
 

 

CHAPTER 3  

ADAPTIVE RESONANCE THEORY NETWORKS 

Back propagation network is very powerful in the sense that it can simulate any 

continuous function given a certain number of hidden neurons and a certain forms of 

activation functions as demonstrated in 2.2.  But training a back propagation network is quite 

time consuming.  It takes thousands of epochs for the network to reach the equilibrium and it 

is not guaranteed that it can always land at the global minimum.  Once a back propagation is 

trained, the number of hidden neurons and the weights are fixed.  The network cannot learn 

from new patterns unless the network is re-trained from scratch.  Thus we consider the back 

propagation networks don’t have plasticity.  Assuming that the number of hidden neurons 

can be kept constant, the plasticity problem can be solved by retraining the network on the 

new patterns using on-line learning rule.  However it will cause the network to forget about 

old knowledge rapidly.  We say that such algorithm is not stable.  The contradiction between 

plasticity and stability and phenomenon is called plasticity/stability dilemma  [17]. 

Adaptive Resonance Theory (ART) is a new type of neural network.  It is designed by 

Grossberg in 1976  [25] to solve plasticity /stability dilemma.  The first version of ART, 

ART-1, proposed by Carpenter and Grossberg in 1987, is used to cluster binary data.  Since 

then several variations of ART have been developed.  The most important ones are: ART-2 

 [8], an extension of ART-1, used to cluster analog data, ARTMAP  [10], a supervised 

learning mechanism for binary data, and Fuzzy ARTMAP  [13], a supervised learning 

algorithm for analog data.  Many researchers around the world have proposed other types of 



 

 

ART networks.  Among them are Adaptive Hamming Net (AHN)  [28], Gaussian ART(GA) 

 [49], simplified Fuzzy ARTMAP (SFAM)  [29], simplified ART (SART)  [1] [3], and 

relatively new µ ARTMAP  [23].  The contribution of AHN is that it realized the inefficiency 

in ART algorithm and improved it by converting the searching problem to an optimization 

problem.  Gaussian ART (GA)  [49] introduces Gaussian mixture model into ART.  SFAM is 

essentially sequential counterpart of parallel Fuzzy ARTMAP.  SART represents a group of 

ART which can be implemented optimally.  µ ARTMAP  [23] was designed to resolve the 

category proliferation problem encountered in Fuzzy ARTMAP.  In the following sections 

we will briefly describe some popular ART networks.  A list of notations used through out 

the explanations follows: 

x : 1 2( , ,..., )T
Dx x x=x , a pattern  

X : set of patterns or sample, ∈x X  

D: number of features (dimension of the feature space) 

C: number of output nodes 

J: index of clusters (output nodes) 

k: index of classes (categories) index 

K: number of categories (classes) 

β : learning rate ( 1β < ) 

ρ : vigilance 

0R : radius of initial sphere of  a cluster 

m: mahalanobis distance ( 1( ) ( )Tm −= − −x w S x w )   

W: collection of templates of output node, 1 2{ , ,..., }C=W w w w   



 

 

N: collection of output node sizes 1 2{ , ,..., }CN N N N=  

L: collection of output nodes labels 1 2{ , ,..., }CL L L L=  

ω : collection of categories { }1 2, ,..., Kω ω ω ω=  

kω : the k-th class, k = 1,2,…,K 

(:, )jw : sample mean (template) of j-th output node 

(:,:, )jS : covariance matrix of j-th output node 

(:,:, )jQ : inverse covariance matrix of (:,:, )jS  

3.1 ART-1 

ART-1 is the first version of ART-based networks proposed by Carpenter and 

Grossberg [7].  The network was intended for unsupervised clustering of binary data.  It has 

two major subsystems: attentional subsystem and orienting subsystem.  The attentional 

subsystem is a one layer neural network.  It has D input neurons to learn D -dimensional data 

and C output neurons to map C maximum clusters.  Initially all output neurons are 

uncommitted1.  Once an output neuron learned from a pattern, it becomes committed.  The 

activation function is computed at all committed output neurons.  The input and output is 

connected by both top-down and bottom-up weights.  Baraldi & Parmiggiani have proved 

mathematically that the bottom-up and top-down attentional module is equivalent to an 

attentional system with only forward connections  [1].  Baraldi and Alpaydin generalize this 

result to all ART-1 based networks  [2] by stating : “the attentional module of all ART 1 

                                                 
1 Uncommitted output nodes are “space holders” for the future output nodes, which is necessary in 

hardware implementation (hardware doesn’t use dynamic structures as software) 



 

 

based systems is functionally equivalent to a feed-forward network featuring no top-down 

connections.  The architecture of simplified ART is shown in Figure  3-1. 
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Figure  3-1: Architecture of a simplified ART. 

The weight vectors are initialized to 1, for instance, 1 21, 1,..., 1j j jDw w w= = = , 

1 j C≤ ≤ .  The orienting subsystem is a qualifier, where the match function of the candidate 

elected by the attentional system is compared against the vigilance. ρ .  It uses the winner-

take-all learning strategy.  If the condition satisfied, the pattern will be learned by the 

winning node, otherwise the activation function for the candidate will be set to 0, and a new 

candidate is elected and tested.  The searching procedure keeps on going until either a 

candidate meets the vigilance constraint or no more candidates are left.  If none of the output 

nodes can encode the pattern, a new node is committed to the pattern. 

Our interpretation of simplified sequential implementation of parallel counterpart of 

ART-1 is shown in Figure  3-2. 



 

 

The goal of the network training is to find a set of templates, which best represent the 

underlying structure of the samples.  Suppose the set of templates { }1 2, ,..., CW = w w w  and 

the number of patterns from X associated with each template 1 2{ , ,..., }CN N N N= .  It is 

important to note that the number of output nodes, sets W and N are growing dynamically.  

The algorithm of ART-1 follows: The three functions, T (), M () and U (), used in the 

algorithm shown in Figure  3-2 are defined as follows: 

 
C= 0;                                                 Initialize the number of current templates 
W = {ones(D), ones(D),…ones(D)}    Initialize set of templates 
while (X not empty)                      
Learning loop 
{   
     get x;                                              Get a pattern from X 

new = true;                                       Set flag “new node needed” 
loop j = 1,C                                     Compute activation value for all templates 

( , )j jt T= x w ;            
     loop  i = 1,C                                  Search for resonance 
    {                                  

arg max j
j C

J T
≤

=
 
                      Find template with highest activation value 

if ( , )JM ρ>x w                When resonance occurs 
{                                                                                                                           

: ( , )J JU=w x w ;       Update the template 
new = false;               No new node needed 
break;                         Stop the search for the resonant node 

        }                   
       else                                 If resonance doesn’t occur, 

       0JT =                                     Reset Jw  
       }                                                   Continue search for resonant node 
       NEWNODE(new);                       Create new node if needed 
}                                                      End of learning loop    
 

Figure  3-2: Clustering algorithm of sequential implementation of ART-1. 



 

 

NEWNODE(new) in Figure  3-2 is a macro routine that allocate a new node (template) 

to the network.  It is shown in Figure  3-3. 

 
if new == true  
{  
         : 1C C= +                            Increment current number of templates  

     :C =w x                              The new template is initially equal to x 
     : CW W= ⊕ w                      Add new template to the set W 

} 
 

Figure  3-3: Macro routine of NEWNODE() in ART-1. 

( , )T x w  is called the choice function  [7] or activation function, which is used to 

measure the degree of the resemblance of x  with jw , 

 ( , ) j
j

j

T
α

∩
=

+

x w
x w

w
, (3.1) 

where α  is a choice parameter, 0α > . 

( , )jM x w  is called the match function, which is used to qualify how good is the 

likeness of wj  to x. 

 ( , ) j
jM

∩
=

x w
x w

x
, (3.2) 

The function is used in conjunction with the vigilance parameter ( ]0,1ρ ∈ , where 

( , )jM ρ>x w  means a good match (resonance).  The vigilance is the most important 

network parameter that determines its resolution: larger vigilance value normally yields 

larger number of output nodes and good precision. 



 

 

( , )jU x w  is called the update function, which is used to update a template after it 

resonances with a pattern: 

 ( , ) (1 ) ( )j j jU β β= − + ∩x w w x w  (3.3) 

where β  is learning rate, 0 1β< ≤ .  Higher values of β result in faster learning.  It is called 

the fast learning in ART when 1β = . 

The operator ∩  in equations (3.1) through (3.3) is bitwise AND operator, such that 

( )1 1 2 2AND , AND ,..., ANDC Ca b a b a b∩ =a b , and a  is the number of ones in vector a , 

1

D

i
i

a a
=

=∑ . 

3.2 Fuzzy ART 

Later, Carpenter, Grossberg et al  [11] extended the capability of ART-1 to clustering 

of analog patterns.  Fuzzy ART dynamics are described in terms of fuzzy set-theory 

operations  [13] [31] [51], for instance, the bitwise AND operator ∩  in ART-1 is replaced by 

the fuzzy AND operator ∧ : 1 1 2 2min min min( ( , ), ( , ),..., ( , ))D Da b a b a b∧ =a b , and norm 

operator .  is defined by 
1

D

i
i

a
=

=∑a .  Therefore, Fuzzy ART works with both binary and 

analog patterns.  Fuzzy ART requires input pattern to be normalized to prevent category 

proliferation.  The normalization is done by using complement coding, which is 

( ) 1 2 1 2, ( , ,..., ,1 ,1 ,...,1 )c
D Dx x x x x x= = − − −x x x .  It can be easily proven that x D≡ .  The 

general structure of the fuzzy ART-1 is essentially the same as ART-1. 



 

 

3.3 ARTMAP Networks 

ART and Fuzzy ART are unsupervised clustering methods.  ARTMAP  [10] on the other 

hand performs incremental supervised leaning of labeled patterns.  ARTMAP contains a pair 

of ART modules, aART  and bART .  Patterns (without labels) are sent to aART , and their 

labels are sent to bART .  aART  and bART  are linked by an associative learning network and 

an internal controller that ensures system to operate in real time  [13].  If a prediction made by 

aART  disconfirmed by bART , a mechanism called match tracking will be triggered.  It 

increases the vigilance at aART , which leads to the selection of new candidate.  The 

algorithm of sequential version of ARTMAP is given in Figure  3-4 - Figure  3-5.  Comparing 

with the algorithms in Figure  3-2, algorithm in Figure  3-4 has one extra loop which checks if 

the label of the pattern matches with the label of the template.  If labels match, the algorithm 

proceeds as that in Figure  3-2.  If label doesn’t match, the vigilance is boosted to activation 

value of current candidate plus a small positive number, and the current winning node is 

suppressed.  The macro routine of NEWNODE (new) used to allocate a new node (template) 

to the network in Figure  3-5 is basically the same as in Figure  3-2 except that the label 

information is stored in Figure  3-5. 

3.4 Geometric Representation of Fuzzy ART with Complement 
Coding 

Fuzzy ARTMAP use hyper rectangles to represent category weights in a supervised 

learning paradigm  [13].  The same geometrical representation can be found in the nested 

generalized exemplar (NGE) system  [35] [37] and the fuzzy min-max classifier (FMMC) 

system  [41]. 



 

 

 
ω  = {};                                                  Initialize set of classes (categories) 
L = {};                                                     Initialize the map (set of labels) 
W = {};                                                  Initialize set of templates 
N = {};                                                   Initialize the cluster sizes 
C = 0;                                                       Initialize the current number of templates 
while (X not empty)   
Learning loop            
{   
      get x;                                                 Get a labeled pattern from X 

 new = true;                                        Set flag “new node needed” 
 if ( ( )label ω∉x )                                If the class hasn’t been seen so far 
      : ( );labelω ω= ⊕ x                        Add new class to ω  
else  
{  

loop j = 1,C                                  Compute activation value for all templates 
      ( , )j jt T= x w ;            
loop  j = 1,C                                  Search for resonance 
{               

argmax ;jj C
J T

≤
=                           Find template with highest activation value 

if ( ( ) ( )L J label= x )                If the label of the winner match 
{                            

if ( ( , )JM ρ>x w                 And the resonance occurs 
{  
     : ( , )J JU=w x w ;             Update the template 

new = false;                  No new node needed 
break;                           Stop the search for the resonant node 

        }                                         
       else                                    If  no match 

      0JT = ;                           Reset template J 
          }                                           If label or distance don't match 
      else 
       { 
               0JT = ;                            Reset its activation value, so J will not be elected 
               JTρ ε= + ;                     Match tracking triggered 

              }                                             Continue search for resonant node 
  }   

       NEWNODE(new);                        Create new node if needed 
} 

Figure  3-4: Clustering algorithm of sequential implementation of ARTMAP. 



 

 

 
if new = true  
{  
         : 1C C= +                                   Increment current number of templates  
         : 1C CN N= ⊕ ;                         The new cluster has one sample 

      :C =w x                                   The new template is initially equal to x 
      : CW W= ⊕ w                         Add new template to the set W 
      : ( )L L label= ⊕ x ……           The new template has the same label as the pattern  

} 
 

Figure  3-5: Marco routine of NEWNODE () in ARTMAP 

To simplify things, let us suppose that we are dealing with two-dimensional 

sample X . x  is any pattern belongs to X , 1 2( , )x x=x .  After complement coding, the pattern 

becomes: 

 1 2 1 2( , ) ( , ,1 ,1 )c x x x x= = − −I x x . (3.4) 

In the same way, a template j is coded as:  

 ( , )c
j j j=w u v . (3.5) 

The geometric meaning of the template can be understood as a rectangle jR , where ju  and 

jv  are two diagonal corners.  

When an output neuron J is first committed with a pattern ( )ix , the template J is 

( , )c
J i i=w x x , which is a point in feature space as seen in Figure  3-6. 

When the template J is chosen again by pattern ( )kx , suppose fast learning is used, the 

template J is updated by: 



 

 

 

( )
( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ), ( )

( ), ( )

,

k i k c i c
J

k i k i c

c
j j

= ∧ ∧

= ∧ ∨

=

w x x x x

x x x x

u v

. (3.6) 

And, it grows into a rectangle as shown in Figure  3-7. 

 

0J i iR = − =x x

 

Figure  3-6: Template J is encoded with one pattern. 

( ) ( )( )k i∧x x

( ) ( )( )k i∨x x

JR

 

Figure  3-7: Template J is encoded with two patterns. 



 

 

From Figure  3-7, we observe that JR  grows with the learning process.  It is the 

smallest rectangle that covers all the patterns it has learned.  This property demonstrates that 

ART inherently is stable, in other words the old knowledge will always be retained. 

In general, if x  has dimension D, the hyper rectangle jR  includes the two vertices 

j∧ x  and j∨ x  , where the i-th component of each vector is defined by the equations  [11]: 

 ( ) { }min :j ii
x has been coded by category j∧ =x x  (3.7) 

 ( ) { }max :j ii
x has been coded by category j∨ =x x  (3.8) 

and the weight jw  is given by: 

 ( )( ),
c

j j j= ∧ ∨w x x  (3.9) 

3.5 Gaussian ARTMAP 

Williamson has recognized two weaknesses of the Fuzzy ARTMAP  [49]: sensitivity 

to noise, and inefficiency representation of fuzzy categories.  To solve the problem, 

Williamson incorporated Gaussian distribution into choice, match and classification function.  

The geometrical representation of category changes from hyper rectangles to hyper diagonal 

ellipsoids.  The benefit of this innovation is that choice and match functions increase 

monotonically toward the center of a cluster, which therefore effectively prevents the 

proliferation of clusters caused by noise  [49].  In addition, the Gaussian distributions are the 

most common distributions in nature.  They have especially useful generalization properties 

in high dimensional spaces  [17] [33] [34] [49].  This new network is called Gaussian 

ARTMAP (GA).  One limitation of GA is that it uses independent Gaussian distributions.  



 

 

Thus, GA needs more diagonal ellipsoids to cover the same amount of data points than using 

general ellipsoids, which is illustrated in Figure  3-8. 

 

Figure  3-8:  To cover the same set of points, fewer ellipsoids are required by using general 
ellipsoids as oppose to the diagonal ellipsoids. 

3.5.1 Choice Function 

Each GA output node is represented by its sample mean, standard deviation along 

each dimension, and the number of patterns it encloses.  We have known from Bayes' 

theorem that the posterior probability of cluster j given patter x is: 

 ( | ) ( )( | )
( )

p j P jP j
p

= xx
x

. (3.10) 

Since the clusters are defined by separable Gaussian distribution, the conditional 

probability density of x  given cluster j is: 

 

2

1

1
2

2

1

1( | )
(2 )

D
ji i

jii

w x

D
D

ji
i

p j e
σ

π σ

=

  − −        

=

∑
=

∏
x . (3.11) 



 

 

Assume there are C clusters, the prior probability of cluster j is the ratio of patterns it 

encompasses to the total number of patterns, which is 

 

1

( ) j
m

j
j

N
P j

N
=

=
∑

. (3.12) 

The choice function of a template is proportional to the logarithm of its posterior probability, 

which is 

 

( )( )
( )

2

2

1 1

( ) log 2 ( | ) ( )

1 log log ( )
2

D
j

DD
ji i

ji
i iji

T p j P j

w x
P j

π

σ
σ= =

=

 −  = − − +       
∑ ∏

x x

. (3.13) 

Since the denominator of (3.10), ( )p x , is the same across all the clusters, it is omitted, so is 

the dimensional scaling factor, ( ) 22 Dπ .  The cluster with the maximum choice function is 

selected as the candidate. 

 
1

arg max( ( ))j
j m

J T
≤ ≤

= x . (3.14) 

3.5.2 Match Function 

The match function of the candidate is  

 

( )

2

1

1

1( , )
2

( ) log log ( )

D
i Ji

i Ji

D

Ji
i

x wM J

T P J

σ

σ

=

=

 −= −  
 

 = + − 
 

∑

∏

x

x

. (3.15) 

As seen, it is equivalent to the Mahalanobis distance from x to the candidate template J.  

Resonance happens when ( , )M J ρ>x . 



 

 

3.5.3 Update Function 

When template J qualifies to learn from a pattern, it updates the following three 

parameters: 

 
2 2

: 1;
: (1 ) ; 1, 2,...,

: (1 ) ( ) ;

J J

Ji J Ji J i

Ji J Ji J Ji i

N N
w w x i D

w x

β β

σ β σ β

= +
= − + =

= − + −

 (3.16) 

The learning rate βJ changes with the cluster size NJ, i.e. 1/J JNβ = . 

3.5.4 Classification 

After training GA network, the feature space is divided into C hyper ellipsoids, whose 

principal axes are parallel with coordinate axes.  Each class maps to one or more such 

ellipsoids.  Essentially each of these classes is equivalent to an independent Gaussian mixture 

model.  Therefore, the posterior probability of class kc  given sample x can be expressed as: 

 ( ) ( )
, ( ) , ( )

( | ) ( ) | exp ( , , )
k k

k j j
j L j j L j

P P L j T
ω ω

ω
= =

= ∑ ∑x x x w σ∼ . (3.17) 

Consequently, the maximum likelihood estimate of the class of an unknown (unlabeled) 

sample y will be given as: 

 ( )arg max ( | )
k

kclass P
ω

ω= y  (3.18) 

Williamson has shown  [49] in several benchmarks that the Gaussian ARTMAP has better 

performance than fuzzy ARTMAP in terms of the hit rate and the number of required output 

nodes. 



 

 

3.6 Adaptive Hamming Net 

As we recall in ART models, a candidate elected according to the maximum choice 

function, needs further to go through matching test, to decide if it is a winner.  In the worst 

case, all the committed output neurons have to be searched.  As we can see the searching 

procedure is sequential operations embedded in parallel architecture, which is bottleneck of 

the algorithm and makes the advantage of parallel architecture can’t be fully realized.  

Adaptive Hamming net, proposed by Cheng-An Hung and Sheng-Fuu Lin  [28], was designed 

to solve the problem.   

The architecture of an adaptive Hamming net us illustrated in Figure  3-9.  An 

adaptive Hamming net is a two-layer neural network.  The number of hidden neurons is equal 

to the number of output neurons.  The input layer is fully connected with the hidden layer, 

while hidden layer and the output layer is connected through single bottom-up weight from 

hidden neuron j to output neuron j.  The hidden layer is implemented as a matching score net 

and the output layer is implemented as MAXNET.  In the layer of matching score net, all the 

prototypes which are similar enough to the input pattern are activated.  In MAXNET, the 

outputs of activated neurons are calculated and the prototype of the largest choice function is 

selected as the winner.  We observe from here that Adaptive Hamming net essentially 

inverses the order of operations of choice and match function as opposed to that of ART.  

This change effectively converts the problem of searching for the winner to an optimization 

problem. 

3.6.1 Initialization of Network 

The weights of input-to-hidden layer are initialized to 1,  



 

 

 1 2 ... 1, 1,...,j j jDw w w j C= = = = , (3.19) 

and the weights of hidden-to-output layers are initialized by: 

 1
1... ...C jw w w

Dα
< < < < <

+
, (3.20) 

which makes sure that a new category is chosen in the order of 1, 2 ,...,j C= . 

y
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1

D

i
i

xθ ρ
=

=∑

 
Figure  3-9: Architecture of an adaptive Hamming net. 

3.6.2 Match Score Net 

Activation function at the hidden neuron j is defined by: 

 (1)

1

D

j ji i
i

a w x
=

=∑ . (3.21) 

A step function (piecewise linear function), 



 

 

 
(1)

(1) (1)
(1) (1)

0
( ) j

j j
j j

if a
y f a

a if a
θ
θ

 <= =  >
 (3.22) 

was used to select a set of prototypes.  The prototypes, whose activation functions are larger 

than threshold θ , will be activated, otherwise will be suppressed.  One important feature of 

adaptive Hamming net is that the threshold θ  is a function of input pattern, 

 
1

D

i
i

xθ ρ
=

=∑ , (3.23) 

where ρ  is the vigilance, 0 1ρ≤ ≤ .  After substituting (3.23) and (3.21) into (3.22), the 

condition for an output neuron to be activated can be explicitly expressed as:  

 1

1

D

ji i
i

D

i
i

w x

x
ρ=

=

≥
∑

∑
. (3.24) 

Equation (3.24) is similar to the match function (3.2) in ART-1. 

3.6.3 MAXNET 

The output function at neuron j is defined as: 

 (2) (1)
j j jy w y= . (3.25) 

The winning neuron is the one which has the largest output function: 

 (2) (1)

1 1

arg max arg maxj j j
j C j C

J y w y
≤ ≤ ≤ ≤

= = . (3.26) 

After we plug (3.22) and (3.25) into (3.26), the winner node is found by: 



 

 

 
1 1

1

1

arg max

arg max

D

j ji i
j C i

D

ji i
i

j C

J w w x

w x

Dα ε
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∑

∑
, (3.27) 

where ε  is a small positive number which makes the condition in (3.20) satisfied. 

Eqn. (3.27) is similar to the choice function in ART-1 (3.1). 

3.6.4 Fast Learning 

For fast-learning, the learning rule for the input-to-hidden weights is: 

 :Ji Ji iw w x= , (3.28) 

while for the hidden-to-output weights, the learning rule follows: 

 (1)

1
J

J

w
yα

=
+

 (3.29) 

3.7 SFAM 

SFAM stands for simplified Fuzzy ARTMAP proposed by Kasuba  [29] in 1993, It is 

equivalent to the sequential implementation of ARTMAP. 

3.8 EART, S-Fuzzy ART and SART 

As we recall that the AHN converts the maximization problem of ART to the 

optimization implementation  [28].  It characterizes no “mismatch reset condition and repeat 

search process.”  [3].  Andrew Baraldi and Ethem Alpaydin  [3] name this type of 

implementation scheme computationally efficient ART or short for EART.  There are two 

versions of EART, EART-1 and EART-2, based on whether match function increases 

monotonically with activation function.  



 

 

The EART-1 is equivalent to the sequential version of the parallel AHN processing 

scheme , where its activation function doesn’t increase with its match function . 

In case of activation function increasing with the match function, if the match 

function corresponding to the largest activation doesn’t satisfy resonance condition, then the 

other activations will not pass resonance test either.  Thus only the output node of the largest 

activation needs to be tested against the resonance condition and no search process is needed.  

If the resonance condition is satisfied, learning will happen; otherwise a new template will be 

created. This implementation scheme is called EART-2  [3]. 

In ART-1 based clustering networks, activation function measures the closeness of a 

pattern to a template while the match function measures the closeness of a template to a 

pattern. ( , ) ( , )j jT T≠x w w x  and ( , ) ( , )j jM M≠x w w x .  Andrew Baraldi and Ethem 

Alpaydin argue that  [3] “ART 1-based clustering networks employ an inherently 

nonsymmetrical architecture to compute an intrinsically symmetrical degree of match”.  They 

proposed symmetric Fuzzy ART (S-Fuzzy ART) which adopts symmetric activation and match 

function  [3], such that ( , ) ( , )j jT T=x w w x  and ( , ) ( , )j jT M=x w x w .  The two instances 

of the symmetric activation and match function are [3]:  

 2
1( , ) ( , )

1
j j

j

T M= =
+ −

x w x w
x w

 (3.30) 

and 
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= =

= =
∑

∑ ∑
x w x w  (3.31) 



 

 

S-Fuzzy ART can be implemented using scheme of EART-2.  It has shown that S-

Fuzzy ART is superior to Fuzzy ART in terms of clustering accuracy and robustness with 

respect to changes in the order of presentation of the input data  [3]. 

After S-Fuzzy ART met its original goal, Andrew Baraldi and Ethem Alpaydin 

proposed a new group of ART networks called simplified ART (SART)  [3], which is a 

generalization of S-Fuzzy ART and can be implemented by using EART schemes.  GART 

and S-Fuzzy ART are two examples of SART. 


