Files, scripts, and analyses used for Kessenich et al. (2014). J. Phycol. 50(6):977–983.
Perl Python Shell
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.

##Kessenich et al. 2014. J Phycol. 50(6): 977–983

Identification of allelic variation

Assembly and Annotation

Trim reads with SeqTK:

seqtk trimfq -b 12 -e 6

Assemble trimmed reads with Trinity: --seqType fq --left <Trimmed_R1.fq> --right <Trimmed_R2.fq> --CPU <n-procs> --JM 768G > trinity.log

BLASTX assembled reads for translation and annotation:

blastx -query <trinity.fasta> -db <path-to-db/db> -outfmt 6 -num_threads <n-procs> -max_target_seqs 1 >> **species_hits.blastx**

Use accession numbers or GI's from species_hits.blastx to retrieve fasta files (species_hits.fasta) of the top hits.

Ensure Genewise is installed and is in your $PATH. Run to translate contigs assembled by Trinity (trinity.fasta):

./ <trinity.fasta> <species_hits.fasta> <species_hits.blastx>  <output_name>

Output: output_name.TRANS.FNA and output_name.TRANS.FAA

It is important to remove redundant sequences before proceeding. The following scripts remove redundant sequences and identify sequences with spurious non-ATGCN characters that are sometimes accidentally introduced by

Note: 'NR' added to output_name to indicate that the ouput contains non-redundant sequences.

./ <output_name.TRANS.FNA> | ./ /dev/stdin > temp; mv temp NR_output_name.TRANS.FNA

###Read Mapping and SNP calling Reads can be mapped to the assembly using either bowtie directly or by running bowtie through the Trinity package.

path-to-trinity-package/ --left <Trimmed_R1.fq> --right <Trimmed_R2.fq> --seqType fq --target <NR_output_name.TRANS.FNA> --aligner bowtie --p <n-procs>

Make sure SAMtools is installed.

Run the following command on bowtie_out.coordSorted.bam, which is located in the bowtie_out folder:

samtools mpileup -uf <NR_output_name.TRANS.FNA>  <bowtie_out.coordSorted.bam> | bcftools view -vcg > out_name.vcf

out_name.vcf contains every variant site, including the depth at that locus. The following command will scan the VCF file for loci with >= 20 depth and Phred >= 20: varFilter -d 20 <out_name.vcf> | awk '$6>=20' > 20.20.out_name.vcf

The following command returns the number of contigs >= 1 variant site:

cut -f 1 <20.20.out_name.vcf> | sort -u | wc -l

THE following command returns the total number of variant sites called at that depth/Phred cutoff:

cut -f 1 <20.20.out_name.vcf> | wc -l

Run the following commands to get the number of mistmatches per contig. These values can then be summed and averaged to get global mismatch densities:

samtools idxstats <bowtie_out.coordSorted.bam> >> idxstats.out
./ <20.20.vcf> <idxstats.out> 

NOTE: if you want depth/Phred values that are not 20/20 then your naming scheme should reflect that

###MCL ortholog clustering The following scripts require unique FASTA headers. Currently headers read ">compXXXXX_cX_seqX" Run the following to assign unique FASTA headers for each species, where NEWNAME is a unique species identifier:

sed -i 's/comp/NEWNAME_/g' NR_out_name.FNA

Now all "compXXXX_cX_seqX" have become "NEWNAME_XXXX_cX_seqX".

Concatenate all individual amino acid sequence files into a single file:

cat *NR_*.AA  > all_AA.faa

Make a BLASTP database:

makeblastdb -in all_AA.faa -dbtype prot

Run all-versus-all BLASTP with tabular output:

blastp -query <all_AA.faa> -db <all_AA.faa> -outfmt 6 -num_threads <n-procs> -out

Perform MCL custering

./ 2.3

Gene families are ouput into out.seq.mci.I##.