
On The Type Structure of Standard

ROBERT HARPER

Carnegie-Mellon University

and

JOHN C. MITCHELL

Stanford University

Standard ML is a useful programming language with a polymorphic type system and a flexible
module facility. One notable feature of the core expression language of ML is that it is implicdy

typed: no explicit type information need be supplied by the programmer. In contrast, the module
language of ML is explicitly typed; in particular, the types of parameters in parametric modules

must be supplied by the programmer. We study the type structure of Standard ML by giving an

explicitly-typed, polymorphic function calculus that captures many of the essential aspects of
both the core and module language. In this setting, implicitly-typed core language expressions

are regarded as a convenient short-hand for an explicitly-typed counterpart in our function
calculus. In contrast to the Girard-Reynolds polymorphic calculus, our function calculus is
predzcatiw: the type system may be built up by induction on type levels. We show that, in a

precise sense, the language becomes inconsistent if restrictions imposed by type levels are
relaxed. More specifically, we prove that the important programming features of ML cannot be
added to any impredicative language, such as the Girard-Reynolds calculus, without implicitly
assuming a type of all types.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language CIassifica-
tions—apphcatzue languages, ML; D.3.3 [Programming Languages]: Language Constructs

and Features—abstract data types, modules, packages; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—denota tional semantics, operational semantzcs;

F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—type structure;

F.4. 1 [Mathematical Logic and Formal Languages]: Mathematical Logi—larnbda calculus

and related systems

General Terms: Languages, Theory

1. INTRODUCTION

Various forms of typed A-calculus have become popular as theoretical models

of programming languages. One motivation for studying these elemental

A preliminary version of this paper appeared in Proceedings of the 15th ACM Symposz urn on

Principles of Programming Languages, 1988 under the title “The Essence of ML.” The work of R.

Harper was supported in part by the Science and Engineering Research Council of the United
Kingdom, and in part by the Defense Advanced research Projects Agency, monitored by the
Office of Naval Research under contract NOO014-84-K-0415, ARPA Order No. 5404. The work of
J. C. Mitchell was supported in part by an NSF PYI Award, matching funds from Digital
Equipment Corporation, the Powell Foundation, and Zerox Corporation; NSF grantCCR-8814921
and the Wallace F. and Lucille M. Davis Faculty Scholarship.
Authors’ addresses: R. Harper, Carnegie Mellon University, Pittsburgh, PA 15213; J. C. Mitchell,
Stanford University, Stanford, CA 94305.
Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.
01993 ACM 0164-0925/93/0400-0211 $01.50

ACM TransactIons on Programming Languages and Systems, Vol 15, No 2, April 1993, Pages 211-252

212 . R. Harper and J C, Mmhell

languages is that they provide some insight into programming languages

with similar typing features. For example, the Girard-Reynolds second-order

A-calculus seems useful for analyzing languages with polymorphic functions

or abstract data type declarations [15, 53, 47]. The richer type systems

proposed by Martin-Lof [32], Constable [10], and Huet and Coquand [12] also

provide formal logics for reasoning about programs. This general line of

research has a different flavor from the original Scott-Strachey approach to

programming language semantics, since the metalanguage of type theory

reflects the type structure of the object languages studied. However, the

long-term goals are the same: a precise understanding of programming

language constructs and a sound mathematical basis for reasoning formally

or informally about programs.

In “The Essence of Algol” [54], Reynolds presents a study of Algol-60 in the

denotational style, contending that “Algol may be obtained from the simple

imperative language by imposing a procedure mechanism based on a fully

typed, call-by-name lambda calculus.” In addition to testing the Scott-Strachey

approach for programming language analysis, Reynolds’ study gave an impor-

tant picture of Algol as the composition of several independent constituents.

Using the framework of type theory, we propose an analogous case study of

the programming language Standard ML [19, 40], only the first steps of

which are completed here. In this paper, we will describe a typed A-calculus

that encompasses many of the essential features of Standard ML and use this

to analyze some potential extensions of the language. We have chosen

Standard ML as the basis for this analysis because it is sufficiently well-de-

veloped to be interesting and useful as a “real” programming language, and

sufficiently well-designed to support detailed analysis. In a sequel to this

paper, we use the categorical techniques developed by Moggi [48] to refine the

calculus presented here in a manner that clearly identifies the compile-

time/run-time distinction in Standard ML [21].

Standard ML is an updated version of the programming “metalanguage” of

the L(3F system [17], comprising a core expression language with polymor-

phic functions [38] and a module language for defining interdependent pro-

gram units [28]. The core language is designed around an automatic type

inference algorithm that performs compile-time checking of “untyped” ex-

pressions. The module language is designed to support the organization of

programs into separately-compilable units, and involves a moderate amount

of explicit type information.

The main focus of this paper will be the type system of Standard ML. To
simplify the presentation, we will omit exceptions and references; what is left

is still quite interesting. The two main areas of investigation will be the

discrepancy between implicitly- and explicitly typed frameworks, and the

importance of separating the types into two distinct universes. With respect

to the first point, we will argue that the implicitly-typed core language is

profitably viewed as a short-hand for an explicitly-typed language. This

simplifies the semantics of the language, since only well-typed expressions

must have meaning, and allows us to study the implicitly-typed expression

language within the same framework as the module language. It is worth

ACM Transactions on Programmmg Languages and Systems, Vol 15, No 2, Aprd 1993.

On the Type Structure of Standard ML o 213

noting that although the semantics is simplified, there seems to be no

significant loss of generality in taking this point of view. We will see that

Milner’s type inference model, as described in Milner [37], and the ideal

model of MacQueen et al. [30] may be viewed as models of our explicitly-typed

core calculus.

An important feature of the analysis is that our type system is stratified

into levels, or universes, in the style of Martin-Lof’s type theory [32], and in

keeping with the suggestions of MacQueen [28]. As in Martin-Lof’s theory,

our universes result in a predicative language, which means that the types

may be ranked in such a way that every value occurs with higher rank than

any values on which its existence or behavior is predicated. (For example,

functions always occur at a higher rank than their arguments.) The universe

distinctions are faithful to the separation of monotypes from polytypes in

Milner’s earlier work [37, 13], and allow us to show that implicit ML typing is

syntactically equivalent to our explicit typing rules. The predicative uni-

verses also distinguish our calculus from both the implicit polymorphic typing

of Mitchell [42], MacQueen et al. [30] and Cartwright [9] and the explicitly-

typed polymorphic calculus of Girard [15, 16] and Reynolds [53]. In partic-

ular, the pure ML calculus without recursion has classical set-theoretic

models, while the Girard-Reynolds calculus does not [56].

Some studies of ML typing (e.g., Cartwright [9], Mitchell [42] and Mac-

Queen et al. [30]) have suggested, in effect, that the restrictions imposed by

universes might be relaxed to allow the full second-order polymorphism of the

Girard-Reynolds calculus [15, 16, 53]. However, these studies were generally

based on consideration of the ML core language alone, and did not take

modules into account. We will adopt the view of modules proposed by

MacQueen, in which the main constructs are reduced to the Z and H types

(the so-called “dependent” types) of Martin-Lof’s type theory [29]. Using the

typed A-calculus with these constructs, we are able to show that universes

play an important role.

Our examination of universes involves close study of a restricted subset of

the language. In the fragment of Standard ML, without recursion or recur-

sively-defined types, every expression evaluates to a normal form, regardless

of the order of evaluation. (The fact that no evaluator could continue indefi-

nitely is called the strong normalization property.) This is what one would

naturally expect, since no construct explicitly provides unbounded search or

recursion. However, we will show that if the distinction between universes is

removed, it becomes possible to define a type of all types. It follows from

previous work on type: type, specifically, Coquand [111, Girard [151, Howe [241

and Meyer and Reinhold [36], that there exist recursion-free programs that

cannot be evaluated to a normal form by any evaluation strategy. As argued

by Meyer and Reinhold [36], this alters the character of the language

dramatically. In addition, Cardelli [6] argues that taking type: type has

significant practical disadvantages because it eliminates the distinction be-
tween “compile time” and “run time” values. In particular, it is no longer

possible to determine, without evaluating arbitrary expressions, whether a

given expression denotes a type. This stands in the way of efficient compile-

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

214 . R Harper and J. C, Mitchell

time type checking. Therefore, we believe that the separation of types into

universes is essential to ML.

In this paper, we will not be concerned with evaluation order. The main

reason is that for the fragment of ML without recursion or generative

constructs, full evaluation in any order produces the same result. Conse-

quently, our analysis of universes applies to both eager and lazy dialects of

ML, and any similar language based on any other evaluation strategy. In

fairness, we should emphasize that the relevance of type: type to program-

ming remains a topic for further research. While it seems undesirable for a

language to provide two distinct methods of recursion, one directly and one

indirectly via type: type, we do not have clear-cut evidence that this is truly

pathological. However, in further study of type: type, many subtle and impor-

tant issues remain to be investigated. For example, we suspect that any

study of representation independence [55, 45, 43] or full abstraction [52, 6 1]

would be complicated dramatically by a type of all types.

The next section contains a short summary of the usual type inference

rules for the core language of ML. In Section 3, an alternative, explicitly-typed

core language is given. The two approaches are proved equivalent in Section

4, and the semantics of the core language is discussed in Section 5. Sections 6

through 9.3 consider a full calculus encompassing the module language. A

review of modules is given in Section 6, followed by a reduction to Z and ~

types in Section 7. Section 8 considers the importance of universe distinctions

and type: type. In Section 9 we give a brief overview of the type-theoretic

treatment of various type declarations, and of the “sharing” constraints of

MacQueen’s module language. Concluding remarks appear in Section 10. All

type systems are defined formally in tables at the end of the paper.

2. IMPLICITLY TYPED ML

Many studies of ML have focused on the type inference algorithm for the core

expression language [37, 13, 30, 64] This algorithm allows the ML program-

mer to write, for

let kl(x) = xin . . .

automatically inferring the fact that the function id is a function from type t

to t, for any t.Milner’s seminal paper [37] describes the type inference

algorithm and proposes a semantic framework for justifying its behavior. In

Milner’s semantics, an untyped expression denotes some element of an

untyped value space, and a type denotes a subset of this space. Types are

therefore viewed as predicates expressing properties of untyped terms. One

consequence of this view is that a given term can be assigned a variety of

types; the type inference algorithm allows the programmer to enjoy the

flexibility afforded by this semantics.

The syntactic part of Milner’s analysis is refined in Damas and Milner [13]

where an inference system for assigning types to expressions is given. The

type inference rules are proved sound by showing that if it is possible to infer

that expression e has type a, then the untyped meaning of e belongs to the

ACM TransactIons on Prcvgrammmg Languages and Systems, Vol. 15, No. 2, April 1993

On the Type Structure of Standard ML . 215

set denoted by m. The type inference algorithm is then treated as a decision

procedure for the inference system.

Milner’s semantic analysis is elaborated in MacQueen et al. [30] and

Cartwright [9], where the meanings of polymorphic types are clarified and

recursive types are given semantics (see also Mitchell [42]). In Milner’s

model, the sets denoted by type expressions do not include a special error

value of the domain, called wrong. Consequently, the soundness of ML typing

is often summarized by the slogan well-typed expressions cannot go wrong

[37].

Although there are quite a few constructs in the core expression language

of ML, the behavior of the type checker may be understood by considering the

fragment presented in Damas and Milner [13], which we will call Core-ML.

The syntax of Core-ML is given by

e ::= xleel Ax. el let x = eine,

where x may be any identifier. The let expression form is taken as primitive

because it has a typing rule that is not derivable from the others. We will

review the type inference algorithm for Core-ML briefly, so that we may later

compare Core-ML with an explicitly-typed calculus.

We will use two classes of type expressions, monomorphic and polymor-

phic. In earlier work, monomorphic expressions have been the type expres-

sions without variables, and the polymorphic expressions have had their type

variables implicitly bound. Following Damas and Milner, we will make the

same intuitive distinction in a slightly different way. We begin with some

infinite set of type variables, an arbitrary collection of base types, and define

the monomorphic type expressions (or monotypes) by

r ::=tlplT+7-

where ~ may be any base type and t any type variable. In a monomorphic

type expression ~, a type variable t stands for some unknown, monomorphic

type. The polymorphic type expressions (also called type schemes or poly-

types) are defined by

~ ::= Tlvt.cr.

Intuitively, the elements of type V t.a a have type a for every possible value

of the type variable t (which will generally occur in cr). The constructor V

binds t in CT,so that Vt. a == Vs.[s/t]a, where [s\t] a denotes substitution of

s for free occurrences of t in v, with renaming of bound variables to avoid

capture as usual. The purpose of the universal quantifier is to distinguish

between generic type variables, which may be replaced by any monotype, and

ordinary type variables, which denote a specific, but indeterminate, mono-

type. Note that every monotype is regarded as a polytype. This is merely a

technical convenience, for one could equally well introduce an explicit “lifting”

of monotypes, writing, say, ~ T for r regarded as a polytype.
In the Damas-Milner system, the assertion that a Core-ML expression e

has type a is written e: a. Since the type of an expression will generally

depend on the types given to free ordinary variables, we will use typing

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

216 . R, Harper and J, C. Mitchell

statements that incorporate such assumptions. A type assignment, or context,

r, is a finite set of bindings of’ the form x: v, with no variable x occurring

twice. It is useful to think of a context r as a partial function from variables

to types and write IX x) for the unique a with x: u in r (if such a binding

exists). We will also use the notation Dom(r) for the set of expression

variables occurring in r. If 171 and rz are type assignments with disjoint

domains, we write rl, rz for their union, rl (J rz. A special case is that we

write r, x: CTfor r u {x: u}, assuming x 6 Dom(r). A typing is a triple of the

form r D e: c, which may be read, “the expression e has type scheme a in

context r.”
The Damas-Milner type assignment system is given in Table I. We write

k ~~ r D e: o if r D e: CT is derivable in this system, and say that an expres-

sion e is typable if there is a context I’ and type scheme u such that

+ ~~r D e: U. We say e is r-typable if + ~~r, r’ D e: u for some u and some

r’ disjoint from r containing only monotypes. The reason for considering

r-typings is that the types of let-bound variables in a program (closed

expression) will be determined by their declarations. Therefore, in type-

checking a term, polymorphic types of variables are determined by context

but monotypes must be inferred.

A type u is a substitution instance of CT’ iff there is a substitution S of

monotypes for type variables such that S(W’) = u, where equality is modulo

renaming of bound variables. A monotype r is a generic instance of a

polytype w = Ir’tl...tn.r’,written u E r, iff there is a substitution S of

monotypes for tl . . . t. such that S(7’) = T. For polytypes, we say o L o-’ if

every generic instance of a‘ is also a generic instance of CT. Syntactically,

this means that there is an a-variant Vsl . . . s~. # of a‘ such that no

s,(1 < i < k) occurs free in CT and u L ~’; see Damas and Milner [13] and

Mitchell [42] for further discussion, and Mitchell [42] for an interpretation of

generic instantiation as semantic containment. When a E a‘, we say CT is

more general than u‘. It is worth mentioning that the generic instance

relation is preserved by substitution, i.e., if a E CT’, then S(u) E S(m’) for

any substitution S.

The following technical lemma summarizes some useful properties of the

Damas-Milner system.

LEMMA 2.1 1. If }DMrD e: O- then RDMr’D e: CT whenever r’(x) c llx)

for all x free in e. 2. If k ~M r P e: u and S is any substitution, then

+DMS(r)De: S(a).

An important property of the Damas-Milner system is that for every type

assignment 17, every 17-typable expression has a “simplest” r-typing. A typing

r, r’ D e: w is r-principal for expression e if r’ contains only monotypes,

›~~r,~pe:a and, whenever ~DMr,r D e: m’ for P containing only

monotypes, we have a u E cr’ and !J” z S 1? for some substitution S of

monotypes for type variables. In other words, the r-principle typing for e

must be derivable, and it must give the most general type subject to the

simplest association of monotypes to term variables not contained in r.

ACM Transactions on Programming Languages and Systems, Vol 15, No 2, Aprd 1993.

On the Type Structure of Standard ML . 217

Table I. Damas-Milner Type Assignment

VA R rDX:O (r(Z)=O)

GEN

SPEC

,4BS

rDe:U

rDe:U’
(a ~ u’)

r,X:T D e’ : T’

rD~X.f2’:T-+T’
(x # Dan(r))

rDe:T’+T)? DF3’:T’
APP

rDf3f2’:7_

rDe:C7 r, X: ODe’:T’
LET

I’Dletx=eine’:r’
(x g DoIn(r))

(Variations and further details may be found in Damas and Milner [13] and

Mitchell [44].)

THEOREM 2.2 (DAMAS-MILNER). If an untyped Core-A4L expression e is
~-typable, then there exists a ~-principal typing for e. Furthermore, there is

an algorithm which, given e and ~, computes the ~-principle typing if it

exists, and fails otherwise.

The algorithm described in this theorem works by recursively computing

the principal typings of subterms. If a variable x is let-bound, as in let x = e

in e’, the principal type for e is computed and then added to the type

assignment when typing e’. In general, the type of a let-bound variable may

be a polytype, with one or more type quantifiers. When a A-bound variable is

encountered, as in Ax. e, it is not possible to determine the appropriate type
for x before typing the function body e. However, we only want a monotype

for a A-bound variable. Therefore, the algorithm is designed to determine the

most general monotypes for free variables as well as the types of terms.

For the important special case of closed Core-ML expressions, Theorem 2.2

implies that every closed term has a single most general type. It is shown in

Kanellakis et al. [25] and Kfoury et al. [26] that any algorithm which decides

whether an untyped Core-ML term has a type necessarily requires exponen-

tial time for infinitely many terms. It follows that computing the principal

type of a Core-ML term requires exponential time.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

218 . R. Harper and J, C. Mitchell

3. EXPLICITLY TYPED ML

In contrast to the Milner-style analyses of ML, we will view ML programs as

being explicitly typed in the sense that a given term has at most one type in

any given context (modulo type equality). To achieve this, we will modify the

syntax of terms to include explicit type information. In particular, a type is

assigned to the bound variable of a A-abstraction at the point where it is

bound, and the type abstraction and instantiation associated with polymor-

phism are made explicit. We view the untyped concrete syntax of ML as a

convenient shorthand for an explicitly-typed abstract syntax, with the type

inference algorithm bridging the gap. The main reason for taking this posi-

tion is that the implicitly-typed approach does not scale up to the full

language. For example, ML includes type constraints, type definitions, and

an explicitly-typed modules language.

In addition, we choose to view ML as an explicitly-typed language because

it provides a better basis for studying equational properties of the language

such as representation independence and full abstraction. (For discussion of

these topics, see Reynolds [55] and Stoughton [61].) Viewing ML as an

explicitly-typed language also leads to technical simplifications in the seman-

tics of the language. Without explicit typing, the semantics would become

somewhat more complicated, since we would need a “universal domain’’-like

interpretation for untyped lambda abstraction, type abstraction, and type

constructors like + and ~. Moreover, a semantics for an implicitly-typed

language would entail identifying any two expressions that are equal as

untyped terms. It is worth remarking that there is no semantic loss of

generality in focusing on the explicitly-typed language, since models of the

implicitly-typed system, such as Milner’s original domain interpretation [37]

and related structures [30], give rise to models of the explicitly-typed system

in a natural way. (See Section 5.)

We therefore introduce an explicitly-typed function calculus, called Core-

XML, for core expzicit ML. This calculus is essentially equivalent to Core-ML,

the implicitly-typed language presented above. The types of Core-XML fall
into two classes, corresponding to the monomorphic and polymorphic types of

Core-ML. To introduce some useful terminology, we will say that 7 is a type

of the first universe, and write r: UI, if T is built up from base types and type

variables using the function-space constructor + . This means that ~: UI iff 7

is a monomorphic type expression of Core-ML.

The polymorphic type expressions of Core-ML quantify over the monomor-

phic types. In Core-XML this corresponds to universal quantification over the
first universe, and so it is natural to regard these types as being of a “higher”

second universe. We will say that (J is a type of the second universe, and

write o-: U2, if a has the form Htl: UI . . . Ht.: UI. T, where T: U1. Thus U2

consists of exactly the Core-ML polymorphic types, except that we will write

~ instead of V, and the universe of each type variable is written explicitly.
This is to allow a smooth generalization to full XML with type variables

ranging over both universes, a step we will take in Section 7. As a matter of

convenience, we follow Damas and Milner and consider every monomorphic

ACM Transactmns on Programmmg Languages and Systems, Vol. 15, No. 2, Aprd 1993

On the Type Structure of Standard ML . 219

type to be a polymorphic type, and hence we effectively have ?lI c Uz identifi-

cation, and introduce to UZ.

The presentation of Core-XML is simplified by adopting the meta-variable

conventions used in the previous section, so that ~, ~1, . . . will always be (71

types, and v, Vl, . . . will be U2 types. We will not explicitly declare type

variables in contexts. Rather, we assume at the outset that all type variables

r,s, t,... denote elements of VI.

The unchecked preterms of explicitly typed Core-XML are given by the

grammar,

M::= xl MNIAx:~. MIM[~]l At. Mlletx:m=Min N,

where metavariables M and N range over preterms. In this grammar, x may

be any term variable, MN is the application of function M to argument N,

Ax: r. M denotes the function defined by treating M as a function of variable

x, M[T] is the application of polymorphic function M to type argument ~, and

At. M is the polymorphic function obtained by treating M as a function of

type variable t.Following Damas-Milner, we retain let as a primitive con-

struct in Core-XML since its typing rule is not derivable from the other rules.

The value of expression let x: o = M in N is the value of N when x is given

the value of M. In the full XML system, let will be definable in terms of

abstraction and application, and therefore will be eliminated.

The type checking rules of the language are listed in Table II. To distin-

guish implicit Core-ML typing from explicit Core-XML typing, we will write

k ~ r D M: a if the typing 17D M: a is derivable from the Core XML typing

rules. The essential difference between k ~~ and + ~ is that the GEN and

SPEC rules of the implicit system are replaced by rules for explicit type

abstraction and type application. A preterm M is a term of Core-XML if

kx17PM:g for some r and v.

The difference between Core-XML and the Girard-Reynolds polymorphic

A-calculus [5, 53, 15] lies in the distinction between universes UI and Uz.

Rule TAPP of Core-XML only allows a type application r D M[~]: [~/t] o-

when ~ is a type of the first universe UI. However, in the Girard-Reynolds

calculus, there is no universe distinction, and we can apply a term of

polymorphic type to any type. One consequence of the universe distinction is

that Core-XML has classical set-theoretic models, while the Girard-Reynolds

calculus does not [56].

The language Core-XML is closely related to several explicitly-typed func-

tion calculi, in particular Martin-Lof’s intensional type theory [31], the

AUTOMATH languages [14], the Calculus of Constructions [12], and the type

theory of LF [18]. Since Core-XML is based on a predicative notion of

universe, it is most closely related to Martin-Lof’s early type theories, except

that we do not, at this stage, take Ul: Uz. It is worth remarking that

Martin-Lof’s later type theory [32, 33], and the NuPRL type theory [10], are
type assignment systems, and hence are more closely related to the type

system defined by Damas and Milner for the study of ML.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

220 . R, Harper and J C Mkchell

Table II. Core-XML Type System

VA R

TABS

TAPP

ABS

APP

LET

rDX:CJ (r(Z) =CT)

r,X:T D ~’: T’

r D ~X:T. I!~’: T -+ T’
(z g Dcml(r))

rDI!~:C7 r,X:(7Dj~’:T’

rb letz:a=Al in fll’ :7-’
(z< DoIn(r))

4. EQUIVALENCE OF EXPLICIT AND IMPLICIT SYSTEMS

In this section, we will show that implicitly-typed Core-ML and explicitly-

typed Core-XML are essentially equivalent. A related correspondence be-

tween implicit ML typing and Girard-Reynolds typing restricted by “rank,”

which is similar to our universe restriction, was suggested earlier in [27,

Section 7]. However, the statement of Theorem 7.1 in that paper is incorrect,

since rank 2 typing of lambda terms allows us to type A-abstractions polymor-

phically, whereas the typing rules of Core-ML do not. It is to avoid precisely

this problem that we have included let in the syntax of Core-XML.
The type erasure M of an explicitly typed term M is defined as follows:

/
x if M=x

M; M; if M = MIM2

/kr. M; if M= Ax:r. M1
MO=

{ M; if M = At. Ml

M; if M= Ml[a]

(let x = M; in M; if M=letx:a=M1in M2.

THEOREM 4.1 If Kxr D M: a, then +DMrD M“: CT.

PROOF. The proof is by induction on derivations. The only nontrivial case

is the TAPP rule, where the theorem follows from the fact that Vt.a E [r/t]u

for any type ~. ❑

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

On the Type Structure of Standard ML . 221

THEOREM 4.2 If } ~~ r D e: u, then there exists an explicitly typed term M

such that W = e and +xr D M; w. Furthermore, M can be computed

efficiently from a proof of r b e: w.

PROOF. We use induction on typing derivations.

VAR Take M to be x.

GEN By the induction hypothesis there exists an N such that N - e and

E ~ r D N: cr. Since t does not occur free in r, we may apply TABS to

obtain F ~r D At. N: Vt. ~. Take M to be At. N, and observe that
~=~=e

SPEC By the induction hypothesis there exists an N such that IV = e and

+Xr D N: a, with a E m’. We know that a has the form a -

Vtl. ..tn.T, and similarly for a‘. Choose an a-variant Vsl . . . sh .7’ of

a’ such that no s,(1 s i < k) occurs free in a or r. Then there is a

substitution S acting on t~...tn such that S(7) = ~’. By n applica-

tions of TAPP followed by ii applications of TABS, we obtain

where ~, = S(t,) (1 s i s n). But by the choice of S, this is

Take M = Asl . . . s~. Nrl . . . Tn, and observe that M“ = N“ = e.

ABS By induction we have h ~11 x: t-] D N: # for some N such that W = e,

and thus + xI_ D Ax: T.N: T + T’. Take M to be Ax: r.N.

APP By induction we have t- xr D N: r’ + ~ and + XI’ D ~: T’ for some N

and P such that N - e and P“ = e’. Take M = NP, and observe that

M = IV’PO = ee’ and t xr D M: r, as desired.

LET By induction \xr DN: a and +Xllx: m]D P:r’ with W = e and

P“ - e’. Take M - let x: m = N in P, and observe that J& - let x =

NOin PO-let x=eine’, and ➤xrDM:#. ❑

Theorem 2.2 (from Damas and Milner [13]) states that there is an algo-

rithm which finds, for any r-typable expression e, a r-principal typing for e.

It is a simple matter to modify this algorithm so that it also produces a

derivation of the principal typing in the Damas-Milner system. Applying

Theorem 4.2, we obtain an algorithm X that, given a r-typable expression e,
yields an explicitly typed term M such that E x17, r’ D M: G- (and fails

otherwise). Algorithm X inserts type labels on A’s and let’s, type abstractions

on all let-bound expressions, and type applications at all uses of identifiers

whose type is of the form Vtl ...t~.T.For example, the explicitly-typed term

produced from

Ietl = Ax. x in H

is

At.let I: Ht.t -t = At. Ax:t. xin I[t + t](l[t]).

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, April 1993

222 . R. Harper and J. C, Mitchell

Note that the principal type of let I = Ax. x in II is Vt.t + t,and IIt.t + t is

the type of the explicitly-typed term.

5. SEMANTICS OF CORE-XML

5.1 Introduction

The Core-XML language has a straightforward Henkin-style model theory

that is similar to the semantics of second-order lambda calculus described in

Bruce and Meyer [4], Bruce et al. [5] and Mitchell [42], except that we have

two universes instead of one collection of types. Categorical semantics may

also be developed along the lines of Moggi [48] and Harper et al. [21], which

resemble the indexed-categorical frameworks of Seely [58, 59]. However, we

will not discuss categorical semantics in this paper. We will summarize some

basic ideas regarding Henkin-style models primarily to emphasize that there

is a semantic connection between Core-ML and Core-XML, as well as a

syntactic one. In particular, structures such as the so-called ideal model of

Milner [37] and MacQueen et al. [30] provide models of Core-XML. A tangen-

tial reason to consider the semantics of Core-XML is that when UI and (J2

are isomorphic, we have a model of the impredicative Girard-Reynolds calcu-

lus (see Mitchell [44]). Therefore, the semantics of Core-XML may be consid-

ered more basic than the semantics of the Girard-Reynolds calculus.

An interesting choice in giving semantics to Core-XML lies in the interpre-

tation of the containment UI G U2. While it seems syntactically simpler to

view every element of UI as an element of U2, there may be some semantic

advantages of interpreting UI c U2 as meaning that UI may be embedded in

U2. With appropriate assumptions about the inclusion mapping from UI to

U2, this seems entirely workable, and leads to a more flexible model defini-

tion than literal set-theoretic interpretation of UI c U2.

5.2. Model Definition

Since Core-XML has two collections of types, UI and U2, with UI G U2, a

Core-XML model .w’ will have two sets U; and U. with U: L U;. For each

element a G U;’, we will also have a set Donz” elements of type a. (Since

U: c U;, this also gives us a set Doma for each a ● U;.) In addition, we
need some way to interpret type expressions with + and V as elements of

UI or U2, and some machinery to interpret function application. The follow-

ing model definition is in the same spirit as Bruce et al. [5].
A frame .W for Core-XML is a tuple

where

ACM Transactions on Programming Languages and Sj stems, Vol 15, No 2, April 1993

On the Type Structure of Standard ML . 223

—dom = {Donzala = U;} is a collection of sets indexed by types,

—{@a, ~, Tf} is a collection of functions, with one O., ~ for every pair of

types a, b G V: from the first universe, and one ~f for every function

~ ~ [U? + Ufl mapping the first universe to the second.
Each @J~,~ must be a bijection

@a,b : DOM” “ b _ [Doma + Domb]

between Doma” h and some collection [Doma + Domb] of functions from
Dom a to Domb. Similarly, each Tf must be a bijection

[
~f: Domnf _ ~ . Domf(”)

aGUl 1
between Domn f and some subset [H ~~ ~, . Domf(a)] of the cartesian prod-

uct H.. ~, . Dornf(a).

—A constants + u ~. ~2Dom” assigns a value to each constant symbol, with

Y(c) c Dom[,l if c is a constant of type 7.1

This concludes the definition.

If W“ is an Core-XML frame, then an .~~environment is a mapping

(
q: Variables + .?Y~’U U Doma

)a E U;’

such that for every type variable t, we have q(t) G Vi’.The meaning ~anq of

any type expression m in environment q is straightforward, as presented by

Bruce et al. [5].

If r is a context, then q satisfies 17, written q R r, if q(x) ● Dom[” 1 for

every x: cr c r. The meaning of a term E ~ r D M: a in environment q R r is

defined by induction as follows.

KrD MT:[T/t]a]q =

1 Each constant of the langnage must be given a type. The type associated with any constant
must be a closed type expression (without free variables), so that the semantic type of the
constant symbol is independent of the environment.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

224 . R. Harper and J. C, Mitchell

Kr D At: UI. M: ~t.alq = T;I(g) where f and g are the functions

A Core-XML frame is an environment model if KI_ D M: cJ]q exists, as

defined above, for every well-typed term r D M: w and every q + r. For

further discussion of this style of environment model definition, see Bruce

et al. [5].

5.3. Equational Soundness and Completeness

Equations have the form r D M = N: o-, where M and N are terms of type o-

(in the context r). The equational proof system of Core-XML is similar to that
of the Girard-Reynolds calculus [16, 53, 5], with the following additional

axiom for let:

rD(letx: a= Min N)=[N/x]M:~.

A complete presentation of the equational system for Core-XML is omitted

here since it is an obvious fragment of the equation calculus for XML (which

is presented below.)

It is easy to show that in every model, the meaning of each term has the

correct semantic type.

LEMMA 5.1 (TYPE SOUNDNESS). Let a? be a Core-XML model, r D M: w a

well-typed term, and q k r and environment. Then

In addition, the methods of Bruce et al. [5] may be used to show that the

equational proof system is sound and complete for models that do not have

empty types. We also expect that the methods of Meyer et al. [35] may be

used to prove equational completeness for models that may have empty types,

and that the approach of Mitchell and Moggi [46] will yield a completeness

theorem for Kripke-style models, without making any assumption about type

inhabitation.

5.4 Examples of Models

Since the only difference between Core-XML and the Girard-Reynolds
second-order calculus is the distinction between universes, every second-order

model may be viewed as a Core-XML model with UI = U2. Consequently,

Core-XML may be interpreted in the domain-theoretic and recursion-theo-

retic models discussed by Amadio et al. [1], Bruce et al. [5], Girard [15],

Troelstra [62], McCracken [34] and Mitchell [41]. One difference between the

languages, however, is that Core-XML has classical set-theoretic models,

while the Girard-Reynolds calculus does not [56]. In fact, any model of

ordinary (nonpolymorphic) typed lambda calculus may be extended to a

model of Core-XML by a simple set-theoretic construction.

ACM TransactIons on Progmmmmg Languages and Systems, Vol. 15, No. 2, April 1993.

On the Type Structure of Standard ML . 225

5.4.1 Set-Theoretic Models. If we begin with some model M = (U?, + ““,

{Dom”la e Vi’}, Y) for the U, types and terms, we can extend this to a model

for all of Core-XML using standard set-theoretic cartesian product. For any

ordinary a, we define the set [?lZ] ~ as follows

[U,]. = u,,

[u21B+l=[u21pu
()

II f(a)lf:W+ [U2]B ,
UGU1

[U2] ~ = U [U2] ~ for limit ordinal a.
p<.

Note that for any a, the set [U2]. contains all cartesian products indexed by

functions from

[u, +U,]a= u ~,+’ [u21/3.
/3<.

The least limit ordinal o actually gives us a model. The reason for this is that

every U2 type expression cr of Core-XML is of the form CTE H t 1: U1 . . .

H tk: U1.~ for some ~: U1. It is easy to show that any type with k occurrences
of H has a meaning in [U2] ~. Consequently, every type expression has a

meaning in [U2 1.. This is proved precisely in the lemma below. To shorten

the statement of the lemma, we let tin be the structure obtained from a UI

model JZ?by taking

[u, + Ualn = u u,+ [~21h
k<n

and U2 = [U2]n

~EMMA 5.2. Let ~ b M: w be any well-typed Core-XML expression, with

V=rItl. . . Htk .T, and such that in the derivation of ~ b M: u, every type of

every subterm has no more that n occurrences of the quantifier R. Then for

any environment q mapping variables into a UI structure J%’, the meaning

IF ~ M: cifjq exists and is well-defined in the structure tin.

The lemma is proved by first showing that every a ~ ~ tl . . . rr th. r with

k K n has a meaning in ~~, and then using induction on terms to prove the

lemma.

While stage o yields a model in which H t:U1. a is interpreted as ordinary

set-theoretic cartesian product over UI, the set of functions [U1 + U21 o is not
necessarily all set-theoretic functions from UI to u2 = [u2 1.. In order to get a
truly full set-theoretic model, we may have to consider much larger ordinals.

If we assume the existence of an inaccessible cardinal, then induction up to

any inaccessible cardinal that is larger than the cardinality of any set in the

given UI model, including UI, yields a full set-theoretic model.

5.4.2 Partial Equivalence Relation Models. One class of models that is
pertinent to the development of the last few sections is obtained by interpret-

ing types as partial equivalence relations (PERs) on an applicative structure

(see Mitchell [41] for further discussion and references). The ideal model of

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

226 . R. Harper and J. C. Mitchell

MacQueen et al. [30], for example, can be viewed as a PER inference model,

as defined in Mitchell [42], by replacing each ideal 1 with the partial

equivalence relation 1 X 1. By the results of Mitchell [41], this gives us a

second-order model, and hence a model of Core-XML. A similar Core-XML

model can be constructed from Milner’s original description [37], taking UI to

be the collection of monotypes, and defining the elements of Uz (the poly-

types) by quantification over ZJ1. In either case, we obtain a Core-XML model

with a degenerate equational theory (all terms of the same type become

equal), but type membership interpreted as expected. Thus a consequence of

the type soundness theorem for Core-XML models (e.g., see Mitchell [41, 421)

is that Core-XML expressions “cannot go wrong. ” Since the details are

essentially straightforward, given the techniques of Mitchell [41, 44], for

example, we leave the precise construction to the reader.

5.5 Coherence and the Semantics of Core-ML

Since we view the syntax of implicitly-typed Core-ML as an abbreviation for

explicitly-typed Core-XML, a natural way to give semantics to Core-ML is by

inserting type information into terms, and giving semantics to the resulting

Core-XML expressions in the models described in this section. While this may

seem straightforward, there is one subtle issue that must be brought out.

This is the problem of coherence: since there are many ways to insert type

information into an implicitly typed term, we must ask whether the meaning

of an implicitly typed Core-ML term is uniquely determined. In other words,

do we get different semantic interpretations depending on the way we assign

types to subexpressions? A well-taken criticism of our approach, on these

grounds, is Ohori [50]. A paper by Breazu-Tannen [3] also discusses the

general issue of coherence.

To avoid confusion, we will make a few definitions. We say a function R

from Core-ML to Core-XML is a type reconstruction function if, for every

kDMr De:r, wehave R(r De: r)= I’DM:r with +xr D&f: rand W=e,

where M“ is the type erasure of M defined in Section 4. If U? is a set of

reconstruction functions, then an S-meaning of a Core-ML term r D e: T in a

Core-XML model J# is the meaning of R(e) in Q?, for some R G 9. We say that

a model w’ and set Y of reconstruction functions are coherent if all @

meanings of a Core-ML term in .c# are identical. A general goal in giving a

meaning to Core-ML terms in a Core-XML model is that the meanings should

be ~ coherent, for some reasonable class w of reconstruction functions.

For the pure languages of Core-ML and Core-XML described in this paper,
it seems natural to prefer models that are coherent for the class of all type

reconstruction functions. Among the examples given in Section 5, the partial

equivalence relation models are coherent for all type reconstruction functions,

but set-theoretic models and models of the Girard-Reynolds second-order

lambda calculus may not be. An example illustrating the failure of coherence

for terms that have free polymorphic variables is given in Ohori [50]. How-

ever, it is not hard to show that coherence holds for all closed terms in all

models, using the strong normalization property of reduction (see Barendregt

[2] and Mitchell [44].

ACM TransactIons on Programmmg Languages and Systems, Vol 15, No. 2, April 1993

On the Type Structure of Standard ML . 227

A caveat in future work on ML is that when we include features such as

recursion, references and exceptions, it is important to consider the order of

evaluation. Since the evaluation order used in ML is eager, or call-by-value,

some equational principles that are sound for the Core-XML models described

in this section will fail. Since the coherence or lack of coherence of a model

depends on its equational theory, we cannot expect that the semantic inter-

pretation of implicitly typed terms in an explicitly typed way will be coherent

for arbitrary type reconstruction functions. A particular example that maybe

telling for those familiar with ML is a term of the form

letx=7-e~nil in. ..3:: (!x5::(!x)(!x) . . .

with all occurrences of x used at the same type. (The expression y ::(! x) is ML

notation for the list obtained by adding y to the front of the list stored in

reference cell x.) If we assume that nil: Vt. list(t) is a polymorphic list

constant and ref. V t. t + ref’(t) creates a reference of any type, then the

let-bound variable x in this term may have type Vt. ref(list(t)) or any

instance of this polymorphic type. Since the only type that x must have is

ref(list (int)), we have type reconstructions of the following forms:

let x: Vt. ref(Zist(t)) = At. ref(list(t))(nilt)in.. .

3::(!(x int)). ..5:: (!(xint)) . . .

let x: ref(list(int)) = (reflist(int))(nilint)ir l.. .3::(!x) . . .5::(!x) . . .

If we interpret call-by-value so that an expression beginning with At is not

evaluated until it is applied to an argument, then these two expressions have

very different meaning: in the first, two list cells are created, and in the

second, only one. Since no sensible equational theory would identify these two

programs, it is not possible to have a coherent semantics for any class of

reconstruction functions that allows both of these possibilities.

6. THE ML MODULE LANGUAGE

In this section we briefly review the organization of the Standard ML module

system [28, 39, 40]. The basic entities of the Standard ML module system are

structures, signatures and funetors. Roughly speaking, a structure is a

packaged environment, assigning types to type identifiers, values to value

identifiers, and structures to structure identifiers. Signatures are a form of

“type” or “interface” for a structure, specifying type information for each of

the components of the structure. If a structure satisfies the description given

in a signature (in a sense to be outlined below), the structure is said to

“match” that signature; a given structure will, in general, match a variety of

distinct signatures. Functors are functions mapping structures to structures.

Since ML does not support higher-order functors (i.e., functors taking func-

tors as arguments or yielding functors as results), there is no need for functor

signatures.
Structures are denoted by structure expressions, the basic form of which is

a sequence of declarations delimited by keywords struct and end. Structures

are not “first-class” in that they may only be bound to structure identifiers or

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

228 . R. Harper and J. C. Mitchell

passed as arguments to functors. We will see that this a universe distinction,

and not an ad hoc restriction of the language. The following declaration

binds a structure to the identifier S:

structure S =
struct

type t = Int
valx:t=3

end

The structure expression following the equals sign defines an environment

mapping t to int and x to 3, and binds this environment to the identifier S. In

Standard ML this packaged environment is “timestamped” when the declara-

tion is elaborated, marking it with a unique name that distinguishes it from

all other environments, regardless of their internal structure. Such structure

expressions are therefore said to be “generative” since each elaboration may

be thought of as “generating” a new structure. The reason for making

structure expressions generative in this sense is that the modules language

provides a form of version control based on specifying that two possibly

distinct structures or types must be equal. Since semantic equality of struc-

tures is undecidable, timestamps are used as a practical (and efficiently

decidable) criterion for structure equality. We will ignore the issue of genera-

tivity in what follows, but will return to it in Section 9.3.

The components of a structure are accessed by qualified names, using a

syntax reminiscent of record access in many languages. For instance, in the

presence of the above binding for the structure identifier S, the identifier S.x

refers to the x component of S, and hence evaluates to 3. Similarly, S.t refers

to the t component of S and is equivalent to the type Int during type checking.

This transparency of type definitions distinguishes ML structures from ab-

stract data type declarations (see MacQueen [29] and Mitchell and Plotkin

[47] for related discussion).

Signatures are a form of “type” or “interface” for structures, and may be

bound to signature identifiers using a signature binding, as follows:

signature SIG =
sig

type t
val x: t

end

This signature describes the class of structures having a type component, t,
and a value component, x, whose type is the type bound to t in the structure.

Since the structure S introduced above satisfies these conditions, it is said to

match the signature SIG. The structure S also matches the following signa-

ture SIG’:

signature SIG’ =
Slg

type t
val x: int

end

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 2. April 1993

On the Type Structure of Standard ML . 229

This signature is matched by any structure providing a type, t, and a value, X,

of type int, which is indeed the case for the structure S. Note, however, that

there are structures which match SIG, but not SIG, namely any structure

that provides a type other than int, and a value of that type.

In addition to ambiguities of this form, there is another, more practically-

motivated, reason why a given structure may match a variety of distinct

signatures. In ML signatures may be used to provide distinct views of a

structure by a process of ascription. The main idea is that the signature may

specify fewer components than are actually provided by the structure. The

process of ascription introduces a suitable “thinning” coercion that eliminates

the additional components of the structure. For example, we may introduce

the signature

signature SIG =
sig

val x: Int
end

and subsequently define a view, T, of the structure S, by writing

structure T: SIG = S

It should be clear from our discussion that S matches the signature SIG

since it provides an x component of type int. The presence of the signature

expression SIG’ in the binding for T causes the t component of S to be

removed so that subsequently only the identifier T.x is available; the t

component of S is not propagated to T, so that the identifier T.t is undefined.

To simplify the development we do not detail the signature matching process,

and instead regard structures as providing a unique signature describing

each component. In this sense we regard signature matching as a conve-

nience similar to that afforded by the type inference algorithm for the core

language. For further discussion of signature matching, we refer the reader

to Harper et al. [20], Tofte [63] and Milner et al. [40].

Discussion of ML “sharing” specifications is’ deferred to Section 9.3 below.

Functors (which are functions mapping structures to structures) are intro-

duced using a syntax similar to that found in many programming languages:

functor F (S: SIG): SIG =
struct

type t = St* S.t
val x: t = (S.x, 5.x)

end

This declaration introduces a functor F that takes as argument a structure

matching the signature SIG, and yields as result a structure matching the

same signature. (In Standard ML the parameter signature is mandatory, but,

as a notational convenience, the result signature may be omitted, with the

default obtained by an extension of the type inference algorithm for the core

language.) When applied to a suitable structure S, the functor F yields as

result the structure whose type component, t, is bound to the product of S .t

with itself, and whose value component, x, is the pair both of whose compo-

nents evaluate to the value of S.x.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

230 . R. Harper and J. C, Mitchell

By making use of free structure variables in signatures, certain forms of

dependency of functor results on functor arguments may be expressed. For

example, the following declaration specifies the type of y in the result

signature of G in terms of the type component t of the argument S:

functor G (S: SIG): sigvaly: S.t*S.t end =
struct

val y = (S,x, S x)
end

This formulation of dependent types is consistent with the account given by

MacQueen [29], and is accounted for similarly in our model of ML.

7. FULL XML

7.1 Syntax

In this section we will extend Core-XML to a function calculus XML by

adding general constructs that allow us to describe the features of the

previous section. Following MacQueen [29], we will use general sums and

products in the style of Martin-Lof’s type theory [33] to model the modules

system. While general sums (also called “strong sums;” see Howard [23]) are

closely related to structures, and general cartesian products seem necessary

to capture dependently-typed functors, the language XML will be somewhat

more general than ML. For example, while an ML structure may contain

polymorphic functions, there is no direct way to define a polymorphic struc-

ture (i.e., a structure that is parametric in a type) in the implicitly-typed

programming language. This is simply because there is no provision for

explicit binding of type variables. However, polymorphic structures can be

“simulated” in ML by using a functor whose parameter is a structure

containing only a type binding. In XML, by virtue of the uniformity of the

language definition, there will be no restriction on the types of things that

can be made polymorphic. For similar reasons, XML will have expressions

corresponding to higher-order functors and functor signatures, both of which

would be useful additions to the language. In Section 9.3, we will discuss the

addition of sharing constraints.

Intuitively, general sums and products correspond to in finitary disjoint

union and Cartesian product constructions in set theory. If CT is a type, and

()-‘ is a family of types indexed by o, then the general product type,

Hx: a.a’(x), is a set of functions f such that f(x) is an element of a’(x) for

every x in a. Note that the range type depends on the domain element; for
this reason general products are sometimes called “dependent” products. The

general sum type, Xx: m. CT’(x), consists of pairs p such that @(p) is an

element of a, and snd(p) is an element of u‘(fst(p)) (where fst and snd are

the first and second projections). Note that the type of the second component

is expressed as a function of the first component: general sums are a form of

“dependent type.”

Unfortunately, general products and sums complicate the formalization of

XML considerably. Since a structure may appear in a type expression, for

ACM Transactions on Programmmg Languages and Systems, t’ol 15, No. 2, Aprd 1993

On the Type Structure of Standard ML . 231

example, it is no longer possible to describe the well-formed type expressions

in isolation from the elements of those types. This also makes the well-formed

contexts difficult to define. Therefore, we will define XML by giving a set of

inference rules for determining the well-formed contexts, types and terms, in

the style of Automath [14], Martin-Lof [32], and LF [18]. The unchecked

preterms of XML are given by the following grammar:

M::= UllU21triUlM + MIHx: M. MlXx: M.M

lxl*lAx: M. M\ MMIAx:M.MIMIN]

l(x:a=M, M:a’)lfst(M)lsnd(M)

The metavariables M, N, and P range over the preterms. We also use a and

~ to range over preterms, particularly when the term is intended to be a type.

Following Cardelli [7], we use an explicitly “dependent” form of ordered pair,

(x: a = M, N: a’), in which the variable x is bound in N and a’. We no

longer include let as a pimitive construct of the language since it is definable

using abstraction over the polymorphic type u: Uz as (AX: a .N)M.

The type checking rules for XML appear in Tables III through VII. These

rules refer to an equational theory of well-typed terms that appears in Tables

VIII through XI.

As in Core-XML the universes of XML are cumulative in the sense that

every UI type is a U2 type as well. This simplifies the system somewhat, and,

as we shall see below, is not significantly different from a system with an

explicit inclusion of UI into U2. Another feature of our type system is the

treatment of ordered pairs of general sum type. The principal advantage of

treating the pairing operator as a binding operator is that it makes it simpler

to retain explicit typing, for the range type of the dependent sum is explicit in

the notation. Without this information, the type of the pair cannot be

recovered. The same phenomenon gives rise to the non-uniqueness of signa-

tures in ML. The relation to the ordinary pairing operator is made clear by

the equality axioms for pairs: the second projection replaces x in N by M, so

that “externally” they behave like ordinary ordered pairs.

7.2 Equations and Reduction

The equational proof system for XML is given in Tables VIII through XI. If

we direct the equational axioms from left to right, we obtain a reduction

system of the form familiar from other systems of lambda calculus (e.g.

Barendregt [2] and Mitchell [44]). Strong normalization is the property that

there are no infinite reduction sequences from XML terms. In other words,

the simple symbolic interpreter defined by the reduction rules is guaranteed

to halt, on any term.

Strong normalization for XML may be proved using a translation into

Martin-Lof’s 1973 system [31]. It follows that the equational theory of XML is

decidable. For other type systems, it is often possible to prove strong normal-
ization by an appropriate method of logical relations [60, 44]. We consider it

a significant open problem to develop a theory of logical relations for full

XML, a task that is complicated by the presence of general Z and H types.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

232 . R, Harper and J C. Mitchell

Table III. Context and Structural Rules for XML

() context

~bT:uI FDu:U~

l?, z:T context r, x:o context

(z@ Dmn(r))

I’ context r(z) =7- rcontext r(~)=~

rDX:T rDZ:O

Table IV Umverses

r context

rDUl:U2

rDT:[]l

7.3 Representing Modules in XML

General sums allow us to write expressions for structures and signatures,

provided we regard environments as tuples whose components are accessed

by projection functions. For example, the structure

struct type t = Int val x: t = 3 end

may be viewed as the pair (t: UI = in~, 3: t). In XML, the components t and x

are retrieved by projection functions, so that S.x is regarded as an abbrevia-

tion for snd(S). With general sums we can represent the signature

sig type t val x:t end

as the type D: U1. t, of which the pair (t: U1 == int, 3: int) is a member. The
representation of structures by unlabeled tuples is adequate in the sense that

it is a simple syntactic translation to replace qualified names by expressions

involving projection functions.

Since general products allow us to type functions from any collection to any

other collection, we can write functors as elements of product types. For

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

On the Type Structure of Standard ML . 233

Table V. Types and Terms in UI

r context 17 context

17ptriv: U~ rD*:~7Vk

rDT:u~ rd:ul r, X:r Dk?:r’

r b ~X:T.M: T+T’
(z g DoIn(r))

Table VI. Types and Terms in Uz

rDU:u2 r, XX7b U’:u2

r b kc7.c7’: UZ
(z@ Dan(r))

rDU:u2 ~, XX7DOt:u2 r,x:o DM:u’

r D ~z:fY.~: ~z:(7.~’
(z@ Dorn(r))

r D fS~(M): 0

r D M: ~X:U.CT’

r p Snd(kq: ~St(A4)/Zp’

example, the functor bound to F by the declaration (where SIG is the

signature above)

functor F(S: SIG): SIG=
st ruct

type t = S.t * S.t
val x:t = (S.x, S.x)

end

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

234 . R. Harper and J C. Mitchell

Table VII. Equalizer Types for Sharing Constraints

~D0:~[2 17,XX7bCr’:U2 r,X:OP~:O’ r,X:O~~T:c+

rD{Z:Ol~=~:~’}:U2
(Z @ Dorn(I’))

rbp:{~:OIM=N:/}

rDP:O

rD~:{Z:01j4=~:17’}

r D [P/Z]J4 = [f’/Z]~: [~/X] CT’

is defined by the expression

AS:(Zt:U1. t). (s:Ul

= (fSt(s) Xfst(s)), (snd(s), (snd(s)):(fst(s) Xfsf(s))),

which has type

rIs:(n: ul.t).(Ls:ul. s).

The XML calculus is more general than Standard ML in two apparent

respects. Since there is no need to require that subexpressions of XML types

be closed, we are able to write explicitly-typed functors with nontrivial

dependent types in XML. In addition, due to the uniformity of the language,

we also have a form of higher-order functors.

Ignoring generativity, structure bindings in Standard ML are transparent

in the sense that the components of a bound structure are fully visible within

the scope of the binding. To capture this aspect of ML in type-theoretic terms,

structure bindings are rendered using transparent let bindings, which are

derived from dependent tuples. Specifically, a structure binding of the form

structure S =
struct

type t = int
valxt=7

end;

is represented by the XML, term

snd(S:Zt:U1. t = (t:Ul =int,7:t), ...)

where ‘<. . . “ is the translation of the remainder of the program, in keeping

with the general idea that the top-level is a let expression of indefinite

extent. Notice that the typing rules governing strong sums ensure that the

definition of S is propagated to the remainder of the program, so that, in

particular, &(S) is equivalent to int, as required. Functor bindings are

handled similarly.

ACM Transactions on Programmmg Languages and Systems, VCI1 15, No 2, April 1993

On the Type Structure of Standard ML . 235

Table VIII. General Equality Rules for XML

rDA4=N:T

TDN=A4:T

TDAf=N:T I’DN=p:T

TDM=P:T

rDA4=N:T 17,P context

r.r’b M=N:T

rD.qf=h’:T rDT=T’:u~

rbAf=N:r’

rDA4=N:cT

I’DN=A4:u

I’p M=N:a I’,r’C0nt6w

r,r’b M= N:cr

Table IX. Equality Rules for the Function Type

r D)iX:T.M = Ay:r.[y/x]M : T-+T’ (Y@ Fv(J’f))

r D (~X:7_.M)N = [N/Z]M: T’

r B ,\z:r.A4x = A[: r-r’ (.$ W(M))

rDTl=T~:U2 rDT2=T~:U2

r D TI-T2 = T{+T~ : U2

I’ D Ax:r.A4 = Ax: T.A4’ : T-+T’

8. PREDICATIVITY AND THE RELATIONSHIP BETWEEN UNIVERSES

8.1 Universes

Each of the constructs of XML is designed to capture a specific part of the

programming language. In an effort to provide a vocabulary for discussing

extensions to ML, and to simplify the presentation of the type theory, we
have allowed arbitrary combinations of constructs and straightforward exten-

sions like higher-order functor expressions. While generalizing in certain

ways that seem syntactically and semantically natural, we have retained the

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

236 . R. Harper and J. C Mitchell

Table X. Equahty Rules for the Product Type

r D ~Z:a.kf = hJ:O.[~/Z]kf : ~Z:O.C7’ (Y@ FV(M))

r D ~X:U.MX = M: ~X:U.0’ (x@ FV(M))

r,x:o Dkf=M’:c#

rbfkf=M’:~X:CT.CT’ rD~=~’:C7

r ~ M[N] = M’[N’] : [N/x]a’

Table XI. Equality Rules for the Sum Type

distinction between monomorphic and polymorphic types by keeping UI and

U2 distinct. The restrictions imposed by universes are essential to the proof of

Theorem 4.1 and have the technical advantage of leading to far simpler

semantic model constructions. However, it may seem reasonable to generalize

ML polymorphism by lifting the universe restrictions (as in the Girard-

Reynolds second-order lambda calculus), or alter the design decisions UI G U2

and UI: U2.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

On the Type Structure of Standard ML . 237

In this section we will show that the decision to take UI c U2 and Ul: U2 is

essentially forced by the other constructs of XML, and that in the presence of

structures and functors, the universe restrictions are essential if we are to

avoid introducing a type of all types. We refer the reader to Coquand [11],

Howe [24], Meyer and Reinhold [36] and Cardelli [6] for background informa-

tion and further discussion of the merits of type: type. As discussed in the

introduction, it seems fair to say that type: type would certainly change the

character of ML dramatically. However, further research is needed to under-

stand the ramifications of type: type more precisely.

8.2 U, as a Subset of U2

In XML, we have UI c U2, since every UI type is also treated as a U2 type.

The main reason for this is that it simplifies both the use of the language,

and a number of technical details in its presentation. For example, by putting

every r: UI into U2 as well, we can write

for the ~-formation rule, instead of giving two separate cases for ~: U, and

o- :U2. An important part of this des~gn decision is that UI c U2 places no

additional semantic constraints on XML. More specifically, if we remove the

relevant typing rule from the language definition, we are left with a system

in which every UI type is represented as a retract of some U2 type. This

allows us to faithfully translate XML into the language without U1 c U2, so

that every semantic model of XML without UI g U2 may serve as a semantic

model for XML with UI c U2. The justification for assuming UI c U2 is made

more precise by the following lemma.

LEMNIA 8.1. Let r: UI be any type from the first universe, and let t be a

uariable that is not free in r. Then there are XML contexts

i[] -At: U1. [] and j[] - []triu,

where triv may be any type with the following properties:

—rD i[M]:Ht: U1. ~ wheneuer rD M:~

—rb j[m]: T wheneuer r D M:Ht: U1. r

—rPj[i[M]] =M:r for all FDM:T.

In other words, giuen the hypothesis aboue, we may assume r: U2 without loss

of generality.

Using the contexts i[] and j[], it is quite easy to translate every term in

XML with UI c U2 into an equivalent expression that is typed without using

UI G U2. Essentially, the translation replaces every use of ~: UI as a U2 type

with (~ t:U1. ~): U2, and encloses terms in contexts i[] and J] to make the
typing work out right. Since this translation preserves equality and the

structure of terms, there is no loss of generality in having UI c U2.

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

238 . R Harper and J. C, Mitchell

8.3 Strong Sums and U,: Uz

In the explicitly-typed core language Core-XML, we have UI L Uj but not

U,: Uz. However, when we added general product and sum types, we also

made the assumption that UI: Uz. The reasons for this are similar to the

reasons for taking UI G Uz: it makes the syntax more flexible, simplifies the

technical presentation, and does not involve any unnecessary semantic as-

sumptions. A precise statement is spelled out in the following lemma.

LEiWiMA 8.2 In any fragment of XML which is closed under the term

formation rules for types of the form Zt: U1.r, with T: Ul, there are contexts

i[]=([],*) and j[]= fst[],

luhere triv may be any UI type with closed term *: trill, satisfying the

following conditions:

(1) If FD ~: Ul, then r D i[7]:(Xt: U1.triu).

(2) If r D M:(Zt:U1.triu), then r Dj[M]: U1.

(3) rb[i[~ll = 7:UI for all rDr:U1.

In other words, given the hypotheses aboue, since (Zt: U1. triu): Uz, we may

assume Ul: Uz without loss of generality.

In words, the lemma says that in any fragment of XML, with sums over UI

(and some UI type triv containing a closed term *), we can represent UI by

the type D: U1. triu. Therefore, even if we drop UI: Uz from the language

definition, we are left with a representation of UI inside Uz. For this reason,

we might as well simplify matters and take UI: Uz.

8.4 Impredicativity and “type: type”

In XML, as in ML, polymorphic functions are not actually applicable to

arguments of all types. For example, the identity function defined by id(x) = x

has polymorphic type, but it can only be applied to elements of types from the

first universe. We cannot apply the same identity function id to both integers

and structures. One way to eliminate this restriction is to eliminate the

distinction between UI and Uz. If we replace UI and UZ by a single universe

in the definition of Core-XML, then we obtain the second-order lambda

calculus of Girard and Reynolds [16, 15, 53]. (A similar technique is used to

introduce impredicativity into Nuprl in Howe [24].) The Girard-Reynolds

calculus has a number of reasonable theoretical properties (e.g. see Bruce et

al. [5], Mitchell [41] and Mitchell and Plotkin [47]) and seems to be a useful
tool for studying polymorphism in programming.

However, if we make the full XML calculus impredicative by eliminating

the distinction between UI and Uz, the language becomes very different from

the Girard-Reynolds calculus. Specifically, since we have general products

and UI: Uz, it is quite easy to see that if we let UI = Uz then Meyer and

Reinhold’s language A’ ‘ with a type of all types [36] becomes a sublanguage

of XNtL. Note that although the term formation rules of XML only provide

general products over Uz types, letting UI = Uz will give us products over all

types.

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No. 2, April 1993.

On the Type Structure of Standard ML . 239

LEMMA 8.3 Any fragment of XiWL with UI: Uz, UI = Uz, and closed under

the type and term formation rules associated with general products is capable

of expressing all terms of A“’ of Meyer and Reinhold [36~.

PROOF. The proof is a straightforward induction on the typing rules of

A“’. Since we assume that UI = Uz, we may unambiguously write U for the

collection of types. This makes it easy to see that the typing rules and

equational rules of A’ ~‘ are derived rules of XML with .VI: Uz, UI = Uz and

general products. (This is not surprising, since the language AT” is designed

to be a “minimal” calculus with a type of all types and general products.) In

particular, if U is the collection of all types, then we clearly have 77: U, by

hypothesis. ❑

By Lemma 8.2, we know that sums over UI give us Ul: Uz. This proves the

following theorem.

THEO~E~ 8.4 The function calculus A“ T with a type of all types may be

interpreted in any fragment of XiWL without universe distinctions which is

closed under general products, and sums over UI of the form D: U1. r.

Intuitively, this says that any language without universe distinctions that

has general products (ML functors) and general sums restricted to UI (ML

structures with type and value but not necessarily structure components)

also contains the language AT’T with a type of all types. Since there are a

number of questionable properties of A“’ such as nontermination without

explicit recursion and undecidable type checking, relaxing the universe re-

strictions of XML would alter the language dramatically.

8.5 Tradeoff Between Weak and Strong Sums

When we first discovered Theorem 8.4, we announced it as a tradeoff

theorem in programming language design. 2 The “tradeoff” implied by Theo-

rem 8.4 is between impredicative polymorphism and the kind of z types used

to represent ML structures in XML. Generally speaking, impredicative poly-

morphism is more flexible than predicative polymorphism, and E types allow

us to type more terms than the existential types associated with data

abstraction (see Mitchell and Plotkin [47]).

Either impredicative polymorphism with the “ weaker” existential types, or

restricted predicative polymorphism with “stronger” sum types seems reason-

able. By the normalization theorem for the impredicative Girard-Reynolds

calculus [15, 4 1],3 we know that impredicative polymorphism with existential

types is strongly normalizing. As noted in Section 7, a translation into

2 We described our “tradeoff theorem” in the TYPES electronic mail forum in the Spring of 1986.
Hook and Howe then replied that they had discovered a similar phenomenon independently [22].

We also learned that Coquand had proved the same theorem by a different means (see Coquand
[1 l]), which was in preparation at the time of our announcement.
3 Girard’s original proof included existential types. While the somewhat simpler proof in Mitchell
[41] does not, normalization with existential types can easily be derived by encoding 3 t.u as

Vr[Vt(u+ r) + r].

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

240 . R. Harper and J, C, Mitchell

Martin-Lof’s 1973 system [31] shows that XML with predicative polymor-

phism and “strong” sums is also strongly normalizing. However, by Theorem

8.4, we know that if we combine strong sums with impredicative polymor-

phism by taking UI = Uz, the most natural way of achieving this end, then

we must admit a type of all types. By Girard’s paradox [11, 36, 24], type: type

(in the presence of other constructs) implies that strong normalization fails.
In short, assuming we wish to avoid type: type and nonnormalizing

recursion-free terms, we have a tradeoff between impredicative polymor-

phism and strong sums.

In formulating the XML type theory, it became apparent that there were

actually several ways to combine impredicative polymorphism with strong

sums. The most reasonable is this: instead of adding impredicative polymor-

phism by equating the two universes, we may add a form of impredicative

polymorphism by adding a new type binding operator with the formation rule

r,t:UIDr:U1

rDVt:U1.r:U1”

Intuitively, this rule says that if ~ is a UI type, then we will also have the

polymorphic type Vt:U1. ~ in UI. The term formation-rules for this sort of

polymorphic type would allow us to apply any polymorphic function of type

Vt:U1. I- to any type in UI, including a polymorphic type of the form b’s: U1. a.

However, we would still have strong sums like Xt: UI. ~ in Uz instead of UI.

The normalization theorem for this calculus follows from that of the theory of

constructions with strong sums at the level of types [11] by considering UI to

be prop, and Uz to be type..

9. EXTENSIONS

9.1 Introduction

ML contains a variety of language features beyond those we have considered

so far. For the benefit of the reader familiar with ML, we briefly sketch an

approach to type declarations and sharing constraints in XML.

9.2 Type Declarations

There are three mechanisms for introducing types and type constructors in

ML: type abbreviations, concrete data type declarations, and abstract data

type declarations. A type abbreviation is a form of “compile-time” let-binding
which allows for the definition of a type constructor in terms of types and

type constructors that have been previously introduced. A concrete type

declaration simultaneously introduces a recursively-defined type constructor,

a finite collection of value constructors, and a pattern matching construct. An

abstract type declaration introduces a “private” concrete data type, together

with a set of “public” operations on that type. We give a brief description of

each form below. For more information, see Harper et al. [19] and Milner et

al. [40].

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No 2, Aprd 1993.

On the Type Structure of Standard ML . 241

In the remainder of this section, we show how the three forms of type

declarations just mentioned may be treated in XML. In each case, we do this

by first extending Cor-e-XML with a form of declaration that resembles the

surface syntax of ML and then showing how this may be desugared into

simpler XML constructs. While type abbreviations may be interpreted di-

rectly in pure XML, concrete and abstract type declarations require the

extension of XML with disjoint unions, type recursion and existential types.

We begin with type abbreviations. We extend the grammar of Core-XML

with a transparent type binding construct of the form

type (tl,. ... tn)t = Tine.

The scope of the type constructor t is the expression e; the scope of the type

variables tl, tn is the type expression ~. The effect of such a transparent

type binding is to introduce an n-argument type construct t with the

property that (~1, ~~)t is equivalent to [Tl, Tn/tl,....tn]T during type

checking of e. For example, the expression

type (sl, sz)t=sl+szine

has the effect of introducing a two-place type constructor t within e so that

during type checking of e the types (irzt,ii-zt)tand int + int are equivalent.

We may represent type declarations in pure XML using a combination of
product and function types at the Uz level. Specifically, we regard the

expression

type (tl,t~)t=~ine

as short-hand for the XML expression

snd((t:U~ + 771 = A(tl:Ul, ..., t~:Ul). ~,e))

where U; stands for the n-fold Cartesian product U1 X “.” X UI, and where

the pattern-directed, A-abstraction abbreviates the less perspicuous

At: UJ. [7r~(t),. ... w;(t) \tl, t,]et,]e.

Here, and below, w; stands for the appropriate combination of first and

second projections to select the i th component from a value of n-fold product

type.

The reason we use pairing and projections associated with Z types for type

abbreviations, instead of the apparently simpler alternative,

(At:U~ + U1.e)(A(tl: Ul,.. .,t~:Ul~),),

is that in the latter term, the expression At: U: + U1. e would have to be

well-typed. This requires e to be well-typed for any function t:Uln+ UI. In

contrast, a pair (t: U; + UI = k?, N) is typed by showing that the term

[M/t]N obtained by substitution is well-typed. This is easily seen in the

appropriate Z typing rule in Table VI.

Concrete type definitions are somewhat more complex since they simulta-
neously introduce a recursively-defined type constructor, a finite set of value

constructors for building values of that type, and a pattern matching con-

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

242 . R Harper and J, C, Mitchell

struct for restructuring values of that type. To account for concrete data

types in Core-XML, we extend the grammar of expressions as follows:

e ::= datatype(tl,tn)t = clof~ll.”” lc~ of~~ ine

lcaseeofcl(xl:~l) =ell””” Icm(xm:Tm) -em

Note that the vertical bars, “~’, in datatype and case expressions are part of

the object syntax of C’ore-~L, not metanotation. Both the datatype and case

forms are binding operators. The scope of the type constructor t in a datatype

expression of the above form includes both the body of the expression, e, and

the type expressions ~1, ~n, reflecting the fact that t may be defined

recursively. The scope of the value constructors cl, cm associated with t

is the body e of the declaration. The scope of the type parameters tl, t. of

t is limited to the type expressions 71, ..., ~,,,. In a case expression of the

above form, the scope of each variable x, is limited to the corresponding

expression e,(l S i S m).

The effect of a datatype expression is to introduce within the body of the

expression an n-place type constructor and m value constructors. The type

constructor is recursively defined in terms of the given value constructors in

a manner outlined below. The case construct supports simultaneous case

analysis and decomposition of values of the type introduced by a datatype

expression in a manner similar to that of Standard ML. The full Standard

ML language provides a somewhat richer form of pattern-matching that

admits both layered and nested patterns, but we do not consider this general-

ization here.

ML concrete data type declarations maybe accounted for in an extension of

XML with disjoint union types at the UI level, existential types [47] at the Uz

level, and the ability to form recursively-defined type constructors at the Uz

level. We briefly summarize these extensions before discussing the interpre-

tation of concrete data type declarations in XML.

Disjoint unions, which we write using the symbol +, are likely to be

familiar from a variety of programming languages. If TI, T2: U1, then the

disjoint union type TI + r2 is also a UI type expression. Expressions of union

type are formed using injection functions, ird and inr according the rules

that if r D M: rl, then r D inl M: rl + rz and if r b M: 7Z then r D inrM: rl

+ ~z. The case statement is used to test which summand a value belongs to,

according to the following rule.

rDiW:~1+~2 r,xl:rl DiV:p r,x2:r2Dp:p

rD case Mofinl(xl: ~1) - Nlinr(xz: Tz) - P: p

Existential types, which may be regarded as a “weak” form of E type, are

formed according to the rule below. Although we could existentially quantify

over any collection from Uz, we will only need existential quantification over

collections of the form U: ~ UI. For simplicity, we only present the forma-

ACM Transactions on Pro~ammmg Languages and Systems, Vol. 15, No 2, Aprd 1993

On the Type Structure of Standard ML . 243

tion and typing rules for the form of existential types we need,

r,t:u; +u1D(r:u2

rD3t:U~+U1.m:Uz
(t @ Dom(r)).

There are two differences between existential types in XML and the language

considered by Mitchell and Plotkin [47]. The form given here is more general

in that we quantify over n-ary type constructors, rather than just types. It is

more restrictive in that we only provide predicative quantification in the

sense that the existential type 3 t:U; ~ U1. a belongs to the second, rather

than the first, universe. Expressions of existential type are formed and used

according to the following two rules.

rbM:3t:U; ~U1. cr r,t:U; ~Ul, x:r DN:p

rDabstypet:U~ - Ulwithx:cris Min N;p
(t $EFV(p))

For further discussion of existential types, the reader is referred to Mitchell

and Plotkin [47], Cardelli and Wegner [8], and MacQueen [28].

To account for recursively-defined type constructors, we introduce a fixed-

point operator

fhn:((u; + u,) + (u; + u,)) + (u: + u,)

for each n >0. (For the special case n = O, the fixed-point operator has type

(Ul + Ul) - U1.) Intuitively, for any type functional 0: (U: - Ul) - (U: ~
UI), the type function fix. O, when applied to an n-tuple of types (1-1,. . . . r.),

yields a type isomorphic to (3(fixn (3)(1-1 . . . r,). Formally, the extension of

XML with recursive type functions over UI is completed by adding the

constants

for each n >0, together with equational axioms making them mutually

inverse to one another. Rather than define the solution of type construc-

tor equations only up to isomorphism, it would also be possible to take

fixn O(71,.. ., ~.) to be equal to 6(~ixn 19)(~1, r.), but this would allow
more XML terms to be typable than would be accepted by the usual ML type

checking algorithm.

With this additional machinery in hand we may represent concrete data

types in XML as follows. The concrete data type declaration

datatype (tl,. ... tn)t = cl:~ll”.. lc~:~n ine

is rendered in XML as the elimination form

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

244 . R. Harper and J. C. Mitchell

associated with the existential type 3 t: U? ~ U1. u, where the expressions O,

m, d, and e’ are given below. The main idea behind this representation is

that a concrete data type declaration introduces a “new” recursively-defined

type constructor, together with operations corresponding to each of the value

constructors, and an operation corresponding to the case analysis form

associated with that type. The typing rules governing abstype ensure that the

type constructor t is distinct from both the given definition and from all other

type constructors in that scope. In view of the fact that abstype binds the

variable t in e’ it is always possible to arrange (by an application of

a-conversion) that t is distinct from all other type constructors. Thus the ML

notion of “t ype generativity” is reduced to the more familiar idea of renaming

of bound variables.

The expression H of type (U; ~ UI) + (U: ~ UI) is defined to be

/it:u: + LT1.A(tl:ul,. ... tn:i71(T1T1 + . . . +Tm).

Note that by the definition of 6 and the rules governing recursively-defined

type constructors, the type fix. 6(t~,....tn) is isomorphic (via In and Out) to

the type [fix. ti/t]~l + . . . + [fix. f)/t]~m.The type CT is defined to be the

product UI ~ . . . ~ cr., ~ Um+l, where for each 1 s i ~ m, the type V, is

ntl:u l.. .rrtn:ul. rl+t(tl,tn).

and the type u~ + ~ is

nt,:u l.. .rItm:ul.rIu: ul. t(tl,. ... tn) + (Ot(tl,. ... tn) +U) +U.

Intuitively, CT, is the type of the i th constructor, for 1< i s m, and am, ~ is

the type of the case construct for the data type. The expression d of type

[fix~O\t]a is the tuple (all,..., d~,, d) h

expression d, is
m+l , w ere for each lsi~m, the

Atl; ul . . . At~:U1. AxL:[fix~9\t]rI. In~O(tl, . . .,t~)(inj~x)

and the expression d~ + ~ is

Atl:U1. .. At~:UAu:UI UAx:fix~(?(tl,l,. ... t~). Af:/3(fix~ O)(tl,.. .,t~)

-U. f(outno(tl,tn)x) .

Here inj,m stands for the appropriate combination of inl’s and inr’s to inject

a value of the i th summand into an n -ary disjoint union type. Intuitively,

d, is the implementation of the ith constructor, for 1 s i < m., and dm . ~

provides the case construct for the data type. It is not hard to see for each

1 s i < m + 1, the expression d, is of type [fix. o/t] m, so that the tuple d

has the required type [fix. 8/t] w.

The expression e’ is obtained from e by replacing occurrences of a value

constructor c, with the corresponding projection n,m + lc, and by interpreting

the case analysis form

case rofcl(xl:~l) +ell... lc~(x~:~~) =e~

ACM Transactmns on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

On the Type Structure of Standard ML . 245

as the application n~m++llcpl . . . pnpr~ where r has type t< PI, p.), the
entire expression has type p, and the function f is given by

k:o(fixno) (pi>. ... pn).

case xof’irzl(x1:7~) ~ e11i7m(y1:T~) ~ . . .

caseym_2:7~_2 Ofinl(xm_l: 7-~-1) -em.lliru-(xm: ~;) -em,

where for each 1 ~ i s m, the type ~~ is [fix. o t/t]Tl, and the type ~~ is the

“partial sum” type ~~+~ + . . . + ~~.

For example, the Core-XML expression

datatype t list = nillcons oft x t list in e

is represented by the XML expression

abstype list; UI ~ UI with ncc;~ is {list; UI ~ UI = fixl O, d: w) in e’

where

0= AL:UI e U1. At: Ul.triu + (t XL(t))

g = (rnl~ x O&n,q ‘case

Unll = ~t:U1. triu ~ list(t)

wcon~ = Ht:U1.(t X list(t)) + list(t)

wcask = Ht:U1.Hu: Ul.list(t) ~ (triu + (t X list(t)) - u) ~ u

e = (enll, econ~, ecc~e)

e~,l = At: U1. Ax:triu. Inl O(inl(x))

e~O~. = At: UI. AX: t X (fix113t).In1(3 (inr(x))

ecabe = At: U1. Au: Ul. Ax: fixl Ot. Af:(l + (t X (fixl Ot))) ~ .u.f(Outl Otx)

The expression e’ is obtained from e as described above, replacing occur-

rences of nil and cons by suitable projections of ncc, and replacing case

analyses on terms of type p list by suitable applications of the case analysis

function, Wl(mz ncc).

Abstract type declarations are accounted for in Core-XML by adding

expressions of the form:

abstype(tl,tn)t = c10f711 ””” lc~ of~n with xl: p~ = e~,...,xh:pk ‘eh inc.

Informally, the effect of an abstype declaration is to introduce a “private”

concrete data type for use in the definition of the “public” operations in the

with clause, but hiding this declaration from the “client” expression e, which

has access only to these public operations. More precisely, the scope of the

constructors cl, cm is limited to the definitions el, eh of x~,xh.

even though the scope of the type constructor t includes not only the e,’s but

also the body e, On the other hand, the scope of the variables x1, . . ., xk
naming the public operations is limited to e. (We omit, for simplicity, the

possibility of mutually recursive definitions of the public operations.)

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No 2, April 1993.

246 . R Harper and J. C, Mitchell

The representation of abstype expressions in XML is similar to the repre-

sentation of datatype expressions, except that the recursive type is kept

abstract by making the value constructors and case analysis forms available

only in the definitions of the operations of the abstract type. Thus an abstype

expression of the above form is represented by the expression

abstypet:U~ ~ UI with x:pis(fix~(@):U~ ~ Ul, p:p)ine

where p is the expression

of type p=pl X .“” pk, and where the expressions O, U1,..., Gm+~, and
d 17 ...7 d ~ + ~ are as above.

9.3 Generativity and Sharing

A distinctive feature of the ML module facility is the use of sharing con-

straints to ensure that incrementally constructed systems are built from

compatible components. The typical situation in which sharing specifications

are required arises when defining a functor that builds a structure out of two

argament structures, each of which are to have a third component in com-

mon. (MacQueen [28] gives an example in which a parser module is built

from a lexer module and a symbol table module, each of which make use of a

symbol module. In order for the parser to be well-defined, the lexer and the

symbol table must share the same symbol implementation. See MacQueen

[28] for more details.) Such a situation may be described schematically as

follows. We are to define a functor F taking as argument two structures, R of

signature SIG _ R and S of signature SIG_ S, which have a common compo-

nent T of signature SIG _T. The arguments to F may be packaged into a single

structure of signature SIG defined by

signature SIG =
sig

structure R, SIG_R
structure S: SIG_S

end

so that F may be introduced by a declaration of the form

functor F(X: SIG), SIG_F = . . .

where SIG _ F is the signature of the result of F. But this declaration is

inadequate since it fails to ensure that R and S are built from a common

substructure T. This is achieved by the use of a sharing constraint as follows:

signature SIG_share =

Slg

structure R: SIG_R
structure S: SIG_S
sharing R.T = S,T

functor F(X, SIG_share) SIG_F = . . .

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, April 1993

On the Type Structure of Standard ML . 247

The signature SIG _share specifies that the component structures R and S

share the same substructure T so that their use in the body of F is guaran-

teed to be sensible. An application of F to a structure is well-formed only if

the type checker can determine that the required equational specification

holds.

A simple way to account for sharing specifications in XML would be to

employ the notion of an equality type introduced by Martin-Lof [31]. Infor-

mally, the equality type M = ~ N, for CTa UZ type, is inhabited iff M and N

are equal elements of type a, according to the rules of equality for XML. The

typing and equality rules for the equality type appear in Table XII. Signa-

tures with sharing constraints are represented using equality types as fol-

lows. The signature SIG_ share above is represented by the type

ER:cr~.H3:n~.p(R) =m, q(S)

where a~, as, and m~ represent the corresponding ML signatures, and where

p and q are suitable compositions of projections to select the component of R

and S, respectively, corresponding to their common component T.

Although this approach seems appealing at first glance, equality types fail

to account for ML sharing specifications in two important respects. First,

they are far more expressive than ML sharing specifications since they allow

the imposition of arbitrary equational constraints, in contrast to ML which

admits sharing constraints only between “paths,” which are represented in

XML as compositions of projection functions. This restriction to equations

between paths seems essential, as illustrated by the following example. It is

well known that recursion is definable in the untyped lambda calculus, via

the fixed-point operator Y, and that the untyped lambda calculus may be

interpreted in a typed lambda calculus satisfying an equation t = t + t

between types. (Further discussion of Y may be found in Barendregt [2], for

example, and the relationship between untyped lambda calculus and type (or

domain) equations in Bruce and Meyer [4] and Scott [57].) Given this, and the

fact that equality types allow us to type terms with respect to equational

hypotheses, it is easy to show that equality types give us terms without

normal form, For example, if r is a context containing the typing assump-

tions x: r =U, ~ ~ ~, for any UI type ~, then by the typing rules in Table XII,

we may conclude that r D T = T + T: U1. Therefore, using the type equality

rule from Table III, we may give any term with type ~ type r ~ ~, and vice

versa. This allows us to give any untyped lambda term type ~, including

untyped terms with no normal form. Discharging the typing assumption via

lambda abstraction, we can write a closed, well-typed functor with parameter

x:{ y: triu IT = T + T: Ul} and nonnormalizing body.
A second sense in which equality types are inappropriate is that they

express semantic equivalence of structures, rather than the much more

restricted notion of structure equivalence based on unique names described
in Section 6. The type-theoretic account of modules given above does not

attempt to account for ML notion of generativity, and hence cannot be readily

extended to give a faithful account of ML sharing specifications. We consider

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

248 . R, Harper and J. C. Mitchell

Table XII. Equality Type

I’DM=N:u

r D r-efi(M, N) : M =. N

rvP:M=. N

rDi!f=N:u

rvu=u’:u~ rbkf=~’:o rDN=N’:o

I’DM=DN=M’=0,N’:U2

a proper account of ML notion of generative structure equality to be an
important direction for future work.

10. CONCLUSION AND DIRECTIONS FOR FURTHER INVESTIGATION

We have given a precise description of the type system for much of ML, using

a function calculus called XML. Our analysis is based on the belief that ML is

profitably viewed as an explicitly-typed, predicative language with dependent

product and sum types. Explicit typing is central to giving a single account of

both the core expression language and the module system, and seems useful

for further study. In particular, in papers of Moggi [48] and Harper et al. [21],

which were written after the work described here was completed, XML is

used to study the separation between compile-time and run-time in Standard

ML. The distinction between UI and Uz in XML reflects the typing rules of

ML and leads to a number of significant technical simplifications in the study

of the language. Moreover, universe distinctions seem essential to the charac-

ter of ML, as discussed in Section 8.

Some important aspects of ML have been omitted. With regard to the core

language, we have omitted treatment of recursion, references and exceptions.

These language features raise important theoretical questions. We hope that

an explicitly-typed study of polymorphic references would clarify the relation-

ship between polymorphism and type inference, a continuing trouble spot in

the ML type checker. With regard to the modules system, we have omitted

treatment of the coercive aspects of signature matching, and of sharing

specifications in signatures. It seems likely that the coercions associated with

signature ascription may be accounted for in this framework by giving a

precise account of compile-time elaboration as a process of translation from

the ML concrete syntax into the abstract syntax of the XML calculus. Such a

formalization would provide an interesting alternative to the methods used in

ACM TransactIons on Programmmg Languages and Systems, Vol 15, No 2, Aprd 1993

On the Type Structure of Standard ML . 249

the definition of ML [40]. Sharing specifications, and the associated notion of

“structure generativity,” remain important topics for further research.

Another important direction is to develop an accurate, straightforward

presentation of ML operational semantics. As with other versions of lambda

calculus, equality in XML is given by an equational axiom system. This

equational system may also be formulated as a set of reduction rules, as

usual. However, for the extension of XML obtained by adding exceptions,

references and recursion, capturing the operational semantics of ML relies on

careful consideration of the order in which rewrite rules are applied. (For

example, if f) is a divergent expression, then (A x.O)fl diverges in the current

call-by-value implementation, but (A x.O)fl = O is provable using the usual

A-calculus style reasoning.) It would be interesting to explore a typed calculus

that is faithful to the operational semantics, following the pattern established

by Plotkin’s &-calculus [51] and Martin-Lof’s type theory [32]. Some useful

related ideas are developed in Moggi [49].

ACKNOWLEDGMENTS

Thanks to Dave MacQueen for many insightful discussions of ML, and

comments on this paper in particular. Thanks also to John Greiner, Peter

Lee, Eugenio Moggi, and Andrzej Tarlecki for comments on an earlier draft.

REFERENCES

1. AMADIO, R., BRUCE, K., AND LONGO, G. The finitary projection model for second order lambda

calculus and solutions to higher order domain equations. In Proceedings of the IEEE

Symposmm on Logic in Computer Science, (1986), 122-130.

2. BARENDREG, H. P. The Lambda Calculus: Its Syntax and Semantics. 2nd ed. North-Holland,

Amsterdam, 1984.

3. BREAZU-TANNEN, V., COQUAND, T., GUNTER, C. A., AND SCEDROV, A. Inheritance as explicit

coercion. Inf. Comput. 93, 1 (1991), 172–221.

4. BRUCE, K., AND MEYRR, A. A completeness theorem for second-order polymorphic lambda

calculus, In Proceedings of the International Symposium on Semantics of Data Types

(Sophia-Antipolis, France) Springer Berlin, LNCS 173, 1984, 131-144.

5. BRUCE, K. B., MEYER, A. R., AND MITCHELL, J. C. The semantics of second-order lambda

calculus. Inf. Comput. 85 1(1990),76– 134. Reprinted in Logtcal Foundations of Functional

Programming, G. Huet, Ed., Addison-Wesley, Reading, Mass., 1990, 213-273.

6. CARDELLI, L. A semantics of multiple inheritance. Inf. Cornput. 76 (1988), 138–164. Special

issue devoted to Symposium on Semantics of Data Types (Sophia-Antipolis, France, 1984).

7. CARDELLI, L. Structural subtyping and the notion of powertype. In Proceedings of the 15th

ACM Symposium Principles of Programming Languages (1988), 70-79.

8. CARDELLI, L., AND WEGNER, P. On understanding types, data abstraction, and polymor-

phism, ACM Comput. Surv. 17, 4 (1985), 471-522.

9. CARTWRIGHT, R. Types as intervals. In Proceedings of the 12th ACM Symposium on Princi-

ples of Programming Languages (Jan. 1985), 22-36.
10. CONSTABLE, R. L., ET AL. Implementing mathematics with the Nuprl proof development

system. In Graduate Texts in Mathematics Vol. 37. Prentice-Hallj Englewood Cliffs, N. J.,
1986.

11. COQUAND, T. An analysis of Girards paladox. In Proceedings of the IEEE Symposium on
Logic in Compute. Science (June 1986), 227–236.

12. COQUAND, T., AND HUET, G. The calculus of constructions. Inf. Comput. 76, 2/3 (1988),

95-120.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

250 . R. Harper and J. C. Mitchell

13. DAMAS, L., AND MILNER, R. Principal type schemes for functional programs. In F’roceedmgs

of the 9th ACM Symposlurn on Principles of Programmmg Languages (1982), 207–212.

14. DE BRUIJN, N. G. A survey of the project Automath. In To H B. Curry: Essays cm

Combznatorv Logic, Lambda Calculus and Formahsm. Academic Press, New York, 1980,

579-607.

15. GIRARD, J.-Y. Interpretation fonctlonelle et elimination des coupures de l’arithmetique

d’ordre superieur. These D’Etat, Umversite Paris VII, 1972.

16, GIRARII, J -Y. Une extension de l’interpretation de Godel ii l’analyse, et son application a

l’ehmmation des coupures clans l’analyse et la theorie des types. In %d Scandmazuan Logm

Symposzam, J. E. Fenstad, Ed., (North-Holland, Amsterdam, 1971), 63-92.

17. GORDON, M. J., MILNEX?, R., AND WADSWORTH C. P. Edznburgh LCF. LNCS 78, Springer,

Berhn, 1979

18. HARPER, R., HONSELL, F., AND PLOTKIN, G. A framework for defining logics. In Proceedings

of the IEEE S-ymposlurn on Logw [n Computer Sczence (June 1987), 194–204. To appear m J.

ACM.

19. HARPER, R., MAGQUIiEN, D. B., AND MILNER, R Standard ML Tech. Rep. ECS-LFCS-86-2,

Lab. for Foundations of Computer Science, Univ. of Edinburgh, Mar. 1986.

20. HARPER, R , MILNER, R., AND TCIFTE, M. A type dlsciphne for program modules. In Z’AF-

SOFT 87, LNCS 250, Springer, Berlin, 1987

21. HARPER, R., MITrHELL, J C , AND MOGGI, E. Higher-order modules and the phase distinc-

tion. In Proceedings of the 17th ACM Symposwm on Prmclples of Programmmg Languages

(Jan. 1990), 341-354.

22. Huo~, J., AND HOWE, D. Impredicative strong existential eqmvalent to type type. Tech. Rep.

TR 86-760, Cornell Univ. 1986

23. HOWARD, W. The formulas-as-types notion of construction. In To H. B. Curry: Essays on

Combmatory Logzc, Lambda-Calcalus and Formahsm Academic Press, 1980, 479-490.

24. HOWE, D. J. The computational behavior of Girard’s paradox. In Proceedings of the IEEE

Symposium on Logzc zn Computer ScLence (June 1987), 205-214.

25 KANELLAKM, P. C., MAIRSON, H G., AND MITCHELL, J. C. Unification and ML type recon-

struction In Computational Logzc, Essa.vs [n Honor of Alan Robznson. MIT Press, 1991,
444-478.

26. KFOLTRY, A. J., TIURYN, J., AND URZYCZYN, P. ML typability is Dexptime-complete. In

Proceedings of the 15th Colloqlum on Trees Ln Algebra and Programming. LNCS 431,

Springer, 1990, 206-220. To appear in J ACM. under the title, “An Analysls of ML

Typability.”

27 LEIVANT, D. Polymorphic type inference. In Proceedings of the 10th ACM Symposzum cm

Principles of Programmmg Languages (1983), 88-98.

28. MACQUEEN, D. B. Modules for standard ML. Pol.vmorphzsm 2, 2 (1985), 1–35. An earlier

version appeared in Proceedings of the 1984 ACM Symposium on Lzsp and Functional

Programmmg.

29. MAcQtJ~~N, D. B. Using dependent types to express modular structure. In Proceedings of

the 13th ACM Symposzum on Prmclples of Programmmg Languages (1986), 277–286

30. MACQUEEN, D., PLOTNN. G., AND SETH1, R. An ideal model for recursme polymorphic types.

Znf Control 71, 1/2 (1986), 95-130.

31. MARTIN-L• F, P. An intuitionistic theory of types: Predictive part. In H. E. Rose and J. C.

Shepherdson, Eds. LogZc Co[loquumz, ’73. Amsterdam. 1973, North-Holland, 73-118.

32. MARTIN-LbF, P. Constructive mathematics and computer programming In Sixth Interna-

tional Congress for Logzc, Methodology, and Phdosophy of Science North-Holland, Amster-

dam, 1982, 153–175

33. MARTIN-L• F, P. Zntuztzonzst/c Type Theory. Bibliopolis, Napoh, 1984.

34. MCCRACKEN, N. An investigation of a programming language with a polymorphic type

structure. Ph.D. Thesis, Syracuse Univ., 1979.

35. MEYER, A. R., MITCHELL, J. C., MOGGI, E., AND STATMAN, R. Empty types in polymorphic

lambda calculus. In Proceedings of the 14th ACM Symposlarn on Principles of Programmmg

Languages (Jan. 1987), 253–262. Reprinted with minor revisions in Logzcal Foundations of

Funcfmnal Programming. G. Huet, Ed , Addison-Wesley, 1990, 273-284.

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No, 2, Aprd 1993.

On the Type Structure of Standard ML . 251

36. MEYER, A. R., AND REINHOLD, M. D. Type is not a type. In Proceedings of the 13th ACM

Symposium on Principles of Programming Languages (Jan. 1986), 287-295.

37. MILNER, R. A theory of type polymorphism in programming. JCSS, 17 (1978), 348-375.

38. MILNER, R. The Standard ML core language. Polymorphism 2, 2 (1985), 1–28. An earlier

version appeared in Proceedings of the 1984 ACM Symposium on Lisp and Functional

Programming.

39. MILNER, R., AND TOFTE, M. Commentary on Standard ML. MIT Press, 1991.
40. MILNER, R., TOFTE, M., AND HARPER, R. The Definition of Standard ML. MIT Press, 1990.

41. MITCHELL, J. C. A type-inference approach to reduction properties and semantics of poly-

morphic expressions. In ACM Conference on LISP and Functional Programmmg (Aug.

1986), 308–319. Reprinted with minor revisions in Logical Foundations of Functional

Programming, G. Huet, Ed., Addison-Wesley, 1990, 195-212.

42. MITCHELL, J. C. Polymorphic type inference and containment. Znf. Comput. 76, 2/3 (1988),

211–249. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed.,

Addison-Wesley, 1990, 153-194.

43. MITCHELL, J. C. Representation independence and data abstraction. In Proceedings of the

13th ACM Symposium on Principles of Programmmg Languages (Jan. 1986), 263-276.

44. MITCHELL, J. C. Type systems for programming languages. In Handbook of Theoretical

Computer Sczence, Volume B, J. van Leeuwen, Ed., North-Holland, Amsterdam, 1990,

365-458.

45. MITCHELL, J. C., AND MEYER, A. R. Second-order logical relations. In Logics of Programs,

LNCS 193, Springer, Berlin, 1985, 225-236.
46. MITCHELL, J. C., AND MOGGI, E. Kripke-style models for typed lambda calculus. Ann. Pure

Appl. Logic 51 (1991), 99–124. Preliminary version in Proceedings of the IEEE Symposium

on Logic in Computer Science (1987), 303–314.

47. MITCHELL, J. C., AND PLOTKIN, G. D. Abstract types have existential types. ACM Trans.

Program. Lang. Syst. 10, 3 (1988), 470–502. Preliminary version appeared in Proceedings of

the 12th ACM Symposium on Princ~ples of Programming Languages, 1985.

48. MOGGI, E. A category-theoretic account of program modules. Math. Structures Comput. SCZ.

1, 1 (1991), 103-139.

49. MOGGI, E. Computational lambda calculus and monads. In Proceedings of the IEEE Sympo-

szzLm on Logic in Computer Sc~ence (1989), 14–23.

50. OHORI, A. A simple semantics for ML polymorphism. In Functional Programming and

Computer Architecture, 1989, 281-292.

51. PLOTKIN, G. D. Call-by-name, call-by-value and the lambda calculus. Theor. Comput. SCL. 1

(1975), 125-159.

52. PLOTKIN, G. D. LCF considered as a programming language. Theor. Comput. Set. 5 (1977),

223-255.

53. REYNOLDS, J. C. Towards a theory of type structure. In Paris Colloqwm on Programming,

LNCS 19. Springer, Berlin, 1974, 408-425.

54. REYNOLDS, J. C. The essence of Algol. In Algorithnuc Languages, de Bakker and van Vliet,

Eds. IFIP, North-Holland, Amsterdam, 1981, 345-372.

55. REYNOLD, J. C. Types, abstraction, and parametric polymorphism. In Information Process-

ing ’83, North-Holland, Amsterdam, 1983, 5 13–523.

56, REYNOLDS, J. C. Polymorphism is not set-theoretic. In Proceedings of the International

Symposium cm Semantics of Data Types (Sophia-Antirolis, France), LNCS 173, Springer,

Berlin, 1984, 145-156.

57. SCOTT, D. S. Relating theories of the lambda calculus. In To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980, 403-450.

58. SEELY, R. A. G. Locally cartesian closed categories and type theory. Math. Proc. Carob.

Phil. Sot. 95 (1984), 33-48.

59. SEELY, R. A. G. Categorical semantics for higher-order polymorphic lambda calculus. J.

Symbolic Logic 52 (1987), 969-989.

60. STATMAN, R. Logical relations and the typed lambda calculus. Znf. CWntrol 65 (1985), 85–97.

61. STOUGHTON, A. Fully Abstract Models of Programming Languages. Pitman, London, and

WiIey, New York, 1988.

ACM TransactIons on Programming Languages and Systems, Vol. 15, No 2, Aprd 1993.

252 . R Harper and J, C. Mitchell

62. TROELSTRA, M. Mathematical investigation of intuitiomstic arithmetic and analysis, LNM

.?44, Springer, Berlin, 1973,

63 TOFTE, M. Operational semantics and polymorphic type inference, Ph.D. dissertation, Edin-

burgh Univ., 1988. Available as Edinburgh Univ. Laboratory for Foundations of Computer

Science Tech Rep. ECS-LFCS-88-54

64. WmvD, M. A types-as-sets semantics for Milner-style polymorphism. In I+oceechngs of the

llth ACM Symposium on Principles of Programming Languages (Jan 1984), 158-164.

Received May 1990; revised February 1992; accepted March 1992

ACM Transa.tmns on Programming Languages and Systems, Vol. 15, No. 2, April 1993,

