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Locally Finite Height

Not allowed

λ1

µ

λ2 · · · λn · · ·
@@R ��	

�������)

Not allowed

λ1 λ2 · · · λn · · · µ- - - - -

µ not finitely reachable
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Locally Finite Height

Allowed

λ1

λ2 λ2

λ3 λ3 λ3 λ3

�
�	

@
@R

�
�	

A
AU

@
@R

�
��

..
	

. .
R

..
	

. .
R

...
...

Infinite total height, but each λn is finitely reachable.
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Linear

Definition
(P, <) is linear if

∀λ, µ ∈ P. (λ ≤ µ or µ ≤ λ).

I A linear pomset is (isomorphic to) a trace.
I May use trace-like notation, e.g.

x=1

y :=1

x :=2

?

?

x=1 y :=1 x :=2
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Linear for r
Definition

(P, <) is linear for r if

∀λ, µ ∈ P � r . λ ≤ µ or µ ≤ λ.

I P � r is the restriction of (P, <) to the actions on r .
I When P is linear for r , P � r is (isomorphic to) a trace.

Examples

lock r

λ1

unlock r

lock r

λ2

unlock r
�
�
�
�
��?

?

?

?

lock r

λ1

unlock r

lock r

λ2

unlock r

-

?

?

?

?
�
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Building Pomsets cf. Pratt 1986 3

Parallel composition
I Actions of P1 and P2 are independent

(P1, <1) ‖ (P2, <2) = (P1 ] P2, <1 ] <2)

Sequential composition
I Actions of P1 before actions of P2

(P1, <1); (P2, <2) = (P1, <1)
if |P1| is infinite

= (P1 ] P2, <1 ] <2 ]P1 × P2)
if |P1| is finite

These operations extend pointwise to sets of pomsets.

3Pratt’s P1;P2 does not handle the infinite case separately.
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Sequential composition

P a:=1

xat :=1 yat :=1

�
�	

@
@R

P; P a:=1

xat :=1 yat :=1

�
�	

@
@R

a:=1

xat :=1 yat :=1

�
�	

@
@R

@
@R

��	
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Parallel composition

P a:=1

xat :=1 yat :=1

�
�	

@
@R

P‖P a:=1

xat :=1 yat :=1

�
�	

@
@R

a:=1

xat :=1 yat :=1

�
�	

@
@R
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Pomset Properties

P1; (P2; P3) = (P1; P2); P3
P1‖(P2‖P3) = (P1‖P2)‖P3

P1‖P2 = P2‖P1

P‖P 6= P

(P1‖P2); P3 6= (P1; P3)‖(P2; P3)
P1; (P2‖P3) 6= (P1; P2)‖(P1; P3)

I P = Q means “up to isomorphism”
I Same partial order, same multiplicities for each λ ∈ Λ
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Pomset Iteration
Definition
I For n ≥ 0 let Pn be the n-fold sequential composition.

P0 = {δ}
Pk+1 = P; Pk

I Let Pω be the countably infinite sequential composition.
I Let P∗ =

⋃∞
n=0 Pn.

Example

P : xat :=1 yat :=1 Pω : xat :=1 yat :=1

xat :=1 yat :=1

...
...

@
@R?
��	 ?

??@
@R
�
�	
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Pomset Extension

Definition
I (P ′, <′) extends (P, <) if P ⊆ P ′ and < ⊆ <′

Example
I Pω extends P

P : xat :=1 yat :=1 Pω : xat :=1 yat :=1

xat :=1 yat :=1

...
...

@
@R?
��	 ?

??@
@R
�
�	
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Exercise

I Find all pomset extensions of

lock r

λ1

unlock r

lock r

λ2

unlock r

?

?

?

?

that are linear for r .
I Which of these are sequentially executable from [r : 0]?

(Assume that the actions λ1 and λ2 do not involve r .)
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Pomset operations

I Let P(Pom) be the powerset of Pom.
Programs denote sets of pomsets.

I P(Pom) is a complete lattice, ordered by set inclusion.
I Pomset operations extend to sets of pomsets:

For X ,Y ⊆ Pom we write

X ; Y = {P; Q | P ∈ X ,Q ∈ Y }
X‖Y = {P‖Q | P ∈ X ,Q ∈ Y }

I Similarly for iteration:

X n = {P1; · · · ; Pn | Pi ∈ X}
Xω = {P1; · · · ; Pn; · · · | Pi ∈ X}

but note that X n is not the same as {Pn | P ∈ X}.
I These operations are monotone and continuous.
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Pomset Semantics
for expressions

P : Expint → P(Pom× Vint)
P : Expbool → P(Pom× Vbool )

are defined by structural induction, e.g.

P(iα) = {({iα=v}, v) | v ∈ Vint}
P(e1 + e2) = {(P1‖P2, v1 + v2) | (P1, v1) ∈ P(e1), (P2, v2) ∈ P(e2)}

P(e1 = e2) = {(P1‖P2, v1 = v2) | (P1, v1) ∈ P(e1), (P2, v2) ∈ P(e2)}

Let P(b)tt ,P(b)ff ∈ P(Pom) be

P(b)tt = {P | (P, tt) ∈ P(b)}
P(b)ff = {P | (P,ff ) ∈ P(b)}
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Examples

I The expression xat + xat has a pomset entry of form

({xat=v1}‖{xat=v2}, v1 + v2),

for all v1, v2 ∈ Vint .

I The boolean expression x = x has

P(x = x)tt = {{x=v1}‖{x=v2} | v1 = v2}
P(x = x)ff = {{x=v1}‖{x=v2} | v1 6= v2}

We allow for interaction with environment.
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Pomset Semantics
for commands

P : Com→ P(Pom)

is defined by structural induction:

P(skip) = {{δ}}
P(iα:=e) = {P; {iα:=v} | (P, v) ∈ P(e)}
P(c1; c2) = P(c1);P(c2)
P(if b then c1 else c2) = P(b)tt ;P(c1) ∪ P(b)ff ;P(c2)
P(while b do c) = (P(b)tt ;P(c))∗;P(b)ff ∪ (P(b)tt ;P(c))ω

P(c1‖c2) = P(c1) ‖P(c2)
P(lock r) = {{lock r}}
P(unlock r) = {{unlock r}}
P(resource r in c) = {P\r | P ∈ P(c)r}
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Example
The program

yat :=1 ‖ if yat=0 then x :=yat + 1 else skip

denotes the set of pomsets

{Pv | v ∈ Vint} ∪ {Qv | v 6= 0},

where

Pv : yat :=1 yat=0

yat=v

x :=v + 1

Qv : yat :=1 yat=v

δ
?

?

?
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Example
The program

yat :=1 ‖ while yat=0 do xat :=xat + 1

has pomsets of form
yat :=1 ‖ P

where P ∈ loop∗stop ∪ loopω,
and

loop = {{yat=0 xat=v xat :=v + 1} | v ∈ Vint}
stop = {{yat=v} | v 6= 0}

Draw some of these and understand what kinds of interactive
behavior they represent.

What is special about the pomsets in yat :=1 ‖ loopω?
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Local Resources
in more detail

P(resource r in c) = {P\r | P ∈ P(c)r}

(i) P(c)r is the set of all pomsets (P, <′) constructible by
picking a (P, <) ∈ P(c) and linearizing the r -actions
so that P � r is sequentially executable from [r : 0]

(ii) P\r erases the r -actions from (P, <′).

Intuition
The local resource r is initially “available” (r = 0),
and not accessible by other threads:

(i) r -actions of c get executed sequentially from [r : 0],
without interference by other threads:

lock r · · · unlock r · · · lock r · · ·
(ii) r -actions are invisible outside the scope

Only uses the pomsets of c that can be suitably extended
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Pomset Semantics
Nature and Purpose

I The pomset semantics of programs is defined without
dependence on memory model or machine architecture

- abstract, high-level
- no need for weak memory axioms
- no need to pick a specific memory model
- denotational, so designed to be compositional

I We kept actions distinct from effects
- pomset structure shows program order
- no need to track the state (yet!)

I Can serve as a tabula rasa
. . . like a sheet of paper ready for writing upon.
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Using Pomset Semantics

To illustrate how the semantic clauses work. . .
Recall the litmus test programs

store buffering, message-passing, IRIW, . . .
We now examine their pomset semantics.
In each case the pomsets of the program
capture its essential computational structure,
and ignore irrelevant aspects.

Later we will explore executional behavior (and track the state).
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Store Buffering

(xat :=1; z1:=yat) ‖ (yat :=1; z2:=xat)

I Each pomset of this program has the form

xat :=1

yat=v1

z1:=v1

?

?

yat :=1

xat=v2

z2:=v2

?

?

where v1, v2 ∈ Vint .
I We include “non-sequential” cases like v1 = 42, v2 = 63,

to allow for behavior in parallel contexts, e.g.

−‖ xat :=63 ‖ yat :=42
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Message Passing

(x :=37; yat :=1) ‖ (while yat = 0 do skip; z :=x)

I Each finite pomset of this program has the form

x :=37

yat :=1
?

(yat=0)k

yat=v
?

x=v ′

z :=v ′

(v 6= 0)

?

?

with k ≥ 0 and v , v ′ ∈ Vint
I Also has the infinite pomset {x :=37 yat :=1, (yat=0)ω}
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Independent Reads of Independent Writes
xat :=1 ‖ yat :=1 ‖ (z1:=xat ; z2:=yat) ‖ (w1:=yat ; w2:=xat)

has pomsets of form

xat :=1 yat :=1 xat=v1 yat=v ′1

z1:=v1 w1:=v ′1

yat=v2 xat=v ′2

z2:=v2 w2:=v ′2

?

?

?

?

?

?

for v1, v2, v ′1, v ′2 ∈ Vint
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Coherence

xat :=1 ‖ xat :=2 ‖ (z1:=xat ; z2:=xat) ‖ (w1:=xat ; w2:=xat)

has pomsets of form

xat :=1 xat :=2 xat=v1 xat=v ′1

z1:=v1 w1:=v ′1

xat=v2 xat=v ′2

z2:=v2 w2:=v ′2

?

?

?

?

?

?

for v1, v2, v ′1, v ′2 ∈ Vint
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Concurrent Increments

I Let inc be lock r ; x :=x + 1; unlock r .
I Pomsets for inc ‖ inc have form

lock r

x=v1

x :=v1 + 1

unlock r

lock r

x=v2

x :=v2 + 1

unlock r

?

?

?

?

?

?

for v1, v2 ∈ Vint .
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Concurrent Increments using a private lock

resource r in (inc ‖ inc)

I The (relevant) pomsets in P(inc‖inc)r have the form

lock r

x=v1

x :=v1 + 1

unlock r

lock r

x=v2

x :=v2 + 1

unlock r
...

...
...

...
...

...�?

?

?

?

?

?

and after erasing the r -actions, we get

x=v1

x :=v1 + 1

x=v2

x :=v2 + 1
��*? ?
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Semantic equivalence

P(resource r in (inc‖inc)) = P(x :=x + 1; x :=x + 1)

I The pomsets of

resource r in (inc‖inc)

are
x=v1

x :=v1 + 1

x=v2

x :=v2 + 1
��*? ?

with v1, v2 ∈ Vint
I These are also the pomsets of

x :=x + 1; x :=x + 1

Accesses to x are non-atomic, but get serialized
Use of the private lock ensures race-freedom
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A Semantic Framework

framework = semantics + execution

I We have a denotational semantics

P : Com→ P(Pom)

defined without reference to memory model or architecture.
I We can now introduce a notion of

pomset execution

for this semantics, tailored to reflect the assumptions and
guarantees of a particular memory model, or a family of
memory models sharing certain characteristics.

I We will do this next for one such memory model,
characterized implicitly.

77 / 120



Pomset Execution

I We will define a form of pomset execution
tailored for a weak memory model in which
(1) Writes to the same variable appear in same order to all threads.
(2) Reads see the most recently written value.
(3) The actions of each thread happen in program order.
(4) In a race-free program, non-atomic code can be optimized.

I The key is to extend footprints (and effects) to pomsets.
I Action footprints may be composable, in sequence or in parallel
I Must take account of state, program order, atomicity

I We need first to identify when pomsets P1 and P2 are
I consecutively executable, or
I concurrently executable

components of a pomset P.
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Sequencing

Initial Segment
I P1 ⊆ P is an initial segment of (P, <) if P1 is down-closed:

∀λ ∈ P1, µ ∈ P. µ < λ ⇒ µ ∈ P1.

I P = P1 / P2 when P1 is an initial segment and P2 is the rest.

Properties
I (P1 / P2) / P3 = P1 / (P2 / P3).
I When P = P1 / P2 and Q = Q1 / Q2, it follows that

P ] Q = (P1 ] Q1) / (P2 ] Q2).
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Examples

For linear pomsets, i.e. traces,

initial segment = prefix
/ = concatenation

I If P is linear and P = P1 / P2,
then P1 and P2 are linear and P = P1; P2.

I The converse also holds.

For non-linear pomsets:
I When P = P1‖P2 we get

P = P1 / P2 and P = P2 / P1

but P 6= P1; P2 and P 6= P2; P1.
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Concurrence

I We write P1 co P2 to mean that there is no race condition:
no variable is written by one pomset and read or written
non-atomically by the other.

- Atomic writes to the same variable are allowed.
- When all actions of P1 and P2 are non-atomic

they must write to disjoint sets of variables.

I We say that P1 and P2 are concurrent, P1 ⊥ P2,
iff they do not race, and use disjoint locks:

- P1 ⊥ P2 iff P1 co P2 & res(P1) ∩ res(P2) = {}.
- res(P) is the set of lock names r in actions of P.
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Pomset Footprints
Intuition

[[P]] ⊆ Σ× Σ>

[[P]] contains footprint pairs for all ways to execute the actions in
P while respecting the “program order” < and the following rules:
I An initial action can be done if enabled (Act)
I Consecutive initial segments can be done in sequence (Seq)
I Concurrent initial segments can be done in parallel (Par)

and we detect race conditions (Race)
I Writes to the same variable are linearly ordered
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Pomset Footprints
Definition

The pomset footprint function

[[−]] : Pom→ P(Σ× Σ>)

is the least function such that:
Act If P is a singleton {λ}, [[P]] = [[λ]].
Seq If P = P1 / P2, (σ1, τ1) ∈ [[P1]], (σ2, τ2) ∈ [[P2]], [σ1 | τ1] ⇑ σ2,

then (σ1 ∪ (σ2\dom τ1), [τ1 | τ2]) ∈ [[P]].
If P = P1 / P2 and (σ,>) ∈ [[P1]], then (σ,>) ∈ [[P]].

Par If P = P1 ] P2, P1 co P2, res(P1) ∩ res(P2) = {},
(σ1, τ1) ∈ [[P1]], (σ2, τ2) ∈ [[P2]], and σ1 ⇑ σ2,
then (σ1 ∪ σ2, [τ1 | τ2]) ∈ [[P]] and (σ1 ∪ σ2, [τ2 | τ1]) ∈ [[P]].

Race If P = P1 ] P2, ¬(P1 co P2), res(P1) ∩ res(P2) = {},
(σ1, τ1) ∈ [[P1]], (σ2, τ2) ∈ [[P2]], and σ1 ⇑ σ2,
then (σ1 ∪ σ2,>) ∈ [[P]].
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Explanation

Seq embodies sequential composition of footsteps
I (σ1, τ1) can be followed by (σ2, τ2) iff [σ1 | τ1] ⇑ σ2
I Their cumulative footprint is represented by

(σ1 ∪ (σ2\dom τ1), [τ1 | τ2])

Par and Race enforce a form of
race-detecting concurrent composition of footsteps

I (σ1, τ1) can be composed with (σ2, τ2) iff σ1 ⇑ σ2
I Their cumulative footprint is represented by

{(σ1 ∪ σ2, [τ1 | τ2]), (σ1 ∪ σ2, [τ2 | τ1])} when non-racy,
(σ1 ∪ σ2,>) when racy

I Requirement that res(P1) ∩ res(P2) = {} only allows
concurrent footsteps using distinct locks.

I Concurrent atomic writes to the same variable are allowed,
but use of [τ1 | τ2] or [τ2 | τ1] linearizes their effect
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xat=1

yat:=1

xat:=2

yat=0

yat=1

xat=2

yat:=2

xat=1

yat:=1

xat:=2

yat=0

yat=1

xat=2

yat:=2

P1

P2

Q1

Q2

P = P1 ▹ P2 P ≠ Q1 ▹ Q2

Initial Segments
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[x:0, y:0]           [x:2, y:2] v

P

Sequencing

([x:0,y:0], [x:2,y:1]) ∈ ⟦P1⟧ 

([x:2,y:1], [y:2]) ∈ ⟦P2⟧

([x:0,y:0], [x:2,y:2]) ∈ ⟦P⟧ 

footprints

execution

xat=1

yat:=1

xat:=2

yat=0

yat=1

xat=2

yat:=2

P1

P2

P = P1 ▹ P2

SEQ
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xat:=1 yat:=1yat=0

xat=1

xat=0
P1 P2

[x:0, y:0]           [x:1, y:1] v

P

Concurrence

yat=1

([x:0,y:0], [x:1]) ∈ ⟦P1⟧ 

([x:0,y:0], [y:1]) ∈ ⟦P2⟧

([x:0,y:0], [x:1,y:1])   ∈ ⟦P1 ⨄ P2⟧ 

P1 ⊥ P2

footprints

execution

PAR

P = P1 ⨄ P2
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Composing Footprints

(σ1, τ1) ∈ ⟦P1⟧ 

(σ2, τ2) ∈ ⟦P2⟧

(σ1 ∪ σ2\τ1, [τ1|τ2]) ∈ ⟦P⟧ 
SEQ

(σ1, τ1) ∈ ⟦P1⟧ 

(σ2, τ2) ∈ ⟦P2⟧

(σ1∪σ2, [τ1|τ2])  ∈ ⟦P1 ⨄ P2⟧ 

P1 ⊥ P2
PAR

[σ1|τ1] ⇑ σ2  

(σ1∪σ2, [τ2|τ1])  ∈ ⟦P1 ⨄ P2⟧ 

P = P1 ▹ P2

σ1 ⇑ σ2  

Sequential

Concurrent
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Examples

I The pomset
xat :=1

yat=0
?

yat :=1

xat=0
?

has footprint

{([x : 0, y : 0], [x : 1, y : 1])}

I The pomset
xat :=1

xat=2
?

xat :=2

has footprint
{([x : v ], [x : 2]) | v ∈ Vint}
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Exercise
The program

yat :=1 ‖ if yat=0 then x :=yat + 1 else skip

has pomsets
{Pv | v ∈ Vint} ∪ {Qv | v 6= 0},

where

Pv : yat :=1 yat=0

yat=v

x :=v + 1

Qv : yat :=1 yat=v

δ
?

?

?

Calculate the footprints [[Pv ]], [[Qv ]] of these pomsets.
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Pomset Execution
Definition

For a finite pomset (P, <) we define the set
E(P) ⊆ Σ× Σ>

of executions of P, to be:
E(P) = {(σ, [σ | τ1]) | ∃σ1 ⊆ σ. (σ1, τ1) ∈ [[P]]},

where we let [σ | >] = >.

I When (σ, σ′) ∈ E(P) there is a (race-free) execution of P
from σ that respects < and ends in σ′.

In a race-free execution, each action occurrence of P
happens at some finite stage.

I When (σ,>) ∈ E(P) there is an execution of (an initial
segment of) P from σ that leads to a race condition.
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Pomset Execution
Properties

Justification
I Each execution (σ, σ′) ∈ E(P) is “justified”

by a footprint (σ1, τ1) ∈ [[P]], such that σ1 ⊆ σ & σ′ = [σ | τ1].
I Footprints are derived using Act, Seq, Par, Race.

Sequencing
I If P = P1 / P2, (σ, σ′) ∈ E(P1) and (σ′, σ′′) ∈ E(P2),

then (σ, σ′′) ∈ E(P).
I If P = P1 / P2 and (σ,>) ∈ E(P1), then (σ,>) ∈ E(P).

Concurrence
I If P = P1‖P2, (σ, σ1) ∈ E(P1) and (σ, σ2) ∈ E(P2),

it does not follow that (σ, [σ1 | σ2]) ∈ E(P).
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Execution Properties

I Footprint derivations, and executions, have a natural direction
- from initial state, toward final state
- control flow is irreversible

I Initial read actions must “read from” initial state.
I An action can only “happen” after the actions that precede it.
I The structure of a footprint derivation may imply a

“happens-before” constraint, e.g.
In any execution of P from σ,

λ1 must get executed before λ2.

I All state changes come from actions of P:
If (σ, σ′) ∈ E(P) and σ′(i) = v ′ 6= σ(i),
there is an occurrence of iα:=v in P.

I Hence, no out-of-thin-air writes.
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Out-of-thin-air
In some weak memory model specifications the execution graph

y=42 x=42

x :=42 y :=42

.......R
........	? ?

(dots indicate reads-from edges, modification order is trivial)
has an execution from [x : 0, y : 0] to [x : 42, y : 42].

As if each thread “speculates” about its read, then “validates” the
guess of the other thread. The writes using 42 come from thin air!

For the underlying pomset (without dots) we have

E(P) = {(σ, σ) | [x : 42, y : 42] ⊆ σ}

It’s good that our execution notion excludes out-of-thin-air.
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Execution Structure
Theorem
Every (finite) execution (σ, σ′) ∈ E(P) is expressible as
a sequence of phases

σ = σ0
P0===⇒ σ1

P1===⇒ σ2 · · · σn
Pn===⇒ σn+1 = σ′

where P = P0 / P1 . . . / Pn and each phase is justified by footprint,
i.e. for each j ∃(τj , τ

′
j ) ∈ [[Pj ]] with τj ⊆ σj and σj+1 = [σj | τ ′j ].

I Each phase performs an initial segment of the rest of P,
until no actions remain or a race is detected.

I Within a phase, writes to distinct variables may happen
independently, so no total store order on all writes.

I Footprint rules Act, Seq, Par, Race allow true concurrency
but still guarantee a total store order per single variable.

95 / 120



Infinite Executions

Execution extends to an infinite pomset P as follows:

Definition
(σ,⊥) ∈ E(P) iff there is a sequence of finite pomsets Pn such that

P = P0 / P1 . . . / Pn · · ·

and a sequence of states σn (n ≥ 0) such that

σ = σ0
P0===⇒ σ1

P1===⇒ σ2 · · · σn
Pn===⇒ σn+1 · · ·

This deals naturally with infinite executions,
and builds in (weak, process) fairness automatically.
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Program Behavior
Definition
We define program footprints

[[c]] =
⋃
{[[P]] | P ∈ P(c)}

and program executions

E(c) =
⋃
{E(P) | P ∈ P(c)}

in the obvious way.

Example

[[resource r in (inc‖inc)]] = {([x : v ], [x : v + 2]) | v ∈ Vint}

E(resource r in (inc‖inc)) = {(σ, [σ | x : v + 2]) | x : v ∈ σ}
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Program Analysis, revisited

To determine which weak memory executions are possible
for a given program:

Generate the pomsets of the program
Determine which ones are executable from σ.
Extract the final state σ′.

Still requires combinatorial analysis:
I how to decompose P into executable chunks
I focus on “reachable” cross-sections of P

But many different decompositions will yield the same execution
pairs, and we can exploit pomset structure to simplify analysis.
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Results

On these litmus tests, pomset execution E
yields behaviors consistent with rel/acq

Litmus Test SC TSO rel/acq E
1. Store Buffering 7 3 3 3

2. Message Passing 3 3 3 3

3. IRIW 7 7 3 3

4. Coherence 3 3 3 3

5. Optimization 3 3 3 3
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Litmus Test 1
Store Buffering SC 7 TSO 3 rel/acq 3

(xat :=1; z1:=yat) ‖ (yat :=1; z2:=xat)

I The pomset

{xat :=1 yat=0 z1:=0, yat :=1 xat=0 z2:=0}

is executable from [x : 0, y : 0, z1 : v1, z2 : v2]
and terminates in [x : 1, y : 1, z1 : 0, z2 : 0].

I Justification: use Par and the footprint entries

([x : 0, y : 0, z1 : v1], [x : 1, z1 : 0]) ∈ [[{xat :=1 yat=0 z1:=0}]]
([x : 0, y : 0, z2 : v2], [y : 1, z2 : 0]) ∈ [[{yat :=1 xat=0 z2:=0}]]

I In this execution the reads see stale values. 3

100 / 120



Litmus Test 2
Message Passing SC 3 TSO 3 rel/acq 3

(x :=37; yat :=1) ‖ (while yat = 0 do skip; z :=x)

I Each finite pomset has the form

x :=37

yat :=1
?

(yat=0)k

yat=v

....?

x=v ′

z :=v ′

(v 6= 0)

?

?

Only executable from [x : 0, y : 0, z : 0] for v = 1, v ′ = 37 3
I The infinite pomset {x :=37 yat :=1, (yat=0)ω}

is not executable from [x : 0, y : 0]. Executions are fair! 3
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Litmus Test 3
Independent Reads of Independent Writes SC 7 TSO 7 rel/acq 3

xat :=1 ‖ yat :=1 ‖ (z1:=xat ; z2:=yat) ‖ (w1:=yat ; w2:=xat)

I The pomset
xat :=1 yat :=1 xat=1 yat=1

z1:=1 w1:=1

yat=0 xat=0

z2:=0 w2:=0

?

?

?

?

?

?

is executable from [x : 0, y : 0, . . .] 3
I Threads see the writes to x and y in different orders.
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Litmus Test 4
Coherence SC 3 TSO 3 rel/acq 3

xat :=1 ‖ xat :=2 ‖ (z1:=xat ; z2:=xat) ‖ (w1:=xat ; w2:=xat)

I The pomset
xat :=1 xat :=2 xat=1 xat=2

z1:=1 w1:=2

xat=2 xat=1

z2:=2 w2:=1

?

?

?

?

?

?

is not executable from [x : 0, y : 0, . . .].

I Writes to x appear in the same order, to all threads. 3
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Concurrent increments using a private lock

I Let inc be lock r ; x :=x + 1; unlock r .
I The pomsets of

resource r in (inc ‖ inc)

have form
x=v1

x :=v1 + 1

x=v2

x :=v2 + 1
��

��*

? ?

where v1, v2 ∈ Vint
I Only executable from [x : v ] when v1 = v , v2 = v + 1, so

E(resource r in (inc ‖ inc)) = E(x :=x + 2) 3
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Litmus Test 5
Optimization SC 3 TSO 3 rel/acq 3

Non-atomic code can be re-ordered, in a race-free
program context, without affecting execution.

Theorem
If c1 and c2 are non-atomic and [[c1]] = [[c2]],
then E(C [c1]) = E(C [c2]).

Examples
E(c ‖ lock r ; x :=x + 1; x :=x + 1; unlock r)

= E(c ‖ lock r ; x :=x + 2; unlock r)

E(c ‖ c11; x :=1; y :=2; c12)
= E(c ‖ c21; y :=2; x :=1; c22)

3
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Semantic Properties

I P is compositional
I supports sytax-directed reasoning

I E is (co-)inductively defined, based on P
I supports computational reasoning

I Both P and E are succinct
I avoids combinatorial explosion

I Definition of E builds in fairness
I supports liveness analysis

Example
Let inc(n) be inc‖ · · · ‖inc (n times).

P(resource r in inc(n)) = P(x :=x + 1; · · · ; x :=x + 1)

E(resource r in inc(n)) = {(σ, [σ | x : v + n]) | x : v ∈ σ}
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Pomset Equivalence
I Pomsets are equivalent if they are order-isomorphic,

allowing for elision of δ actions
I Lift to sets of pomsets in the obvious way.
I We have standard laws, such as

c1‖(c2‖c3) ≡P (c1‖c2)‖c3
c1‖c2 ≡P c2‖c1

c1; (c2; c3) ≡P (c1; c2); c3
c; skip ≡P skip; c ≡P c

c ‖ skip ≡P c

and scope contraction

resource r in (c1‖c2) ≡P (resource r in c1) ‖ c2
when r not free in c2

I Proofs of validity are easier than for trace semantics!
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Execution Equivalence

I We define execution equivalence for programs by

c1 ≡E c2 iff E(c1) = E(c2)

I Pomset equivalence implies execution equivalence

c1 ≡P c2 implies c1 ≡E c2

I So we also have

c1‖(c2‖c3) ≡E (c1‖c2)‖c3

and scope contraction

resource r in (c1‖c2) ≡E (resource r in c1) ‖ c2
when r not free in c2
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Pomsets and Execution Graphs
Pomset executions, based on our denotational framework,
may be used to extract execution graphs:

An alternative to the operational/axiomatic approach

Theorem
I Given (a derivation for) an execution (σ, σ′) ∈ E(P), we can

extract happens-before, reads-from, modification-order
relations on the action occurrences in P.

I This produces an execution graph consistent with (σ, σ′).
I Properties (1)–(4) hold, suitably formalized.

Sketch
Use the phase structure of a pomset execution,
and the inductive characterization of footprints.
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Advantages

In contrast with the operational/axiomatic approach
I No need for complex axioms.
I Not necessary to assume knowledge of entire program.
I No need to deal explicitly with multiple relations

happens-before, reads-from, modification-order
We just use program order < and can derive relations with the
required properties, from the phase structure of an execution.

I We also handle programs with infinite behaviors.
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Limitations

I We dealt with a weak memory model that we characterized
only implicitly, and only in abstract terms

- actually, we see this as an advantage!
I Our WMM is closely related to a fragment of C11

- similar to release/acquire, but there are subtle differences
- C11 not really stable. . .
- our WMM seems to coincide with Vafeiadis’ recently
proposed revision to C11 release/acquire axioms

I Would be interesting to establish formal connection.

I We only distinguished between at and na.
I To extend, would need wider range of atomicity levels, e.g.

sc (Java volatile)
This would be straightforward, semantically.
But requires development of more complex execution models.

111 / 120



Pomsets and True Concurrency

“We are not the first to advocate partial-order semantics.”
Pratt 1986

I Pratt’s pomsets form a “true concurrency” process algebra
But too abstract, with no notions of state, effect, execution
No locally finite height requirement (leads to “semantic junk”)
Not fair, despite being “sine qua non among theoreticians”

I Mostly concerned with abstract properties, e.g.
Every poset is representable as the set of its linearizations.

But this fails when we look at execution, because of Par
E(P) 6=

⋃
{E(P ′) | P ′ ∈ Lin(P)}

I “Operational semantics. . . forces an interleaving view”.
But we can give a “true concurrency” operational semantics.
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Prior Related Work
“We are not the first to advocate partial-order semantics.”

Pratt 1986

I We are not even the second!
I Pioneering work by Petri, Mazurkiewicz, . . . , Winskel

Petri nets, Mazurkiewicz traces,. . . , event structures
on partial-order semantics for SC notions of concurrency
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Current Related Work

Recent work shows renewed interest in and relevance of
partial-order models, in weak memory settings:
I Brookes Is Relaxed, Almost!

R. Jagadeesan, G. Petri, J. Riely.
- adapts “transition traces” from SC to TSO

I Relaxed Memory Models: an Operational Approach
G. Boudol, G. Petri.

- interleaving, but distributed state with per-thread buffers
I Weak memory models using event structures

S. Castellan.
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Conclusions

“The one duty we owe to history is to rewrite it.” Oscar Wilde

A denotational true concurrency framework for weak memory
I pomset semantics + execution

Supports compositional reasoning
I race-free partial correctness, safety and liveness
I fairness comes for free

Should be applicable to other weak memory models
I same pomset semantics, different execution, . . .

May offer a new foundation for weak memory logics and tools
I GPS, Relaxed Separation Logic
I cppmem, diy, litmus, . . . Alglave, Sewell, et al.
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Future
I Tools for pomset execution

partitioning a pomset
reasoning about environment

I Explore alternative forms of pomset execution
tailored to other weak memory models

I Truly concurrent “transition traces”, e.g.

(σ0, σ
′
0)(σ1, σ

′
1) . . . (σn, σ

′
n)

where
P = P0 / P1 / · · · / Pn

and
σ0

P0===⇒ σ′0 & σ1
P1===⇒ σ′1 · · · & σn

Pn===⇒ σ′n

I Infinite traces
total correctness, safety and liveness
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Summary
I Complexity of reasoning about concurrent programs.

“The major problem facing software developers. . . ”
I Behavior depends on whether threads cooperate or interfere.
I Need compositional reasoning, to exploit modular structure,

minimize book-keeping, reduce number of interactions.
I There is a clear gap between theory and practice.

Formal methods, based on a semantics that assumes sequential
consistency, do not account for weak memory models.

I State-of-the-art tools lack generality and scalability.
Based on operational semantics, inhibits compositionality.

I We offer a denotational framework that can promote
compositional reasoning to weak memory models.

I This kind of foundational research is essential if verification
technology is to be relevant to real-world programs running on
modern architectures.
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