DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Faculty of Engineering and Technology SRM Institute of Science and Technology

MINI PROJECT REPORT

ODD Semester, 2020-2021

Lab code & Sub Name: Analog and Digital Communication & 18ECC205J

:

Year & Semester: 3rd Year & 5th Semester

Project Title: Detection and Identification of frequency(value) in an audio

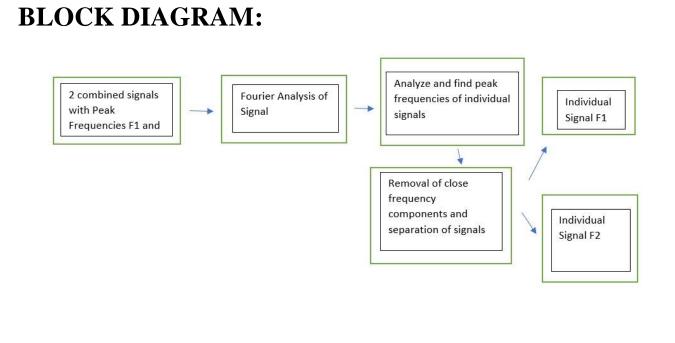
Lab Supervisor : Ms. Diana Emerald Aasha

Team Members (with Reg No.s)

Kenan Varghese – RA1811004010202 Nithiya Nambi S – RA1811004010203 Muralidhar B – RA1811004010206

Reg. No -	RA18110040 10202	RA18110040 10203	RA18110040 10206
Mark split up ↓	10202	10205	10200
Novelty in the project work			
(2 marks)			
Level of understanding of the design formula			
(4 marks)			
Contribution to the project			
(2 Marks)			
Report writing (2 Marks)			
Total (10 Marks)			

OBJECTIVE:


To find the frequency components in a given mixed frequency signal where the mixed signal was recorded by playing 2 tuning forks simultaneously.

ABSTRACT:

This is based on the process of finding Fourier transform of a singular channel signal. The signal is a singular channel wav file that is fed into the program and the audio signal is read and the signal is distinguished and the components separated.

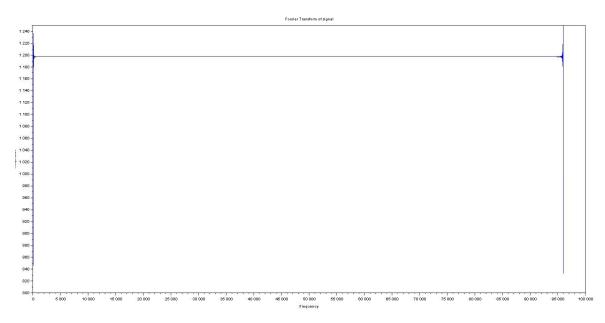
This program finds the frequency components in a given mixed frequency signal. The given code in Sci-Lab runs a given audio file and it identifies the separate frequency components. In the process of execution, it displays the different values of frequency in the audio and displays it in the end. The magnitude of the Fourier transform of the signal is calculated and plotted, after the entire program completes execution the different frequency components are displayed, i.e., the value of the frequency. This is also applicable for singular frequency audios. Hence, through this program you can identify the different frequency components in an audio and find out its respective values.

There can be many advantages of using such a mechanism, the signal can be differentiated and analysed. The signals frequency components can be found and displayed. All the noise can be cleared and a pure tone can be obtained.

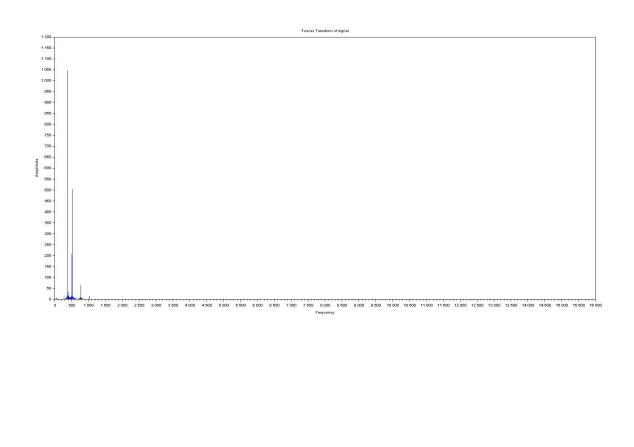
HARDWARE/SOFTWARE REQUIREMENTS:

Sci-Lab Software, Audio File (.wav format)

METHODOLOGY:


We try to detect the individual frequencies of the waves by finding the fast Fourier transform (FFT) of the given audio file. Then, we plot a frequency response graph and find the individual peak frequencies of the given signals, which can be noticed in the graph, with 2 individual peak frequencies shown, which are the peak frequency values of the two tuning forks. Now, these signal frequency values are sorted and values close to each other are removed, thereby allowing us to get a pure signal without noise.

WORKING CODE:


*D:	SP Mini Project.sce 🔣
1	//.This.program.finds.the.frequency.components.in.a.given.mixed.frequency.signal
2	//.Mixed.frequency.signal.was.recorded.by.playing.2.Tunng.forks.simultaneously
3	clc;
1	<u>close;</u>
5	clear;
6	
7	[y,Fs].=.wavread('C:\Users\dhruv\Desktop\DSP.Mini.Project\Mixed512and384.wav'); //read.the.audio.file
3	
9	Y=abs(fft(y)); · · //find-the-fourier-transform
0	
1	1.=.length(Y)/2;
2	f.=.(0:(1-1))*Fs/(2*1); //modify.the.x.axis.to.represent.frequency.instead.of.samples
3	
4	<pre>abs_fft = abs(Y(1:1));</pre>
5	<pre>plot(f,abs_fft); · · · //plot-magnitude-of-fourier-transform</pre>
6	title('Fourier.Transform.of.signal')
7	<pre>xlabel('Frequency')</pre>
8	<pre>ylabel('Amplitude')</pre>
9	
0	<pre>peak = .max(abs_fft); //find the first maxima of the spectrum</pre>
1	<pre>secpeak = max(abs_fft(abs_fft<max(abs_fft))); find="" maxima="" of="" pre="" second="" spectrum<="" the="" ·=""></max(abs_fft)));></pre>
2	<pre>peakfreq =- [f(abs_fft == peak), f(abs_fft == secpeak)];//find the frequency corresponding to the peaks</pre>
3	peakfreq =-gsort (peakfreq) ; .//sort - the - detected - frequencies
4	peakfreq(abs(max(peakfreq)max(peakfreq(peakfreq <max(peakfreq)))).<.10).=.[]; remove.frequencies.that.are.very.close.to.one.anothe<="" td=""></max(peakfreq)))).<.10).=.[];>
5	
6	<pre>disp('Given.signal.has.following.frequencies.(in.Hz):.');</pre>
7	disp(peakfreq); ·//display-the-contained-frequencies
8	

OUTPUT:

Graphical Output for audio file (Freq1.wav):

Graphical Output for audio file (Mixed512and384.wav):

Numerical Output for above audio files respectively:

iala	b 8.0.2 Console
Star	rtup execution:
10	oading initial environment
>	exec('C:\Users\dhruv\DSP Mini Project.sce', -1)
Giv	ven signal has following frequencies (in Hz):
ţ	311.5 384.
>	exec('C:\Users\dhruv\DSP Mini Project.sce', -1)
Giv	ven signal has following frequencies (in Hz):
4	95939.717
	Ĩ.

CONCLUSION:

The frequency components of the given mixed frequency signals were obtained and their graphs were plotted successfully.

References:

https://www.researchgate.net/publication/328041291 A New Frequency Detection Met hod Based on FFT in the Application of SAW Resonator Sensor

Methods	Sampling Frequency	Frequency Deviation	Time	Range
FFT FFT-ZP (16 bit)	60 MHz 60 MHz	9500 Hz 753.14 Hz	0.66 ms 1.08 ms	0-5 MHz 0-5 MHz
FFT-ZP (16 bit) with Noise	60 MHz	925.48 Hz	1.08 ms	0-5 MHz
FFT-ZP (24 bit) with Noise	60 MHz	376 Hz	700 ms	0-5 MHz
Zero Crossing	60 MHz	1500000 Hz	0.02 ms	0-5 MHz
ZC-Linear	60 MHz	1140 Hz	8.2 ms	1-5 MHz
ZC-Linear with Noise	60 MHz	1420 Hz	8.2 ms	1-5 MHz
Searching Algorithm	60 MHz	21830 Hz	1700 ms	1-5 MHz