

Microcontrollers

Andrew Sampson
2012-12-13

Introduction

This presentation is a brief overview of
microcontroller software development, with a
focus on the Atmel line of MCUs. I'll cover:

● how development for these devices differs from
traditional desktop PC development

● the rules for our programming contest

I'll wrap up by handing out some development
kits.

Microcontrollers

Microcontrollers (MCUs) are very low-end,
inexpensive CPUs.

● They're used in all kinds of electronics
products, and they're usually used in
unglamorous, low-visibility roles.

● It's big business: wikipedia says that "About
55% of all CPUs sold in the world are 8-bit
microcontrollers and microprocessors."

Microcontrollers

● Trends in MCUs have focused on consolidating more
and more functionality in a single chip.

● While MCUs can't really compare with a desktop in
performance, they do incorporate everything needed to
run a simple program in a single chip:
● CPU
● RAM
● storage
● serial UART
● USB and CAN interfaces
● timers

Microcontrollers

Given the intended role of MCUs, and the fact
that they don't depend on external chips, most
of the pins on MCUs are "general-purpose".
Here, this means that a pin's voltage state (high
or low) can be controlled directly by the
software running on the MCU. This is very
different from how, say, a desktop PC CPU
operates.

What's it like to write software for an
MCU?

We're using an Atmel ATtiny2313
It has 2 kilobytes of (flash) program memory

It has 128 bytes of RAM
It has 128 bytes of EEPROM

What's it like to write software for an
MCU?

Despite these severe limitations, programming the ATtiny2313 isn't
really uncomfortable. You can use C. The biggest differences
between programming this MCU and a desktop system are:

● There's no OS: no file system, no memory protection, etc

● There is a libc, but it's very basic

● malloc() doesn't really make sense here (128 bytes, remember)

● The stack is very short

● There's no FPU

● The ALU has no multiply or divide instructions

● The native integer length is 8 bits

Word length

The Atmel AVRs are 8-bit systems. For
efficiency, you should stick with 8-bit data types
as much as possible. However, the avr-gcc
compiler does a good job of hiding the ugly if
you need to use longer data types.

Learn to love the stdint.h data types, i.e.
uint8_t, int16_t, etc.

Memory

● The AVRs follow the Harvard architecture, with separate
memory spaces for instructions (flash) and data (RAM).

● The instruction memory is much larger than the data
memory for these devices.

● It is preferable that large constants (strings, arrays)
remain in flash, and not be copied to the stack.

● There are functions and macros – “PROGMEM” – for
forcing a constant to remain in flash, and for accessing
such a constant. See the links slide for details.

Pins

For Atmel MCUs, the pins are logically (and
sometimes physically) organized into groups of 8
(called "ports").

Pins

Ports appear in software as special memory locations. Changing the
high/low states of the pins is as simple as assigning a value to the
memory location. Reading the state of the pins is equally simple.

Setting pin 5 on port D high:
PORTD |= (1 << 5);

Setting all pins on port D high:
PORTD = 0b11111111;

Setting pin 5 on port D low:
PORTD &= ~(1 << 5);

Reading all pins on port B:
uint8_t blah = PINB;

Configuring pins

Pins can be either inputs or outputs, but not both at the same time. You
can set the input/output state of a pin by (you guessed it) writing to a
memory location.

Set pin 5 of port D to be an output:
DDRD |= (1 << 5);

Set pin 5 of port D to be an input:
DDRD &= ~(1 << 5);

Set all pins of port B to be outputs:
DDRB = 0b11111111;

Configuring pins

Pins are configured as inputs by default. It's good
practice to configure your pins to known input/output
states at the beginning of your program. Also, because
the pin I/O state is global, you need to manage it carefully
(esp. when it comes to functions).

Workflow: Compiler

The preferred compiler for AVRs is avr-gcc. The input is
your C code and the output is a .hex file, which contains the
compiled firmware.

● Main page:
● http://www.nongnu.org/avr-libc/

● Linux users have it easy:
● sudo apt-get install gcc-avr binutils-avr avr-libc

● Windows users can play too:
● http://winavr.sourceforge.net/

● Mac users might start here:
● http://www.ladyada.net/learn/avr/setup-mac.html

Workflow: Connections

● Remove the MCU from your keypad

● Insert the MCU into the programmer break-out board (note
pin 1!)

● Connect the 6-pin ribbon cable (note pin 1 on each end!)

● Connect the programmer to your computer

Workflow: Flash programmer

The USBtinyISP programmer works with the avrdude firmware
uploader. This software reads in your .hex file and sends it to
the flash programmer.

● Main page:
● http://www.nongnu.org/avrdude/

● Linux users have it easy:
● sudo apt-get install avrdude

● Windows users can play too:
● http://winavr.sourceforge.net/ (avrdude seems to be included)

● Mac users might start here:
● http://www.ladyada.net/learn/avr/setup-mac.html (there's some info

here)

Dev kit

To help get people started in microcontroller
development, I've put together some
development kits. Here's what's included:

● Keypad
● Flash programmer
● “Target” board
● High tech power supply

Dev kit: The keypad

We found a bunch of these keypads in the trash. They've got a
microcontroller, 10 buttons, 10 LEDs, and a serial interface. I've replaced
the microcontrollers with Atmel ATtiny2313s.

http://www.hallresearch.com/page/Products/KP-2B

Dev kit: The programmer

I made a bunch of flash programmers. They're based on the USBtinyISP.
They allow you to write compiled software to the microcontroller.

http://www.ladyada.net/make/usbtinyisp/

Dev kit: The target board

Nathan made a bunch of break-out boards. They connect your MCU to
your flash programmer. Ordinarily, this feature is built in to the board
you're developing for; in the case of the keypads, it is not built in.

Dev kit: High tech power supply

The keypad, in its original application, was powered via one of the data
lines on the serial port. This space-age contraption allows you to power
your keypad without tethering it to a computer.

Warning: Do not plug the high tech power supply into your computer or
something. Doing so will surely create a black hole and destroy the
Earth.

Shopping list

Here's what you need to complete your dev kit:
● USB A to B cable

● This cable connects your programmer board to your
computer.

Image courtesy of http://en.wikipedia.org/wiki/USB

Shopping list

● Chip puller
● This tool aids extracting ICs from their sockets.

Without one, your fingers will slip and you'll bend all
the pins.

Image courtesy of http://tronixstuff.files.wordpress.com/2010/06/

Shopping list

● 9V battery
● You need one of these in order to power your

keypad.

Shopping list

● Optional: A case for your programmer
● The programmer boards are vulnerable to corrosion

from fingerprints and to metal bits shorting the pins on
the bottom. You can buy cases for your programmers
from here:

● http://dangerousprototypes.com/docs/Sick_of_Beige_compatible_cases

http://dangerousprototypes.com/docs/Sick_of_Beige_compatible_cases

Contest rules

● Write an interesting game for your keypad

● Entries must be open-sourced

● Deadline is January 14, 2013

● Submit your entries by forking my project on github and
posting your code there.

● Prizes:
● Everyone who submits an actual entry gets to keep the keypad and

programmer. If you take a development kit today but don't produce
anything by the deadline, I ask that you return the kit.

● Grand prize: [TBD]

● Everyone who submits an actual entry gets to vote for the
winner of the grand prize.

Example code

● I've reverse-engineered the keypad and written a demo
app for it. The demo shows how to write to the LEDs
and read from the switches.

● The example makefile contains examples of how to
invoke gcc-avr and avrdude.

● The C files contain reusable functions for setting the
LEDs and reading the switches.

● The project is hosted on GitHub. See
http://github.com/andrewsampson

● Grab the code like so:
● git clone [fixme]

Things I'm skipping

● Fuses
● The external crystal
● UART
● Timers
● EEPROM

Additional resources
Nathan offers the following additional AVR references.

●
Basic:

●
Bit manipulation: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=37871

●
I/O operations: http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/

●
Storing constants in flash: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=38003

●
Intermediate:

●
Efficient AVR C coding: http://www.atmel.com/Images/doc1497.pdf (syntax differences from GCC)

●
EEPROM: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=38417

●
Timers: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=50106

●
Advanced?:

●
Interrupts: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=89843

●
Inline assembly: http://www.nongnu.org/avr-libc/user-manual/inline_asm.html

●
Multitasking: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=95490

●
Misc/Resources:

●
ATtiny2313/4313 datasheet: http://www.atmel.com/images/doc8246.pdf

●
AVR forum with active community: http://www.avrfreaks.net/index.php?name=PNphpBB2&file=index

●
avr-libc FAQ: http://www.nongnu.org/avr-libc/user-manual/FAQ.html

●
RS232 tranceiver datasheet: http://www.datasheetcatalog.org/datasheet/sipex/SP3232.pdf

●
Tips/gotchyas:

●
Use the smallest-sized data type that you need.

●
Don't change the fuses!

●
When changing fuses, don't change the reset disable fuse or the clock source fuses!

●
If using interrupts understand the concept of "atomicity" and when to use the keyword "volatile".

●
Don't use floating point math!

●
Don't divide!

●
If dividing by a constant, do it by multiplying by its reciprocal (google "binary scaling"--also used for multiplying by non-integer).

●
Need some extra speed? Look up "OSCCAL" in the attiny2313/4313 datasheet.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

