Package 'gsplom'

April 8, 2014

```
Type Package
Title Glyph Scatterplot Matrix (Glyph SPLOM)
Version 0.99.0
Author Andrew D. Yates
Maintainer Andrew D. Yates <yates.115@osu.edu>
Description Glyph SPLOM is a data visualization and exploration tool like an enhanced correla-
    tion heatmap that can be used to infer directed networks from unordered, numeric data. It com-
    bines a non-linear measure of dependency strength, distance correlation, and a four-quadrant de-
    pendency class to quantify dependencies in an all-pairs dependency matrix. gsplom pro-
    vides tools to efficiently compute, visualize, cluster, and analyze this matrix.
```

License Artistic-2.0
Depends R (>= 2.14.0)
Suggests RUnit, BiocGenerics, fastcluster
URL https://github.com/andrewdyates/gsplom.rpackage
R topics documented:
adaptiveRegress 2
dcorMatrix 2
dcorMatrixNA 3
dcorSingle 4
gsplom 5
logicClassMatrix 6
Index 7
adaptiveRegress High/Low binary partition by adaptive regression.

Description

Sort values from low to high, fit a step-up function, and return a partition. Removes NA values before computation.

Usage

adaptiveRegress(v)

Arguments

$\checkmark \quad$ A numeric vector to quantize.

Value

A list containing two elements:
thresh: high/low threshold value
k: highest rank of low partition

Author(s)

Andrew D. Yates

Examples

```
v <- sample(1:100)
R <- adaptiveRegress(v)
```


dcorMatrix

Description

Efficiently compute an all-pairs-rows distance correlation matrix from a data matrix.

Usage

dcorMatrix(M, verbose = TRUE)

Arguments

M A numeric matrix where rows are variables and columns are samples with no missing values (NA).
verbose Whether to output status information as the result is computed. Default is TRUE.

Value

A numeric matrix where the entry at row- i , column- j is the distance correlation between row- i and row-j in M. Rows and columns are labeled by the row labels of M.

Note

Uses absolute difference (Euclidan Distance in one dimension) as a distance function in the distance correlation computation. Does not support missing values (NA); see dcorMatrixNA.

Author(s)

Andrew D. Yates

Examples

```
## Load data so that samples (countries) are columns and econometric
## variables are rows.
M <- t(LifeCycleSavings)
## Compute all pairs distance correlation between econometric variables.
DCOR <- dcorMatrix(M)
```

$$
\text { dcorMatrixNA } \quad \text { Compute Distance Correlation Matrix with Missing Values in Data. }
$$

Description

A slower method of computing all-pairs-rows distance correlation that excludes samples with at least one missing value in each computation.

Usage

dcorMatrixNA(M, do.rank = FALSE, verbose = TRUE)

Arguments

M	A numeric matrix where rows are variables and columns are samples. May have missing values (NA).
do.rank	Whether to convert values to ranks after removing samples with missing values. Default is FALSE.
verbose	Whether to output status information as the result is computed. Default is TRUE.

Value

A list containing two matrices:
DCOR: A numeric matrix where the entry at row-i, column-j is the distance correlation between row-i and row-j in M after removing samples where there is at least one missing value in either row-i or row-j. If only one or zero samples remain after removing missing values, the entry value is NA. Rows and columns are labeled by the row labels of M.
SIZE: An integer matrix where the entry at row-i, column-j is the number of samples used to compute $\operatorname{DCOR}[i, j]$ after handling missing values.

Note

Uses absolute difference (Euclidan Distance in one dimension) as a distance function in the distance correlation computation. This function is much less efficient than dcorMatrix and should only be used when missing values are in the data.

Author(s)

Andrew D. Yates

Examples

```
## Load data so that samples (countries) are columns and econometric
## variables are rows.
M <- t(LifeCycleSavings)
## Insert a missing value.
M[1,1] <- NA
## Compute all-pairs distance correlation between econometric variables.
Results <- dcorMatrixNA(M)
```

dcorSingle

Single Pair Distance Correlation.

Description

Compute Distance Correlation between two 1-dimensional vectors.

Usage

dcorSingle(x, y)

Arguments

A numeric vector.
$y \quad$ A numeric vector of the same length as x.

Value

Numeric value between 0 and 1 of the distance correlation between x and y . Returns NA if distance correlation is undefined.

Note

Uses absolute difference (Euclidan Distance in one dimension) as a distance function in the distance correlation computation. Does not support missing values; remove samples with at least one missing value from x and y prior to using dcorSingle.

Author(s)

Andrew D. Yates

Examples

```
## Load data so that samples (countries) are columns and econometric
## variables are rows.
M <- t(LifeCycleSavings)
## Compute distance correlation between two econometric variables.
d <- dcorSingle(M[1,], M[2,])
```

gsplom
Glyph SPLOM Workflow Wrapper

Description

Generate a Glyph SPLOM from a data matrix.

Usage

```
gsplom(M, ...)
```


Arguments

M A numeric matrix where rows are variables and columns are samples.
... Special plotting options.

Value

A list of intermediate results and the gsplom plot itself sent to the current open plotting device.

Note

This is a high level function that completes the entire Glyph SPLOM workflow on a data matrix using the recommended default values. See gsplomCore to plot a Glyph SPLOM from a pre-computed all-pairs distance correlation matrix and logical dependency class matrix. Other parameters are related to special Glyph SPLOM options.

Author(s)

Andrew D. Yates

Examples

```
## Not run:
## Load data so that samples (countries) are columns and econometric
## variables are rows.
M <- t(LifeCycleSavings)
pdf("/mypath/gsplom.pdf")
R <- gsplom(M)
dev.off()
## End(Not run)
```

logicClassMatrix Compute Logical Dependency Class Matrix.

Description

Efficiently compute an all-pairs-rows logical dependency class matrix from a data matrix.

Usage

logicClassMatrix(M, thresholds=NULL, intervals=NULL, $z=3$, min.cnt=0, frac.conf=0.2)

Arguments

M A numeric matrix where rows are variables and columns are samples.
thresholds A vector of high/low thresholds corresponding to each row of M. Default is NULL. If NULL, then thresholds are computed automatically using adaptiveRegress.
intervals A vector of uncertainty intervals corresponding to each row of M. Default is NULL. If NULL, then intervals are uniformly set to the 3rd percentile row standard deviation.
z A parameter of how sparse a quadrant must be relative to the margins to be called as empty. Higher z means that a quadrant must be more relatively sparse to be called as sparse. Default is 3 .
min.cnt A parameter to force a quadrant to be called as sparse if a fewer or equal number of samples are in it.
frac.conf A parameter of what fraction of points must be in a quadrant and not in the uncertainty region to not classifiy as logical dependency class NA.

Value

A numeric matrix where the entry at row- i , column- j is an integer enumeration of a logical dependency class between row-i and row-j in M. Rows and columns are labeled by the row labels of M.

Note

Supports missing values. Missing values in either variable per pair are called to be in the uncertainty region and ignored during classification.

Author(s)

Andrew D. Yates

Examples

```
M <- t(LifeCycleSavings)
CLS <- logicClassMatrix(M, intervals=apply(M,1,sd)/2, frac.conf=0.2)
M[1,1] <- NA
CLS.NA <- logicClassMatrix(M, intervals=apply(M,1,function(x)sd(x,na.rm=TRUE))/2, frac.conf=0.2)
```


Index

adaptiveRegress, 2
dcorMatrix, 2
dcorMatrixNA, 3
dcorSingle, 4
gsplom, 5
gsplomCore (gsplom), 5
gsplomPlot (gsplom), 5
logicClassMatrix, 6

