
FlexNet Embedded
2023.03
License Server Producer Guide

Legal Information

Copyright Notice
Copyright © 2023 Flexera Software

This publication contains proprietary and confidential information and creative works owned by Flexera Software and its licensors, if any. Any
use, copying, publication, distribution, display, modification, or transmission of such publication in whole or in part in any form or by any
means without the prior express written permission of Flexera Software is strictly prohibited. Except where expressly provided by Flexera
Software in writing, possession of this publication shall not be construed to confer any license or rights under any Flexera Software intellectual
property rights, whether by estoppel, implication, or otherwise.

All copies of the technology and related information, if allowed by Flexera Software, must display this notice of copyright and ownership in full.

FlexNet Embedded incorporates software developed by others and redistributed according to license agreements. Copyright notices and
licenses for these external libraries are provided in a supplementary document that accompanies this one.

Intellectual Property
For a list of trademarks and patents that are owned by Flexera Software, see https://www.revenera.com/legal/intellectual-
property.html. All other brand and product names mentioned in Flexera Software products, product documentation, and marketing materials
are the trademarks and registered trademarks of their respective owners.

Restricted Rights Legend
The Software is commercial computer software. If the user or licensee of the Software is an agency, department, or other entity of the United
States Government, the use, duplication, reproduction, release, modification, disclosure, or transfer of the Software, or any related
documentation of any kind, including technical data and manuals, is restricted by a license agreement or by the terms of this Agreement in
accordance with Federal Acquisition Regulation 12.212 for civilian purposes and Defense Federal Acquisition Regulation Supplement
227.7202 for military purposes. The Software was developed fully at private expense. All other use is prohibited.

Book Name: FlexNet Embedded 2023.03 License Server Producer Guide

Part Number: FNE-2023.03-LSG00

Product Release Date: March 2023

https://www.revenera.com/legal/intellectual-property.html
https://www.revenera.com/legal/intellectual-property.html

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 3

Contents

1 Introduction . 11
Local License Servers vs. License Servers Hosted in the Cloud . 11

What’s in this Guide . 12

Product Support Resources . 13

Contact Us . 14

2 Getting Started . 15
About the License Server Software Package . 15

License Server Requirements .15
Downloading the Software Package. .16
License Server Components .16
Additional Components .19

Preparing and Deploying the License Server: Producer Experience . 19

Enabling Secure Anchoring . 21
Requirement. .21
Enable Secure Anchoring .21

Determining Deliverables Needed to Enable Outgoing HTTPS . 21

Determining Administrative Security Policies . 22

Generating the Producer Settings File . 22
Policy Settings Reference .22
Requirements. .22
Generate the Policy Settings File .23

Determining Administration Tools for the Enterprise . 23

Entitling the Enterprise Customer Account . 23

Delivering the License Server . 24

3 Installing and Running the License Server . 27
Installing and Starting the License Server . 27

Contents

4 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Prerequisites .28
Install and Start on Windows. .28
Install and Start on Linux. .35
Setting the Server Time Zone .42
Logging Functionality .42

Editing Local Settings Post-Installation . 43
Post-Installation Configuration on Windows .43
Post-Installation Configuration on Linux .45
Configuring the Cipher Choice Mechanism .52

Understanding Hostids. 53
Hostid Types. .54
Specifying a Server Hostid .54
Retrieving Server Hostids .55

Activating the License Rights for the Server . 56
Using the REST API Option. .56
Using the Administration Tools .57

Granting Client Requests . 57
Basic Capability-Request Processing .57
Usage Capture .58

Upgrading the License Server . 58

Uninstalling the License Server . 59
Uninstall the License Server Service .59
Uninstall the License Server Running in Console Mode .61

4 License Server REST APIs . 63
Accessing the REST APIs . 64

Base URLs .64
Sample cURL Command .65
Managing Large Amounts of Returned JSON Data .66

Writing a REST API Client for a Secured License Server . 66
Using the Base URL .66
Authorizing Access to Secured REST APIs .67
Creating User Accounts .67

APIs for Basic License Server Operations. 68
API Summary .68
Viewing Instance Details .69
Viewing Instance hostids .70
Processing Requests from Clients .72
Sending Requests to the Back Office .72
Activating Licenses on the Server .74
Suspending or Resuming Operations .75
Initiating On-demand Synchronization .75

APIs to Manage Clients. 76
Viewing All Clients .77
Viewing All Current Clients and Their Features .80

Contents

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 5

Retrieving Client Data as NDJSON Objects. .83
Viewing a Specified Client Record .85
Viewing Features for a Specified Client Record .86
Removing a Specified Client .89
Viewing Client Record History for Specified Hostid .90
Viewing Client Record History Including Features for a Specified hostid. .91

APIs to Obtain Feature Information. 93
Viewing All Features .94
Viewing A Summary Of Features. .96
Retrieving Feature Data as NDJSON Objects .98
Viewing Only Active Features . 100
Viewing Features in an Expiration Grace Period . 100
Viewing Number of Features. 102
Viewing Specified Feature. 102
Viewing Feature Usage . 104
Listing Overages . 106

APIs to Manage Named License Pools . 107
API Summary . 108
Uploading the Model Definition . 109
Viewing the Model Definition . 110
Deleting the Model Definition . 111
Viewing License Pools . 112
Viewing a Specified License Pool By ID . 115
JSON Response Details . 116

APIs to Manage Reservations . 117
API Summary . 118
Managing Reservation Groups . 119
Managing a Specific Reservation Group. 122
Managing All Reservations in a Specific Reservation Group . 124
Managing a Specific Reservation in a Reservation Group . 127
Managing a Specific Reservation Entry . 129

APIs to Show Statistics. 130
Viewing Instance Version . 131
Viewing Success of Database Connection . 132

APIs to Manage Instance Configuration . 133
Managing Instance Policies . 134
Viewing Configuration Metadata . 135

APIs to Perform Offline Binary Operations . 137
API Summary . 137
Generating an Offline Activation Request. 138
Generating an Offline Capability Request. 139
Processing an Offline Capability Response . 139
Generating an Offline Sync Message . 141
Processing an Offline Sync Acknowledgment . 141

API to View Binding-Break Status . 142

Contents

6 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

APIs to Manage Administrative Security. 143
APIs to Authorize Access to Secured Endpoints . 143
APIs to Manage User Accounts . 145

API for Enabling JSON Security for the Cloud Monetization API. 152
License Server Administration Security vs JSON Security . 153
HTTPS Protocol Recommended . 154
Implementing JSON Security for the Cloud Monetization API . 154
“/rest_licensing_keys” API Details . 157
Sample Code Implementations for Setting Up JSON Security . 159

Online REST API Reference Documentation Available. 162

Exception Handling. 162
List of Exceptions. 163

5 More About Basic License Server Functionality . 169
Synchronization Operations . 169

Notes about Policy Settings for Synchronization . 170
Online Synchronization to the Back Office . 171
On-Demand Synchronization. 172
Offline Synchronization to the Back Office . 172
Disabling Synchronization to the Back Office. 177
Synchronization From the Back Office . 178
Failover Using Synchronization to FlexNet Embedded . 178

Allocating Licenses Using Named License Pools . 183
Named License Pool Terminology. 184
Introduction to the Model Definition. 184
Model Definition Components. 185
Server Behavior When Distributing Feature Counts to Named License Pools . 195
Server Behavior when Assigning Features to Clients . 198
Named License Pools vs. Reservations . 200
Limitations of Named License Pools. 203

License Reservations . 203
Overview of Reservation Types . 204
Reservation Hierarchy . 206
Managing Reservations. 207
License Allocation on the Server. 211
Processing the Capability Request When Reservations Are Used . 213
Reservation Considerations and Limitations . 216

6 Advanced License Server Features . 217
Producer-defined Hostids . 217

Configuring Support for the Producer-defined Hostid. 218
Providing the Shared Library for Hostid Retrieval . 218
Using the Producer-defined Hostid . 220

Secure Anchoring . 221
Prerequisites . 221

Contents

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 7

Enabling a Secure Profile . 221

Clone Detection Reporting . 221
About the Clone Detection Process . 222
Requirements. 222
Generate the Clone Detection Report in FlexNet Operations . 223
Report Alternatives . 223
Considerations and Limitations . 224

Binding-Break Detection with Grace Period. 224
Enabling the Binding-Break Detection Feature . 226
Providing the Shared Library to Retrieve the Binding Elements . 226
How the Binding-Break Detection Works . 229
Repairing the Broken Binding . 233
Considerations and Limitations . 233

Trusted Storage Backup and Restoration . 233
Performance Implications . 234
Enabling Backups of Trusted Storage . 234
Overview of the Backup Process. 234
Running a Trusted Storage Restoration . 234

Outgoing HTTPS. 235
Default Server Configuration . 236
Enabling Server for HTTPS When Another Certificate Is Used . 236

Incoming HTTPS . 239
Step 1: Obtain Certificate . 240
Step 2: Enable Access to “server” Certificate . 240
Step 3: Define Scope of HTTPS Communications. 242

Proxy Support for Communication with the Back Office . 242
Configuring the License Server for Proxy Support . 243
Obfuscating the Proxy Password . 244

Extended Hostids . 244
Scenario Using Extended Hostids . 245
Enabling Support for Extended Hostids . 245
Setting and Using Extended Hostids . 246

Trusted-Storage Reset . 247
Determining Whether Records Pending Synchronization Exist . 247
Resetting Trusted Storage. 248
Enabling a Forced Trusted-Storage Reset . 249

License Checkout: Support for Special Capability-Request Options . 250
Incremental Capability-Request Processing . 250
Granting All Available Quantity for a Feature . 253
Feature-Selector Filtering . 254
Vendor Dictionary Data . 257
Capability Preview . 257

Usage Capture and Management . 263
Synchronization Required . 263
For More Information. 263

Contents

8 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Administrative Security . 264
Overview: Deploying a License Server with Security Enabled . 264
About Administrative Security . 265
About License Server Administrator Tools . 269
Enabling Administrative Security on a Local License Server . 269

7 Producer Tools . 271
Publisher Identity Utility. 272

Purpose . 272
Usage . 272
Entering Your Identity Data . 274
Updating Your Identity Data . 274

Print Binary Utility . 275
Viewing Contents . 275
Viewing Contents and Validating Signatures . 276
Displaying Binary in Compiler-Readable Format . 276
Conversion to Base 64 Format in FlexNet Embedded . 276
Additional printbin Switches . 277

Identity Update Utility. 277
Usage . 278
Device Hostid Types Used to Restrict Hostid Detection . 279
Example Identity Update . 280

License Conversion Utility . 280

Trial File Utility . 281

Capability Server Utility . 282
Considerations for Using the Utility . 282
Usage . 283
Starting and Stopping the Capability Server Utility . 283
About License Templates . 283
Endpoint for Sending Capability Requests to the Utility . 285

Capability Request Utility . 286

Capability Response Utility . 289

Secure Profile Utility . 291
Viewing Available Security Profiles . 291
Enabling Secure Anchoring . 292

License Server Configuration Utility . 292
Policy Settings Reference . 293
Generating the Policy Settings . 293
Distributing this File. 295
Updating the File After Server Installation . 295

8 Troubleshooting Reference. 297

A Reference: Policy Settings for the License Server . 299

Contents

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 9

B Effects of Special Request Options on Use of Reservations . 315
Scenario Assumptions . 316

Incremental Option Enabled . 316

Partial-Checkout Option Enabled . 318

Both Incremental and Partial-Checkout Options Enabled. 319

C SysV Alternative for Installation on Linux . 323
Files Required for License Server Installation Using SysV . 323

Prepare for Linux Installation . 324

Install and Start as a Linux Service . 325

Install and Start in Console Mode . 326

Edit Local Settings Post-Installation. 326
When Server Runs as a Service . 326
When Server Runs Console Mode . 329

Uninstall the License Server. 329
Uninstall the License Server Service . 329
Uninstall the License Server Running in Console Mode . 330
Manage the License Server Service: Command Summary . 330

D Model Definition Grammar for Named License Pools . 333
Model Definition Grammar and Syntax—EBNF. 333

Parser . 333
Lexer . 335

Use Case Examples and Their Model Definitions for Named License Pools . 336
Background Information for Use Cases . 336
Use Case: Simple Allow List . 337
Use Case: Simple Block List . 338
Use Case: Sharing Counts Between Business Units . 338
Use Case: Assigning Extra Counts To Business Unit . 339
Use Case: Exclusive Use of Feature Counts for Business Unit . 339
Use Case: Exclusive Use of Feature Counts for Business Unit With Exception of Specific Clients 340
Use Case: Exclusive Use of Feature Counts for Business Unit and Specified Clients from other Business Units . . . 341
Use Case: Assigning Features Based on Combined hosttype and hostname Properties . 341
Use Case: Assigning Features Based on Vendor String Property . 342
Use Case: Device-specific Handling—Sharing Feature Counts Based On Hosttype . 344
Use Case: Named License Pool Receiving Entire Remaining Feature Count . 345
Use Case: Using Regular Expression to Allocate License Counts . 345
Use Case: Making Feature Counts Available to Multiple Business Units . 347
Use Case: Letting Server Specify Counts . 348
Use Case: Accumulating Counts from Multiple Named License Pools (“Continue” Action) . 349

Model Definition Examples for Reservations Converted to Named License Pools . 350
Scenario: Counts Reserved By Hostid. 350
Scenario: Server-specified Counts . 350

Contents

10 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

E Logging Functionality on the Local License Server. 353
Logging Style. 353

Custom Log Configurations . 354

Integration of License Server Logging With External Systems . 354
Graylog . 355
Elastic Stack. 355
logz.io . 356
Example Configurations . 356

F Consuming Streaming Content . 365

G Workflow Example for Producer-Defined Binding . 367
Adding Binding. 368
Simulating a Binding Break . 371
Repairing a Binding Break. 371

1

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 11

Introduction

The license server described in this guide provides functionality for serving and monitoring a counted pool of
licenses for intelligent devices or software clients that use code that is license-enabled through either FlexNet
Embedded language-based API implementations or a REST interface called the Cloud Monetization API. The
license server is designed to administer and enforce a pool of licenses within a customer’s enterprise, report
license usage to the back office (FlexNet Operations), and provide served-license status information.

This book provides guidance on how to prepare and deploy the license server to your enterprise customers and
how to manage the license server from both a producer and license-server administrator perspective. (Note that
the FlexNet Embedded License Server Administration Guide provides similar information for the license server
administrator only.)

For information about implementing client code that is licensed through FlexNet Embedded language-based API
calls to the license server, see the FlexNet Embedded Client C SDK User Guide or the FlexNet Embedded client
SDK user guide appropriate for your programming language. For information about client code that is licensed
through REST API calls to the server, see the Cloud Monetization API User Guide.

For more information about using FlexNet Operations, see your FlexNet Operations documentation.

Local License Servers vs. License Servers
Hosted in the Cloud

The license server can be deployed as a local license server at a customer site or as a Cloud Licensing Service
(CLS) instance, hosted in the Revenera Cloud. Both the local license server and the CLS instance provide the same
functionality.

Note that the preparation and deployment instructions in this book focus mainly on the local license server,
basically because the setup and deployment of the CLS instance and some of its administration are performed in
FlexNet Operations. However, this book directs you to the appropriate FlexNet Operations and FlexNet Embedded
documentation for CLS instance information when needed.

Chapter 1 Introduction
What’s in this Guide

12 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Finally, because both license servers use the same REST endpoints to perform administrative operations, license
server administration tools provided by the producer (for example, flexnetlsadmin) can be used to manage
important features, such as named license pools, license reservations, security, and enterprise user accounts, for
both deployment types. This book notes these areas where functionality and procedures apply to both server
types.

For more information about deploying CLS license servers to your customers and administering the license
server, refer to these resources:

• Your Revenera representative for information about purchasing Cloud Licensing Service privileges

• FlexNet Operations Getting Started Guide for Cloud Licensing Service in the FlexNet Operations User Guide

• Managing a CLS Instance and other appropriate chapters in the FlexNet Embedded License Server
Administration Guide

What’s in this Guide
The FlexNet Embedded License Server Producer Guide includes the following chapters:

Table 1-1 • FlexNet Embedded License Server Producer Guide

Topic Content

Introduction Provides an overview of the book and list of conventions used in the book’s
contents.

Getting Started Helps you get started with basic information about the FlexNet Embedded
local license server software package and an overview the tasks needed to
prepare the license server for distribution.

Installing and Running the
License Server

Provides instructions on installing and getting the FlexNet Embedded local
license server up and running.

License Server REST APIs Describes the REST endpoints that you can access to administer the license
server or to perform REST-driven licensing.

More About Basic License Server
Functionality

Describes basic functionality that you can enable for the FlexNet Embedded
local license server and that might require additional setup.

Advanced License Server Features Describes special features that you can enable for the FlexNet Embedded
local license server and that might require additional setup.

Producer Tools Describes tools that help you test and prepare the license server for
production.

Troubleshooting Reference Lists some common problems you might encounter with the license server
and provides workarounds.

Reference: Policy Settings for the
License Server

Provides a reference to the various settings that you can include in your policy
settings file, producer-settings.xml, for the license server.

Highlight

Chapter 1 Introduction
Product Support Resources

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 13

Product Support Resources
The following resources are available to assist you with using this product:

• Revenera Community

• Revenera Learning Center

• Revenera Support

Revenera Community
On the Revenera Community site, you can quickly find answers to your questions by searching content from other
customers, product experts, and thought leaders. You can also post questions on discussion forums for experts
to answer. For each of Revenera’s product solutions, you can access forums, blog posts, and knowledge base
articles.

https://community.revenera.com

Revenera Learning Center
The Revenera Learning Center offers free, self-guided, online videos to help you quickly get the most out of your
Revenera products. You can find a complete list of these training videos in the Learning Center.

https://learning.revenera.com

Effects of Special Request Options
on Use of Reservations

Describes how certain options you can include in a capability request affect
how reservations are processed when satisfying feature requests.

SysV Alternative for Installation on
Linux

Describes how to install the local license server as a Linux service using the
SysV init runlevel system.

Model Definition Grammar for
Named License Pools

Provides a full description of the model definition grammar that is used for
creating named license pools. Also includes use cases and sample model
definitions that help license administrators prepare the model definition to
suit their requirements.

Logging Functionality on the Local
License Server

Describes the logging functionality available for the local license server,
including logging style, custom log configurations, and how to integrate
license server logging with external systems.

Consuming Streaming Content Describes the /clients.stream and /features.stream APIs which
should be used for querying large tables.

Table 1-1 • FlexNet Embedded License Server Producer Guide (cont.)

Topic Content

https://learning.revenera.com
https://community.revenera.com
https://community.revenera.com
Highlight

Chapter 1 Introduction
Contact Us

14 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Revenera Support
For customers who have purchased a maintenance contract for their product(s), you can submit a support case
or check the status of an existing case by making selections on the Get Support menu of the Revenera
Community.

https://community.revenera.com

Contact Us
Revenera is headquartered in Itasca, Illinois, and has offices worldwide. To contact us or to learn more about our
products, visit our website at:

http://www.revenera.com

You can also follow us on social media:

• Twitter

• Facebook

• LinkedIn

• YouTube

• Instagram

https://community.revenera.com
https://twitter.com/getrevenera
https://www.facebook.com/flexera/
https://www.linkedin.com/company/revenera/
https://www.youtube.com/c/GetRevenera
https://www.instagram.com/weareflexera/
http://www.revenera.com

2

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 15

Getting Started

This chapter helps you get started with basic information about the FlexNet Embedded local license server
software package and an overview of the tasks needed to prepare the license server for distribution. The chapter
includes these sections:

• About the License Server Software Package

• Preparing and Deploying the License Server: Producer Experience

• Enabling Secure Anchoring

• Determining Deliverables Needed to Enable Outgoing HTTPS

• Generating the Producer Settings File

• Determining Administration Tools for the Enterprise

• Entitling the Enterprise Customer Account

• Delivering the License Server

About the License Server Software Package
The following describes basic information about the software package:

• License Server Requirements

• Downloading the Software Package

• License Server Components

• Additional Components

License Server Requirements
The complete list of requirements for installing and running the license server is found in the FlexNet Embedded
License Server Release Notes for the current release.

Highlight

Chapter 2 Getting Started
About the License Server Software Package

16 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Important • Due to potential incompatibilities with trusted storage and other stored data, the enterprise customer
cannot downgrade their current license server to a previous version.

Downloading the Software Package
The FlexNet Embedded local license server software package is provided as a Window .zip or a Linux .tar.gz file
that you download from the Product and License Center. The software package supports both the 32-bit and 64-
bit architectures:

• flexnetls-i86_windows-version.zip

• flexnetls-x64_windows-version.zip

• flexnetls-i86_linux-version.tar.gz

• flexnetls-x64_linux-version.tar.gz

Task To download the license server software package

1. From the Product and License Center, download the appropriate license server software package for your
platform.

2. Unpack the files into an installation directory.

Throughout the remainder of this guide, the term installation directory refers to the location in which you
unpacked the license server software package.

License Server Components
The following describes the license server components for your FlexNet Embedded local license server.

Table 2-1 • Components in Producer’s License Server Software Package

Directory/Files Purpose

“bin\tools” directory Directory containing tools used to test and prepare the license server for
distribution, including the flexnetlsconfig(.bat) utility used to generate
the producer-settings.xml file required to run the license server.

“enterprise” directory Directory containing optional license-server administration tools that you
might choose to distribute to the enterprise.

flexnetlsadmin.sh(.bat)

flexnetlsadmin.jar

Files used to run the FlexNet License Server Administrator, a command-
line tool to help the enterprise manage operations on the license server.

https://flexerasoftware.flexnetoperations.com/control/inst/product?child_plneID=611501
https://flexerasoftware.flexnetoperations.com/control/inst/product?child_plneID=611501
Highlight

Highlight

Highlight

Highlight

Chapter 2 Getting Started
About the License Server Software Package

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 17

serverofflinesynctool
(.bat)

backofficeonlinesynctool
(.bat)

Tools that allow the license server to perform offline synchronization to
the back office. (The license server supports offline synchronization by
default, but you can choose not to provide this functionality.)

These tools require the flxPublicTools.jar, EccpressoAll.jar, and
commons-codec-1.9.jar files found in the \lib directory.

“examples” directory Directory containing example code and other files to help you implement
special license-server functionality, such as producer-defined hostids
(see Producer-defined Hostids) and binding-break detection with (see
Binding-Break Detection with Grace Period).

“lib” directory Directory containing the libraries needed to run the producer-related
tools that test and prepare the license server.

“server” directory Directory containing the files needed to run the license server. You must
include these files in the license server package distributed to the
enterprise.

flexnetls.jar FlexNet Embedded local license server Java executable.

flexnetls(.bat) The Linux shell script or Windows batch file used to install, start, and
control the license server service. You can use this as a sample to modify
or write your own install script. (Your installer must place this file in the
same directory as flexnetls.jar.)

Note • The Linux shell script version of “flexnetls” is used only when the
license server is installed as a Linux service using a SysV init runlevel
system. However, the standard service installation method described in
this book uses systemd. If you want to provide a SysV installation for your
customers, see Appendix C, SysV Alternative for Installation on Linux.

regid.2009-
06.com(...).swidtag

The software ID tag file for use with software asset management tools.

flexnetls.settings (Windows only) The local settings file that license server administrator
can edit to define the port number, log level, and other parameters used
to run the license server as a service. (Your installer must place this file in
the same directory as flexnetls.jar.)

Table 2-1 • Components in Producer’s License Server Software Package (cont.)

Directory/Files Purpose

Chapter 2 Getting Started
About the License Server Software Package

18 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

configure (Linux service with SysV installation only) The configuration tool used by
the license server administrator to generate and modify the local settings
file /etc/default/flexnetls-producerName. This file defines the port
number, log level, and other parameters used to run the license server.
(Your installer must place this file in the same directory as
flexnetls.jar.)

Note • This file is used only when the license server is installed as a Linux
service using a SysV init runlevel system. However, the standard service
installation method described in this book uses systemd. If you want to
provide a SysV installation for your customers, see Appendix C, SysV
Alternative for Installation on Linux.

local-configuration.yaml A file containing optional local settings available to the license server. It
is used as follows:

• On Windows, settings in this file override any values in
flexnetls.settings that are not classed as system properties
(system properties are passed to the Java Runtim system in
-Dkey=value format).

• On Linux systemd installs, this file is generated during installation
and can be customized as needed to configure the server. Script
command-line options are available to set common initial values.

For SysV installs, the license server software package includes an
example local-configuration.yaml file.

install-systemd.sh

install-functions.sh

(Linux only) Files used to install and run the license server service. (Your
installer must place these files in the same directory as flexnetls.jar.)

flexnetlsw.exe

flexnetlsw.xml

pre-install.vbs

Remove-Permission.ps1

Set-Permission.ps1

(Windows only) Files used to run the license server as a Windows service.
(Your installer must place these files in the same directory as
flexnetls.jar.)

“service” directory (Linux only) Directory containing the files needed to run
FNLicensingService. This service retrieves the VM UUID for local license
servers that run on certain virtual Linux machines and that use the VM
UUID as their hostid.

Table 2-1 • Components in Producer’s License Server Software Package (cont.)

Directory/Files Purpose

Chapter 2 Getting Started
Preparing and Deploying the License Server: Producer Experience

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 19

Additional Components
You can purchase the following components separately from the license server software package. See your
Revenera sales representative for information.

Back-Office Component
The FlexNet Embedded local license server supports only FlexNet Operations as a back office to activate the
license pool on the server and with which to synchronize the server’s license distribution and usage data. If you
intend to run the license server with back-office support, you must purchase FlexNet Operations.

Support for Metered Licensing and Usage Capture
FlexNet Embedded supports metered licensing and usage capture. This support requires a separate purchase of
the FlexNet Usage Capture and Management feature. (Usage capture is the FlexNet Embedded component of this
feature; usage management is the FlexNet Operations component. Both components are required to use the
feature.)

REST-driven Licensing
FlexNet Embedded REST-driven licensing uses a REST interface run against a CLS instance or local license server
to manage licensing for your product. (This type of licensing is in contrast to incorporating FlexNet Embedded
SDK licensing functionality in your licensed client code.) For a CLS instance, REST-driven licensing must be
purchased as a separate component.

Important • Going forward, REST-driven licensing will be known as Cloud Monetization API. Future documentation
will reflect this new terminology.

Preparing and Deploying the License Server:
Producer Experience

As the producer, you decide how you want to package and deliver the license server to your customers. The
components will be installed to the selected install path on the enterprise system.

Chapter 2 Getting Started
Preparing and Deploying the License Server: Producer Experience

20 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The following table summarizes the basic tasks you perform to prepare and deploy the license server to the
enterprise. Each task description includes a link to further information in this book or a reference to the FlexNet
Embedded License Server Administration Guide, which provides information for the license server administrator
to monitor and manage the server at the enterprise site.

Table 2-2 • Overview of the Software Producer Tasks

Task Description

Determine the license
server security profile
for secure anchoring
(optional)

You can enable functionality called secure anchoring to enhance the
standard anchoring security normally provided for the license server. To
enable this feature, you incorporate specific security-profile information
in the license-server identity data. This step must occur before you
generate your license server policy settings (the next task described).

See Enabling Secure Anchoring in this chapter.

Determine deliverables
needed to enable
outgoing HTTPS
(optional)

The FlexNet Embedded local license server is capable of HTTPS
communication with FlexNet Operations. However, to enable this
capability, you must ensure that certain files are included in the server
installation and that the server is configured properly.

See Determining Deliverables Needed to Enable Outgoing HTTPS in this
chapter.

Determine
administrative security
policies (optional)

The license server provides a facility that secures access to the REST APIs
used to administer the license server. This administrative security facility
prevents unauthorized queries or operations on either the local license
server or a CLS instance. For more information, see Determining
Administrative Security Policies.

Generate the settings
file defining license
server policies

You need to generate a settings file that defines your policies for the
various operations that the license server can perform, such as
synchronization to and from the back office, licensing distribution,
logging, license server failover, and others. You include this file with the
license server installation to control the license server operations.

See Generating the Producer Settings File in this chapter.

Determine the
administration tools to
provide the enterprise

The FlexNet Embedded local license server software package provides a
server administration tool: the FlexNet License Server Administrator. You
can choose to provide the enterprise customer with this tool or create an
administration tool of your own.

See Determining Administration Tools for the Enterprise in this chapter.

Entitle the enterprise
account

Before an enterprise customer can activate licenses on the license
server, you must set up the enterprise account on the back office.

See Entitling the Enterprise Customer Account for more information.

Highlight

Chapter 2 Getting Started
Enabling Secure Anchoring

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 21

Enabling Secure Anchoring
The FlexNet Embedded local license server offers advanced functionality called secure anchoring that provides a
greater level of anchor security than the standard FlexNet Embedded anchoring techniques normally used for
trusted storage on devices that run the license server. While default anchoring stores the anchoring information
in the anchor file, secure anchoring uses additional techniques to store anchor information on the system on
which your license server runs.

Requirement
Enabling secure anchoring functionality requires the binary file containing your producer-identity data for the
license server (for example, ClientServerIdentity.bin). This identity data is generated—along with your identity
data files for the back office and the FlexNet Embedded client—by the back office itself or by the example
pubidutil utility provided in your license server software package (see Publisher Identity Utility in Chapter 7,
Producer Tools).

Enable Secure Anchoring
To enable secure anchoring, you use the Secure Profile utility to embed specific security-profile information into
the identity data for the license server. For more information about secure anchoring and its enablement, see the
following:

• Secure Anchoring in Chapter 6, Advanced License Server Features

• Secure Profile Utility in Chapter 7, Producer Tools

Determining Deliverables Needed to Enable
Outgoing HTTPS

The FlexNet Embedded local license server is capable of HTTPS communication with FlexNet Operations. If you
want to enable the license server for outgoing HTTPS, you need to determine whether to include a truststore file
in the server installation and what configuration might be needed on the license server. For more information, see
Outgoing HTTPS in Chapter 6, Advanced License Server Features.

Deliver the license
server to the enterprise
customer

The final step is to package and deliver the license server to your
enterprise customer. See Delivering the License Server for more
information.

Table 2-2 • Overview of the Software Producer Tasks (cont.)

Task Description

Chapter 2 Getting Started
Determining Administrative Security Policies

22 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Determining Administrative Security Policies
The FlexNet Embedded license server can control access to the REST APIs used to administer the license server,
thus preventing unauthorized queries or administrative operations on the local license server or a CLS instance.
For a local license server, you enable this administrative security by setting policies in the producer settings file
(described briefly next). For a CLS instance, follow the procedure described in the FlexNet Operations
documentation. For complete information about administrative security and the policies used to enable it, refer
Administrative Security the in Chapter 6, Advanced License Server Features.

Generating the Producer Settings File
To run, the license server requires a producer-settings.xml file, which you create and distribute with the license
server. The settings in this file define your policies for license server operations—for example, synchronization
policies and virtual-environment policies, policies that control administrative security, and many others.

To generate the settings file, use the flexnetlsconfig utility provided in your license server software package.
You can create multiple versions of this file to accommodate the different types of license server deployments at
your enterprise customer sites. When you deploy the license server, the settings file must exist in the same
directory as the license server executable. The license server administrator at an enterprise site is allowed to edit
certain settings in this file as needed.

Policy Settings Reference
For a description of each policy setting available for inclusion in this file, the setting’s default value, and whether
it is editable by the enterprise license server administrator, see Appendix A, Reference: Policy Settings for the
License Server. Note that some available settings are not included in the default version of the settings file.
Therefore, to enable and control certain types of license server functionality, you need to add specific settings to
this file. The chapters More About Basic License Server Functionality and Advanced License Server Features,
which describe different types of functionality available with the license server, inform you which settings you
need to include if you are enabling a specific function.

Requirements
Creating the settings file requires that you specify the binary file containing your producer-identity data for the
license server (for example, ClientServerIdentity.bin). This binary file is generated—along with your identity
data files for the back office and the FlexNet Embedded client—by the back office itself or by the example
pubidutil utility provided in your license server software package (see Publisher Identity Utility in Chapter 7,
Producer Tools).

If you intend to use secure anchoring functionality, it must be enabled before you generate policy settings. See
the previous section Enabling Secure Anchoring for more information.

Chapter 2 Getting Started
Determining Administration Tools for the Enterprise

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 23

Generate the Policy Settings File
For complete instructions for generating a settings file with default policy settings or generating a customized
version, see License Server Configuration Utility in Chapter 7, Producer Tools. As a reference, the section shows
example contents of a policy settings file and a properties file used to update settings. The settings file is a
mandatory component of the license server and must reside in the same directory as the flexnetls batch or shell
file.

Determining Administration Tools for the
Enterprise

The enterprise license-server administrator needs a facility that uses the REST endpoints for the FlexNet
Embedded local license server, as described in Chapter 4, License Server REST APIs, to manage the server and
control license distribution and usage. You can include one or more of the following administrator facilities with
the license server installation:

• FlexNet License Server Administrator command-line tool—A ready-to-use command-line tool provided with
the FlexNet Embedded local license server software package that lets the server administrator manage the
license server and its operations. For more information, see the Using the FlexNet License Server
Administrator Command-line Tool chapter in the FlexNet Embedded License Server Administration Guide.

• Your own administrator interface or tool—A license-server administration interface or tool that you develop,
based the REST endpoints for the FlexNet Embedded local license server, as described in Chapter 4, License
Server REST APIs.

Entitling the Enterprise Customer Account
To prepare the back office, whether for license enforcement or usage tracking with your FlexNet Embedded local
license server, you need to create an entitlement for the license server—that is, one or more line items that make
up the licenses the server will administer. The activation ID values associated with the license server’s line items
will be used to register the license server with FlexNet Operations and activate licenses on the enterprise
customer’s license server. The entitlement email sent to the customer should include these activation ID values.

For information about creating the entitlement for the license server and providing the customer with the
activation IDs, refer to the following sections in the FlexNet Operations User Guide:

• “FlexNet Operations Getting Started Guide for FlexNet Embedded Licensing”

• “FlexNet Operations Getting Started Guide for Usage Management” (if you are implementing usage capture
and management for your products)

When running the license server, the license server administrator specifies one or more of the activation IDs to
register the server and obtain the licenses managed by the license server. (In some configurations, the licenses
are automatically activated when the license server starts or each time online synchronization occurs.) The REST
interface of the license server supports methods for passing activation IDs in a JSON file, as described in Chapter
4, License Server REST APIs.

Likewise, the FlexNet License Server Administrator command-line tool provides a means for activating licenses.
See Chapter 3, Installing and Running the License Server for more information.

Chapter 2 Getting Started
Delivering the License Server

24 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Delivering the License Server
As the software producer, you decide how you want to package and deliver the license server to your customers.
The previous License Server Components section provided a description of the license server components
included in your license server software package.

The following sections list the components for which you have redistribution rights as well as the files which you
must not redistribute to customers.

Redistributable Components
Use the following table as a guide to determine which of these components to include in the license server
product you deliver to customers.

You have redistribution rights to the components listed in this table.

Table 2-3 • License Server Components Delivered to Customers

Components
Location in Producer
Package

Customer Deliverables
for Windows

Customer Deliverables
for Linux

Mandatory
components

server directory • flexnetls.bat

• flexnetls.jar

• flexnetls.settings

• flexnetlsw.exe

• flexnetlsw.xml

• pre-install.vbs

• Set-Permission.ps1

• Remove-Permission.ps1

For service installation using
systemd:

• install-systemd.sh

• install-functions.sh

• flexnetls.jar

or

For service installation using
SysV:

• flexnetls

• flexnetls.jar

• configure

producer-generated producer-settings.xml
(must reside in same
location as flexnetls.jar)

producer-settings.xml (must
reside in same location as
flexnetls.jar)

Optional: FlexNet
License Server
Administrator
command-line tool

enterprise directory • flexnetlsadmin.bat

• flexnetlsadmin.jar

• flexnetlsadmin.sh

• flexnetlsadmin.jar

Chapter 2 Getting Started
Delivering the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 25

The license server components are installed in the default or specified installation path on the enterprise
customer’s system. For a complete list of supported platforms and other requirements for installing the license
server on the enterprise, refer to the FlexNet Embedded License Server Release Notes for your release.

After the license server is installed, the enterprise’s license server administrator can initiate the appropriate
activation process to install licenses on the license server. For an understanding of the administrator’s
experience in activating licenses and managing the license server in general, refer to FlexNet Embedded License
Server Administration Guide.

Components not to be Redistributed
The following files that are included in the FlexNet Embedded local license server software package are meant for
producers and must not be redistributed:

• flexnetlsconfig.jar

• flxBinary.jar

• flxTools.jar

Optional: Offline
synchronization tools

enterprise directory • backofficeofflinesync
tool.bat

• serverofflinesynctool.
bat

• backofficeofflinesync
tool

• serverofflinesynctool

lib directory • EccpressoAll.jar

• commons-codec-1.x.jar

• flxPublicTools.jar

• EccpressoAll.jar

• commons-codec-1.x.jar

• flxPublicTools.jar

Optional: Outgoing
HTTPS file

server directory A certificate you provide
(required if you are using the
“on-premises” version of
FlexNet Operations and the
server certificate has been
signed by an unknown
(private) certificate
authority)

A certificate you provide
(required if you are using the
“on-premises” version of
FlexNet Operations and the
server certificate has been
signed by an unknown
(private) certificate authority)

Optional: Service for
obtaining VM UUID on
certain Linux
platforms

service directory N/A • bin directory

• install-vm-only.sh

• Readme.txt

Optional: Software ID
tag file

server directory regid.2009-
06.com(...).swidtag

regid.2009-
06.com(...).swidtag

Table 2-3 • License Server Components Delivered to Customers (cont.)

Components
Location in Producer
Package

Customer Deliverables
for Windows

Customer Deliverables
for Linux

Chapter 2 Getting Started
Delivering the License Server

26 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

3

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 27

Installing and Running the
License Server

This chapter provide instructions on installing and getting the FlexNet Embedded local license server up and
running. It includes the following sections:

• Installing and Starting the License Server

• Editing Local Settings Post-Installation

• Understanding Hostids

• Activating the License Rights for the Server

• Granting Client Requests

• Upgrading the License Server

• Uninstalling the License Server

About “licenseServer_baseURL” Used in Commands
Some the commands referenced in this chapter use the license server’s base URL, indicated by
licenseServer_baseURL in the command. For more information about this URL, see Base URLs in Chapter 4,
License Server REST APIs.

Installing and Starting the License Server
This section covers the following information:

• Prerequisites

• Install and Start on Windows

• Install and Start on Linux

• Setting the Server Time Zone

• Logging Functionality

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

28 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Prerequisites
Before installing and running the license server, perform the following:

• Download and extract the FlexNet Embedded license server software package as described in Downloading
the Software Package in Chapter 2, Getting Started.

• Create the producer-settings.xml file that defines your license server policies. See License Server
Configuration Utility in Chapter 7, Producer Tools, for more information about creating this file.

• Set the JAVA_HOME (or JRE_HOME) environment variable on your system to the path for your default JDK (or JRE)
installation.

Note • The license server requires only the JRE component. If JRE is your default Java installation, set the
JRE_HOME environment variable; if JDK is your default installation, set JAVA_HOME. See the “FlexNet
Embedded License Server Release Notes” for details.

Install and Start on Windows
Use the instructions in these sections to install and start the license server as a service or in console mode.

• Prepare for Windows Installation

• Install and Start as a Windows Service

• Start in Console Mode on Windows

• Manage the License Server Service on Windows

Prepare for Windows Installation
Use the following steps to configure license server in preparation for installation.

Task To prepare for installation

1. Copy the producer-settings.xml file that you created into the server directory (or in the same directory as
the flexnetls.jar and flexnetls.bat files) in the installation directory for the license server software
package. This file defines operational policies for your license server. See License Server Configuration Utility
in Chapter 7, Producer Tools, for details about this file.

2. To update settings for your local environment, use a text editor to open the flexnetls.settings file, found in
the server directory (or in the same directory as the flexnetls.jar and flexnetls.bat files). Edit or add
information as needed; or leave the file as is to accept the default settings. (For example, you might want to
change the JAVA_HOME value or uncomment and provide a value for PORT.)

When you update any setting, these rules apply:

• Any setting value that uses a space must be enclosed in quotations

• Insert no spaces before or after the equal sign (=) in the setting syntax (for example, PORT=7071).

Highlight

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 29

Refer to the following for a description of each setting:

Table 3-1 • Local Settings for the License Server on Windows

Setting Description

Required Settings

FLEXNETJAR The Java executable file for the FlexNet Embedded local license server
(default is flexnetls.jar).

PUBSETTINGS The license server configuration file generated by the producer (default is
producer-settings.xml).

JAVA_HOME (or JRE_
HOME)

The path for JDK or JRE installation that the license server should use.
The flexnetls batch file uses this location to find the necessary java.exe
and jvm.dll files.

By default, the license server uses the value of your JAVA_HOME (or
JRE_HOME) system environment variable to determine the Java installation
location, as indicated by the "%JAVA_HOME:"=%" (or "%JRE_HOME:"=%") value
for this local setting. However, if you want the license server to use a
different Java installation on your system, edit this local setting to
override the server’s use of the environment variable. (This override
pertains to the license server only; your system continues to use the Java
installation defined by the system environment variable.) To perform the
override, replace the default value (for example, "%JAVA_HOME:"=%") with
the path for the desired Java installation.

Note • The “flexnetls.settings file” includes both a JAVA_HOME and a
JRE_HOME setting. If both values are set, JAVA_HOME is used.

Optional Settings

PORT The listening port used by the license server. This value is not set by
default. (If no value is specified, the server uses 7070 by default.)

If the device on which the license server is running uses multiple network
interfaces, you can use the PORT option to specify the interface that you
want the license server to use. Simply include the IP address for the
interface in square brackets, as shown in this example:

PORT=[127.0.0.1].1443

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

30 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

ACTIVE_HOSTID The hostid to use for the license server.

The hostid can only be set using a configuration file if no hostid has yet
been specified for the license server. Once a hostid has been set, it can
only be changed using the REST API /hostids/selected or using a license
server administration tool such as FlexNet License Server Administrator.

The syntax is value/type (for example, 7200014f5df0/ETHERNET). If no
value is specified for this setting and no active hostid has yet been set for
the license server, the license server uses, by default, the first available
Ethernet address on the machine. If using a dongle ID or a hostid other
than the first available Ethernet address, the license server administrator
can specify it here.

Important • It is not recommended to change the hostid of a license
server that has licenses mapped in the back office (FlexNet Operations).
If the hostid is changed to a value that is different to that specified for the
license server in the back office, any existing licenses mapped to the
license server that is locked to the old hostid in the back office will be
orphaned.

To prevent this from happening, it is best practice to return the license
server in the back office. During the return operation, you as the producer
can transfer the licenses to a different device; this can be the same
machine with the desired hostid. After the transfer, wait for the license
server to synchronize with the back office (server synchronization occurs
based on synchronization policies or on-demand).

For more information on returning the license server, refer to the FlexNet
Operations User Guide, section “Returning a Device”.

Important • If you specify a server hostid using ACTIVE_HOSTID, the
server.hostType.order property (if set) is ignored.

For more information about hostids, see Understanding Hostids.

HTTPS_SERVER_CONFIG The path to the HTTPS “server” configuration file used to support
incoming HTTPS from client devices.

Note • The “server” configuration file is being deprecated and will be
removed in a future release. For details on how the enterprise creates
this configuration file and sets up the server, see Incoming HTTPS in
Chapter 6, Advanced License Server Features.

Table 3-1 • Local Settings for the License Server on Windows (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 31

HTTPS_CLIENT_CONFIG The path to the HTTPS “client” configuration file used to support outgoing
HTTPS communication to FlexNet Operations.

Note • The “client” configuration file is being deprecated and will be
removed in a future release. For more information about the
configuration file and HTTPS setup on the license server, see Outgoing
HTTPS in Chapter 6, Advanced License Server Features.

EXTENDED_SUFFIX The suffix used for the extended hostid feature. See Extended Hostids in
Chapter 6, Advanced License Server Features for details.

SERVER_ALIAS A user-defined name (sometimes called host name) for the license
server. This name is added to server’s capability requests to the back
office, where it is then saved and used to identify the license server in the
FlexNet Operations Producer and End User portals.

One important use for this setting is that the alias can be included in the
initial capability request sent at server registration, providing a helpful
name by which users can identify the new server in the portals. If no alias
is sent at registration, the server is identified by its hostid. For more
information about hostids, see Understanding Hostids.

EXTRA_SYSPROPERTIES One or more system properties (each in -Dkey=value format) that are
passed to the Java Runtime system. The license server depends on the
Java Runtime Environment to support certain network functionality such
as specifying the HTTP proxy.

For example, if you plan to have the license server communicate with the
back office through an HTTP proxy, use this setting to identify the proxy
parameters needed to configure the server. (For details, see Proxy
Support for Communication with the Back Office in Chapter 6, Advanced
License Server Features.) The following shows example proxy parameters
listed as -D system properties for this setting:

EXTRA_SYSPROPERTIES="-Dhttp.proxyHost=10.90.3.133
-Dhttp.proxyPort=3128 -Dhttp.proxyUser=user1a
-Dhttp.proxyPassword=user1apwd35"

Table 3-1 • Local Settings for the License Server on Windows (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

32 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Important • Another file, “flexnetlsw.xml” file, also contains settings used to run the Windows service. However,
do not edit this file. All information in this file is generated and maintained internally and should never be updated
through an external means. To update service settings, edit only the “flexnetls.settings” file.

Install and Start as a Windows Service
Use these steps to install and start the license server as a service on your Windows device.

Important • If you are upgrading your license server, you must uninstall the old license server service before
installing and starting the service for the new license server. For instructions on uninstalling the license server
service on Windows, see Uninstall the Windows Service.

Task To install and start the license server as a service on Windows

1. As an Administrator, open a command window and navigate to the server directory (or in the same directory
as the flexnetls.jar and flexnetls.bat files) in the license server installation.

2. Execute flexnetls.bat -install to install the license server as a service.

3. Execute flexnetls.bat -start to start the service.

BACKUP_SERVER_HOSTID The hostid of the back-up license server in a failover configuration with
the current license server (as the main server), if the back-up server is
“unknown”—that is, not registered—in FlexNet Operations. This setting
adds the back-up server’s hostid to the capability request sent by the
current license server to the back office. The back office then
automatically registers the back-up server in a failover configuration with
the main server. This process saves the extra step of having to manually
register the failover pair in FlexNet Operations. For more information, see
Failover Using Synchronization to FlexNet Embedded in Chapter 5, More
About Basic License Server Functionality.

Make sure the back-up server’s hostid is the same type (for example,
“ETHERNET”) as the hostid type of the current (main) license server.

You might need to add this setting manually if it is not included as an
available option in the settings file.

For more information about hostids, see Understanding Hostids.

Table 3-1 • Local Settings for the License Server on Windows (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 33

Note • Depending on the security policies defined on your device, a warning message might be displayed,
warning you to only run scripts that you trust. If such as warning is displayed, confirm that you want to allow
each script to be executed.

4. Confirm that the service is running by doing one of the following:

• Execute flexnetls.bat -status. (The output should be Service running.)

• In the Windows Services window (services.msc), check that the service FlexNet License Server -
producer_name has started. (Note that in the Services tab of the Task Manager, the service’s display
name is FNLS-producer_name.)

(If you want to stop the service, run flexnetls.bat -stop.)

5. To view the license server log, navigate to the server’s logging directory (by default,
C:\Windows\ServiceProfiles\NetworkService\flexnetls\producer_name\logs), and review the contents of
the appropriate .log file.

Important • Because there is no verification that the service has started when executing the “flexnetls.bat -
start” command, best practice is that you always check the status of the service after starting it.

Note • Once you install the license server as service, you cannot use any of the “flexnetls” non-service
command-line options, such as “console” or “install”.

Start in Console Mode on Windows
Use these steps to start the license server in console mode on your Windows device.

Note • Run the license server in console mode for testing and development purposes only. It is recommended
that the enterprise customer run the license server only as a service.

Task To start the license server in console mode on Windows

1. As an Administrator, open a command window and navigate to the server directory (or in the same directory
as the flexnetls.jar and flexnetls.bat files) in the license server installation.

2. Run flexnetls.bat to start the license server in console mode.

3. Confirm that the license server is running by doing one of the following:

• Check the status of the license server using the FlexNet License Server Administrator command-line
tool, included in your license-server software package (in the enterprise directory). Enter the following:

flexnetlsadmin.bat -server licenseServer_baseURL -status

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

34 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• View the license server log by navigating to the server’s logging directory. By default, this directory is
C:\Users\user_name\flexnetls\producer_name\logs when the server runs in console mode. Review the
contents of the appropriate .log file.

Manage the License Server Service on Windows
The following provides a summary of the command options available with flexnetls.bat to manage the license
server service on Windows.

The general command usage is the following:

flexnetls.bat [-command_option]

Table 3-2 • Options Available with “flexnetls.bat” on Windows

Option Description

-help Lists the syntax of all flexnetls.bat commands.

-start Starts the license server service.

-stop Stops the license server service.

-install Installs the license server as a service.

-uninstall Uninstalls the license server service. (You must stop the service before using
this option.)

-update Stops the license server service and applies any changes made to
flexnetls.settings. (You then need to restart the service.)

-status Shows the status of the license server service.

-logging-threshold Defines the logging threshold for the license server service to the value you
specify: FATAL, ERROR, WARN, INFO, LICENSING, POLICY, or DEBUG. This value
supersedes the current logging.threshold policy defined in producer-
settings.xml for the license server.

This threshold is the lowest level of log-message granularity to record. For
example, if WARN is set, warning, debug, and error messages are recorded.
However, if ERROR is set, only error messages are recorded.

Setting this option from the flexnetls command line enables you to debug
start-up problems with the license server. In general, however, you should use
the license server’s administration tools to control the logging threshold.

For information about individual logging levels, see Logging Policies in
Appendix A, Reference: Policy Settings for the License Server.

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 35

Install and Start on Linux
The following instructions describe how to use systemd to configure, install, and run the local license server as a
Linux service or in console mode:

• Producer Tasks

• Administrator Tasks

• Verify systemd-Enablement on Linux System

• Additional Requirement for Certain Linux Platforms in Virtual Environments

• Run the Install Script

• Manage the License Server Service on Linux

Alternatively, you can configure, install, and run the license server as a Linux service using a SysV init runlevel
system. To do so, follow the instructions in Appendix B, SysV Alternative for Installation on Linux instead of the
instructions in this chapter.

The content in this section assumes familiarity with the use of the systemd system for managing Linux services.
You can find information about systemd at the following site:

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/
System_Administrators_Guide/chap-Managing_Services_with_systemd.htm

Producer Tasks
As producer, distribute the following script files with the license server to support the running of the license
server service under systemd at the enterprise customer’s site:

• install-systemd.sh

• install-functions.sh

-reset-database Resets trusted storage on the license server. This option is rarely used except
for testing purposes or deploying extended hostids. The enterprise license
server administrator should not use this option unless you provide a directive
to do so in specific situations.

-restore-database Restores trusted storage from a backup copy stored on the license server,
when the license server is running in console mode. See Trusted Storage
Backup and Restoration.

-restore-service-
database

Restores trusted storage from a backup copy stored on the license server,
when the license server is running as a service. See Trusted Storage Backup
and Restoration.

Table 3-2 • Options Available with “flexnetls.bat” on Windows (cont.)

Option Description

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Managing_Services_with_systemd.htm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Managing_Services_with_systemd.htm

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

36 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

These files must reside in the same directory as flexnetls.jar. (In your FlexNet Embedded license server
software package, all three files are located in the install_dir/server directory.) The scripts work together to
generate files required to install and start the license server service in a systemd configuration.

Also ensure that you have generated the producer-settings.xml file and that is installed in the same directory as
flexnetls.jar and the script files. (See License Server Configuration Utility in Chapter 7, Producer Tools.)

Optionally, you can create and distribute an rpm or deb wrapper that copies these required files to the proper
location on the enterprise device and then installs the license server service.

For a list of all files that you can distribute with the license server, see Delivering the License Server in Chapter 2,
Getting Started.

Administrator Tasks
The following is an overview of tasks that the enterprise’s license server administrator performs to install and run
the license server as a Linux service under systemd:

• Task 1: Verify that the Linux system on which the license server is being installed is systemd-enabled (see
Verify systemd-Enablement on Linux System).

• Task 2: Run the install-systemd.sh installer (or your own wrapper), updating certain default configuration
settings in the command line as needed (see Run the Install Script).

• Task 3: Manage the service (see Manage the License Server Service on Linux).

• Task 4: (Optional) Edit configuration settings post-installation as needed (see Post-Installation Configuration
on Linux).

Verify systemd-Enablement on Linux System
Before proceeding with the installation, the license server administrator can run the following command to
determine whether the Linux system on which the license server is being installed is systemd-enabled:

systemctl

If the system is systemd-enabled, the command runs successfully and lists all active units.

Additional Requirement for Certain Linux Platforms in Virtual
Environments

Certain Linux platforms running on virtual machines do not provide an appropriate mechanism for retrieving the
VM UUID for local license servers that use this ID as the hostid. To enable VM UUID retrieval on these platforms,
the license server software package provides a special service, called FNLicensingService, which must be
manually installed before the license server—whether installed as a service or in console mode—is started. For
more information about hostids, see Understanding Hostids.

The installer for FNLicensingService, called install-vm-only.sh, is located in the service directory of the license
server software package. This same directory also contains a Readme file that provides the following important
information:

• Specific conditions under which a license server requires FNLicensingService

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 37

• Prerequisites for running this service

• Instructions for installing the service

If an enterprise customer requiring this service, include the contents of the server directory in the license server
deliverable and provide any instructions necessary for installing the service.

Run the Install Script
The license server administrator runs install-systemd.sh to create and start the license server service using
either the default configuration for the service or a configuration customized through command-line options, as
described in these next sections:

• About the Install Script

• Install and Start the Service with the Default Configuration

• Install and Start the Service with a Modified Configuration

• Configuration Values Editable from the Command Line

• Start and Stop in Console Mode on Linux

The commands described in these next sections are run from the directory in which the systemd script files (see
About the Install Script) and flexnetls.jar reside.

Prerequisite
Only root or sudo users can run the install script.

About the Install Script
When run, the install script install-systemd.sh performs the following:

• Generates the service unit file called /etc/systemd/system/flexnetls-producer_name.service.

• Generates the configuration unit file called /etc/systemd/system/flexnetls-producer_name.service.d/
flexnetls.conf. This file contains the configuration settings needed to start the service. It is created with
default values, but the license server administrator can include options in the install-script command line to
generate this file with custom values. See Install and Start the Service with a Modified Configuration.

The administrator can also edit this configuration file post-installation as needed, as described in Post-
Installation Configuration on Linux.

• Generates a local-configuration.yaml file in the /opt/flexnetls/producer directory. This file contains
optional settings specific to the local service environment. Generally, these settings are initially disabled; the
license server administrator can edit or enable them as needed once the service is installed. See Edit “local-
configuration.yaml” Settings for details.

Note • The generated local-configuration.yaml is auto-populated with the port numbers, hostids, logging
settings and TLS (HTTPS) settings as specified by (optional) command-line parameters. Note that these
settings are only auto-populated if there isn’t a YAML file at the destination, or if --overwrite is specified.

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

38 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• By default, enables the standard Syslog logging process for the license server service.

• Starts the license server service.

Install and Start the Service with the Default Configuration
The following command installs and starts the license server service using the default configuration. For more
about the default values used to configure the service, see Configuration Values Editable from the Command
Line.

Task To install and start the license server service using the default configuration

Run the following:

sudo ./install-systemd.sh

Install and Start the Service with a Modified Configuration
The following command installs and starts the license server service using a configuration modified through one
or more specified command-line options. For a description of the configuration values that can be updated from
the install-script command line, see the next section, Configuration Values Editable from the Command Line.

Task To install and start the license server service with updates to the default configuration

Run the install script, specifying one or more command-line options to change specific configuration settings (for
example, the user value, as shown here):

sudo ./install-systemd.sh --user flexnetls01

Configuration Values Editable from the Command Line
The following options are used with the ./install-systemd.sh command to edit current configuration settings for
the license server service. (Running ./install-systemd.sh --help also lists these command-line options.)

Table 3-3 • Configuration Values Editable from the Command Line

Setting Description

--program-dir dir The installation location of the license server service (default is /opt/flexnetls/
producer_name).

--data-dir dir The location of trusted storage (default is /var/opt/flexnetls/producer_name). This
overrides the server.trustedStorageDir value in the producer-settings.xml.

--user user_name The user name under which the service runs (default is flexnetls).

--group group_name The group name under which the service runs (default is flexnetls).

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 39

--java_home path
or
--jre_home path

The path for JDK or JRE installation that the license server should use.

By default, the license server uses the value of the JAVA_HOME or JRE_HOME system
environment variable (whichever is defined on the device on which the server is
installed) as the Java installation to use. However, to have the server use a different
Java installation, the license server administrator must provide the explicit path for
the installation as either the java_home or jre_home value. (This override pertains to
the license server only; the enterprise device in general continues to use the Java
installation defined by its system environment variable.)

The following two settings—”port” and “logging-threshold”—do not exist in the .conf file. However, if either
setting is updated using the command-line option, the new value is captured in the local-configuration.yaml
file during its creation and is subsequently used by the license server service. If neither setting is updated, the
service uses the default value (or the value specified in producer-settings.xml) for the setting.

--port port The listening port used by the license server service (default is 7070).

If the device on which the license server is running uses multiple network
interfaces, the license server administrator can use the port option to specify the
interface that the license server is to use. The IP address for the interface is
included in square brackets, as shown in this example:

--port [127.0.0.1].1443

--logging-threshold
level

The lowest level of log-message granularity to record—FATAL, ERROR, WARN, INFO,
LICENSING, POLICY, or DEBUG. For example, if FATAL is set, only messages about fatal
events are recorded. However, if WARN is set, fatal-event, error, and warning
messages are recorded. (Default is INFO.)

The POLICY threshold records information about the checkout process when feature
selectors are used to filter features.

For information about individual logging levels, see Logging Policies in Appendix A,
Reference: Policy Settings for the License Server.

--tls-port port The HTTPS listening port used by the license server service.

--tls-cert path Path to the “server” certificate file.

Note • The “server” configuration file is being deprecated and will be removed in a
future release.

--tls-cert-password
password

The password for the certificate file, if provided. The password will be automatically
obfuscated.

Table 3-3 • Configuration Values Editable from the Command Line (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

40 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Start and Stop in Console Mode on Linux
Use these steps to start and stop the license server in console mode on your Linux device.

Note • Run the license server in console mode for testing and development purposes only. It is recommended
that the enterprise customer run the license server only as a service.

Task To install and start the license server in console mode on Linux

1. After you have installed and started the license server service, stop the service:

sudo systemctl stop flexnetls-producer_name

2. Go to the opt/flexnetls/demo directory, and issue this command:

sudo ./console.sh

To shut down console mode, press Ctrl + C.

Note that the license server running in console mode and as a service use the same trusted-storage and log
locations.

Manage the License Server Service on Linux
Once the license server service is installed, you can manage the service using the systemd command systemctl.
The following describes basic management functions for the service:

• Obtain the Service Status

• Stop the Service

• Start the Service

• Restart the Service

• Re-read All systemd Unit Files

Prerequisite
You must perform systemctl tasks as a root or sudo user.

Obtain the Service Status
The following command obtains the “active” or “not active” status of license server service.

Task To obtain the status of the license server service

Run the following command:

sudo systemctl -l status flexnetls-producer_name

The -l switch disables truncation of lines in the output.

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 41

The following shows example status output. The current service status is highlighted in this excerpt:

flexnetls-fnedemo.service - FlexnetLS Local License Server.
Loaded: loaded (/etc/systemd/system/flexnetls-fnedemo.service; enabled; vendor preset: disabled)
Drop-In: /etc/systemd/system/flexnetls-fnedemo.service.d
└─flexnetls.conf
Active: active (running) since Tue 2018-11-22 14:28:25 GMT; 18h ago
...

Stop the Service
The following command stops the license server service.

Task To stop the license server service

Use this command:

sudo systemctl stop flexnetls-producer_name

Start the Service
The following command starts the license server service.

Task To start the license server service

Use this command:

sudo systemctl start flexnetls-producer_name

Restart the Service
The following command stops and then restarts the license server service without re-reading all the systemd unit
files related to all services. This command is useful if you have made changes to the local-configuration.yaml
file (see Edit “local-configuration.yaml” Settings).

Task To restart the license server service

Run the following command:

sudo systemctl restart flexnetls-producer_name

Re-read All systemd Unit Files
The following command is used to re-read all systemd unit files related to all services. This command is useful
when you have made changes manually to the flexnetls.conf file and want to apply the changes before
restarting the service (see Edit the .conf File Manually).

Chapter 3 Installing and Running the License Server
Installing and Starting the License Server

42 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Task To re-read all systemd unit files for all services

Run the following command:

sudo systemctl daemon-reload

Setting the Server Time Zone
The license server can either use its default time zone or Coordinated Universal Time (UTC) for determining a
feature’s expiry date, start date, and issue date. You configure the time zone using the
licensing.defaultTimeZone setting. Valid values:

• UTC— If UTC is set, a feature’s start date is the start of the specified day in Coordinated Universal Time (UTC).
Equally, a feature will expire at the end of the day of the configured expiry date in UTC time. This is the
default value.

• SERVER—If SERVER is set, a feature’s start date is the start of the specified day in the server’s default time
zone. Equally, a feature will expire at the end of the day of the configured expiry date in the server's default
time zone.

You can set the time zone in the following ways:

• On a CLS instance, you can modify the licensing.defaultTimeZone setting at instance level using the
/configuration API. See APIs to Manage Instance Configuration.

• On a local license server, edit the licensing.defaultTimeZone setting in the producer-settings.xml file,
which you generate and provide with the license server. Alternatively, you can set this at instance level using
the /configuration API.

Note • To change this setting at a global level for your tenant, contact Revenera support.

Changes to the time zone setting affect features as they are being provisioned onto the server. It does not affect
features that are already on the server.

For a description of license server policies, see Appendix A, Reference: Policy Settings for the License Server.

Logging Functionality
The logging functionality that is available for the local license server is described in detail in Appendix E, Logging
Functionality on the Local License Server. The appendix covers how to configure the logging style and how to
integrate license server logging with external systems.

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 43

Editing Local Settings Post-Installation
The license server package provides (or provides a means to generate) a local settings file that configures the
license server for your specific environment. You can use the file as is with its default settings, or you can modify
the settings as needed to reflect your environment. The previous section Installing and Starting the License
Server describes how to update these settings before server installation. Use the following instructions to edit the
settings any time after installation.

Post-Installation Configuration on Windows
If you need to modify the license server’s local settings (defined in the flexnetls.settings file) after you have
installed the server as a service on a Windows platform, use the appropriate procedure.

When Server Runs as a Service
Use this procedure to update local settings in flexnetls.settings when the license server is running as a service
on Windows. This file is located in the server directory (or in the same directory as the flexnetls.jar and
flexnetls.bat files) in the license server installation.

Important • Never edit the “flexnetlsw.xml” file, which also contains settings used to run the Windows service. All
information in this file is generated and maintained internally and should never be updated through an external
means. To update service settings, edit only the “flexnetls.settings” file.

Task To modify local settings after installing the license server as a service on Windows

1. As an Administrator, open a command prompt window, and navigate to the server directory in license server
installation.

2. Open the flexnetls.settings file in a text editor, and edit the settings as needed. (For example, you can
uncomment settings or change existing values.) See the previous section Prepare for Windows Installation
for details about the editing process.

3. Save the file.

4. Execute flexnetls.bat -update to apply the setting changes.

5. Execute flexnetls.bat -start to start the license server service, or restart it from the Windows Services
window.

Note • Depending on the security policies defined on your device, a warning message might be displayed,
warning you to only run scripts that you trust. If such as warning is displayed, confirm that you want to allow
each script to be executed.

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

44 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Add a Setting to Control the License Server Load
By default, the local license server has no limit for the number of capability requests it will accept at a given time.
However, if a license server experiences a high load of capability requests, a degradation in response time can
result. A setting called rate-limit is available that sets a maximum on the number of capability requests per
second the license server will allow.

This option is intended for use only in situations where this type of exceptional load is expected, as the rate limit
helps to enable consistent response times for accepted requests. A number of factors affect the rate at which the
server is capable of handling requests, including the specification of the server hardware and the complexity of
the requests. Therefore, the rate-limit configuration should be determined only through load-testing on a mirror
of the production environment using a representative client load.

You define this setting in the local-configuration.yaml file, another settings file located in the server directory
(or in the same directory as the flexnetls.jar and flexnetls.bat files).

Task To define the rate-limiting setting

1. As an Administrator, open a command prompt window, and navigate to the server directory in your license
server installation.

2. In a text editor, open the local-configuration.yaml.

3. Insert (or update) the following line in the file:

rate-limit: value

where value is the maximum number of capability requests per second that you want the license server to
handle.

4. Save the file.

5. Execute flexnetls.bat -update to update the settings.

6. Execute flexnetls.bat -start to start the license server service, or restart it from the Windows Services
window.

Note • Depending on the security policies defined on your device, a warning message might be displayed,
warning you to only run scripts that you trust. If such as warning is displayed, confirm that you want to allow
each script to be executed.

When Server Runs in Console Mode
Use this procedure to update local settings in flexnetls.settings when the license server is running in console
mode on Windows. This file is located in the server directory (or in the same directory as the flexnetls.jar and
flexnetls.bat files) in the license server installation.

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 45

Task To modify local settings after installing the license server in console mode on Windows

1. In the command window running the license server, press Ctrl + c to close the window and stop the server.

2. From the server directory, open the flexnetls.settings file in a text editor, and edit the settings as needed.
(For example, you can uncomment settings or change existing values.) See the previous section Prepare for
Windows Installation for details about the editing process.

3. Save the file.

4. Execute flexnetls.bat to run the server in console mode. (The server now uses the updated settings.)

Post-Installation Configuration on Linux
If you need to modify the license server’s local settings after you have installed the license server on a Linux
platform, use these procedures:

• Edit Settings in “flexnetls.conf”

• Edit the DEFINES Setting

• Edit “local-configuration.yaml” Settings

• Define Command-Line Options for HTTPS Configuration Files

Edit Settings in “flexnetls.conf”
The license server administrator can use either of the following methods to update configuration settings in the
/etc/systemd/system/flexnetls-producer_name.service.d/flexnetls.conf unit file:

• Edit the .conf File Manually

• Re-install the Service with Command-line Options to Update Settings

Edit the .conf File Manually
The following procedure manually updates settings in the flexnetls.conf unit file.

Task To edit the flexnetls.conf file manually

1. Stop the license server service:

sudo systemctl stop flexnetls-producer_name

2. As a root or sudo user, edit the /etc/systemd/system/flexnetls-producer_name.service.d/flexnetls.conf file
in a text editor (for example, GNU nano or gedit).

3. Once the edits are complete, run the following command to re-read all the systemd unit files to capture the
configuration changes:

sudo systemctl daemon-reload

4. Start the license server service:

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

46 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

sudo systemctl start flexnetls-producer_name

Re-install the Service with Command-line Options to Update Settings
The following command reinstalls the license server service, using command-line options to update specific
settings in the flexnetls.conf file. For a description of the configuration settings that can be updated from the
install-script command line, see Configuration Values Editable from the Command Line.

sudo ./install-systemd.sh --user flexnentls1 --group flexnetls1

If the --overwrite option is included in the command, the re-installation generates a new .conf file and a new
.yaml file with the specified updates; any changes previously made to these files are lost.

Edit the DEFINES Setting
The DEFINES setting in the flexnetls.conf unit file is the same as EXTRA_SYSPROPERITES in the flexnetls.settings
file used in the standard (SysV init) license-server service installations. By design, this setting has no
corresponding command-line option to update its value; therefore, the license server administrator needs to edit
the setting manually in the configuration file. For instructions on manually editing this file, see Edit the .conf File
Manually.

This setting is used to define one or more system properties (each in -Dkey=value format) that the license server
needs to pass to the Java Runtime system to support certain network functionality, such as an HTTP proxy.

For example, if the license server is to communicate with the back office through an HTTP proxy, the
administrator can use this setting to identify the proxy parameters needed to configure the server. (For details,
see Proxy Support for Communication with the Back Office in Chapter 6, Advanced License Server Features.) The
following shows example proxy parameters listed as -D system properties for this setting:

DEFINES="-Dhttp.proxyHost=10.90.3.133 -Dhttp.proxyPort=3128 -Dhttp.proxyUser=user1a
-Dhttp.proxyPassword=user1apwd35"

 By default, this setting has no properties defined.

Edit “local-configuration.yaml” Settings
Use the following procedure to update the local-configuration.yaml file generated in the /opt/flexnetls/
producer directory during installation. This file contains optional settings for the license server service that are, by
default, disabled.

Note • For systemd installs, the install script generates the local-configuration.yaml file. For SysV installs, the
license server software package includes an example local-configuration.yaml file.

Edit Settings in the “local-configuration.yaml” File
The following procedure enables, edits, or disables settings in local-configuration.yaml file, located in the same
directory as flexnetls.jar.

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 47

Task To edit settings in the “local-configuration.yaml’ file

1. As a root or sudo user, edit the local-configuration.yaml file in an editor. Uncomment (or comment out) lines
and edit setting values as needed. For a description of the settings, see the next section.

2. Run the following command to stop and restart the service to apply the configuration changes:

sudo systemctl restart flexnetls-producer_name

Settings in the “local-configuration.yaml” File
The following settings can be edited in the local-configuration.yaml file:

Table 3-4 • Settings in the “local-configuration.yaml” File

Setting Description

port: port The override for the listening port used by the license server, as described in
Configuration Values Editable from the Command Line. The license server
administrator can edit this override value as needed.

If no override is specified (that is, the setting is commented out), the service uses
the default port 7070 (or the value defined in producer-settings.xml).

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

48 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

active-hostid: value/type The hostid to use for the license server.

The hostid can only be set using a configuration file if no hostid has yet been
specified for the license server. Once a hostid has been set, it can only be
changed using the REST API /hostids/selected or using a server administration
tool, such as FlexNet License Server Administrator.

The syntax is value/type (for example, 7200014f5df0/ETHERNET). If no value is
specified for this setting and no active hostid has yet been set for the license
server, the license server uses, by default, the first available Ethernet address on
the machine. If using a dongle ID or a hostid other than the first available
Ethernet address, the license server administrator can specify it here.

Important • It is not recommended to change the hostid of a license server that
has licenses mapped in the back office (FlexNet Operations). If the hostid is
changed to a value that is different to that specified for the license server in the
back office, any existing licenses mapped to the license server that is locked to
the old hostid in the back office will be orphaned.

To prevent this from happening, it is best practice to return the license server in
the back office. During the return operation, you as the producer can transfer the
licenses to a different device; this can be the same machine with the desired
hostid. After the transfer, wait for the license server to synchronize with the back
office (server synchronization occurs based on synchronization policies or on-
demand).

For more information on returning the license server, refer to the FlexNet
Operations User Guide, section “Returning a Device”.

Important • If you specify a server hostid using active-hostid, the
server.hostType.order property (if set) is ignored.

For more information about hostids, see Understanding Hostids.

Table 3-4 • Settings in the “local-configuration.yaml” File (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 49

backup-hostid: value/
type

The hostid of the back-up license server in a failover configuration with the
current license server (as the main server), if the back-up server is “unknown”—
that is, not registered—in FlexNet Operations. The syntax is value/type (for
example, 7200014f5df0/ETHERNET). For more information about hostids, see
Understanding Hostids.

This setting adds the back-up server’s hostid to the capability request sent by the
current license server to the back office. The back office then automatically
registers the back-up server in a failover configuration with the main server. This
process saves the extra step of having to manually register the failover pair in
FlexNet Operations. For more information, see Failover Using Synchronization to
FlexNet Embedded in Chapter 5, More About Basic License Server Functionality.

Make sure the back-up server’s hostid is the same type (for example,
“ETHERNET”) as the hostid type of the current (main) license server.

extended-suffix: suffix (Producers only) The suffix used for the extended hostid feature. See Extended
Hostids in Chapter 6, Advanced License Server Features, for details.

server-alias: alias A user-defined name (sometimes called host name) for the license server. This
name is added to server’s capability requests to the back office, where it is then
saved and used to identify the license server in the FlexNet Operations Producer
and End User portals.

One important use for this setting is that the alias can be included in the initial
capability request sent at server registration, providing a helpful name by which
users can identify the new server in the portals. If no alias is sent at registration,
the server is identified by its hostid.

jni-helper-directory: path If the default location for the JNI shared library (/tmp) is not suitable (for example,
because execute permission is required), use this setting to supply an alternative
directory path. The directory has to exist and be writable by the server.

logging-threshold: level The override for the lowest level of log-message granularity to record—FATAL,
ERROR, WARN, INFO, LICENSING, POLICY, or DEBUG, as described in Configuration
Values Editable from the Command Line. The license server administrator can
edit this override value as needed.

If no override is specified (that is, the setting is commented out), the service uses
the default level INFO (or the value defined in producer-settings.xml).

For information about individual logging levels, see Logging Policies in Appendix
A, Reference: Policy Settings for the License Server.

Table 3-4 • Settings in the “local-configuration.yaml” File (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

50 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

loggingStyle: style The logging style determines rollover, JSON formatting and timestamp behavior.
If no logging style is specified, the default DAILY_ROLLOVER is used.

Logging style values:

DAILY_ROLLOVER—The log file is closed at midnight local time, compressed with
gzip, and a new log file is started. Timestamp values use the local time zone. This
is the default if no logging style is specified.

DAILY_ROLLOVER_UTC—Same as DAILY_ROLLOVER, but with UTC timestamp.

CONTINUOUS—Legacy value. Rollover is handled as DAILY_ROLLOVER.

CONTINUOUS_UTC—Legacy value. Rollover is handled as DAILY_ROLLOVER_UTC.

JSON_ROLLOVER—Logs are formatted using JSON. The log file is closed at midnight
local time, compressed with gzip (suitable for filebeat), and a new log file is
started. Always uses ISO 8601 UTC timestamps.

JSON—Logs are emitted as JSON to stdout only (suitable for Docker). Always uses
ISO 8601 UTC timestamps.

Note • The Docker-friendly JSON logging style is not supported when the local
license server is run as a Windows or Linux service (because it only writes to
stdout). If set, the style will be changed to DAILY_ROLLOVER.

https-in: parameters Parameters used to access the “server” certificate from a certificate authority
(CA) to support incoming HTTPS from client devices. For details, see Incoming
HTTPS in Chapter 6, Advanced License Server Features.

Parameters also control the enabled cipher list. For more information, see
Configuring the Cipher Choice Mechanism.

These parameters replace the “server” configuration file used for HTTPS in
previous FlexNet Embedded license server versions. To use a “server”
configuration file from a previous license server version, the license server
administrator needs to set up a command-line option to specify the file path and
name. For more information, see Define Command-Line Options for HTTPS
Configuration Files.

Note • The “server” configuration file is being deprecated and will be removed in
a future release.

Table 3-4 • Settings in the “local-configuration.yaml” File (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 51

Define Command-Line Options for HTTPS Configuration Files
The local-configuration.yaml includes the https-in and https-out options used to define the parameters for the
license server’s HTTPS communications with FlexNet Embedded clients and FlexNet Operations. These two
options replace the “server” and “client” HTTPS configuration files used in previous license server versions.
However, the license server administrator can still use these configuration files (instead of the https-in and
https-out options) by providing command-line options in the flexnetls.conf unit file to identify the paths to
these files.

https-out: parameters Parameters to access the truststore containing root and intermediate certificates
to validate the license server’s outgoing HTTPS communication to FlexNet
Operations.

This setting is not required for Revenera-hosted FlexNet Operations instances. If
you have the “on-premises” version of FlexNet Operations and the HTTPS server
certificate has been signed by an unknown (private) certificate authority, you
must define this setting.

These parameters replace the “client” configuration file used for HTTPS in
previous FlexNet Embedded license server versions. To use a “client”
configuration file from a previous license server version (instead of these
parameters), the administrator needs to set up a command-line option to specify
the file path and name. For more information, see Define Command-Line Options
for HTTPS Configuration Files.

Note • The “client” configuration file is being deprecated and will be removed in a
future release.

rate-limit: value The maximum number of capability requests per second that the license server
will accept.

By default, the local license server has no limit for the number of capability
requests it will accept at a given time. However, if a license server experiences a
high load of capability requests, a degradation in response time can result. This
option is intended for use only in situations where this type of exceptional load is
expected, as such a limit helps to enable consistent response times for accepted
requests. A number of factors affect the rate at which the server is capable of
handling requests, including the specification of the server hardware and the
complexity of the requests. Therefore, the rate-limit value should be
determined only through load-testing on a mirror of the production environment
using a representative client load.

If this setting is currently not included in the .yaml file, you can manually add it to
the file to define the necessary rate limit.

Table 3-4 • Settings in the “local-configuration.yaml” File (cont.)

Setting Description

Chapter 3 Installing and Running the License Server
Editing Local Settings Post-Installation

52 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Note • The “server” configuration file is being deprecated and will be removed in a future release.

Task To identify the path for an HTTPS configuration file

Use the instructions in Edit the .conf File Manually to edit (or add) the Environment="OPTIONS=" line in the
flexnetls.conf unit file to specify one or both command-line options:

• To specify the command-line option that identifies the path and name for the “server” configuration file,
enter the following:

Environment="OPTIONS=--https-server-configuration filePathAndName"

• To specify the command-line option that identifies the path and name for the “client” configuration file, enter
the following:

Environment="OPTIONS=--https-client-configuration filePathAndName"

• To specify both command-line options, enter the following:

Environment="OPTIONS=--https-server-configuration filePathAndName --https-client-configuration
filePathAndName"

Configuring the Cipher Choice Mechanism
When enabling HTTPS on a local license server, license server administrators have to be careful about the choice
of protocols and TLS ciphers. Failure to do this will leave the license server vulnerable to attacks.

Older TLS protocol versions (SSLv3, TLSv1.1) should not be active, not even for protocol re-negotiation.

Older ciphers (RC4, RSA for key exchange) and export-grade ciphers should not be enabled. AES should use GCM
mode rather than CBC in order to avoid padding attacks, and AEAD (Authenticated Encryption with Associated
Data) should be used for integrity checking wherever possible.

The enabled protocols in the local license server are TLSv1.2 and TLSv1.3. The latter requires Java 11, or versions
of Java 8 greater than 8u261 (this version may differ slightly for OpenJDK releases). The local license server will
automatically enable TLSv1.3 if it's available.

All known vulnerable ciphers are disabled in the default configuration. The enabled cipher list can be controlled
through the configuration property tlsCipherSuites in the https-in section of local-configuration.yaml:

Choice of TLS cipher suites. One of MODERN, COMPATIBLE or WEAK.
tlsCipherSuites: COMPATIBLE

Chapter 3 Installing and Running the License Server
Understanding Hostids

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 53

The following table describes the cipher suites that are available:

Understanding Hostids
FlexNet Embedded uses system identifiers, called hostids, for identification. When the FlexNet Embedded local
license server communicates with the back office, FlexNet Operations, to obtain its pool of licenses, the back
office uses the server’s hostid to identify that particular server. Similarly, when the client requests a license from
the license server, the client includes a hostid in the request to which the license server binds the licenses sent in
the response.

This section focuses on license server hostids. For more information about client hostids, refer to the user guide
for the respective client kit.

Cipher Suite Available Ciphers Notes

MODERN TLS 1.3 "TLS_AES_128_GCM_SHA256",
"TLS_AES_256_GCM_SHA384",
"TLS_CHACHA20_POLY1305_SHA256"

ChaCha20 requires a LTS release of Java 11
(tested with OpenJDK Runtime Environment
Microsoft-27990 (build 11.0.13+8-LTS)).

There is a high chance of TLS handshake failures
with MODERN unless all clients served by the local
license server support TLS 1.3.

COMPATIBLE "TLS_AES_128_GCM_SHA256",
"TLS_AES_256_GCM_SHA384",
"TLS_CHACHA20_POLY1305_SHA256",
"ECDHE-ECDSA-AES128-GCM-SHA256",
"ECDHE-RSA-AES128-GCM-SHA256",
"ECDHE-ECDSA-AES256-GCM-SHA384",
"ECDHE-RSA-AES256-GCM-SHA384",
"ECDHE-ECDSA-CHACHA20-POLY1305",
"ECDHE-RSA-CHACHA20-POLY1305",
"DHE-RSA-AES128-GCM-SHA256",
"DHE-RSA-AES256-GCM-SHA384"

Always use AES in GCM mode rather than CBC (to
avoid padding attacks).

Avoid deprecated and unsafe ciphers.

This is the default setting.

WEAK N/A No constraints. Vulnerable ciphers are disabled at
the JSSE level if at all. This choice would only be
used when there is a need to communicate with
old clients that get TLS handshake failures with
COMPATIBLE.

Chapter 3 Installing and Running the License Server
Understanding Hostids

54 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Hostid Types
FlexNet Embedded supports the following standard hostid types (also sometimes referred to as host types). If no
hostid is specified, the license server looks up the hostids in the native DLL component of the local license server,
in the order in which they are listed in the following table:

Specifying a Server Hostid
If the license server is run with back-office support, you as the producer must specify a hostid in the back office
during license server creation. The workflow for specifying a server hostid depends on whether a local license
server or a CLS instance is used. In implementations with a local license server, the license server administrator is
required to identify the hostid and communicate it to you. When using a CLS instance, the server hostid is based
on the server instance ID (generated when the instance is created). During synchronization from the back office
(which occurs based on synchronization policies or on-demand), the back office sends the hostid along with
other information to the license server.

Instead of waiting for the synchronization to occur, the administrator of a local license server can also specify the
license server’s hostid manually. It is vital that the hostid that is set on the local license server matches the hostid
that is specified in the back office. If the hostid on the license server is changed to a value that is different to that
specified in the back office, any licenses already mapped to the license server that is locked to the old hostid in
the back office will be orphaned.

If the server administrator needs to change the local license server’s hostid when it already has licenses mapped
in the back office, it is best practice to return the license server in the back office. During the return operation,
you can transfer the licenses to a different device; this can be the same machine with the desired hostid. After
the transfer, wait for the license server to synchronize with the back office. For more information about returning
the license server, refer to the FlexNet Operations User Guide, section “Returning a Device”.

Table 3-5 • License server hostid types

Hostid Description

PUBLISHER_DEFINED In addition to the standard hostid types (ETHERNET, FLEXID9, FLEXID10, and
VM_UUID), you can optionally specify a producer-defined hostid value to identify the
server to the back office. You define this hostid in producer_settings.xml. For more
information about producer-defined hostids, see Chapter 6, Advanced License
Server Features, section Producer-defined Hostids.

ETHERNET The unique identifier assigned to each network interface controller (NIC).

FLEXID9 The hostid of the Aladdin dongle attached to the server.

FLEXID10 The hostid of the Wibu-Systems dongle attached to the server.

VM_UUID Available if virtual machine detection is enabled.

Chapter 3 Installing and Running the License Server
Understanding Hostids

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 55

Selecting a Hostid
Specifying a server hostid is optional. If no hostid is set, the license server looks up the hostids in the native DLL
component of the local license server, in the order in which they are listed in the table in Hostid Types.
Alternatively, you as the producer can set the order in which a local license server looks up the hostid. See
Specifying the Order of Hostid Types.

However, it is important to know that the Ethernet hostid might change, depending on the adapter that is in use.
Consider the following scenario: A laptop plugged into a docking station uses the Ethernet address of the
docking station; however, when it is disconnected from the docking station, the Ethernet address is no longer
available. A wireless adapter also has an Ethernet address and this address is not available when either the
wireless adapter is removed from the machine or when the wireless adapter is disabled, but still physically
attached to the machine.

In cases as described above, it is advisable to specify the hostid manually to ensure continuous operation.

Manually Specifying a Hostid
The license server administrator can specify the server hostid (a value/type pair) in one of the following ways:

• By calling the REST API /hostids/selected. Any appropriate REST API administrative client—for example, the
FlexNet License Server Administrator command-line tool (flexnetlsadmin) or a third-party tool such as
Postman—can be used to call this API. For more information, see Hostid Selected for Instance in Chapter 4,
License Server REST APIs.

• Using the configuration files (depending on the platform):

• flexnetls.settings, setting ACTIVE_HOSTID (Windows)

• local-configuration.yaml, setting active-hostid

Important • The license server administrator can only set the hostid using a configuration file if no hostid has
yet been specified for the license server. Once a hostid has been set, it can only be changed using the REST
API.

Important • If you manually specify a server hostid, the server.hostType.order property (if set) is ignored.

Specifying the Order of Hostid Types
You can specify the order in which the local license server picks the hostid type, using the property
server.hostType.order in producer-settings.xml. For more information about this property, see Reference:
Policy Settings for the License Server, entry server.hostType.order.

Retrieving Server Hostids

Task To retrieve a server hostid, do one of the following

• Call the JSON REST endpoint http://licenseServerHostName/api/1.0/hostids (or /hostids/selected)

Chapter 3 Installing and Running the License Server
Activating the License Rights for the Server

56 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• Execute flexnetlsadmin.bat -server licenseServer_baseURL -config

(flexnetlsadmin.bat is located in the enterprise directory)

Important • (Linux only) To retrieve the VM UUID for local license servers that run on certain virtual Linux
machines and that use the VM UUID as their hostid, you need to run the FNLicensingService (located in the
“service” directory.

Activating the License Rights for the Server
If the license server is not already registered on FlexNet Operations—this is the typical case—you must do so by
sending one or more activation IDs in an activation request to the back office. For information about passing
activation IDs and counts to the FlexNet Operations, see Activating Licenses on the Server in Chapter 4, License
Server REST APIs.

Note • If you want to programmatically activate a server with a server host type that is not the default setting,
ensure that the System Configuration setting Allow Server without Activation IDs is disabled in FlexNet
Operations (under System > Configure > Embedded Devices > Capability Request Handling). For more
information, see the FlexNet Operations User Guide.

Important • If the license server has not been provisioned with any features, it responds to client requests with a
503 error with the error message "Server instance <instanceID> is not ready". This is expected behaviour
because the server is not ready in this state.

Using the REST API Option
To activate the license server using the /activation_request REST API, create a text file (act-ids.json) with
contents similar to the following:

[{"id":"example-act-id-1", "copies":"100"}]

The “id” option specifies the activation ID and “copies” indicates the number of activation copies requested.

To pass the file as input to the license server and trigger the capability request, use a Curl command similar to the
following:

curl -d @act-ids.json -X POST -H "Content-Type:application/json" licenseServer_baseURL/
activation_request

This method is typically used for external customer code.

Note • You can also use a plugin for Chrome (such as “Advanced REST Client”) or FireFox (such as “REST Client”)
to PUT or POST REST endpoints.

To determine if the features are available to the license server, view the server’s log or point a browser to the
license server’s REST /features endpoint.

Chapter 3 Installing and Running the License Server
Granting Client Requests

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 57

Using the Administration Tools
You can also use the FlexNet Embedded local license server administration tool, FlexNet License Server
Administrator (flexnetlsadmin), to perform an online activation (for example, flexnetlsadmin -server
licenseServer_baseURL -activate -id rightsID -count n) or an offline activation.

If administrative security is enabled, you might need to provide authorization credentials to perform this task. See
the FlexNet Embedded License Server Administration Guide for more details about using these tools to activate
licenses and provide authorization credentials when security is enabled.

Granting Client Requests
After the license server has obtained its pool of licenses, the FlexNet Embedded clients (that is, enterprise end-
users) either obtain features or report metered-license usage by sending capability requests to the FlexNet
Embedded local license server.

The following sections provide an overview of capability-request processing or usage reporting:

• Basic Capability-Request Processing

• Usage Capture

Basic Capability-Request Processing
The FlexNet Embedded clients check out features from the FlexNet Embedded local license server by sending
capability requests that describe the desired features. The CapabilityRequest example in your FlexNet Embedded
SDK provides a sample implementation for specifying desired features in the capability request, as shown here in
an excerpt from the example in the FlexNet Embedded C SDK:

FlxCapabilityRequestAddDesiredFeature(capabilityRequest, "survey", "1.0", 1, error);

Clients should send their capability requests to the license server’s /request endpoint, as described in the
Processing Requests from Clients section in Chapter 4, License Server REST APIs. To demonstrate this using the
CapabilityRequest example, you would run a command similar to the following to send a capability request for
desired features to the license server:

capabilityrequest -server licenseServer_baseURL/request

The license server then sends the client a capability response containing the requested licenses. You can view
the served licenses using the license server’s REST /clients endpoint.

As an alternative to implementing FlexNet Embedded SDK functionality in your code to license your product, you
can use a REST interface to perform capability exchanges (REST-driven licensing). See Chapter 4, License Server
REST APIs, for more information about REST-driven licensing.

Default Behavior for Granting Licenses
If the license server has sufficient counts to satisfy the requested counts for the desired features specified in a
capability request, the server sends the licenses for the requested features in the capability response. However,
by default, if the license server has an insufficient count to grant a given desired feature, the license for that
feature is not granted. Also, by default, if no desired features are included in the capability request, no licenses
are served to this client.

Chapter 3 Installing and Running the License Server
Upgrading the License Server

58 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Exceptions to this behavior occur when named license pools or license reservations are used to pre-allocate
licenses or when certain options that affect which licenses the license server grants are included in the request.
See the next section, Other Considerations, for further direction.

If several features are available for checkout that only differ in their expiry date, the license server first serves the
feature with the earliest expiry date that also satisfies the borrow period.

Other Considerations
The following are other points to consider about the licensing process:

• The license server can also process special options in a capability request that affect the scope of features
sent back in the response. For more information, see License Checkout: Support for Special Capability-
Request Options in Chapter 6, Advanced License Server Features.

• The license server can pre-allocate features to a group of client devices or users using named license pools.
When the license server receives a capability request from a client, it tries to serve the feature counts
according to the conditions specified in the model definition. For more information, see Allocating Licenses
Using Named License Pools in Chapter 5, More About Basic License Server Functionality.

• The license server can pre-allocate features to individual client devices or users through the use of license
reservations. The reservations are then used during the license-checkout process. For more information, see
License Reservations in Chapter 5, More About Basic License Server Functionality.

• For more information about implementing licensing code in your product to generate capability requests and
process responses, refer to the user guide for the FlexNet Embedded client SDK specific to your
programming language.

Usage Capture
When usage capture is implemented, the FlexNet Embedded client code sets the operation type inside capability
requests to either “report”, “request”, or “undo” to specify how the FlexNet Embedded local license server is to
track usage for requested metered features.

For example, if the capability request is one that expects a response (that is, the request does not specify the
“report” or “undo” operation), the FlexNet Embedded local license server sends a capability response with the
requested metered-feature count, which the client then processes into trusted storage—and the server tracks as
“consumed”. If the server cannot satisfy a requested count because it exceeds a metered feature’s usage cap,
the response indicates as such.

If the capability request specifies a “report” operation, the requested metered-feature count is simply tracked by
the license server as “consumed”. Generally no usage cap is defined, and no response is sent.

For more information about the different capability-request operations used in a usage-capture implementation,
refer to the UsageCaptureClient example in your FlexNet Embedded SDK and to the accompanying user guide.
For information about the license server’s role in usage capture, see Usage Capture and Management in Chapter
6, Advanced License Server Features.

Upgrading the License Server
You can upgrade the license server while retaining the older license server data and configuration.

Chapter 3 Installing and Running the License Server
Uninstalling the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 59

Task To upgrade the local license server

1. Create a backup of the following:

• Current license server’s installation directory

• Trusted storage files (the .ks, .db, and .0 files)

• On Windows, the default storage location is
C:\Windows\ServiceProfiles\NetworkService\flexnetls\producer_name

• On Linux, the default storage location is /var/opts/flexnetls/producer_name

• Current license server’s configuration file (producer-settings.xml, in the “bin\tools” directory)

2. Uninstall the license server that is currently installed.

For more information, see Uninstalling the License Server.

Important • Do not delete the trusted storage files. This will result in the loss of license server data and
configurations.

3. Install the latest version of the license server.

For more information, see Installing and Starting the License Server.

4. Optional: If you want to continue to use the previous configuration, copy the producer-settings.xml file from
the backup taken in Step 1 to the new installation directory.

If you are changing the trusted storage file location, you will lose the license server data unless you copy the
trusted storage files (from the backup taken in Step 1) to the new location.

Uninstalling the License Server
Use the appropriate procedure to uninstall the license server:

• Uninstall the License Server Service

• Uninstall the License Server Running in Console Mode

Uninstall the License Server Service
 Use the appropriate procedure to uninstall the license server service:

• Uninstall the Windows Service

• Uninstall the Linux Service

Uninstall the Windows Service
Use this procedure to uninstall the license server service on Windows.

Chapter 3 Installing and Running the License Server
Uninstalling the License Server

60 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Task To uninstall the license server service on Windows

1. As an Administrator, open a command prompt and navigate to the license server’s installation directory.

2. Execute the command flexnetls.bat -stop to stop the service.

3. Execute the command flexnetls.bat -uninstall to uninstall the license server service. (If you attempt to
uninstall the service before stopping it, a message appears indicating that you need to stop the service first.)

4. To ensure there are no hanging instances or services, execute sc delete FNLS-producer_name as an
administrator.

Either the command will fail with the message The specified service does not exist as an installed
service, or it will succeed with the message [SC] DeleteService SUCCESS. Both outcomes indicate that the
service is no longer present.

5. Delete the files in the license server’s installation folder.

6. Optionally, delete these files (listed here with their default locations):

• The trusted storage files in C:\Windows\ServiceProfiles\NetworkService\flexnetls\producer_name (the
.ks, .db, and .0 files)

• The log files in C:\Windows\ServiceProfiles\NetworkService\flexnetls\producer_name\logs

Trusted storage and log locations are defined by the license server policies server.trustedStorageDir and
logging.directory, respectively, the defaults for which are based on ${bases.dir}. Depending on the values
set for these policies on your server, your trusted storage and log files might be in locations different from
those mentioned in this step. See Appendix A, Reference: Policy Settings for the License Server.

Uninstall the Linux Service
Use these steps to uninstall the license server service on Linux.

Task To uninstall the license server on Linux

1. Run the following commands in this order:

a. sudo systemctl stop flexnetls-producer (to shut down the service)

b. sudo systemctl disable flexnetls-producer (to make the service ineligible to start on system reboot)

c. sudo rm /etc/systemd/system/flexnetls-producer.service

d. sudo rm -r /etc/systemd/system/flexnetls-producer.service.d

2. Optionally, remove these files (listed here with their default locations):

• The trusted storage files in /var/opts/flexnetls/producer_name (the .ks, .db, and .0 files)

• The log files in /var/opts/flexnetls/producer_name/logs

Chapter 3 Installing and Running the License Server
Uninstalling the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 61

Important • Deleting the trusted storage files erases all the licenses and their usage data along with
configuration information. This can be safely done in your test environment where there is no impact on
production data. In some cases, Revenera support may ask you to delete trusted storage files to resolve an
issue. For general upgrades, we do not recommend deleting the trusted storage files.

Trusted storage and log locations are defined by the license server policies server.trustedStorageDir and
logging.directory, respectively, the defaults for which are based on ${bases.dir}. Depending on the values
set for these policies on your server, your trusted storage and log files might be in locations different from
those mentioned in this step. See Appendix A, Reference: Policy Settings for the License Server.

Uninstall the License Server Running in Console Mode
Use these procedures to uninstall the license server running in console mode.

Uninstall on the License Server in Console Mode on Windows
Use this procedure to uninstall the license server service in console mode on Windows.

Task To uninstall the license server running in console mode on Windows

1. Close the command window running the license server.

2. Delete the files in the server’s installation folder.

3. Optionally, delete the following files (listed here with their default locations):

• The trusted storage files in C:\Users\user_name\flexnetls\producer_name (the .ks, .db, and .0 files)

• The log files in C:\Users\user_name\flexnetls\producer_name\logs

Important • Deleting the trusted storage files erases all the licenses and their usage data along with
configuration information. This can be safely done in your test environment where there is no impact on
production data. In some cases, Revenera support may ask you to delete trusted storage files to resolve an
issue. For general upgrades, we do not recommend deleting the trusted storage files.

Uninstall the License Server in Console Mode on Linux
No “uninstalling the license server” in console mode is necessary. You simply press Ctrl + C to stop the license
server in console mode. To uninstall the license server, uninstall the service, as described in Uninstall the Linux
Service. (The license server running in console mode and as a service use the same trusted-storage and log
locations.)

Chapter 3 Installing and Running the License Server
Uninstalling the License Server

62 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

4

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 63

License Server REST APIs

You can provide the enterprise customer with an administration client (tool) that communicates with the license
server REST APIs described in this chapter to perform license-server configuration and management operations
and to retrieve server status information. These APIs use a REST-style interface and JSON messages (and in some
cases, binary messages).

You can also use REST APIs to perform JSON capability exchanges without the need of FlexNet Embedded SDK
functionality in your application code—a type of licensing called “REST-driven licensing”.

The following sections describe these APIs:

• Accessing the REST APIs

• Writing a REST API Client for a Secured License Server

• APIs for Basic License Server Operations

• APIs to Manage Clients

• APIs to Obtain Feature Information

• APIs to Manage Named License Pools

• APIs to Manage Reservations

• APIs to Show Statistics

• APIs to Manage Instance Configuration

• APIs to Perform Offline Binary Operations

• API to View Binding-Break Status

• APIs to Manage Administrative Security

• API for Enabling JSON Security for the Cloud Monetization API

• Online REST API Reference Documentation Available

• Exception Handling

Chapter 4 License Server REST APIs
Accessing the REST APIs

64 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Accessing the REST APIs
The REST APIs can be directly accessed by using HTTP utilities such as cURL, Postman, or browser plugins. Some
of the endpoints return data that can be viewed in a browser; but to post data to an endpoint requires cURL
(http://curl.haxx.se/) or a plugin for your browser such as Advanced REST Client for Chrome or REST Client for
Firefox. The endpoints use either the content-type header application/json for text input or output or
application/octet-stream for binary messages such as capability requests and responses. (The content-type
header text/plain is supported for specific cases, such as importing mvel scripts.)

The following sections provide information about accessing the APIs:

• Base URLs

• Sample cURL Command

• Managing Large Amounts of Returned JSON Data

Base URLs
The REST APIs described in this chapter deal with configuring and managing license servers at the instance level.
Consequently, most are prefixed with a base URL containing the instance ID for the local license server or the CLS
instance. The base URL generally has the following format:

http://licenseServerHost/api/1.0/instances/instanceID

The following sections provide more information about the base URL:

• More About the Base URL

• HTTPS Protocol for Secured REST APIs

• “licenseServer_baseURL” as Base URL Designation

More About the Base URL
The following provides more detail about the base URL:

• For a CLS instance, the licenseServerHost part of the base URL is the address of the Cloud Licensing Service
(which can optionally include a port number); the instanceID is the actual ID generated for the instance when
it is created (data type: string). The path parameter instanceID has the data type string. The following
shows a base URL for a CLS instance:

https://siteID.compliance.flexnetoperations.com/api/1.0/instances/XYZ10203040

Replace siteID with the specific site ID supplied by Revenera. This is usually your organization's DNS name,
but can also be the tenant ID that was assigned to your organization when FlexNet Operations was first
implemented. In this case, the site ID would have the format flexNNNN.

It is your responsibility to provide the base URL to the enterprise license-server administrator.

• For a local license server, licenseServerHost includes the server’s host name and port number in the format
licenseServerHostName:port. The host name can be either a network address (such as
myserver.enterprise.com) or an IP address. The instanceID is the tilde “~” character (data type: string). A
prefix for a local license server looks similar to this:

Chapter 4 License Server REST APIs
Accessing the REST APIs

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 65

http://11.11.1.111:7070/api/1.0/instances/~

• Exceptions to the base-URL format for a local license server occur for those REST APIs that must be accessed
at the global level, not the instance level—for example, the /hostids APIs (see Viewing Instance hostids) and
the /configuration APIs for certain policies (see APIs to Manage Instance Configuration). In such cases, the
instance ID is not included in the URL, as shown here for /hostids:

http://licenseServerHostName/api/1.0/hostids

HTTPS Protocol for Secured REST APIs
When REST APIs are secured (that is, administrative security is enabled), use of the HTTPS protocol on the local
license server is strongly recommended to protect disclosure of credentials during transmission across the
network.

The base URL for a local license server might look similar to this:

https://11.11.1.111:1443/api/1.0/instances/~

The default port for a HTTPS URL is 443, unless one is supplied. The local license server defaults to 1443 to avoid
privilege issues on Linux with port numbers less than 1024, but any appropriate port can be used. For more
information about administrative security, see Administrative Security in Chapter 6, Advanced License Server
Features.

To enforce the use of HTTPS when administrative security is enabled, set the security.http.auth.enabled license
server policy to false in producer-settings.xml. See Policies to Configure Administrative Security in Chapter 6,
Advanced License Server Features.

“licenseServer_baseURL” as Base URL Designation
In this chapter (and throughout this book), the base URL in commands is represented by the variable
licenseServer_baseURL.

Sample cURL Command
An example cURL command to get the license server’s version information might be the following. (Endpoints
that accept input require the input to be in JSON format.)

curl -X GET --url licenseServer_baseURL/version

The returned information appears in JSON format, similar to the following:

{
"LLS" : {

"version" : "2018.12",
"buildDate" : "2019-01-17T10:11:17Z",
"buildVersion" : "244007",
"branch" : "2018.12",
"patch" : "0",
"fneBuildVersion" : "229775",
"serverInstanceID" : "GEDD2SNZK9RC"

}
}

Chapter 4 License Server REST APIs
Writing a REST API Client for a Secured License Server

66 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Managing Large Amounts of Returned JSON Data
APIs that can return large amounts of data, such as those related to features or clients, support pagination using
the page and size query parameters to specify the (zero-based) page number and number of items per page, as in
the following:

licenseServer_baseURL/features?page=1&size=25

The license server provides an HTTP Link header in order to make it simpler for external code to handle
pagination. It outputs navigation links to the next, previous, first, and last pages of information. For example, if
you want to traverse the features one at a time, you would issue a request that includes page=1&size=1. The JSON
data is returned with an HTTP header like the following:

Link: <http://localhost:7070/api/1.0/instances/~/features?page=0&size=1>;rel="self",
<http://localhost:7070/api/1.0/instances/~/features?page=1&size=1>;rel="next",
<http://localhost:7070/api/1.0/instances/~/features?page=1&size=1>;rel="last"

The header does not include a rel=”first” link in this example because the header is actually located on the first
page. Also, a custom HTTP header that returns the total number of elements is available. For this scenario, the
header would return Total-Elements: 2. These HTTP headers are generated only for those endpoints that return
JSON arrays and accept page and size attributes.

Writing a REST API Client for a Secured License
Server

An administrative security facility is available on the local license server or CLS instance to control access to the
REST APIs, helping to prevent unauthorized queries or operations on the license server. When this administrative
security is enabled on the license server, credentials are needed to access REST API endpoints. For details, see
Administrative Security in Chapter 6, Advanced License Server Features.

This section provides some assistance on the code flow needed to support administrative security in your custom
REST API administration client:

• Using the Base URL

• Authorizing Access to Secured REST APIs

• Creating User Accounts

Using the Base URL
The REST API administration client should use the base URL for a license server instance when accessing the
REST endpoints. See the previous section Base URLs for details. When administrative security is enabled on the
license server, use of the HTTPS protocol is strongly recommended. Also note the exceptions to the base URL
format when accessing the /hostids APIs and the /configuration APIs (see APIs for Basic License Server
Operations).

Chapter 4 License Server REST APIs
Writing a REST API Client for a Secured License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 67

Authorizing Access to Secured REST APIs
The administration client does not know ahead of time whether or not administrative security is enabled on the
license server. Basically, if a user enters credentials, the client uses them to generate the authorization token
needed to access the REST APIs. If no credentials are entered, the client proceeds to access the APIs without a
token.

Step 1: Generate the Token
If credentials are entered, the administration client uses them to generate an authorization token. To do so, the
client accesses the /authorize REST API with the POST method, providing the credentials in a request body (with
content-type application/json). The following show a sample request body in JSON format:

{
"user" : "admin",
"password" : "Admin@111"
}

If the credentials match those in a current user account on the license server, the server returns a “200 OK”
status code, as well as a response body that includes the token string and its expiration date, similar to this:

{
 "expires" : "2019-02-25T20:07:16.782Z",
 "token" : "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9..." [token value truncated for purposes of the
example]}

Step 2: Provide the Token for Each API Call
Each time a REST endpoint is called, the client needs to provide the token string in an “Authorization” HTTP
header, specifying the “Bearer” type:

Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9... [token value truncated for purposes
of the example]

If a REST API does not require authorization, the token is ignored.

Creating User Accounts
The administrative security facility supports user accounts defined with specified roles that enable the user to
perform specific operations. User accounts with ROLE_ADMIN privileges (that is, administrator accounts) can
create and manage other user accounts on the license servers. The other accounts generally have limited
administrative privileges, although a ROLE_ADMIN account can create other ROLE_ADMIN accounts. For more
information about roles, see Administrative Security in Chapter 6, Advanced License Server Features.

To create, edit, or delete a user account, the code calls the /users REST API (which requires a administrator’s
token to access). A JSON request body similar to this is used to create or update a user account:

{
 "password": "User003!",
 "roles": [
 "ROLE_READ"
],
 "user": "user003"
}

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

68 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

For more information about the /users REST API, see APIs to Manage User Accounts.

APIs for Basic License Server Operations
Basic license server operations are performed by the common REST API actions described in this section:

• API Summary

• Viewing Instance Details

• Viewing Instance hostids

• Processing Requests from Clients

• Sending Requests to the Back Office

• Activating Licenses on the Server

• Suspending or Resuming Operations

• Initiating On-demand Synchronization

API Summary
The following are the APIs that perform basic license server operations. Prefix each with the appropriate base
URL for the license server, as described in Base URLs.

Table 4-1 • Summary of License Server REST APIs

URI Methods Description

[licenseServer_baseURL only] GET Returns information about the specific license server
instance.

/hostids GET (Accessed at the global level) Gets the available hostids
on the license server instance.

/hostids/selected GET (Accessed at the global level) Returns the hostid currently
used by the instance.

PUT (Accessed at the global level) Sets the hostid to be used
by the instance. This endpoint is accessed at the global
level.

Important • f you specify the server hostid using the API,
the server.hostType.order property (if set) is ignored.

/request POST Accepts a capability request from a FlexNet Embedded
client device and responds with a capability response.

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 69

Viewing Instance Details
The /instances/{instanceID} API returns information about a specific CLS instance or the local license server.

Note that lastUpdateHostid is only updated when licenses are mapped to the license server or after a successful
capability polling attempt.

Sample Response

{
 "id": 1,
 "pendingDeletion": false,
 "hostUUID": "74390cb0-6112-4c28-af09-2f8c7deb021e",

/capability_request GET, POST Causes a new capability request to be sent to the back
office to obtain license updates for the specified license
server instance.

/activation_request POST Causes a new capability request containing the specified
activation IDs to be sent to the back office for the license
server instance.

/suspended PUT Sets the suspended/resumed state of the instance.

/sync_message GET, POST Initiates a online synchronization session outside of the
online synchronizations run at set intervals on the license
server instance. (This synchronization is also known as on-
demand synchronization.)

URI /instances/instanceID

Method GET

Query parameters syncinfo

The /instances/instanceID API can list an additional parameter
(recordsPendingSync) that shows the number of client records on the license
server that need to be synchronized to the back-office server (and thus possibly
signals the need for synchronization). To include this property, specify the
syncinfo parameter. Possible values are true and false.

(The Response section that follows shows example output that includes this
property.)

Request body N/A

Error codes glsErr.serverNotFound
glsErr.queryParamNeedsint

Table 4-1 • Summary of License Server REST APIs (cont.)

URI Methods Description

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

70 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "ready": true,
 "serverInstanceId": "T0FJQJ9TQBGR",
 "suspended": false,
 "requestId": "1",
 "tenantId": "",
 "publisherName": "demo",
 "lastUpdateTime": "2018-07-09T20:49:54.000Z",
 "failOverRole": "MAIN",
 "lastSyncTime": "2018-07-01T00:00:00.000Z",
 "lastUpdateHostid": {
 "hostidType": "ETHERNET",
 "hostidValue": "7C7A91BA832B"
 },
 "identityName": "demo-med-rsa",
 "lastClientDropTime": "2018-07-23T14:15:45.3292",
 "recordsPendingSync": 10
}

Viewing Instance hostids
The following APIs return information about the hostids available for the license server instance. Note that these
APIs are accessed at a global level; therefore, you must access them with the following URL:

http://licenseServerHostName/api/1.0/hostids (or /hostids/selected)

All Available Hostids
The /hostids API returns a list of all hostids currently available to the license server instance.

Sample Response

{
 "selected" : {
 "type" : "ETHERNET",
 "value" : "5C514FF53778"
 },
 "hostids" : [{
 "type" : "ETHERNET",
 "value" : "5C514FF53778"
 }, {
 "type" : "ETHERNET",

URI /hostids

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.queryParamUnsupported
glsErr.hostidNotFound

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 71

 "value" : "28D2444D94FC"
 }]
}

Sample Response for Extended Hostid

{
 "hostids" : [{
 "type" : "EXTENDED",
 "value" : "5C514FF53778-3-HOSTID1"
 }, {
 "type" : "EXTENDED",
 "value" : "28D2444D94FC-3-HOSTID1"
 }, {
 "type" : "ETHERNET",
 "value" : "5C514FF53778"
 }, {
 "type" : "ETHERNET",
 "value" : "28D2444D94FC"
 }],
 "selected" : {
 "type" : "EXTENDED",
 "value" : "5C514FF53778-3-HOSTID1"
 }
}

Hostid Selected for Instance
The /hostids/selected API queries or sets the “selected” hostid for the license server. The GET method returns
the current “selected” hostid—that is, the hostid currently used by the license server.

The PUT method designates a new “selected” hostid. It returns a JSON array of native hostids, plus the selected
one (or returns 404 if no match exists in the available native hostids). The PUT method also triggers a capability
request to the back office if the “selected” hostid is changed.

Important • f you specify the server hostid using the API, the server.hostType.order property (if set) is ignored.

Sample Response

{
 "type" : "ETHERNET",
 "value" : "5C514FF53778"

URI /hostids/selected

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.hostidNotFound

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

72 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

}}

Sample Response

{
 "hostids" : [{ "type" : "ETHERNET", "value" : "90B11C974E66" }],
 "selected" : { "type" : "ETHERNET", "value" : "90B11C974E66" }
}

Processing Requests from Clients
The /request API accepts a capability request from a FlexNet Embedded client device and responds back with a
capability response.

Important • If the license server has not been provisioned with any features, it responds to client requests with a
503 error with the error message "Server instance <instanceID> is not ready". This is expected behavior
because the server is not ready in this state.

Sending Requests to the Back Office
The /capability_request API causes a new capability request to be sent to the configured back office URL to
check for license updates. When the operation is successful, the returned response is processed automatically
(and no response body is sent). This process is a synchronous operation. A response body is available only when
errors are generated.

URI /hostids/selected

Method PUT

Query parameters N/A

Request body { "type" : "ETHERNET", "value" : "90B11C974E66" }

Error codes glsErr.queryParamUnsupported
glsErr.hostidNotFound

URI /request

Method POST

Query parameters N/A

Request body application/octet-stream

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.backOfficePollingInProgress
glsErr.mixingHostIds

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 73

Note • This REST API is used to perform a capability exchange between the license server and the back office. Use
“/request” if you want to perform a capability exchange between devices and the license server instance.

Sample Response

Note • This response is found in the logs.

MessageType="Capability response"
ServerIDType=String
ServerID=BACK_OFFICE
SourceIds=BACK_OFFICE
Lifetime=86400
ResponseTime="Mar 3, 2019 11:20:44 AM"
RequestHostID=6C626DA08750
RequestHostIDType=Ethernet
HostUUID=dfb867a4-4cac-4e16-96c6-9a353231ed17
MachineType=Unknown
EnterpriseID=35331653
License=(Name=MeteredCappedRe Vendor=cmsperf5 Version=1.0
 Expires=1-jan-2020 Count=10 Metered Reusable
 ServerHostID=6C626DA08750/Ethernet HostID=ANY Issued=2-mar-2019

URI /capability_request

Method GET, POST

Query parameters force

Forces a capability request to be sent immediately and forces
the license server to relay the response from the back office to
the client making the request. Possible values are true and
false.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.serverNoHostid
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.signatureInvalid
glsErr.optimisticLocking
glsErr.sslMisconfigured
glsErr.connectionFailed
glsErr.connectionFailedStatus
glsErr.connectionRefused
glsErr.licenseFailsAnchor
glsErr.lfsError
glsErr.lfsWrongMessageType
glsErr.lfsCapSessionFailed
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

74 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 Start=1-jan-2019 VendorString=42F9-634D-9B31-22CE
 Notice=AutomationAccount4 Issuer=FlexManufacturer
 SerialNumber=c8c83a8d-a1b5-4eac-9b94-ac38f8d21275)
License=(Name=MeteredUncappedRe Vendor=cmsperf5 Version=1.0
 Expires=1-jan-2020 Count=10 Metered Reusable UncappedOverdraft
 ServerHostID=6C626DA08750/Ethernet HostID=ANY Issued=2-mar-2019
 Start=1-jan-2019 VendorString=5132-B427-99A3-3DD1
 Notice=AutomationAccount4 Issuer="FlexNet Test Site"
 SerialNumber=f8414bcd-c4ea-4c7b-a997-3bef2c04750e)

Activating Licenses on the Server
The /activation_request API causes a new capability request, with an included set of activation IDs (rights IDs)
and counts, to be sent to the configured back-office URL for the specified license server instance. When the
operation is successful, the returned response is processed automatically (and no response body is sent). (This is
a synchronous operation.) A response body is available only when errors are generated.

Note • This REST API is for performing a capability exchange between the license server and the back office. Use
“/request” if you want to perform a capability exchange between devices and the license server instance.

URI /activation_request

Method POST

Query parameters force

Forces an activation request to be sent immediately and forces
the license server to relay the response from the back office to
the client making the request. Possible values are true and
false.

Request body [{"id" : "li1", "copies" : 3}, ...]

Multiple id entries may be included in the request. If the copies
field is omitted in an entry, it defaults to one copy.

For a given id entry, you can also include the "partial" option to
obtain all available copies of a rights ID if the requested count
cannot be satisfied:

[{"id" : "li1", "copies" : 3, "partial" : "true"}, ...]

Chapter 4 License Server REST APIs
APIs for Basic License Server Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 75

Sample Response

On success, there is no response. If there are problems processing the request, the response will contain a list of
status messages:

[{ "message" : "Specified rights ID is invalid: li1", "code" : "RIGHTS_ID_INVALID", "detail" : "li1" }]

Suspending or Resuming Operations
The /suspended API changes to the suspended or resumed state of the license server are both updates of this
resource. A suspended server retains its most recent state but responds to client requests either by just closing
the connection or with “503 Service Unavailable”.

Sample Response

No response is returned. The connection is closed on completion.

Initiating On-demand Synchronization
The /sync_message API initiates an online synchronization session from the license server to the back office at any
desired time, outside of the online synchronization sessions run at set intervals.

Error codes glsErr.serverNotFound
glsErr.serverNoHostid
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.signatureInvalid
glsErr.optimisticLocking
glsErr.sslMisconfigured
glsErr.connectionFailed
glsErr.connectionFailedStatus
glsErr.connectionRefused
glsErr.licenseFailsAnchor
glsErr.lfsError
glsErr.lfsWrongMessageType
glsErr.lfsCapSessionFailed
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

URI /suspended

Method PUT

Query parameters N/A

Request body true or false

Error codes glsErr.serverNotFound

URI /sync_message

Chapter 4 License Server REST APIs
APIs to Manage Clients

76 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Response

For a successful GET or POST, no response is returned.

If the method fails, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
 "key" : "glsErr.serverNotFound",
 "message" : "Server instance not found: 100",
 "arguments" : ["100"]
}

APIs to Manage Clients
These APIs show the FlexNet Embedded clients that have features currently checked out from the specified
license server.

Query parameters can be added to set a new page size, show a specific page, or filter records by a specific hostid
(of a specific hostid type if necessary) or host UUID. The includeAll parameter displays a history of client records
that includes all current client records and all previous client records awaiting synchronization.

Method GET or POST

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.optimisticLocking

Table 4-2 • License Server REST APIs Used to Manage FlexNet Embedded Clients

URI Method Description

/clients GET Gets currently active (served) clients.

/clients.stream GET Asynchronously returns active clients as
individual newline-delimited JSON (NDJSON)
objects (for local license servers only).

/clients/{id} GET Gets the information for the client specified by
its system-generated ID.

/clients/{id} DELETE Deletes a FlexNet Embedded client record
specified by its system-generated ID.

/clients/{id}/features GET Gets the feature information for the client
specified by its system-generated ID.

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 77

The following sections describe these APIs along with some of the parameter combinations:

• Viewing All Clients

• Retrieving Client Data as NDJSON Objects

• Viewing a Specified Client Record

• Viewing Features for a Specified Client Record

• Removing a Specified Client

• Viewing Client Record History for Specified Hostid

• Viewing Client Record History Including Features for a Specified hostid

Viewing All Clients
The /clients API returns a page of current clients for the license server.

Note • If you need to query large tables, it is recommended that you use the /clients.stream API instead of the
/clients API (local license servers only).

Query Parameters

The following are optional parameters:

URI /clients

Method GET

Query parameters current, hostid, hostidtype, uuid, page, size, features,
includeAll, includeUsageExpiry

For more information, see Query Parameters, below.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported
glsErr.invalidUUID
glsErr.bothUuidAndHostId
glsErr.HostIdTypeWithoutHostId

current When set to true, returns only the currently active client record
for the host. Possible values are true and false.

Chapter 4 License Server REST APIs
APIs to Manage Clients

78 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Response

[{
 "id" : 25,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-13T19:09:10.177Z",
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "User-3",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "b7254007-aef7-4807-a753-87f55252a36c",
 "collectedHostIds" : "STRING User-3",
 "hostid" : {
 "hostidValue" : "User-3",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-14T19:09:10.177Z"
}, {
 "id" : 28,

features When set to true, returns all current clients and the features
checked out for each client. Possible values are true and false.
See also Viewing All Current Clients and Their Features.

hostid Filters records by a specific hostid. Must be a string. See also
Viewing Client Record History for Specified Hostid and Viewing
Client Record History Including Features for a Specified hostid.

hostidtype Filters records by a specific hostid type. Must be a string.

includeAll When set to true, returns a history of client records that includes
all current client records and all previous client records awaiting
synchronization. Possible values are true and false.

page Retrieves a specific page. Must be a number. See also Managing
Large Amounts of Returned JSON Data.

size Specifies how many records per page should be returned. Must
be a number. See also Managing Large Amounts of Returned
JSON Data.

uuid Filters records by a specific host UUID. Must be a string.

includeUsageExpiry When set to true, the response includes the usageExpiry field
for each feature, which shows the date and time when the
feature expires on the client. Possible values are true and false.

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 79

 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-13T21:16:43.772Z",
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "User-2",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "6bc685d5-3db6-4236-9b46-9efc8ffeb590",
 "collectedHostIds" : "STRING User-2",
 "hostid" : {
 "hostidValue" : "User-2",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-14T21:16:43.772Z"
}]

JSON Response Details

The following table describes the data types of fields that might be returned in the JSON response.

"id" Number
"hostid" JSON Object

"hostidValue" String
"hostidType" String

"updateTime" Date and time in ISO format
"servedStatus" String
"machineType" String
"trusted" Boolean
"correlationId" String
"collectedHostIds" String
"requestOperation" String
"requestHostid" JSON object

"hostidValue" String
"hostidType" String

"serverHostid" JSON object
"hostidValue" String
"hostidType" String
"expiry" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"usages" List

"id" Number
"usageKind" String
"feature" JSON object

"id" Number

Chapter 4 License Server REST APIs
APIs to Manage Clients

80 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Viewing All Current Clients and Their Features
The features parameter (/clients?features=true) returns all current clients and the features checked out for
each client.

The following snippet, truncated for purposes of this document, highlights the following information:

"type" String
"featureName" String
"featureVersion" String
"expiry" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"featureCount" String/number (string if uncounted feature, else number)
"overdraftCount" String/number (string if uncapped feature, else number)
"used" Number
"vendorString" String
"notice" String
"featureId" String
"starts" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"featureKind" String
"vendor" String
"meteredUndoInterval" Number
"meteredReusable" Boolean
"receivedTime" Date and time in ISO format
"selectorsDictionary" JSON of <String,Object>
"reserved" Number
"concurrent" Boolean
"metered" Boolean
"uncounted" Boolean
"uncappedOverdraft" Boolean

"useCount" Number
"usageExpiry" Date and time in ISO format
"reservedCount" Number
"partitionName" String
"featureSlice" JSON Object

"id" Number
"slice" String/number (string if uncapped feature is present, else number)
"used" Number
"orphaned" Boolean
"uncounted" Boolean
"computedCount" String/number (string if uncapped feature is present, else number)
"requested" String
"status" String

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 81

• One client, identified with id 22 and hostid User-1, currently has 10 counts of f2 and 5 counts of f4 checked
out.

• Another client, identified with id 25 and hostid User-3, currently has 4 counts of f3 checked out.

Note that the features checked out for a given client are listed under the usages section for that client; the
checked out count for each feature in the usages section is shown as the useCount value for that feature.

This type of information is repeated for each current client.

Sample Response

[{
 "id" : 22,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-12T19:34:29.518Z",
 "usages" : [{
 "id" : 39,
 "reservedCount" : 0,
 "feature" : {
 "id" : 17,
 "starts" : "2018-10-11",
 "used" : 10,
 "featureVersion" : "2.0",
 "meteredReusable" : false,
 "featureKind" : "ORPHANED_FEATURE",
 "featureCount" : 100,
 "borrowInterval" : 604800,
 "issued" : "2018-10-12",
 "meteredUndoInterval" : 0,
 "receivedTime" : "2018-10-12T19:15:52.000Z",
 "featureName" : "f2",
 "type" : "CONCURRENT",
 "featureId" : "vcrAFaCMXROTkh62DqZ0gw",
 "overdraftCount" : 0,
 "renewInterval" : 15,
 "vendor" : "demo",
 "expiry" : "permanent",
 "uncounted" : false,
 "concurrent" : true,
 "reserved" : 0,
 "metered" : false,
 "uncappedOverdraft" : false
 },
 "usageKind" : "CONCURRENT_USAGE",
 "useCount" : 10
 }, {
 "id" : 38,
 "reservedCount" : 0,
 "feature" : {
 "id" : 19,
 "starts" : "2018-10-11",
 "used" : 5,
 "featureVersion" : "1.0",
 "meteredReusable" : false,
 "featureKind" : "ORPHANED_FEATURE",

Chapter 4 License Server REST APIs
APIs to Manage Clients

82 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "featureCount" : 10,
 "borrowInterval" : 604800,
 "issued" : "2018-10-12",
 "meteredUndoInterval" : 0,
 "receivedTime" : "2018-10-12T19:15:52.000Z",
 "entitlementExpiration" : "2020-07-04",
 "featureName" : "f4",
 "type" : "CONCURRENT",
 "featureId" : "qAKQDQVGgS+sg/oav0eBBA",
 "overdraftCount" : 0,
 "renewInterval" : 15,
 "vendor" : "demo",
 "expiry" : "2021-11-30",
 "uncounted" : false,
 "concurrent" : true,
 "reserved" : 0,
 "metered" : false,
 "uncappedOverdraft" : false
 },
 "usageKind" : "CONCURRENT_USAGE",
 "useCount" : 5
 }],
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "User-1",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "12582448-53f0-4611-bfbf-3be985d0c5de",
 "collectedHostIds" : "STRING User-1",
 "hostid" : {
 "hostidValue" : "User-1",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-13T19:34:29.518Z"
}, {
 "id" : 25,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-13T19:09:10.177Z",
 "usages" : [{
 "id" : 45,
 "reservedCount" : 0,
 "feature" : {
 "id" : 20,
 "starts" : "2018-10-12",
 "used" : 7,
 "featureVersion" : "1.0",
 "meteredReusable" : false,
 "featureKind" : "NORMAL_FEATURE",
 "featureCount" : 10,
 "borrowInterval" : 604800,

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 83

 "issued" : "2018-10-13",
 "meteredUndoInterval" : 0,
 "receivedTime" : "2018-10-13T18:57:45.000Z",
 "entitlementExpiration" : "2020-12-31",
 "featureName" : "f3",
 "type" : "CONCURRENT",
 "featureId" : "DGr/2lmfZ8vw44T4+1MbtQ",
 "overdraftCount" : 0,
 "renewInterval" : 15,
 "vendor" : "demo",
 "expiry" : "2021-01-31",
 "uncounted" : false,
 "concurrent" : true,
 "reserved" : 0,
 "metered" : false,
 "uncappedOverdraft" : false
 },
 "usageKind" : "CONCURRENT_USAGE",
 "useCount" : 4

 ...],
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "User-3",
 "hostidType" : "STRING"
 }
}]

JSON Response Details

For information about the data types of fields in the JSON response, see Viewing All Clients.

Retrieving Client Data as NDJSON Objects
The /clients.stream API asynchronously returns client data as individual newline-delimited JSON (NDJSON)
objects. The content type is "application/x-ndjson", not "application/json". For information about the NDJSON
standard, see https://github.com/ndjson/ndjson-spec.

Note that the /clients.stream API is available only for the local license server.

The /clients.stream API returns only active clients.

URI /clients.stream

Method GET

Query parameters sort, direction, limit

Request body N/A

Error codes glsErr.userAccessDenied

https://github.com/ndjson/ndjson-spec

Chapter 4 License Server REST APIs
APIs to Manage Clients

84 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

It is recommended that you use the /clients.stream API instead of the /clients API if you need to query large
client tables. The Appendix F, Consuming Streaming Content, contains example code which shows how to
deserialise the content to a representation which enables the client to consume the streamed content one line at
a time.

Query Parameters

The following are optional parameters:

Sample Response

For a successful GET method, all active clients for the license server instance are returned as individual newline-
delimited JSON objects.

{
 "id": 8,
 "hostid": {
 "hostidValue": "h1",
 "hostidType": "STRING"
 },
 "updateTime": "2021-02-25T11:30:05.204Z",
 "servedStatus": "NORMAL",
 "machineType": "UNKNOWN",
 "trusted": true,
 "correlationId": "138e26de-4922-484a-9224-69d22a4c7c49",
 "collectedHostIds": "STRING h1",
 "requestOperation": "REQUEST",
 "requestHostid": {
 "hostidValue": "h1",
 "hostidType": "STRING"
 },
 "serverHostid": {
 "hostidValue": "14ABC537C170",
 "hostidType": "ETHERNET"
 },
 "expiry": "2021-03-01T11:30:05.204Z"
}
{
 "id": 7,
 "hostid": {
 "hostidValue": "h4",
 "hostidType": "STRING"
 },
 "updateTime": "2021-02-25T10:44:46.069Z",

sort Sorts the returned data by client id and update time. Possible
values are id and updateTime.

By default, data is sorted by update time.

direction Sorts the returned data in ascending or descending order.
Possible values are asc and desc.

limit Specifies the maximum number of client records to be retrieved.
Must be a number.

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 85

 "servedStatus": "NORMAL",
 "machineType": "UNKNOWN",
 "trusted": true,
 "correlationId": "3a0a5d0f-bf0a-4d86-9c1d-9f4b9ccce645",
 "collectedHostIds": "STRING h4",
 "requestOperation": "REQUEST",
 "requestHostid": {
 "hostidValue": "h4",
 "hostidType": "STRING"
 },
 "serverHostid": {
 "hostidValue": "14ABC537C170",
 "hostidType": "ETHERNET"
 },
 "expiry": "2021-03-01T10:44:46.069Z"
}

Viewing a Specified Client Record
The /clients/{id} API returns information on the specific client record identified by its system-generated ID. The
path parameter {id} must be of data type number.

Sample Response

{
 "id" : 2,
 "machineType" : "UNKNOWN",
 "requestOperation" : "REQUEST",
 "servedStatus" : "NORMAL",
 "correlationId" : "e63434bd-aa97-4c59-86a3-706e29953bc6",
 "updateTime" : "2018-07-06T22:37:08.489Z",
 "collectedHostIds" : "STRING 222201",
 "trusted" : false,
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "hostid" : {
 "hostidValue" : "222201",
 "hostidType" : "STRING"
 },
 "requestHostid" : {

URI /clients/{id}

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.clientNotFound

Chapter 4 License Server REST APIs
APIs to Manage Clients

86 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "hostidValue" : "222201",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-07-13T22:37:08.489Z"
}

JSON Response Details

The following table describes the data types of fields that might be returned in the JSON response.

Viewing Features for a Specified Client Record
The /clients/{id}/features API returns the list of checked-out features for a specific client record identified by
its system-generated ID. The path parameter {id} must be of data type number.

"id" Number
"hostid" JSON object

"hostidValue" String
"hostidType" String

"updateTime" Date and time in ISO format
"servedStatus" String
"machineType" String
"trusted" Boolean
"correlationId" String
"collectedHostIds" String
"requestOperation" String
"requestHostid" JSON object

"hostidValue" String
"hostidType" String

"serverHostid" JSON object
"hostidValue" String
"hostidType" String

"expiry" String (could be either the text ‘permanent’ or date in ‘yyyy-mm-dd’ format)

URI /clients/{id}/features

Method GET

Query parameters page, size, includeUsageExpiry

For more information, see Query Parameters, below.

Request body N/A

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 87

Query Parameters

The following are optional parameters:

Sample Response

[{
 "id" : 1,
 "usageKind" : "CONCURRENT_USAGE",
 "useCount" : 5,
 "feature" : {
 "id" : 3,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "u65ZlP9xojax9KjoNV8CFw",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f3",
 "renewInterval" : 15,
 "used" : 5,
 "featureCount" : 10,
 "expiry" : "2019-01-31",
 "featureVersion" : "1.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "entitlementExpiration" : "2018-12-31",
 "metered" : false,
 "uncappedOverdraft" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
 },

Error codes glsErr.serverNotFound
glsErr.clientNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported

page Retrieves a specific page. Must be a number. See also Managing
Large Amounts of Returned JSON Data.

size Specifies how many records per page should be returned. Must
be a number. See also Managing Large Amounts of Returned
JSON Data.

includeUsageExpiry When set to true, the response includes the usageExpiry field
for each feature, which shows the date and time when the
feature expires on the client. Possible values are true and false.

Chapter 4 License Server REST APIs
APIs to Manage Clients

88 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "reservedCount" : 0
}, {
 "id" : 2,
 "usageKind" : "CONCURRENT_USAGE",
 "useCount" : 20,
 "feature" : {
 "id" : 2,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "z3vg4xKuAy0OXrPb+9v2ow",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f2",
 "renewInterval" : 15,
 "used" : 35,
 "featureCount" : 100,
 "expiry" : "permanent",
 "featureVersion" : "2.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "metered" : false,
 "uncappedOverdraft" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
 },
 "reservedCount" : 0
}]

JSON Response Details

The table below describes the data types of fields returned in the JSON response. Each object has the following
structure:

"id" Number
"usageKind" String
"feature" JSON object

"id" Number
"type" String
"featureName" String
"featureVersion" String
"expiry" String (could be either the text ‘permanent’ or date in ‘yyyy-mm-dd’ format)
"featureCount" String/number (string if uncounted feature, else number)
"overdraftCount" String/number (string if uncapped feature, else number)
"used" Number
"vendorString" String
"notice" String
"featureId" String

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 89

Removing a Specified Client
The /clients/{id} API deletes the FlexNet Embedded client specified by any of its system-generated client
record IDs. Usage data for the client, however, is still retained until it is successfully synced to the back office.
The path parameter {id} must be of data type number.

For a successful DELETE, the status code 410 is returned, but no response is provided.

"starts" String (could be either the text ‘permanent’ or date in ‘yyyy-mm-dd’ format)
"featureKind" String
"vendor" String
"meteredUndoInterval" Number
"meteredReusable" Boolean
"receivedTime" Date and time in ISO format
"selectorsDictionary" JSON of <String,Object>
"reserved" Number
"concurrent" Boolean
"metered" Boolean
"uncounted" Boolean
"uncappedOverdraft" Boolean

"useCount" Number
"reservedCount" Number
"partitionName" String
"featureSlice" JSON object

"id" Number
"slice" String/number (string if uncapped feature is present, else number)
"used" Number
"orphaned" Boolean
"uncounted" Boolean
"computedCount" String/number (string if uncapped feature is present, else number)
"requested" String
"status" String

URI /clients/{id}

Method DELETE

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.clientNotFound
glsErr.dropClientDelayEnforced
glsErr.dropClientDisallowed
glsErr.dropClientFailed

Chapter 4 License Server REST APIs
APIs to Manage Clients

90 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

If the status code 429 or 400 is returned, this can be due to the license server policy setting
licensing.dropClientEnforcedDelay. When this setting is specified, the following behavior can occur:

• If set to a time value (other than 0): A delay between client deletion requests is enforced. A message
specifies when the next client can be deleted (error code glsErr.dropClientDelayEnforced).

• If set to DROP_CLIENT_DISALLOWED: Deletion of client records is not allowed (error code
glsErr.dropClientDisallowed).

The license server policy setting licensing.dropClientEnforcedDelay is only editable by the producer.

Status code 404 indicates that the specified client could not be found.

Viewing Client Record History for Specified Hostid
The hostid parameter enables you to view the client record history—current and previous records—for a specific
hostid, each record for the hostid identified by a different “id”.

If no hostid type is specified, it is assumed that the hostid is of type STRING.

Example:/clients?hostid=user1

To view the client history for a specified hostid that is not of type STRING, you must specify the hostid type.

Example: clients?hostid=6C626DA08750&hostidtype=ETHERNET

Sample Response

[{
 "id" : 10,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-05T16:12:45.452Z",
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "user1",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "d32a6605-3380-4159-bcdb-0515888fd781",
 "collectedHostIds" : "STRING user1",
 "hostid" : {
 "hostidValue" : "user1",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-06T16:12:45.452Z"
}, {
 "id" : 9,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-05T14:28:16.620Z",
 "machineType" : "UNKNOWN",
 "requestHostid" : {

Chapter 4 License Server REST APIs
APIs to Manage Clients

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 91

 "hostidValue" : "user1",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "d05d58dc-a243-49a0-b90e-224b121c2358",
 "collectedHostIds" : "STRING user1",
 "hostid" : {
 "hostidValue" : "user1",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-05T14:28:16.620Z"
}]

JSON Response Details

For information about the data types of fields in the JSON response, see Viewing All Clients.

Viewing Client Record History Including Features for a
Specified hostid

The features parameter combined with the hostid parameter (for example, /clients?features&hostid=User-2)
enables you to view the client record history—current and previous client records—for a specific hostid along
with the features associated for each record. Each record for the hostid is identified by a different “id”.

The following snippet, truncated for purposes of this document, shows two records (“ids” 26 and 23) in the client
record history for hostid User-2. Each record shows the features checked out (under usages) at the update time
for the record.

Sample Response

[{
 "id" : 26,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-13T19:09:32.872Z",
 "usages" : [{
 "id" : 48,
 "reservedCount" : 0,
 "feature" : {
 "id" : 22,
 "starts" : "2018-10-12",
 "used" : 1,
 "featureVersion" : "2.0",
 "meteredReusable" : false,
 "featureKind" : "NORMAL_FEATURE",
 "featureCount" : 100,
 "borrowInterval" : 604800,
 "issued" : "2018-10-13",
 "meteredUndoInterval" : 0,
 "receivedTime" : "2018-10-13T18:57:45.000Z",

Chapter 4 License Server REST APIs
APIs to Manage Clients

92 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "featureName" : "f2",
.....
.....
 }],
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "User-2",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "4be08ff8-ad19-4ccb-89d0-15086fd6ed28",
 "collectedHostIds" : "STRING User-2",
 "hostid" : {
 "hostidValue" : "User-2",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-14T19:09:32.872Z"
}, {
 "id" : 23,
 "trusted" : true,
 "servedStatus" : "NORMAL",
 "updateTime" : "2018-10-13T19:06:41.213Z",
 "usages" : [{
 "id" : 41,
 "reservedCount" : 0,...
...
 }],
 "machineType" : "UNKNOWN",
 "requestHostid" : {
 "hostidValue" : "User-2",
 "hostidType" : "STRING"
 },
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "requestOperation" : "REQUEST",
 "correlationId" : "f78bf841-cd1d-467d-86a4-4fa6d58da7a0",
 "collectedHostIds" : "STRING User-2",
 "hostid" : {
 "hostidValue" : "User-2",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-10-13T19:06:41.213Z"
}]

JSON Response Details

For information about the data types of fields in the JSON response, see Viewing All Clients.

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 93

APIs to Obtain Feature Information
These APIs show those features (license rights) that the specified license server is currently serving to clients.

The following sections describe these APIs:

• Viewing All Features

• Viewing A Summary Of Features

• Retrieving Feature Data as NDJSON Objects

• Viewing Only Active Features

• Viewing Features in an Expiration Grace Period

• Viewing Number of Features

• Viewing Specified Feature

• Viewing Feature Usage

• Listing Overages

Table 4-3 • License Server REST APIs Used to Obtain Feature Information

URI Method Description

/features GET Returns the first page of feature information.
Add query parameters to set page size and
offset.

/features HEAD Returns the number of features associated with
the instance.

/features/summaries GET Returns a summary of feature information,
grouped by feature name.

/features.stream GET Asynchronously returns features as individual
newline-delimited JSON (NDJSON) objects (for
local license servers only).

/features/{id} GET Returns information about a specific feature.

/features/{id}/clients GET Returns usage information about a specific
feature. Add query parameters to set page size
and offset.

/overages GET Returns overage count and expiration
information. Add query parameters to set page
size and offset.

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

94 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Viewing All Features
The /features API returns the first page of features served by this instance, including the total served counts,
used counts, and overage counts. Query parameters may be added to filter the results.

Note • If you need to query large tables, it is recommended that you use the /features.stream API instead of the
/features API (local license servers only).

Query Parameters

The following are optional parameters:

URI /features

Method GET

Query parameters activeOnly, includeSlices, inGracePeriod, name, page, size

For more information, see Query Parameters, below.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported

activeOnly When set to true, filters out expired features and features that
have not yet started. Possible values are true and false. See
also Viewing Only Active Features.

includeSlices When set to true, returns information about the slices that
belong to a feature. Possible values are true and false.

inGracePeriod When set to true, shows features currently in a grace period
before they expire. Possible values are true and false. See also
Viewing Features in an Expiration Grace Period.

name Specifies the name of the feature to return. Must be a string.

page Retrieves a specific page. Must be a number. See also Managing
Large Amounts of Returned JSON Data.

size Specifies how many records per page should be returned. Must
be a number. See also Managing Large Amounts of Returned
JSON Data

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 95

Sample Response

[{
 "id" : 1,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "OkAZjIUQ8wuD9BeLSZb8HQ",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f4",
 "renewInterval" : 15,
 "used" : 0,
 "featureCount" : 10,
 "expiry" : "2018-08-31",
 "featureVersion" : "1.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "entitlementExpiration" : "2018-07-04",
 "metered" : false,
 "uncappedOverdraft" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
}, {
 "id" : 2,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "z3vg4xKuAy0OXrPb+9v2ow",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f2",
 "renewInterval" : 15,
 "used" : 20,
 "featureCount" : 100,
 "expiry" : "permanent",
 "featureVersion" : "2.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "metered" : false,
 "uncappedOverdraft" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
}...]

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

96 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

JSON Response Details

The following table describes the data types of fields that might be returned in the JSON response.

Viewing A Summary Of Features
The /features/summaries API returns a summary of available features, grouped by feature name. The response
does not include expired features, features that have not yet started, and orphaned features.

"id" Number
"type" String
"featureName" String
"featureVersion" String
"expiry" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"featureCount" String/number (string if uncounted feature is present, else number)
"overdraftCount" String/number (string if uncapped feature is present, else number)
"used" Number
"vendorString" String
"notice" String
"featureId" String
"starts" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"featureKind" String
"vendor" String
"meteredUndoInterval" Number
"meteredReusable" Boolean
"receivedTime" Date and time in ISO format
"selectorsDictionary" JSON of <String,Object>
"uncounted" Boolean
"metered" Boolean
"uncappedOverdraft" Boolean
"concurrent" Boolean
"reserved" Number
"slices" List

"id" Number
"slice" String/number (string if uncapped feature is present, else number)
"used" Number
"orphaned" Boolean
"uncounted" Boolean
"computedCount" String/number (string if uncapped feature is present, else number)
"requested" String
"status" String

URI /features/summaries

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 97

Sample Response

In the response, each section for a feature of a particular version includes a "links" element. This references the
/feature/{id} API for the relevant feature ID.

{
"f1" : {

"1.0" : {
"links" : [{

"rel" : "item",
"href" : "http://localhost/api/1.0/instances/FWZUSJEZ0YW6/features/3"

}],
"totalCount" : 100,
"totalOverdraftCount" : 0,
"totalUsed" : 0,
"hasUncappedOverdraft" : false,
"totalLineItems" : 1,
"firstExpiryDate" : "permanent",
"lastExpiryDate" : "permanent",
"isMeteredReusable" : false,
"hasOverdraft" : false,
"totalAvailable" : 100,
"isUncounted" : false,
"isMetered" : false,

},
"2.0" : {

"links" : [{
"rel" : "item",
"href" : "http://localhost/api/1.0/instances/FWZUSJEZ0YW6/features/4"

}],
"totalCount" : 100,
"totalOverdraftCount" : 0,
"totalUsed" : 0,
"hasUncappedOverdraft" : false,
"totalLineItems" : 1,
"firstExpiryDate" : "permanent",
"lastExpiryDate" : "permanent",
"isMeteredReusable" : false,
"hasOverdraft" : false,
"totalAvailable" : 100,
"isUncounted" : false,
"isMetered" : false,

}
}

}

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.userAccessDenied

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

98 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Retrieving Feature Data as NDJSON Objects
The /features.stream API asynchronously returns feature data as individual newline-delimited JSON (NDJSON)
objects. The content type is "application/x-ndjson", not "application/json". For information about the NDJSON
standard, see https://github.com/ndjson/ndjson-spec.

Note that the /features.stream API is available only for the local license server.

The /features.stream API returns all features (active and inactive).

It is recommended that you use the /features.stream API instead of the /features API if you need to query large
tables. The Appendix F, Consuming Streaming Content, contains example code which shows how to deserialise
the content to a representation which enables the client to consume the streamed content one line at a time.

Query Parameters

The following are optional parameters:

Sample Response

For a successful GET method, all features served by the license server instance are returned as individual newline-
delimited JSON objects.

{
 "id": 32,
 "type": "CONCURRENT",
 "featureName": "f9",
 "featureVersion": "1.0",
 "expiry": "permanent",
 "featureCount": "uncounted",
 "overdraftCount": 0,
 "used": 0,

URI /features.stream

Method GET

Query parameters sort, direction, limit

Request body N/A

Error codes glsErr.userAccessDenied

sort Sorts the returned data by feature id and feature name. Possible
values are id and featureName.

By default, data is sorted by feature name.

direction Sorts the returned data in ascending or descending order.
Possible values are asc and desc.

limit Specifies the maximum number of feature records to be
retrieved. Must be a number.

https://github.com/ndjson/ndjson-spec

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 99

 "vendorString": "%%ROLE:ANY,REGION:EMEA%%",
 "notice": "integration-helper",
 "featureId": "2ac4df45-0cec-4ff1-abe1-99307778ca0d",
 "starts": "2021-02-24",
 "featureKind": "NORMAL_FEATURE",
 "vendor": "fnedemo",
 "meteredUndoInterval": 0,
 "meteredReusable": false,
 "receivedTime": "2021-02-25T09:41:41.000Z",
 "selectorsDictionary": {
 "ROLE": "ANY",
 "REGION": "EMEA"
 },
 "uncappedOverdraft": false,
 "metered": false,
 "uncounted": true,
 "reserved": 0,
 "concurrent": true
}
{
 "id": 100,
 "type": "CONCURRENT",
 "featureName": "f9",
 "featureVersion": "2.0",
 "expiry": "permanent",
 "featureCount": "uncounted",
 "overdraftCount": 0,
 "used": 0,
 "vendorString": "%%ROLE:ANY,REGION:EMEA%%",
 "notice": "integration-helper",
 "featureId": "e40beacb-cca4-461d-98a5-7c5bd360853f",
 "starts": "2021-02-25",
 "featureKind": "NORMAL_FEATURE",
 "vendor": "fnedemo",
 "meteredUndoInterval": 0,
 "meteredReusable": false,
 "receivedTime": "2021-02-26T11:31:25.000Z",
 "selectorsDictionary": {
 "ROLE": "ANY",
 "REGION": "EMEA"
 },
 "uncappedOverdraft": false,
 "metered": false,
 "uncounted": true,
 "reserved": 0,
 "concurrent": true
}
{
 "id": 92,
 "type": "CONCURRENT",
 "featureName": "f8",
 "featureVersion": "2.0",
 "expiry": "permanent",
 "featureCount": "uncounted",
 "overdraftCount": 0,
 "used": 0,

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

100 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "vendorString": "%%ROLE:ANY,REGION:EMEA%%",
 "notice": "integration-helper",
 "featureId": "1bc8e03c-0cb9-4106-b55a-4c925253c7eb",
 "starts": "2021-02-25",
 "featureKind": "NORMAL_FEATURE",
 "vendor": "fnedemo",
 "meteredUndoInterval": 0,
 "meteredReusable": false,
 "receivedTime": "2021-02-26T11:31:25.000Z",
 "selectorsDictionary": {
 "ROLE": "ANY",
 "REGION": "EMEA"
 },
 "uncappedOverdraft": false,
 "metered": false,
 "uncounted": true,
 "reserved": 0,
 "concurrent": true
}

Viewing Only Active Features
When calling the /features API with the activeOnly query parameter set to true (as in features?activeOnly=true),
only active features are returned. A feature is considered active if it has started (its start date is in the past, or no
start date is present) and has not reached its expiration date as defined in the back office (the expiry date in the
API output).

By default, the /features API returns all features (features?activeOnly=false).

Viewing Features in an Expiration Grace Period
The /features API used with the inGracePeriod query parameter set to true (as in features?inGracePeriod=true)
retrieves a list of features currently in an expiration grace period. A feature is considered to be in an expiration
grace period when the current date is later than the entitlementExpiration date but earlier than the expiry date,
as shown in the API output.

The following explains the two types of expiration dates in the output:

• “expiry” date—The final expiration date, as defined in the back office, when a feature is no longer available
for serving by the license server or for acquisition from the back-office server (and consequently no longer
available to satisfy license acquisition requests on the client). This date reflects the entitlement expiration
date (see the next bullet) plus the grace period defined in the back office. If no grace period is defined, the
expiry date is the same as the entitlementExpiration date.

• “entitlementExpiration” date—The original expiration date in the entitlement; no grace period is included in
this date. Subsequently, if a grace period is defined in the back office, the entitlementExpiration date is
usually the original expiration date without the grace period applied (and is therefore earlier than the expiry
date). If no grace period is defined, the entitlementExpiration and expiry dates are the same.

Providing a license-server administrator tool that lists features currently in a grace period enables administrators
to initiate prompt renewals.

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 101

Note • Support for feature grace periods was introduced in FlexNet Embedded 2017 R2. Features defined in the
back office before this 2017 R2 release do not support grace periods or the inclusion of the
“entitlementExpiration” dates in capability responses.

The following shows two features in a grace period. Note that, for each feature, the current date (the issued date)
is later than the entitlementExpiration date but earlier than the expiry date:

[{
 "id" : 1,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "OkAZjIUQ8wuD9BeLSZb8HQ",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f4",
 "renewInterval" : 15,
 "used" : 0,
 "featureCount" : 10,
 "expiry" : "2018-08-31",
 "featureVersion" : "1.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "entitlementExpiration" : "2018-07-04",
 "metered" : false,
 "uncappedOverdraft" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
}, {
 "id" : 4,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "2QwgJ/T+E6aF/jFClRC9jw",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f1",
 "renewInterval" : 15,
 "used" : 0,
 "featureCount" : 10,
 "expiry" : "2018-08-31",
 "featureVersion" : "1.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "entitlementExpiration" : "2018-07-01",
 "metered" : false,
 "uncappedOverdraft" : false,

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

102 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
}]

Viewing Number of Features
The /features API invoked as the HEAD request returns the number of features associated with the instance.

The response only contains a response header (with a string format of Long), but no response body. The response
header might look similar to the output of the following cURL command:

$ curl --head http://localhost:7070/gls/api/1.0/instances/B9W5Q808M6BZ/features

Output

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0HTTP/1.1 200
Vary: Origin
Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Total-Elements: 3
X-SERVER-UTILIZATION: 1
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY
Content-Length: 0
Date: Fri, 15 Jan 2021 12:12:51 GMT

Viewing Specified Feature
The /feature/{id} API returns information about a specific feature. The path parameter {id} must be of data type
number.

URI /features

Method HEAD

Query parameters N/A

Request body N/A

Error codes N/A

URI /features/{id}

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 103

Sample Response

{
 "id" : 2,
 "issued" : "2018-07-06",
 "meteredUndoInterval" : 0,
 "type" : "CONCURRENT",
 "meteredReusable" : false,
 "featureId" : "z3vg4xKuAy0OXrPb+9v2ow",
 "vendor" : "demo",
 "borrowInterval" : 604800,
 "featureName" : "f2",
 "renewInterval" : 15,
 "used" : 20,
 "featureCount" : 100,
 "expiry" : "permanent",
 "featureVersion" : "2.0",
 "featureKind" : "NORMAL_FEATURE",
 "overdraftCount" : 0,
 "receivedTime" : "2018-07-06T22:15:52.000Z",
 "starts" : "2018-07-05",
 "metered" : false,
 "uncappedOverdraft" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncounted" : false
}

JSON Response Details

The following table describes the data types of fields that might be returned in the JSON response.

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.featureNotFound

"id" Number
"type" String
"featureName" String
"featureVersion" String
"expiry" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"featureCount" String/number (string if uncounted feature is present, else number)
"overdraftCount" String/number (string if uncapped feature is present, else number)
"used" Number
"vendorString" String
"notice" String
"featureId" String

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

104 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Viewing Feature Usage
The /features/{id}/clients API returns usage information for a specific feature along with client details. The
path parameter {id} must be of data type number.

"starts" String (could be either the text 'permanent' or date in 'yyyy-mm-dd' format)
"featureKind" String
"vendor" String
"meteredUndoInterval" Number
"meteredReusable Boolean
"receivedTime" Date and time in ISO format
"selectorsDictionary" JSON of <String,Object>
"uncounted" Boolean
"metered" Boolean
"uncappedOverdraft" Boolean
"concurrent" Boolean
"reserved" Number
"slices" List (

"id" Number
"slice" String/number (string if uncapped feature is present, else number)
"used" Number
"orphaned" Boolean
"uncounted" Boolean
"computedCount" String/number (string if uncapped feature is present, else number)
"requested" String
"status" String

URI /features/{id}/clients

Method GET

Query parameters includeAll, page, size, includeUsageExpiry

For more information, see Query Parameters, below.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.featureNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 105

Query Parameters

The following are optional parameters:

Sample Response

[{
 "id" : 2,
 "usageKind" : "CONCURRENT_USAGE",
 "useCount" : 20,
 "client" : {
 "id" : 1,
 "machineType" : "UNKNOWN",
 "requestOperation" : "REQUEST",
 "servedStatus" : "NORMAL",
 "correlationId" : "880bbb5b-d060-46bf-b321-7b5dcf243b5b",
 "updateTime" : "2018-07-06T22:31:18.700Z",
 "collectedHostIds" : "STRING 1234567890",
 "trusted" : false,
 "serverHostid" : {
 "hostidValue" : "7C7A91BA832B",
 "hostidType" : "ETHERNET"
 },
 "hostid" : {
 "hostidValue" : "1234567890",
 "hostidType" : "STRING"
 },
 "requestHostid" : {
 "hostidValue" : "1234567890",
 "hostidType" : "STRING"
 },
 "expiry" : "2018-07-13T22:31:18.700Z"
 },
 "reservedCount" : 0
}]

includeAll When set to true, also returns expired usages. Possible values
are true and false.

page Retrieves a specific page. Must be a number. See also Managing
Large Amounts of Returned JSON Data.

size Specifies how many records per page should be returned. Must
be a number. See also Managing Large Amounts of Returned
JSON Data.

includeUsageExpiry When set to true, the response includes the usageExpiry field
for each feature, which shows the date and time when the
feature expires on the client. Possible values are true and false.

Chapter 4 License Server REST APIs
APIs to Obtain Feature Information

106 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

JSON Response Details

The following table describes the data types of fields that might be returned in the JSON response.

Listing Overages
The /overages API returns the first page of overages, including the overage count and expiration together with the
identifiers of the device holding the feature and the feature itself. Order is by expiry descending, device ID
ascending.

"id" Number
"usageKind" String
"client" JSON object

"id" Number
"hostid" JSON object

"hostidValue" String
"hostidType" String

"updateTime" Date and time in ISO format
"servedStatus" String
"machineType" String
"trusted" Boolean
"correlationId" String
"collectedHostIds" String
"requestOperation" String
"requestHostid" JSON object

"hostidValue" String
"hostidType" String

"serverHostid" JSON Object
"hostidValue" String
"hostidType" String

"expiry" String (could be either the text 'permanent' or date in
 'yyyy-MM-dd'T'HH:mm:ss.SSS'Z'' format

"useCount" Number
"reservedCount" Number

URI /overages

Method GET

Query parameters page, size

Use page to retrieve a specific page. Must be a number.

Use size to specify how many records per page should be
returned. Must be a number.

See also Managing Large Amounts of Returned JSON Data.

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 107

Sample Response

[{
 "feature" : {
 "id" : 1,
 "type" : "CONCURRENT",
 "featureName" : "f1",
 "featureVersion" : "1.0",
 "expiry" : "2020-12-31",
 "featureCount" : 5,
 "overdraftCount" : 0,
 "overdraftUsedCount" : 0,
 "used" : 10,
 "sharedUsed" : 10,
 "assignedReserved" : 0,
 "unassignedReserved" : 0,
 "vendorString" : "vendor defined",
 "issued" : "2018-07-05",
 "borrowInterval" : 604800,
 "renewInterval" : 15,
 "featureId" : "li1-0-6",
 "starts" : "2018-07-04",
 "featureKind" : "NORMAL_FEATURE",
 "vendor" : "demo",
 "meteredUndoInterval" : 0,
 "meteredReusable" : false,
 "receivedTime" : "2018-07-05T21:32:18.000Z",
 "metered" : false,
 "uncounted" : false,
 "reserved" : 0,
 "concurrent" : true,
 "uncappedOverdraft" : false
 },
 "overageCount" : 5
}]

APIs to Manage Named License Pools
The Named License Pools functionality available with the FlexNet Embedded license server (the local license
server or a CLS instance) enables the license server administrator to allocate licenses to a group of client devices
or users to help ensure that these entities have access to the features they need. For more information about
named license pools, see Allocating Licenses Using Named License Pools.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

108 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Important • The license server administrator can use either reservations or named license pools. Reservations
and named license pools cannot coexist alongside each other. If you were previously using reservation, you must
delete all reservation groups before you can use named license pools. For procedural information, see Managing
Reservation Groups. For general information about reservations, see License Reservations.

Note • In previous releases of the FlexNet Embedded license server, named license pools used to be referred to
as “partitions”. However, the term “partition” still persists in some areas such as API endpoint names, output,
and error messages.

The following sections describe these APIs:

• Uploading the Model Definition

• Viewing the Model Definition

• Deleting the Model Definition

• Viewing License Pools

• Viewing a Specified License Pool By ID

The last section, JSON Response Details, explains the most relevant lines in the JSON response that is returned
when the /partitions endpoint is called using GET.

API Summary
The following APIs manage the model definition and license pools (named and default) for the license server.

Table 4-4 • License Server REST APIs Used to Manage License Pools

URI Method Description

/rules POST Uploads the model definition to the license server, persisting the
license pools and feature slices. A Content-Type of text/plain is
expected.

GET Returns the model definition for that server instance.

DELETE Deletes the model definition. The default model definition is
applied to the server instead.

/partitions GET Returns the license pools along with feature counts and feature
slices. Also includes information about used and allocated counts
for each feature slice.

/partitions/{id} GET Returns the specified named license pool with the ID specified in
the URL along with feature counts and feature slices which belong
to that named license pool. Also includes information about
remaining counts for each feature slice.

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 109

Uploading the Model Definition
The /rules API used with the POST method uploads the model definition to the license server and saves it in the
database (requires administrator authorization).

If the upload fails, the model definition is not stored in the database. Instead, the server uses the previous model
definition.

Only one model definition can be active for each local license server or CLS instance.

You cannot upload a model definition with the name reservations or default, because these names are reserved.

Important • If you were previously using reservations, you must delete all reservation groups. Otherwise,
uploading a model definition will fail. For more information, see Named License Pools vs. Reservations.

The request body contains the model definition. For details on its grammar and syntax, see Model Definition
Grammar for Named License Pools.

URI /rules

Method POST

Query parameters N/A

Request body Include the model definition in the request. Use the content-type
header text/plain with character set UTF-8.

model "example" {
partitions {

partition "p1" {
"f1" 1.0 20;

}
partition "p2" {

"f1" 1.0 10;
}

}
on hostid("h1") {

use "p1"
continue

}
on hostid("h2") {

use "p2", "default"
accept

}
on any() {

use "default"
accept

}
}

Error codes glsErr.invalidModelName
glsErr.modelSyntaxError
glsErr.restUnimplemented

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

110 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample response

On success, no response body is provided.

For a failed POST method, the response contains the HTTP error code.

If the status code 400 is returned, this can indicate a syntax error in the script that was uploaded. The returned
response body will describe the exception, as shown in the following example:

{
"key" : "glsErr.modelSyntaxError",
"message" : "Model syntax error: Error while parsing action
'model/Partitions/Sequence/PartitionList' at input position (line 17, pos 5): \n on
hostname(\n"cr100\") {\n ^\n\norg.parboiled.errors.ParsingException: Partition p3 already
exists.",

"arguments" : [
"Error while parsing action 'model/Partitions/Sequence/PartitionList' at input position
(line 17, pos 5): \n on hostname("cr100") {\n
^\n\norg.parboiled.errors.ParsingException: Partition p3 already exists"

]
}

Error Messages

The following table lists possible error messages and the required action:

Viewing the Model Definition
When the GET method is invoked with the /rules API, this endpoint returns the model definition that is currently
applied to the license server instance.

Table 4-5 • License Server Errors

Exception Definition

glsErr.invalidModelName The model definition names default and reservations are reserved
names. Change the name and re-upload the model definition.

glsErr.modelSyntaxError The uploaded model definition contains a syntax error. Correct the
model definition and re-upload it.

glsErr.restUnimplemented The back-up license server does not support named license pools.
Any PUT requests to /rules are rejected. During a failover period,
feature counts will only be distributed from the default license pool.

URI /rules

Method GET

Query parameters N/A

Request body N/A

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 111

Sample response

For a successful GET method, the current model definition is returned. The response will look similar to this:

model "example" {
partitions {

partition "engineering" {
"f1" 1.0 5

}
partition "sales" {

"f1" 1.0 5
}

}

on dictionary("business-unit" : "engineering") {
use "engineering"
accept

}

on dictionary("business-unit" : "sales") {
use "sales"
accept

}

on any() {
use "default"
accept

}
}

If no model definition has been posted, the default model is returned. The response will look similar to this:

model "default" {
on any() {

use "default"
accept

}
}

If the method fails, the response contains the HTTP status code and an empty response body.

Deleting the Model Definition
The /rules API used with the DELETE method deletes the model definition that is currently applied to the license
server instance (requires administrator authorization). The default model definition is applied to the server.

Error codes N/A

URI /rules

Method DELETE

Query parameters N/A

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

112 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

For a successful DELETE, the status code 410 is returned, but no response body is provided.

For a failed DELETE method, the response contains the HTTP error code and an empty response body.

Viewing License Pools
When the GET method is invoked with the /partitions API, this endpoint returns all license pools (named and
default) for the license server instance. For each license pool, the response lists information about every feature
and every feature slice in the license pool (feature slices are portions of feature counts allocated to a named
license pool).

Sample response

For a successful GET method, all license pools (named and default) for the license server instance are returned.

The following successful sample response has been shortened for documentation purposes. For information
about elements in the response see JSON Response Details.

{
"partitions": [

{
"id": 1,
"name": "default",
"lastModified": 1563445226020,
"default": true,
"activeFeatureSlices": [

{
"id": 1,
"feature": {

"id": 1,
"type": "CONCURRENT",
"featureName": "f_con_1",
"featureVersion": "1.0",

Request body N/A

Error codes N/A

URI /partitions

Method GET

Query parameters name

Shows the license pool named in the URL along with the
features and feature counts that belong to that license pool.
Must be a string. See also Viewing a Specified License Pool By
Name.

Request body N/A

Error codes glsErr.partitionNotFound (only when using the name parameter)

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 113

"expiry": "permanent",
"featureCount": 100,
"used": 96,

},
"slice": 97,
"used": 95,
"computedCount": 97,
"requested": "97",
"uncounted": false
"status": "NORMAL",

},
{

"id": 2,
"feature": {

"id": 2,
"type": "CONCURRENT",
"featureName": "f_con_2",
"featureVersion": "1.0",
"expiry": "permanent",
"featureCount": 80,
"used": 40,

},
"slice": 50,
"used": 26,
"computedCount": 50,
"requested": "50",
"uncounted": false
"status": "NORMAL",

},
]

},
{

"id": 2,
"name": "p1",
"lastModified": 1564133869116,
"default": false,
"activeFeatureSlices": [

{
"id": 3,
"feature": {
"id": 1,

"type": "CONCURRENT",
"featureName": "f_con_1",
"featureVersion": "1.0",
"expiry": "permanent",
"featureCount": 100,
"used": 96,

},
"slice": 3,
"used": 1,
"computedCount": 3,
"requested": "3",
"uncounted": false
"status": "NORMAL",

}
]

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

114 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

}
]

}

Viewing a Specified License Pool By Name
The name parameter (for example, /~/partitions?name={licensePoolName}) shows the license pool (named or
default) specified in the URL along with the features and feature counts that belong to that license pool.

For a successful GET method, the license pool is returned.

If the method fails, the response contains the HTTP status code. In case of a status code 404, the response body
indicates that the requested license pool does not exist. For example, you might see:

{

"key": "glsErr.partitionNotFound",
"message": "Partition not found: engineering-EMEA",
"arguments": ["engineering-EMEA"]

}

The following successful sample response has been shortened for documentation purposes. For information
about elements in the response see JSON Response Details.

Sample response

{
"partitions": [

{
"id": 1,
"name": "default",
"lastModified": 1563445226020,
"default": true,
"activeFeatureSlices": [

{
"id": 1,
"feature": {

"id": 1,
"type": "CONCURRENT",
"featureName": "f_con_1",
"featureVersion": "1.0",
"expiry": "permanent",
"featureCount": 100,
"used": 96,

},
"slice": 97,
"used": 95,
"computedCount": 97,
"requested": "97",
"uncounted": false
"status": "NORMAL",

},
{

"id": 2,
"feature": {

"id": 2,
"type": "CONCURRENT",

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 115

"featureName": "f_con_2",
"featureVersion": "1.0",
"expiry": "permanent",
"featureCount": 80,
"used": 40,

},
"slice": 50,
"used": 26,
"computedCount": 50,
"requested": "50",
"uncounted": false
"status": "NORMAL",

},
]

},
]

}

Viewing a Specified License Pool By ID
The /partitions/{id} API shows the license pool (named or default) with the ID specified in the URL along with
the features and counts that belong to that license pool. The ID is assigned to the license pool by the license
server after the model definition has been uploaded. The path parameter {gid} must be of data type number.

Sample response

For a successful GET method, the license pool with the ID specified in the URL is returned. The response is
identical with the output that is returned when using the name parameter (for example,
/~/partitions?name={licensePoolName}). For sample output, see Viewing a Specified License Pool By Name.

If the method fails, the response contains the HTTP status code. In case of a status code 404, the response body
indicates that the requested license pool does not exist. For example, you might see:

{
"key": "glsErr.partitionNotFound",
"message": "Partition not found: 1234",
"arguments": ["1234"]

}

URI /partitions/{id}

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.partitionNotFound

Chapter 4 License Server REST APIs
APIs to Manage Named License Pools

116 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

JSON Response Details
The following section explains the most relevant lines in the JSON response that is output when you call the
/partitions endpoint using GET.

Table 4-6 • Elements in a JSON Response

Parent Element Child Element Description

partitions "id": n The ID is assigned to the license pool (named or
default) by the license server after the model definition
has been uploaded.

"name": "name" The license pool name. The names default and
reservations are reserved and cannot be used.

"lastModified": yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'

Indicates when the license pool was last changed (for
example, the allocated feature count or rules for that
license pool have changed). The date is specified using
the ISO 8601 date/time notation, expressed in UTC (for
example, 2019-10-22T11:16:31.000Z).

"default": true|false Indicates whether the license pool is the default license
pool or not. The default license pool cannot be deleted.

activeFeatureSlices "id": n Each feature slice is assigned an ID by the license
server after the model definition has been uploaded.

"slice": n Total license count for the feature that has been
allocated to the license pool.

Typically, this would be the count specified in the
model definition, assuming that sufficient counts are
available on the license server. If fewer counts are
available on the license server than are specified in the
model definition, or if existing usage prevents
allocation into the license pool after a new model
definition has been uploaded, "slice" specifies the
actual number of allocated licenses.

"used": n The number of feature counts that have been served
from this slice.

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 117

APIs to Manage Reservations
License reservations are specific feature counts on the specified license server that are pre-allocated to specific
client devices or users. For more information about reservations and the reservation hierarchy, see License
Reservations in Chapter 5, More About Basic License Server Functionality.

activeFeatureSlices
(continued)

"computedCount": n The number of feature counts the slice should have,
based on the model definition and the number of
feature counts the server has been provisioned with.

"requested": n The license count for the feature that has been
specified in the model definition, irrespective of
whether sufficient counts are available on the license
server.

The following sample code from a model definition
requests 5 counts of feature f1 for the named license
pool called engineering:

model "example1" {
partitions {
partition "engineering" {
feature "f1" 1.0 5

}
}

}

"status": "value" The status of the feature slice indicates how the slices
of a server are used.

Possible values:

• OVER_ALLOCATED—The slice has more feature counts
than it should have, based on the model definition
and the number of counts the server has been
provisioned with ("slice" > "computedCount").

• NORMAL—The slice has the number of feature counts
that it should have, based on the model definition
and the number of counts the server has been
provisioned with ("slice" = "computedCount").

• UNDER_ALLOCATED—The slice has fewer feature
counts than it should have, based on the model
definition and the number of counts the server has
been provisioned with ("slice" <
"computedCount").

Table 4-6 • Elements in a JSON Response

Parent Element Child Element Description

Chapter 4 License Server REST APIs
APIs to Manage Reservations

118 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Important • A license server administrator can use either reservations or named license pools. Reservations and
named license pools cannot coexist alongside each other. If you were previously using named license pools, you
must delete the model definition before you can create reservations. For procedural information, see Deleting the
Model Definition. For general information about named license pools, see Allocating Licenses Using Named
License Pools.

The following sections describe the APIs used to manage reservations:

• API Summary

• Managing Reservation Groups

• Managing a Specific Reservation Group

• Managing All Reservations in a Specific Reservation Group

• Managing a Specific Reservation in a Reservation Group

• Managing a Specific Reservation Entry

API Summary
The following lists the APIs that manage reservations:

Table 4-7 • License Server REST APIs Used to Manage License Reservations

URI Method Description

/reservationgroups GET, POST,
DELETE

Returns a list of the currently existing
reservation groups, creates a new reservation
group, or deletes all existing reservation groups.

/reservationgroups/{gid} GET, POST,
DELETE

Returns the content of or deletes a given
reservation group (gid); or, within the given
reservation group, creates one or more
reservations (each with a hostid identifying a
specific client device or user), and adds
reservation entries to each new reservation.

/reservationgroups/{gid}/reserv
ations

GET Returns information about existing reservations
in the specified reservation group.

/reservationgroups/{gid}/reserv
ations/{rid}

GET, DELETE Returns the contents of the specified
reservation (rid), or deletes the entire
reservation.

/reservationgroups/{gid}/reserv
ations/{rid}/entries

POST Creates new reservation entries in the
reservation (rid).

/reservationgroups/{gid}/reserv
ations/{rid}/entries/{eid}

GET, DELETE Returns data about a given reservation entry
(eid) or deletes a given reservation entry.

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 119

Managing Reservation Groups

Important • If you were previously using named license pools, you must delete the model definition before you
can manage reservations. See Deleting the Model Definition.

When the GET method is invoked, this endpoint returns information about all existing reservation groups:

This endpoint, invoked with the POST method, adds a new reservation group. In the request body, the definition for
the reservation group to be added is in JSON format. The name attribute is optional.

/reservationgroups/{gid}/reserv
ations/{rid}/entries/{eid}/state

PUT Changes the state of a given reservation entry
(eid) to ENABLED or DISABLED.

URI /reservationgroups

Method GET

Query parameters name, page, size

See section Query Parameters, below.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported
glsErr.reservationNotFound

URI /reservationgroups

Method POST

Query parameters N/A

Table 4-7 • License Server REST APIs Used to Manage License Reservations (cont.)

URI Method Description

Chapter 4 License Server REST APIs
APIs to Manage Reservations

120 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

When the DELETE method is invoked, the endpoint deletes all existing reservation groups:

Query Parameters

The following are optional parameters for use in GET requests:

Request body { "name" : "group1", "reservations" :
 [
 { "hostId": { "value" : "dev1", "type" : "STRING" },
 "reservationEntries": [
 { "featureName": "f1", "featureVersion": "1.0",
 "featureCount": 1 },
 { "featureName": "f2", "featureVersion": "1.0",
 "featureCount": 2 }]},
 { "hostId": { "value" : "dev2", "type" : "STRING" },
 "reservationEntries": [
 { "featureName": "f3", "featureVersion": "1.0",
 "featureCount": 3 }]}
]}

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationAlreadyExists
glsErr.invalidReservationRequest
glsErr.serviceBusyDueToReservations

URI /reservationgroups

Method DELETE

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

name Specifies the name of the reservation group to return. Must be a
string (see example in the Sample Responses section, below).
Cannot be used in combination with the page and size
parameters.

page Retrieves a specific page. Must be a number. Cannot be used in
combination with the name parameter. See also Managing Large
Amounts of Returned JSON Data.

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 121

No query parameters are available for POST or DELETE requests.

Sample Responses

For the GET method without any query parameters, the response contains information about the existing
reservations groups, named or not:

[{
 "name" : "group1",
 "id" : 3,
 "creationDate" : "2019-02-11T03:43:22.969Z",
 "ipAddress" : "0:0:0:0:0:0:0:1"
}, {
 "name" : "group2",
 "id" : 4,
 "creationDate" : "2019-02-11T03:44:02.181Z",
 "ipAddress" : "0:0:0:0:0:0:0:1"
}]

For the GET method with name=groupname parameter, the response contains the information about the named
reservation group. For example, name=group1, generates a response similar to this:

[{
 "name" : "group1",
 "id" : 1,
 "ipAddress" : "0:0:0:0:0:0:0:1",
 "creationDate" : "2019-03-07T03:10:22.667Z"
}]

For a successful POST method, the response contains a confirmation of success where gid is an id assigned to the
newly created reservation group:

{
uri: "/api/1.0/instances/{instanceid}/reservationgroups/{gid}"
status: "SUCCESS"
}

For a failed POST method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
key: "glsErr.reservationAlreadyExists"
message: "Reservation already exists: group2"
arguments: [1] 0: "group2"
}

No response is returned for the DELETE method.

size Specifies how many records per page should be returned. Must
be a number. Cannot be used in combination with the name
parameter. See also Managing Large Amounts of Returned JSON
Data.

Chapter 4 License Server REST APIs
APIs to Manage Reservations

122 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Managing a Specific Reservation Group
When the GET method is invoked, this endpoint returns information about the reservation group identified by its
group ID (gid). The path parameter {gid} must be of data type number.

When the POST method invoked, this endpoint adds new reservation (for a specific client device or user) to the
specified reservation group. The definition for the reservation to be added must be in JSON format:

When the DELETE method is invoked, the endpoint deletes the entire specified reservation group:

URI /reservationgroups/{gid}

Method GET

Query parameters summary

Returns a summary of the enabled reservation entries found in
the specified reservation group (see example in the Sample
Responses section, below). Possible values are true and false.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.reservationNotFound

URI /reservationgroups/{gid}

Method POST

Query parameters N/A

Request body { "hostId": { "value" : "dev3", "type" : "STRING" },
 "reservationEntries": [
 { "featureName": "f1", "featureVersion": "1.0",
 "featureCount": 1 }
]}

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationNotFound
glsErr.invalidReservationRequest
glsErr.serviceBusyDueToReservations

URI /reservationgroups/{gid}

Method DELETE

Query parameters N/A

Request body N/A

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 123

Sample Responses

For the GET method without any query parameters, the response shows information about the specified
reservation group:

[{
 "name" : "group1",
 "id" : 1,
 "ipAddress" : "0:0:0:0:0:0:0:1",
 "creationDate" : "2019-03-07T03:10:22.667Z"
}]

For the GET method with the summary=true query parameter, the response contains a summary of the enabled
reservation entries found in the specified reservation group:

[{
 "featureName" : "f1",
 "featureVersion" : "1.0",
 "featureCount" : 2
}, {
 "featureName" : "f1",
 "featureVersion" : "2.0",
 "featureCount" : 1
}]

For a successful POST method, the response contains a confirmation of success where rid is the reservation ID
assigned to the newly created reservation:

{
uri: "/api/1.0/instances/{instanceid}/reservations/{rid}"
status: "SUCCESS"
}

For a failed POST method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
key: "glsErr.invalidReservationRequest"
message: "Invalid reservation request"
arguments: [1] 0: "host ID STRING:dev4 is already used in a different reservation group"
}

No response is returned for the DELETE method.

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationNotFound
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

Chapter 4 License Server REST APIs
APIs to Manage Reservations

124 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Managing All Reservations in a Specific Reservation
Group

When the GET method is invoked, this endpoint returns information about all reservations defined in the specified
reservation group. The path parameter {gid} must be of data type number:

Query Parameters

The following are optional parameters:

URI /reservationgroups/{gid}/reservations

Method GET

Query parameters disabled, hostid/hostidtype, page, size

For more information, see Query Parameters, below.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.hostidNotFound
glsErr.queryParamNeedsInt
glsErr.queryParamTooSmall
glsErr.queryParamTooLarge
glsErr.queryParamUnsupported
glsErr.HostIdTypeWithoutHostId
glsErr.reservationNotFound
glsErr.reservationNotFound
glsErr.queryParamIncompatible

disabled Returns only those reservations in the specified group that
contain at least one reservation entry with a DISABLED status.
Possible values are true and false. Cannot be used in
combination with the hostid/hostidtype parameter. For more
information, see the Sample Responses section.

hostid/hostidtype The hostidtype parameter is used in conjunction with the
“hostid” parameter and is optional (hostidtype defaults to the
value “STRING“). Returns information about the reservation for
the given hostid (if found in the specified reservation group).
Cannot be used in combination with the disabled, page and
size parameters. Values must be of data type string. For more
information, see the Sample Responses section.

page Retrieves a specific page. Must be a number. Cannot be used in
combination with the hostid/hostidtype parameter. See also
Managing Large Amounts of Returned JSON Data.

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 125

Sample Responses

For the GET method without any query parameters, the response shows information about all the reservations
defined for the given reservation group:

[{
"id" : 3,
"lastModified" : "2019-02-11T05:39:23.664Z",
"ipAddress" : "0:0:0:0:0:0:0:1",
"reservationEntries" : [{
"id" : 5,
"state" : "DISABLED",
"featureName" : "f1",
"featureVersion" : "1.0",
"featureCount" : 1
}, {
"id" : 3,
"state" : "ENABLED",
"featureName" : "f1",
"featureVersion" : "2.0",
"featureCount" : 1
}],
"hostId" : {
"type" : "STRING",
"value" : "dev1"
}
}, {
"id" : 4,
"lastModified" : "2019-02-11T05:39:23.664Z",
"ipAddress" : "0:0:0:0:0:0:0:1",
"reservationEntries" : [{
"id" : 4,
"state" : "ENABLED",
"featureName" : "f1",
"featureVersion" : "1.0",
"featureCount" : 1
}],
"hostId" : {
"type" : "STRING",
"value" : "dev2"
}
}, {
"id" : 5,
"lastModified" : "2019-02-11T05:50:01.052Z",
"ipAddress" : "0:0:0:0:0:0:0:1",
"reservationEntries" : [{
"id" : 6,
"state" : "ENABLED",
"featureName" : "f1",
"featureVersion" : "1.0",

size Specifies how many records per page should be returned. Must
be a number. Cannot be used in combination with the
hostid/hostidtype parameter. See also Managing Large
Amounts of Returned JSON Data.

Chapter 4 License Server REST APIs
APIs to Manage Reservations

126 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

"featureCount" : 1
}],
"hostId" : {
"type" : "STRING",
"value" : "dev3"
}
}]

For the GET method with the disabled=true query parameter, the response shows only those reservations in the
specified group that contain at least one reservation entry with a DISABLED status:

[{
"id" : 3,
"lastModified" : "2019-02-11T05:39:23.664Z",
"ipAddress" : "0:0:0:0:0:0:0:1",
"reservationEntries" : [{
"id" : 5,
"state" : "DISABLED",
"featureName" : "f1",
"featureVersion" : "1.0",
"featureCount" : 1
}, {
"id" : 3,
"state" : "ENABLED",
"featureName" : "f1",
"featureVersion" : "2.0",
"featureCount" : 1
}],
"hostId" : {
"type" : "STRING",
"value" : "dev1"
}
}]

For the GET method with hostid=hostid_value&hostidtype=hostidtype_value query parameters, the response
shows information about the reservation for the given hostid (if found in the specified reservation group). The
hostidtype parameter is optional and defaults to STRING. For example, hostid=dev2 produces a response similar
to this:

[{
"id" : 4,
"lastModified" : "2019-02-11T05:39:23.664Z",
"ipAddress" : "0:0:0:0:0:0:0:1",
"reservationEntries" : [{
"id" : 4,
"state" : "ENABLED",
"featureName" : "f1",
"featureVersion" : "1.0",
"featureCount" : 1
}],
"hostId" : {
"type" : "STRING",
"value" : "dev2"
}
}]

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 127

Managing a Specific Reservation in a Reservation Group
When the GET method is invoked, this endpoint returns all existing reservation entries for a specific reservation,
identified by a reservation ID (rid), within the reservation group (gid). A reservation contains all the reservation
entries assigned to a given client device or user, as identified by its hostid in the reservation definition. The path
parameters {gid} and {rid} must be of data type number.

When the DELETE method is invoked, the endpoint deletes the entire reservation (rid) within the reservation group
(gid):

When the POST method invoked, this endpoint adds new reservation entries to the specified reservation (rid)
within the reservation group (gid):

URI /reservationgroups/{gid}/reservations/{rid}

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.reservationNotFound

URI /reservationgroups/{gid}/reservations/{rid}

Method DELETE

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationNotFound
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

URI /reservationgroups/{gid}/reservations/{rid}/entries

Method POST

Query parameters N/A

Chapter 4 License Server REST APIs
APIs to Manage Reservations

128 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Responses

For the GET method, the response contains information about the specified reservation (rid) within the
reservation group (gid):

{
 "id" : 3,
 "lastModified" : "2019-02-11T05:39:23.664Z",
 "ipAddress" : "0:0:0:0:0:0:0:1",
 "reservationEntries" : [{
 "id" : 5,
 "state" : "DISABLED",
 "featureName" : "f1",
 "featureVersion" : "1.0",
 "featureCount" : 1
 }, {
 "id" : 3,
 "state" : "ENABLED",
 "featureName" : "f1",
 "featureVersion" : "2.0",
 "featureCount" : 1
 }],
 "hostId" : {
 "type" : "STRING",
 "value" : "dev1"
 }
}

No response is returned for the DELETE method.

For a successful POST method, the response contains a confirmation of success where gid is the reservation
group to which the reservation entries for the given reservation were added:

{
uri: "/api/1.0/instances/{instanceid}/reservationgroups/{gid}"
status: "SUCCESS"
}

For a failed POST method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

Request body [
{ "featureName": "f1", "featureVersion": "1.0",
 "featureCount": 1 },
{ "featureName": "f2", "featureVersion": "1.0",
 "featureCount": 2 },
{ "featureName": "f3", "featureVersion": "1.0",
 "featureCount": 3 }
]

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationNotFound
glsErr.invalidReservationRequest
glsErr.serviceBusyDueToReservations

Chapter 4 License Server REST APIs
APIs to Manage Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 129

{
key: "glsErr.invalidReservationRequest"
message: "Invalid reservation request"
arguments: [1] 0: "feature f11 is not found"
}

Managing a Specific Reservation Entry
When the GET method is invoked, this endpoint returns data about a specific reservation entry, identified by an
entry ID (eid), within the reservation (rid) in the reservation group (gid). The path parameters {gid}, {rid}, and
{eid} must be of data type number.

When the DELETE method is invoked, the endpoint deletes the specified reservation entry:

When the PUT method invoked, this endpoint changes the current state (DISABLED or ENABLED) of the specific
reservation entry (eid) to the state specified in the request:

URI /reservationgroups/{gid}/reservations/{rid}/entries/{eid}

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.reservationNotFound

URI /reservationgroups/{gid}/reservations/{rid}/entries/{eid}

Method DELETE

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationNotFound
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

URI /reservationgroups/{gid}/reservations/{rid}/entries/{eid}/
state

Method PUT

Query parameters N/A

Chapter 4 License Server REST APIs
APIs to Show Statistics

130 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Responses

For the GET method, the response contains information about the specified reservation entry (eid):

{
 "id" : 5,
 "state" : "DISABLED",
 "featureName" : "f1",
 "featureVersion" : "1.0",
 "featureCount" : 4
}

No response is returned for the DELETE method.

For a successful PUT method, the response contains a confirmation of success where gid is the reservation group
to which the reservation containing the reservation entry whose state was changed belongs:

{
uri: "/api/1.0/instances/{instanceid}/reservationgroups/{gid}"
status: "SUCCESS"
}

For a failed PUT method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
key: "glsErr.invalidReservationRequest"
message: "Invalid reservation request"
arguments: [1] 0: "feature f1 does not have enough (unreserved) counts" }

APIs to Show Statistics
Statistics provide general information on the version and health of the specified license server.

Request body The request body contains only the desired state—either
“ENABLED” or “DISABLED”.

Error codes glsErr.serverNotFound
glsErr.optimisticLocking
glsErr.reservationNotFound
glsErr.invalidReservationRequest
glsErr.serviceBusyDueToReservations
glsErr.assigningReservations

Table 4-8 • License Server REST APIs Used to Show Statisitcs

URI Method Description

/version GET Gets license server’s version information.

/health GET Gets basic license server status, such as
whether a database connection check
succeeds.

Chapter 4 License Server REST APIs
APIs to Show Statistics

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 131

The following sections describe these APIs:

• Viewing Instance Version

• Viewing Success of Database Connection

Viewing Instance Version
The /version API returns JSON wrapping a version string and any related details.

Sample Response

{
 "LLS" : {
 "version" : "2018.12",
 "buildDate" : "2019-01-02T13:38:17Z",
 "buildVersion" : "244007",
 "branch" : "release",
 "fneBuildVersion" : "229775"
 }
}

URI /version

Method GET

Query parameters N/A

Request body N/A

Error codes -

Chapter 4 License Server REST APIs
APIs to Show Statistics

132 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Viewing Success of Database Connection
The /health API returns process-level health information, such as whether a database connection check
succeeds.

Sample Responses

{
 "LLS" : {
 "version" : "2018.12",
 "buildDate" : "2019-01-02T13:38:17Z",
 "buildVersion" : "244007",
 "patchLevel" : "2019.01.0.0",
 "branch" : "release",
 "fneBuildVersion" : "229775",
 "trustStatus" : true,
 "database" : {
 "lastBackOfficeConnection": "2018-07-11T12:24:15.835Z",
 "connectionCheck" : "success"
 }
 }
}

The lastBackOfficeConnection element is returned only if the /health API is called at instance level, but not at
global level. The element returns the timestamp of the last successful connection to the back office. The
timestamp is updated each time a capability polling or synchronization attempt was successful. An attempt is
considered to be successful when a connection to the back office for synchronization or for capability polling was
established, irrespective of whether features have been updated.

The trustStatus element indicates whether a trust break has occurred.

URI /health

Method GET

Query parameters N/A

Request body N/A

Error codes -

Chapter 4 License Server REST APIs
APIs to Manage Instance Configuration

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 133

APIs to Manage Instance Configuration
Configuration resources consist of metadata and policy values that configure the license server instance. The
following APIs manage these policies on the license server.

Refer to the following sections for more information about the APIs:

• Policies Accessed at a Global Level

• Viewing Configuration Metadata

For a description of license server policies, see Appendix A, Reference: Policy Settings for the License Server.

Policies Accessed at a Global Level
Most policies that the license server administrator can view or edit are done so at the instance level, using the
base URL to access the /configuration API:

http://licenseServerHostName/api/1.0/instances/instanceID/configuration

However, certain policies are edited by the administrator only at the global level. The following URL is used to
access the /configuration API at a global level to edit these policies:

http://licenseServerHostName/api/1.0/configuration

Policies that the license server administrator must access at a global level include the following. Note that these
policies are editable only for the local license server, not the CLS instance.

• database.backup-enabled

• graylog.host

• graylog.threshold

• lfs.syncTo.Threads

• licensing.clientExpiryTimer

• licensing.security.json.enabled

• logging.threshold

• security.enabled

• security.ip.whitelist

Table 4-9 • License Server REST APIs Used to Manage License Server Policies

URI Method Description

/configuration GET, PUT Gets or updates policy key-value pairs. (Certain
policies are accessed at global level only.)

/configuration/metadata GET Returns the policy name-value pairs used in
configuration, along with a description of each.
(Certain policies are accessed at the policy level
only.)

Chapter 4 License Server REST APIs
APIs to Manage Instance Configuration

134 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• security.http.auth.enabled

Managing Instance Policies
The /configuration API obtains a list of the license server’s current policy settings and enables you to edit policy
values as needed.

View Current Policy Settings
When invoked with the GET method, this endpoint returns configuration settings for the specified scope.

Sample Response

{
 "values": [
 "1d"
],
 "id": "licensing.responseLifetime",
 "parentValues": [
 "1d"
]
 },
 {
 "values": [
 "1w"
],
 "id": "licensing.borrowInterval",
 "parentValues": [
 "1w"
]
 },
 {
 "values": [
 "15"
],
 "id": "licensing.renewInterval",
 "parentValues": [
 "15"
]

URI /configuration

Method GET

Query parameters includeAll

Returns all settings, ignoring the visibility attributes.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.configSetTenantRequired

Highlight

Chapter 4 License Server REST APIs
APIs to Manage Instance Configuration

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 135

 },
 }...

Set Policies
The /configuration API used with the PUT method sets or removes a policy. See Policies Accessed at a Global
Level for changes required for the base URL use with the API to edit certain policies. For a description of license
server policies, see Appendix A, Reference: Policy Settings for the License Server.

Sample Response

[
 ...
 { "id" : "logging.threshold",
 "values" : ["WARN"],
 "parentValues" : ["INFO"] },
 ...
]

Viewing Configuration Metadata
The /configuration/metadata API returns configuration metadata for the specified scope. This includes grouping,
sort order, visibility attributes, and descriptive strings which can support a data-driven UI for managing key-value
pairs that support license server configuration.

URI /configuration

Method PUT

Query parameters N/A

Request body Example:

{ "logging.threshold" : "WARN" }

To remove a setting, provide the key with a value of “null”, as in
this example:

{ "logging.threshold" : null }

Error codes glsErr.serverNotFound
glsErr.configItemNotEditable
glsErr.configSetTenantRequired

URI /configuration/metadata

Method GET

Chapter 4 License Server REST APIs
APIs to Manage Instance Configuration

136 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Response

[{
 "order" : 0,
 "name" : "License Generation",
 "id" : "licensing",
 "hidden" : false,
 "description" : "Configuration settings that control license generation.",
 "editable" : false,
 "displayed" : true,
 "items" : [{
 "type" : "DURATION",
 "defaultValue" : "1d",
 "required" : true,
 "multiValued" : false,
 "name" : "Response Lifetime",
 "id" : "licensing.responseLifetime",
 "hidden" : false,
 "description" : "The default response blah blah blah...",
 "editable" : false,
 "displayed" : true
 }, {
 "type" : "ENUM",
 "defaultValue" : "SECOND",
 "required" : true,
 "multiValued" : false,

 "name" : "Default Borrow Granularity",
 "id" : "licensing.defaultBorrowGranularity",
 "hidden" : false,
 "description" : "The default borrow granularity...",
 "editable" : false,
 "displayed" : true,
 "enumValues" : [
 { "value" : "DAY", "key" : "Day", "hidden" : false },
 { "value" : "HOUR", "key" : "Hour", "hidden" : false },
 { "value" : "MINUTE", "key" : "Minute", "hidden" : false },
 { "value" : "SECOND", "key" : "Second", "hidden" : false }
]
 }]
} // , ... more groups
]

Query parameters tenant, enterprise, role, locale

Query parameters tenant and enterprise can be used to get the
configuration for a specific scope. If enterprise is specified,
tenant is required. If none are specified, the default scope is
used.

Request body N/A

Error codes glsErr.serverNotFound
glsErr.configSetTenantRequired

Chapter 4 License Server REST APIs
APIs to Perform Offline Binary Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 137

APIs to Perform Offline Binary Operations
For situations where the license server cannot communicate directly with FlexNet Operations, the license server
provides endpoints for downloading a capability request, uploading a capability response, and performing an
offline synchronization. Unlike the other endpoints, these endpoints involve binary data, not JSON content.

The following sections describe these APIs:

• API Summary

• Generating an Offline Activation Request

• Generating an Offline Capability Request

• Processing an Offline Capability Response

• Generating an Offline Sync Message

• Processing an Offline Sync Acknowledgment

API Summary
The following lists the APIs that handle operations offline:

Table 4-10 • License Server REST APIs Used to Perform Offline Binary Operations

URI Method Description

/activation_request/offline POST Generates a new capability request containing
the specified activation IDs to be sent to the
back office and returns them as binary
capability request data to save to a file.

/capability_request/offline GET, POST Generates a new capability request to be sent to
the configured back-office URL for the specified
instance and returns them as binary capability
request data to save to a file rather than
sending it to the back office.

/capability_response POST Takes a capability response whose target host is
the instance identified in the URL and processes
it, updating the served features of the instance
as appropriate.

/sync_message/offline GET Downloads sync data for the specified server
instance that is saved as a file to be uploaded to
the back office.

Chapter 4 License Server REST APIs
APIs to Perform Offline Binary Operations

138 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Generating an Offline Activation Request
The /activation_request/offline API generates the bytes of a new capability request, with an included set of
activation IDs (rights IDs) and counts, and returns them as the response body.

Sample Output

Instead of the typical JSON response, this API returns a binary body with the application/octet-stream content-
type header.

/sync_ack/offline POST Processes the sync acknowledgment sent by
the back office to indicate that the latest
instance data was successfully synchronized.
The process updates the lastSyncTime property
on the instance with this most recent
synchronization time.

URI /activation_request/offline

Method POST

Query parameters force

Forces an activation request to be sent immediately and forces
the license server to generate the response immediately.
Possible values are true and false.

Request body [{"id" : "li1", "copies" : 3}, ...]

Multiple id entries may be included in the request. If the copies
field is omitted in an entry, it defaults to one copy.

For any given id entry, you can also include the "partial" option
to obtain all available copies of the rights ID if the requested
count cannot be satisfied:

[{"id" : "li1", "copies" : 3, "partial" : "true"}, ...]

Error codes glsErr.serverNotFound
glsErr.serverNoHostid
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.rightsIdMissing
glsErr.rightsCopiesInvalid

Table 4-10 • License Server REST APIs Used to Perform Offline Binary Operations (cont.)

URI Method Description

Chapter 4 License Server REST APIs
APIs to Perform Offline Binary Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 139

Generating an Offline Capability Request
The /capability_request/offline API generates the bytes of a new capability request and returns them as the
response body.

Sample Output

Instead of the typical JSON response, this API returns a binary body with the application/octet-stream content-
type header.

Processing an Offline Capability Response
The /capability_response API processes a capability response whose target host is the instance identified in the
URL, updating the served features of the instance as appropriate.

URI /capability_request/offline

Method GET,POST

Query parameters force

Forces a capability request to be sent immediately and forces
the license server to generate the response immediately.
Possible values are true and false.

Request body application/octet-stream

Error codes glsErr.serverNotFound
glsErr.serverNoHostid
glsErr.parsingServerIdentity
glsErr.missingServerIdentity

URI /capability_response

Method POST

Query parameters N/A

Request body application/octet-stream

Chapter 4 License Server REST APIs
APIs to Perform Offline Binary Operations

140 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Response

Contents of the processed response is found in the license server logs. The following shows an example of
logged response contents:

MessageType="Capability response"
ServerIDType=String
ServerID=BACK_OFFICE
SourceIds=BACK_OFFICE
Lifetime=86400
ResponseTime="Feb 3, 2019 11:20:44 AM"
RequestHostID=6C626DA08750
RequestHostIDType=Ethernet
HostUUID=dfb867a4-4cac-4e16-96c6-9a353231ed17
MachineType=Unknown
EnterpriseID=35331653
License=(Name=MeteredCappedRe Vendor=cmsperf5 Version=1.0
 Expires=1-jan-2022 Count=10 Metered Reusable
 ServerHostID=6C626DA08750/Ethernet HostID=ANY Issued=2-jun-2018
 Start=1-jan-2019 VendorString=42F9-634D-9B31-22CE
 Notice=AutomationAccount4 Issuer=FlexManufacturer
 SerialNumber=c8c83a8d-a1b5-4eac-9b94-ac38f8d21275)
License=(Name=MeteredUncappedRe Vendor=cmsperf5 Version=1.0
 Expires=1-jan-2022 Count=10 Metered Reusable UncappedOverdraft
 ServerHostID=6C626DA08750/Ethernet HostID=ANY Issued=3-mar-2018
 Start=1-jan-2019 VendorString=5132-B427-99A3-3DD1
 Notice=AutomationAccount4 Issuer="FlexNet Test Site"
 SerialNumber=f8414bcd-c4ea-4c7b-a997-3bef2c04750e)

Error codes glsErr.serverNotFound
glsErr.serverNoHostid
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.signatureInvalid
glsErr.optimisticLocking
glsErr.sslMisconfigured
glsErr.connectionFailed
glsErr.connectionFailedStatus
glsErr.connectionRefused
glsErr.parsingBinary
glsErr.emptyMessage
glsErr.wrongMessageType
glsErr.licenseFailsAnchor
glsErr.lfsError
glsErr.lfsWrongMessageType
glsErr.assigningReservations
glsErr.serverNotFound
glsErr.serverNoHostid
glsErr.parsingServerIdentity
glsErr.missingServerIdentity

Chapter 4 License Server REST APIs
APIs to Perform Offline Binary Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 141

Generating an Offline Sync Message
The /sync/message/offline API generates bytes of sync data accumulated since last sync data collection and
returns them as the response body.

Sample Response

Instead of the typical JSON response, this API returns a binary body with the application/octet-stream content-
type header.

Additionally, an event similar to this is recorded in the license server logs:

16:20:56,360 INFO Successfully processed offline sync request for instance 394RU2RH3AES

Processing an Offline Sync Acknowledgment
The /sync_ack/offline API processes the sync acknowledgment sent by the back office. This process updates
the current synchronization timestamp on the instance with the timestamp sent in the acknowledgment. The new
timestamp then becomes the latest time that data on the instance was successfully synchronized to the back
office.

URI /sync_message/offline

Method GET

Query parameters force

Generates sync data accumulated since last successful sync
time, as specified in the most recent sync acknowledgment
processed on the server. Possible values are true and false.

Request body application/octet-stream

Error codes glsErr.serverNotFound
glsErr.serverNotReady
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.syncInProgress

URI /sync_ack/offline

Method POST

Query parameters N/A

Request body application/octet-stream

Chapter 4 License Server REST APIs
API to View Binding-Break Status

142 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Sample Response

An event similar to the following is recorded in the license server logs:

Successfully processed sync acknowledgment

If there is a mismatch in the sync time the following message is returned:

Sync acknowledgment has mismatched start time

A mismatch in sync time can happen for various reasons, and usually (but not always) the -force option available
with the serverofflinesync tool can resolve the problem. For more information on how to correct a sync-time
mismatch, refer to the description of the -force option in Offline Synchronization to the Back Office in Chapter 5,
More About Basic License Server Functionality.

API to View Binding-Break Status
If you have configured the binding-break detection feature, as described in Binding-Break Detection with Grace
Period in Chapter 6, Advanced License Server Features, use the following REST API to view the current binding
status of the license server.

Sample Response

{
 "bindingPolicy": "120 seconds",
 "bindingStatus": "soft break",
 "gracePeriodExpiry": "2019-02-16T12:50:43Z"
}

The bindingPolicy is the binding.break.policy setting defined in producer-settings.xml, indicating the action
taken when a binding break is detected:

Error codes glsErr.serverNotFound
glsErr.serverNotReady
glsErr.parsingServerIdentity
glsErr.missingServerIdentity
glsErr.optimisticLocking
glsErr.parsingBinary
glsErr.emptyMessage
glsErr.wrongMessageType
glsErr.lfsWrongMessageType
glsErr.syncInProgress

URI /binding

Method GET

Query parameters N/A

Request body N/A

Error codes N/A

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 143

• hard—An immediate hard binding break will be imposed—that is, the license server can no longer serve
licenses.

• soft—A soft binding break will go into effect, allowing the license server to continue to serve licenses despite
the break.

• n seconds—A soft binding break with a grace period will go into effect, allowing the license server to serve
licenses until the grace period expires. Then a hard binding break goes into immediate effect, and licenses
can no longer be served. The length of the grace period is expressed as the n seconds value.

The bindingStatus property is ok when no break is detected; or, when a break is detected, one of the following
displays:

• hard break—The license server can no longer serve licenses. If the hard break has occurred because a grace
period has expired, the gracePeriodExpiry property is included to show the expiration timestamp (in ISO-
8601 format).

• soft break—The license server continues to serve licenses despite binding break. If the soft break has
occurred because a grace period is currently in effect, the gracePeriodExpiry property is included to show
the timestamp (in ISO-8601 format) when the grace period expires.

APIs to Manage Administrative Security
When administrative security is enabled on the CLS instance or local license server, the following APIs are used to
authenticate a user’s credentials and enable the creation and management of user accounts on the license
server. See Administrative Security in Chapter 6, Advanced License Server Features, for details about enabling
and managing administrative security on the license server.

The following sections describe the APIs:

• APIs to Authorize Access to Secured Endpoints

• APIs to Manage User Accounts

APIs to Authorize Access to Secured Endpoints
This section describes those APIs used to authorize a user’s access to other secured REST APIs, enabling the user
account to perform those administrative tasks to which it has privileges:

• API Overview

• Generate Authorization Tokens

• Revoke Tokens

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

144 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

API Overview
The following are the APIs used to authenticate a user’s credentials and thus give the user access to other
secured REST APIs. The /revoke API invalidates current user credentials on the license server.

Generate Authorization Tokens
When a user provides credentials to perform administrative operations, the following APIs use these credentials
to generate a JSON Web Token, which is then applied to subsequent REST API calls to authorize the user’s access
to the secured endpoints.

Sample response

For a successful POST method, you receive the JSON Web Token generated for the user credentials and its
expiration time:

{
 "expires": "2018-08-24T17:44:32.573Z",
 "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9..." [code truncated for example purposes]
}

For a failed POST method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
 "message": "Authorization attempt at uri=/api/1.0/instances/~/authorize failed for user d
 (error BadCredentialsException)",

Table 4-11 • License Server REST APIs Used to Access Secured Endpoints

URI Method Description

/authorize POST Returns a JSON Web Token for use on secured
endpoints.

/revoke PUT Invalidates existing JSON Web Tokens on the
instance.

URI /authorize

Method POST

Query parameters N/A

Request body Example:

{
 "password": "Admin01!",
 "user": "admin"
}

Error codes glsErr.restParsing
glsErr.userAuthFailed

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 145

 "key": "glsErr.userAuthFailed",
 "arguments": [
 "uri=/api/1.0/instances/~/authorize",
 "d",
 "BadCredentialsException"
]
}

Revoke Tokens
Use the following API to invalidate current JSON Web Tokens on the instance.

No response is returned after the tokens are successfully revoked.

APIs to Manage User Accounts
This section describes those APIs used to create, modify, and delete user accounts on the license server:

• API Overview

• View Current User Accounts

• Create a User Account

• Modify an Existing User Account

• Delete a User Account

API Overview
The following APIs are used to manage user accounts for an instance. Each user account is assigned specific
roles that enable the user to perform certain administrative tasks. The credentials defined for each account give
the user access to only those secured REST APIs appropriate to the assigned roles.

Administrative credentials are needed to access the /users APIs described here.

For more information about roles, see Administrative Security in Chapter 6, Advanced License Server Features.

URI /revoke

Method PUT

Query parameters N/A

Request body N/A

Error codes glsErr.userAuthFailed

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

146 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

For information about the APIs used to process credentials, see APIs to Authorize Access to Secured Endpoints.

View Current User Accounts
The following APIs obtain details about current user accounts set up for the instance. Administrative credentials
are needed to access the APIs described here.

View All Accounts or Specific Account Identified by User Name
This API can retrieve all existing accounts or the specific account with a user name identified by the name
parameter.

Table 4-12 • License Server REST APIs Used to Manage User Accounts for Security

URI Method Description

/users GET Returns details for all user accounts or details
for the account identified by the user name.

/users/{id} GET Returns details about the user account
identified by its ID.

/users POST Creates a new user account.

/users PUT Updates the password or roles for an existing
user account identified by the user name.

/users/{id} PUT Updates the password or roles for an existing
user account identified by its ID.

/users/{id} DELETE Deletes a user account identified by its ID.

URI /users

Method GET

Query parameters name, page, size

See section Query Parameters, below.

Request body N/A

Error codes glsErr.restPathVariableParsing
glsErr.userAccessDenied
glsErr.userAuthFailed

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 147

Query Parameters

The following are optional parameters for use in GET requests:

Sample response

For a successful GET method, you receive a list of all existing user accounts and their detail. If you entered a
specific user name (using the name parameter), you receive details for that account only. The following shows an
excerpt from a listing of all user accounts:

[{
 "id" : 1,
 "user" : "producer",
 "enabled" : true,
 "userExpiry" : "permanent",
 "roles" : [{
 "id" : 3,
 "role" : "ROLE_DROPCLIENT"
 }, {
 "id" : 7,
 "role" : "ROLE_PRODUCER"
 }, {
 "id" : 4,
 "role" : "ROLE_RESERVATIONS"
 }, {
 "id" : 6,
 "role" : "ROLE_READ"
 }]
}, {
 "id" : 2,
 "user" : "admin",
 "enabled" : true,
 "userExpiry" : "permanent",
 "roles" : [{
 "id" : 8,
 "role" : "ROLE_ADMIN"
 }, {
 "id" : 5,
 "role" : "ROLE_DROPCLIENT"
 }, {
 "id" : 2,
 "role" : "ROLE_RESERVATIONS"
 }, {

name Retrieves a specific account. Must be a string. Cannot be used
in combination with the page and size parameters.

page Retrieves a specific page. Must be a number. Cannot be used in
combination with the name parameter. See also Managing Large
Amounts of Returned JSON Data.

size Specifies how many records per page should be returned. Must
be a number. Cannot be used in combination with the name
parameter. See also Managing Large Amounts of Returned JSON
Data.

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

148 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "id" : 1,
 "role" : "ROLE_READ"
 }]
}, {
 "id" : 3,
 "user" : "admin01",
 "enabled" : true,
 "userExpiry" : "permanent",
 "roles" : [{
 "id" : 11,
 "role" : "ROLE_ADMIN"
 }, {
 "id" : 12,
 "role" : "ROLE_DROPCLIENT"
 }, {
 "id" : 10,
 "role" : "ROLE_RESERVATIONS"
 }, {
 "id" : 9,
 "role" : "ROLE_READ"
 }]
}, {
 "id" : 5,
 "user" : "user002",
 "enabled" : true,
 "userExpiry" : "permanent",
 "roles" : [{
 "id" : 14,
 "role" : "ROLE_READ"
 }]
},

For a failed GET method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
 "message": "Authorization attempt at uri=/api/1.0/instances/~/users failed for user (unknown)
(error BadCredentialsException)",
 "key": "glsErr.userAuthFailed",
 "arguments": [
 "uri=/api/1.0/instances/~/users",
 "(unknown)",
 "BadCredentialsException"
]
}

View Specific User Account Identified by System ID
To list a specific user account identified by its system-generated ID, use the following API. (This is the “id” item
listed for each user account in the response returned for /users using the GET method.) The path parameter {id}
must be of data type number.

URI /users/{id}

Method GET

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 149

Sample response

For a successful GET method, you receive details for the account identified by its ID.

Create a User Account
This API creates a user account with credentials and one or more roles. For more information about roles, see
Administrative Security in Chapter 6, Advanced License Server Features. Administrative credentials are needed to
access the API.

For a successful POST method, you receive details about the newly created account.

For a failed POST method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
 "message": "Access denied to uri=/api/1.0/instances/~/users for user (unknown)",
 "key": "glsErr.userAccessDenied",
 "arguments": [
 "uri=/api/1.0/instances/~/users",
 "(unknown)"
]
}

Query parameters N/A

Request body N/A

Error codes glsErr.restPathVariableParsing
glsErr.userAccessDenied
glsErr.userAuthFailed

URI /users

Method POST

Query parameters N/A

Request body Example:

{
 "password": "User@001",
 "roles": [
 "ROLE_RESERVATIONS"
],
 "user": "user001"
}

Error codes glsErr.restParsing
glsErr.userAccessDenied
glsErr.userAuthFailed

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

150 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Modify an Existing User Account
These APIs edit the password or roles or both for an existing user account, identified by either its user name or
system-generated ID. Administrative credentials are needed to access the API.

Modify a User Account Identified by User Name
The following API updates a user account identified by its user name identified by the name parameter.

Sample response

For a successful PUT method, you receive details for the updated account.

{
 "id" : 9,
 "user" : "user001",
 "enabled" : true,
 "userExpiry" : "permanent",
 "roles" : [{
 "id" : 19,
 "role" : "ROLE_RESERVATIONS"
 }, {
 "id" : 20,
 "role" : "ROLE_READ"
 }]
}

URI /users

Method PUT

Query parameters name

Mandatory parameter to update a specific user account. Value
must be of type string.

Request body Example:

{
 "password": "User001!",
 "roles": [
 {
 "role": "ROLE_RESERVATIONS"
 },
 {
 "role": "ROLE_READ"
 }],
 "user": "user001"
}

Error codes glsErr.restParsing
glsErr.restPathVariableParsing
glsErr.userAccessDenied
glsErr.userAuthFailed

Highlight

Chapter 4 License Server REST APIs
APIs to Manage Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 151

For a failed PUT method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{
 "message": "Access denied to uri=/api/1.0/instances/~/users for user (unknown)",
 "key": "glsErr.userAccessDenied",
 "arguments": [
 "uri=/api/1.0/instances/~/users",
 "(unknown)"
]
}

Modify a User Account Identified by System ID
The following API updates a user account identified by its system-generated ID. (This is the “id” item listed for
each user account in the response returned for /users using the GET method.) The path parameter {id} must be
of data type number.

For a successful PUT method, you receive details for the updated account:

{
 "id" : 10,
 "user" : "user002",
 "enabled" : true,
 "userExpiry" : "permanent",
 "roles" : [{
 "id" : 21,
 "role" : "ROLE_RESERVATIONS"
 }]
}

For a failed PUT method, the response contains the error code and its corresponding message and a list of error
arguments that varies based on the error. For example, you might see:

{

URI /users/{id}

Method PUT

Query parameters N/A

Request body Example:

{
 "password": "User@002",
 "roles": [
 "ROLE_RESERVATIONS"
],
 "user": "user002"
}

Error codes glsErr.restParsing
glsErr.restPathVariableParsing
glsErr.userAccessDenied
glsErr.userAuthFailed

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

152 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "message": "Access denied to uri=/api/1.0/instances/~/users for user (unknown)",
 "key": "glsErr.userAccessDenied",
 "arguments": [
 "uri=/api/1.0/instances/~/users",
 "(unknown)"
]
}

Delete a User Account
This API deletes an existing user account, identified by the system-generated ID. Administrative credentials are
needed to access the API. (The ID can be obtained from the response returned for /users using the GET method.)
The path parameter {id} must be of data type number.

For a successful DELETE, the status code 410 is returned, but no response body is provided.

For a failed DELETE method, the response contains the error code and its corresponding message and a list of
error arguments that varies based on the error. For example, you might see:

{
 "message": "REST request path variable problem: type mismatch on path component for
/api/1.0/instances/~/users/user002!",
 "key": "glsErr.restPathVariableParsing",
 "arguments": [
 "/api/1.0/instances/~/users/user002!"
]
}

API for Enabling JSON Security for the Cloud
Monetization API

The FlexNet Embedded CLS instance and local license server support a collection of functions and interfaces
called the FlexNet Embedded Cloud Monetization API (CMAPI), which performs capability exchanges using REST
APIs, instead of the FlexNet Embedded SDK language-based APIs that you incorporate in your client code.

For details how to use the CMAPI to perform actual capability exchanges, refer to the Cloud Monetization API User
Guide.

URI /users/{id}

Method DELETE

Query parameters N/A

Request body N/A

Error codes glsErr.restPathVariableParsing
glsErr.userAccessDenied
glsErr.userAuthFailed

Highlight

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 153

Purpose of this Section
This section focuses on the process of setting up JSON security for these capability exchanges. When you use
SDK-driven licensing functionality, the binary messages sent in capability exchanges are secured with encrypted
signatures derived from the producer identity and other identification elements. However, when you use the
Cloud Monetization API (CMAPI), the message bodies sent in capability exchanges are in JSON format and thus
require a form of security suitable for JSON messaging.

The setup for JSON security largely involves the generation of a public-private key pairs and then the
transmission of the appropriate public key between the client and the license server (and vice versa)—a task
mainly handled by the
/rest_licensing_keys REST API.

The following topics provide the necessary details:

• License Server Administration Security vs JSON Security

• HTTPS Protocol Recommended

• Implementing JSON Security for the Cloud Monetization API

• “/rest_licensing_keys” API Details

• Sample Code Implementations for Setting Up JSON Security

License Server Administration Security vs JSON Security
The FlexNet Embedded license server uses different access control strategies on its REST endpoints according to
use case—APIs used to administer the license server and APIs used to directly license clients.

When license-server administration security is enabled, users must provide valid log-in credentials. These
credentials are used internally to generate a JSON Web Token, which, in turn, is used to give the user appropriate
access to REST APIs that manage the server (see Writing a REST API Client for a Secured License Server and APIs
to Manage Administrative Security).

However, providing log-in credentials is not appropriate for securing JSON capability exchanges performed by
the CMAPI. Instead, JSON capability exchanges use a combination of JSON Web Tokens and JSON Web
Signatures to secure the incoming capability requests on the license server and to sign the capability responses
that the license server sends back to the client.

The next sections provide instructions for implementing JSON security for capability exchanges performed by the
CMAPI.

Note About Opting Out of JSON Security
Although implementing JSON security for the CMAPI is strongly recommended, it is optional for local license
servers. Keep in mind that setting the licensing.security.json.enabled license server policy to false (see Step
2: Producer or Enterprise Configures Appropriate Security Policies on License Server) not only allows
unauthenticated capability requests, but also disallows requests attempting to use authentication. Hence,
disabling JSON security is a critical decision that must be reflected in the client application.

JSON security is implemented by default for CLS instances.

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

154 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

HTTPS Protocol Recommended
When JSON security is implemented on a local license server to secure capability exchanges performed by the
CMAPI, the use of the HTTPS protocol is strongly recommended. This protocol protects the machine-to-machine
transmission of sensitive data, specifically the JWT used to secure capability requests and the authorization
credentials needed to access the /rest_licensing_keys REST API (described later in this section).

The requirement for HTTPS cannot be disabled for CLS instances.

Implementing JSON Security for the Cloud Monetization
API

The following steps are used to secure the JSON capability exchanges in the CMAPI:

• Step 1: Producer Generates Private-Public Key Pair

• Step 2: Producer or Enterprise Configures Appropriate Security Policies on License Server

• Step 3: Producer or Enterprise Uploads Public Key to License Server

• Step 4: Licensed Client Application Generates JWT Signed by Private Key to Include in Capability Requests

Step 1: Producer Generates Private-Public Key Pair
You, as producer, must generate a private and public key pair in RSA 2048-bit format for use by the client
application. Various third-party tools are available for generating this key pair. Refer to the documentation
supplied with the tool for instructions.

This key pair is instrumental is enabling the license server to authenticate an incoming JSON capability request.
The public key is uploaded to the license server, as described in Step 3: Producer or Enterprise Uploads Public
Key to License Server. (Note that the public key must be uploaded in DER format as a byte array; the server does
not accept the PEM format.)

The private key, which must be kept “secret” by you or the enterprise, is used to sign a generated JSON Web
Token (JWT) that will be attached to each capability request, as described in Step 4: Licensed Client Application
Generates JWT Signed by Private Key to Include in Capability Requests. Then, when a client sends a JSON
capability request to the license server, the server determines that the request is from a valid user only if the JWT
can be read using the public key on the server, implying that the JWT was signed by the matching private key.

For an example on how to generate this key pair, see the later section Example for “Step 1: Producer or Enterprise
Generates Private-Public Key Pair”.

Consideration
You might want to generate different key pairs and tokens for a CLS instance or given local license server. The
responsibility of generating these additional key pairs could potentially be pushed to the enterprise.

Highlight

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 155

Step 2: Producer or Enterprise Configures Appropriate Security Policies
on License Server

For CLS instances, the policies used to configure JSON security are already set for you.

However, for local license servers, you or the enterprise license server administrator must ensure that certain
license server policies are appropriately configured, as described here:

• JSON security for the CMAPI requires that the licensing.security.json.enabled license server policy be set
to true (which is the default value). This policy forces the licensed client application to attach the JWT to
each capability request sent to the license server.

• Setup for JSON security requires that the security.enabled license server policy be set to true, thus enabling
license-server administrative security. Access to the /rest_licensing_keys REST API (used to upload the
public key to the license server) requires valid license-server administrator credentials. The use of
credentials is supported only when license server-administrative security is enabled. For more information
about providing administrative credentials and generating the producer authorization token, see the
following:

• Administrative Security section in Chapter 6, Advanced License Server Features

• APIs to Manage Administrative Security section in this chapter

• The license server policy, security.http.auth.enabled, made available only when license-server
administration security is enabled, applies not only to REST APIs that administer the license server but also to
the /access_request or /signed_access_request REST APIs, used to perform capability exchanges in the
CMAPI. When set to false, this policy enforces the use of HTTPS to access the REST APIs, a protocol
especially critical for the secure transmission of the JWT in capability requests. Basically, the use of the JWT
as a security mechanism is meaningless unless its transmission to the license server is protected. Hence,
setting this policy to false is strongly recommended.

For more information about setting license server policies, see the following sections:

• License Server Configuration Utility section in Chapter 7, Producer Tools, for instructions on how to generate
the producer-settings.xml file, containing the license policies shipped with a local license server

• APIs to Manage Instance Configuration section in this chapter for a description of the REST APIs used to
override current license server policies

• Reference: Policy Settings for the License Server appendix for descriptions of the license server policies

Step 3: Producer or Enterprise Uploads Public Key to License Server
You or the enterprise uploads the public key, generated in the process described in Step 1: Producer Generates
Private-Public Key Pair, to the license server.

This upload process is performed using the POST method on the /rest_licensing_keys REST API. Note that this
process not only uploads the public key for JWT validation of incoming capability requests but also triggers
processes on the license server that enable response-signing. License-server administrator credentials are
required to access this API using the POST method.

Any appropriate REST API administrative client—for example, the FlexNet License Server Administrator command-
line tool (flexnetlsadmin) or a third-party tool such as Postman—can be used to call this API.

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

156 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The following sections provide more description about the processes performed by the /rest_licensing_keys
REST API:

• Enablement of JWT Validation for Incoming Capability Requests

• Response-Signing Enablement

For an example procedure that uploads the public key, see the later section, Example for “Step 3: Producer or
Enterprise Uploads Public Key to License Server”.

For details about the /rest_licensing_keys REST API itself, see “/rest_licensing_keys” API Details.

Enablement of JWT Validation for Incoming Capability Requests
The public key, once uploaded to the license server, enables the server to validate the JWT sent in incoming
capability requests to determine whether the requests have been issued by authorized clients in the enterprise.
When the public key is posted to the license server, the server checks that the key is in the correct format and, if
it is, stores the key against the its identity data in the database.

Response-Signing Enablement
When the public key needed for the JWT validation of incoming capability requests on the license server is posted
to the
/rest_licensing_keys REST API, the following additional processes are triggered on the license server to enable
response-signing:

• Another private-public key pair that will be used for response-signing (if this pair does not already exist on
the server) is generated. The private key will be used by the license server to generate a JSON Web Signature
(JWS) for each capability response to a request posted using /signed_access_request. The public key will be
used by the licensed client application to validate that the JWS with which a given capability response is
signed was generated from the matching private key, thus authenticating the license server.

The response-signing key pair is stored in the license server’s trusted storage, along with the public key used
by the license server to validate incoming capability requests.

• A response message containing the public key (from the response-signing key pair) is returned to the REST
API administrative client. You or the enterprise is responsible for providing this key to the licensed client
application. The key must be stored in a location accessible to the client application for easy retrieval.

Even though response-signing is automatically enabled when the public key for the JWT is posted to the license
server, the specific API that the licensed client application uses to request features—/access_request or
/signed_access_request—determines whether or not the capability response is signed. These APIs are discussed
in the chapter, Performing a JSON Capability Exchange, found in the Cloud Monetization API User Guide.

Once the public key for the JWT is posted to the license server, an occasion might require the retrieval of the
public key stored on the server and used by the client for JWS validation. The GET method on
/rest_licensing_keys provides access to this key. For more information, see Method to Retrieve the Signature-
Validation Public Key Stored on Server.

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 157

Step 4: Licensed Client Application Generates JWT Signed by Private
Key to Include in Capability Requests

Your licensed client application is provided with or generates a JWT signed by the private key that matches the
public key uploaded to the license server (described in the previous section, Step 3: Producer or Enterprise
Uploads Public Key to License Server) to validate incoming capability requests.

The generated token must be short-term, claim ROLE_CAPABILITY (so that server can differentiate it from other
tokens processed on the server), and use the signing algorithm RS256. For an example implementation that
generates the JWT, see the later section, Example for “Step 4: Licensed Client Application Generates JWT Signed
by Private Key to Include in Capability Requests”.

Your application code must include this JWT with the capability requests sent by your client software to the
license server. The license server then validates the token in the request against the public key stored on the
server to authenticate the request. This validation process is described in more detail in the Cloud Monetization
API User Guide.

Keep in mind that this JWT can only be used only with /access_request, /signed_access_request, or
/preview_request. It cannot be used to access other REST APIs that are secured and used for administrative
purposes; access to these APIs require instead the JWT (also called the producer authorization token) obtained
from the user credentials posted on the /authorize endpoint, as described in Authorizing Access to Secured REST
APIs. (Note that access to the
/rest_licensing_keys API requires the producer authorization token obtained from user credentials posted on
the
/authorize endpoint.)

Consideration
As an extra security measure, you or the enterprise can put a time limit on the JWT produced with the private key
and then periodically regenerate and distribute a new JWT with an updated time limit.

“/rest_licensing_keys” API Details
The following shows details about the /rest_licensing_keys API. This API should be accessed by you or the
enterprise license-server administrator using a REST API administrative client.

• Method to Post Public Key on Server to Validate JWT in Capability Requests

• Method to Retrieve the Signature-Validation Public Key Stored on Server

• Method to Delete the Server’s Public Key Used to Validate JWT in Capability Requests

Method to Post Public Key on Server to Validate JWT in Capability
Requests

The POST method on the /rest_licensing_keys API uploads the public key generated on the client to the license
server, enabling the server to validate the JWT sent in capability requests. The POST method also generates
another public-private key pair used for response-signing on the license server (if keys do not already exist on the
server). The key pair is stored in license-server trusted storage, but the public key is sent in a response body. The
producer or enterprise license server- administrator must provide the public key to the client applications
performing response-signature (JWS) validation.

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

158 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The POST method requires license-server administrator credentials (ROLE_ADMIN).

Method to Retrieve the Signature-Validation Public Key Stored on Server
If you or the enterprise needs to retrieve the public key that is stored on the license server and used by the client
to validate the JWS on capability responses, you can use the GET method on the /rest_licensing_keys API to
access to this key.

This method requires READ permission only. However, keep in mind that the security provided by the signed
responses is undermined should the client application use this endpoint directly to access this public key on the
server. It is the producer or enterprise's responsibility to retrieve and distribute this key using a separate
mechanism, as appropriate for the application.

Method to Delete the Server’s Public Key Used to Validate JWT in
Capability Requests

The DELETE method on the /rest_licensing_keys API removes the license server’s public key previously uploaded
from the client and used by the server to validate the JWT sent in capability requests.

Be aware that, as long as licensing.security.json.enabled is set to true, this operation disables all use of the
access_request and signed_access_request REST APIs.

The DELETE method requires license-server administrator credentials (ROLE_ADMIN).

URI /rest_licensing_keys

Method POST

Query parameters N/A

Request body application/octet-stream

Error codes glsErr.serverNotFound
glsErr.userAccessDenied
glsErr.userAuthFailed

URI /rest_licensing_keys

Method GET

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.userAccessDenied
glsErr.userAuthFailed

URI /rest_licensing_keys

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 159

Sample Code Implementations for Setting Up JSON
Security

The following provides example code and commands for setting up security for the CMAPI. The examples apply to
previous sections describing how to prepare the client and license server environments for this type of licensing.

• Example for “Step 1: Producer or Enterprise Generates Private-Public Key Pair”

• Example for “Step 3: Producer or Enterprise Uploads Public Key to License Server”

• Example for “Step 4: Licensed Client Application Generates JWT Signed by Private Key to Include in Capability
Requests”

Example for “Step 1: Producer or Enterprise Generates Private-Public
Key Pair”

The following example demonstrates one method for generating the private and public key pair (as described in
Step 1: Producer Generates Private-Public Key Pair) that will be used to generate and validate the JWT sent in the
capability requests. While you can use any appropriate third-party tool to generate this key pair, this example
uses OpenSSL, a common and widely used cryptographic library that is available pre-built for many platforms.
(You can easily download and install an OpenSSL version appropriate for your operating system.)

The following sample OpenSSL command generates a private key:

openssl genrsa -out SaaSDemoPrivate.pem 2048

The public key is then generated from the private key and, as shown in this command, is output in DER format,
ready to be uploaded to the license server:

openssl rsa -inform PEM -outform DER -in SaaSDemoPrivate.pem -pubout -out SaaSDemoPublic.der

Example for “Step 3: Producer or Enterprise Uploads Public Key to
License Server”

The public key (generated client-side along with the private key used to create the JWT sent with requests) must
be uploaded to the license server so that the server can validate the JWT. You or the enterprise license-server
administrator can use any appropriate REST API client tool—a third-party tool or one shipped with the license
server—to upload this key, as described in Step 3: Producer or Enterprise Uploads Public Key to License Server.

Method DELETE

Query parameters N/A

Request body N/A

Error codes glsErr.serverNotFound
glsErr.userAccessDenied
glsErr.userAuthFailed

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

160 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The following example shows basic command syntax used to upload the public key using the FlexNet License
Server Administrator command-line tool:

flexnetlsadmin -server licenseServer_baseURL -authorize adminName {adminPassword|
-passwordConsoleInput} -uploadPublicKey clientPublicKeyFileName

This command uses the following variables:

• licenseServerBaseURL—The license server base URL used to access REST APIs. See Base URLs for details.

• adminName {adminPassword|-passwordConsoleInput}—The license-server administrator credentials
required to access the /rest_licensing_keys REST API. You or the enterprise can provide the password
directly in the command; or, to avoid exposing the password as a command-line argument, you can use the -
passwordConsoleInput option, which prompts for the password as console input.

Note • (Linux only) If you supply a password directly on the command line you may need to escape some
characters with a backslash in order to prevent the shell from interpreting them. The safest approach is to
surround the whole password with single quotes, and backslash any single quote that is part of the
password.

• clientPublicKeyFileName—The name of the binary file containing the DER-formatted public key generated in
Step 1: Producer Generates Private-Public Key Pair.

The following shows a sample FlexNet License Server Administrator command that uploads the public key
contained in the SaaSDemoPublic.der, created for the previous example:

flexnetlsadmin -server https://ABC.compliance.flexnetoperations.com/api/1.0/instances/XYZ10203040
-authorize admin AV11krl -uploadPublicKey SaaSDemoPublic.der

Example for “Step 4: Licensed Client Application Generates JWT Signed
by Private Key to Include in Capability Requests”

The following example provides a sample script that generates a JWT signed with the client’s private key, as
discussed in Step 4: Licensed Client Application Generates JWT Signed by Private Key to Include in Capability
Requests. This script was created in Python, but you can use any appropriate programmatic method to generate
the JWT. (Note that the https://jwt.io website also provides a graphical tool that can be used to achieve the same
result as a programmatic method.)

The licensed client application runs such a script to create the JWT, which the application then includes as the
authorization header for each capability request it sends to the license server.

These sections describe preparing and running this example implementation:

• Requirements for Running the Sample Python Script

• Sample Python Script

• Command to Run Script

Requirements for Running the Sample Python Script
The following are requirements for running the sample script, which was developed using Python version
3.7.0a2.

https://jwt.io
https://jwt.io

Chapter 4 License Server REST APIs
API for Enabling JSON Security for the Cloud Monetization API

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 161

Python Modules
Certain Python modules are required to run this script and can be installed using these commands:

• pip install PyJWT

• pip install cryptography

• pip install cffi

Development Libraries
To install these modules successfully, you might need to have certain development libraries already installed. For
example, Debian-based Linux systems might require the libffi-dev and libssl-dev libraries, installed using a
command like this:

 apt-get install libffi-dev libssl-dev

Sample Python Script
The following sample is a basic script that generates a JWT signed with the client’s private key.

Note that the script defines an optional JWT expiration that the producer or enterprise can update (or not use) as
suits their deployment model. This time limit can be used as an extra security measure, forcing a periodic
regeneration and distribution of a new JWT with an updated expiration.

#! /usr/bin/python
import jwt
import datetime
import sys

Read the supplied private key file
if len(sys.argv) < 2: exit("Please supply private key as a PEM file")

private_key = open(sys.argv[1], 'r')
private_key_string = private_key.read();
private_key.close()

Setup the JWT's payload
payload = {
 # Subject field must be present but content is not significant
 'sub': 'Authorization',
 # Claim must include 'roles' as ROLE_CAPABILITY
 'roles': 'ROLE_CAPABILITY',
 # Other JWT, such as expiration, are optional
 'exp': datetime.datetime.utcnow() + datetime.timedelta(days=365)
}

Use PyJWT to encode and sign a JWT
token = jwt.encode(
 payload,
 private_key_string,
 algorithm='RS256')

Chapter 4 License Server REST APIs
Online REST API Reference Documentation Available

162 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Present token to the user
print('Bearer ' + token.decode('ASCII'))

Command to Run Script
To run this script, the licensed client application would use following command:

./SignJWT.py SaaSDemoPrivate.pem

The generated JWT is provided as output:

Bearer
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NDI5OTk5NzgsInN1YiI6IkF1dGhvcml6YXRpb24iLCJyb2xlcy
I6IlJPTEVfQ0FQQUJJTElUWSJ9.be7LU7kjWuSP8hqKuUIY_7oaAUqTGKqKKYoAR6q2sZrbRQpi68Y1tObF7ynDY1OlfHoFfoHB
bgOtPUagJLnyzJcmqIlAdJUtMiqrr-d2YM843Cuv4uWH5JU76EiP53NIyDGOm-
EVYC_r_OAihF9BzmZA8XBNj0poD1ZxyVpW31pgbIJcj5qDwN5mmXEDNBsIdCe_n0AOmTZpGi1kcuPKPMALeF5Shs_D4am1nfwtT
m4r7G-VRyPTCZ9x8qlffJrolDIPh8kbNRRJpuDlG8T-9CB1n8qK0FDm5MoglyB4f6UYeh5xTx4qjGTJ9Axx25-
OdpADqsaavALBBIEc0gMeyA

Refer the Cloud Monetization API User Guide for information about attaching this JWT to the capability request
and for an example script that the client application can use to validate the JWT.

Online REST API Reference Documentation
Available

Online REST API reference documentation is available to help you author a license-server administrative client or
to secure and perform capability exchanges using the Cloud Monetization API. This online documentation can be
accessed at the following /documentation endpoint:

http://licenseServer_URL:port/documentation

Exception Handling
The HTTP status code is used to signal success or failure of a REST API invocation. The most common status
codes include the following:

Table 4-13 • License Server Status Codes

Status Code Meaning

OK (200) The operation was successful.

BAD_REQUEST (400) The request was invalid. For example, perhaps a query
parameter was invalid, or the request body contained invalid
content.

NOT_FOUND (404) Either some resource was not found, or the API does not exist.

Chapter 4 License Server REST APIs
Exception Handling

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 163

For status codes other than OK and GONE, the returned response body will describe the exception, as shown in the
following example:

{
 "message" : "No such REST API and METHOD combination supported: /api/1.0/bad_request with POST",
 "key" : "glsErr.restNoSuchApi",
 "arguments" : ["/api/1.0/bad_request", "POST"]
}

The exception contains the formatted message, a key that can be used in code to test against, or as a resource
name to localize the message, and, optionally, any arguments that were used when formatting the message.

List of Exceptions
The following table enumerates the errors the license server may generate:

GONE (410) For APIs that use the DELETE method, this signals the deletion
was successful.

INTERNAL_SERVER_ERROR (500) A problem occurred in handling the request. For example,
perhaps the request body could not be parsed.

Table 4-14 • License Server Errors

Exception Definition

glsErr.alreadyUndone Undo has already been processed

glsErr.assigningReservations Not enough counts to assign reservations.

glsErr.backOfficePollingInProgress Server is busy (e.g. updating license rights from the back office or
processing reservations).

glsErr.badPassword Invalid password: {0}.

glsErr.bothUuidAndHostId Cannot specify both UUID and hostid for client identification

glsErr.checkoutSyntaxError Syntax error while compiling checkout script:{0}

glsErr.clientNotFound Client not found

glsErr.configItemNotEditable The configuration setting, {0}, is not editable by the {1} role at the
{2} scope.

glsErr.configSetInstanceMixed Cannot specify any other set identifiers with instanceId

Table 4-13 • License Server Status Codes (cont.)

Status Code Meaning

Chapter 4 License Server REST APIs
Exception Handling

164 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

glsErr.configSetSiteRequires Must specify at least publisher ID and enterprise ID if siteName
specified

glsErr.configSetTenantRequired Must specify at least tenant ID if enterprise ID specified

glsErr.connectionFailed Connection to {0} failed with exception: {1}

glsErr.connectionFailedStatus Connection to {0} failed with status {1}

glsErr.connectionRefused Connection to {0} has been refused

glsErr.duplicateCorrelationId Duplicate correlation ID in non-undo operation

glsErr.emptyMessage Empty message received

glsErr.enterpriseNotFound Enterprise not found: {0}

glsErr.featureConversion Feature conversion failed

glsErr.featureLoading Feature loading failed

glsErr.featureNotFound Feature not found

glsErr.generatingUuid Problem generating UUID for client

glsErr.hostidNotFound Specified hostid does not exist: {0}

glsErr.hostIdTypeWithoutHostId Cannot specify hostid type without hostid value

glsErr.identityMappingFailed Identity mapping failed

glsErr.infoMessageNotSupported This version of license server does not support information
messages; use Capability Request with Report operation instead

glsErr.internalSigningError Internal signing error

glsErr.invalidModelName Invalid model name supplied (the model definition names default
and reservations are reserved names)

glsErr.invalidReservationRequest Invalid reservation request.

glsErr.invalidUUID Invalid UUID value

glsErr.jsonLicensingSecurityNoToken Valid token required for secure JSON licensing request.

glsErr.JsonValidationError JSON fails endpoint validation.

Table 4-14 • License Server Errors (cont.)

Exception Definition

Chapter 4 License Server REST APIs
Exception Handling

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 165

glsErr.lfsError License Fulfillment Service returned error: {0}

glsErr.lfsCapSessionFailed LicenseFulfillmentService capability session failed

glsErr.lfsWrongMessageType License Fulfillment Service returned an unexpected message type:
{0}

glsErr.licenseFailsAnchor License response fails anchor criteria

glsErr.maintenanceIntervalPassed Server maintenance interval has passed.

glsErr.missingServerIdentity Instance has no identity data

glsErr.mixingHostIds Cannot use a main hostid as secondary hostid or vice-versa

glsErr.modelSyntaxError The uploaded model definition contains a syntax error

glsErr.modelUpdateInProgress Server is busy updating the model definition

glsErr.needUuidOrHostId Must specify either UUID or hostid for client identification

glsErr.noAccessToPost Unable to access POST data

glsErr.noFeatures No features found in offline capability response

glsErr.noQueryHandler No query handler installed for {0}

glsErr.noSigner No signer was available

glsErr.noSingleServer Single server instance not found

glsErr.onlyClients Capability requests are only expected from clients, not servers

glsErr.onlyTrustedClient Only trusted clients are allowed for this endpoint

glsErr.onlyUntrustedClient Only untrusted clients are allowed for this endpoint

glsErr.optimisticLocking Too many optimistic lock failures. Retry later

glsErr.pageNotFound That page does not exist

glsErr.parsingBinary Binary message could not be parsed

glsErr.parsingServerIdentity Unable to parse server identity data

glsErr.partitionsNotFound Requested license pool does not exist

Table 4-14 • License Server Errors (cont.)

Exception Definition

Chapter 4 License Server REST APIs
Exception Handling

166 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

glsErr.passwordNotSpecified A password was not specified.

glsErr.queryParamIncompatible Incompatible query arguments.

glsErr.queryParamNeedsInt Value for query parameter {0} should be an integer

glsErr.queryParamTooLarge Value for query parameter "{0}" cannot be more than {1}

glsErr.queryParamTooSmall Value for query parameter "{0}" cannot be less than {1}.

glsErr.queryParamUnsupported Query parameter(s) not supported: {0}

glsErr.readingServerIdentity Error reading binary identity data

glsErr.reqHostIdMismatch Request has hostid: {0}, expected: {1}

glsErr.reqHostUuidMismatch Request has host UUID: {0}, expected: {1}

glsErr.reqHostUuidMissing Request missing host UUID:, expected: {0}

glsErr.reqIdentityMismatch Identity mismatch in binary request

glsErr.reqUnsupportedHostIdType The server cannot process requests from clients with the hostid
type {0}

glsErr.reservationAlreadyExists Reservation already exists: {0}

glsErr.reservationNotFound Reservation not found: {0}

glsErr.responseBadSignature Capability response is not signed correctly

glsErr.responseDupFeatureId Capability response rejected: the response has features with
duplicate feature ID: {0}

glsErr.responseEnterpriseMismatch Capability response rejected: the response enterprise ID does not
match the server instance

glsErr.responseExpired Capability response rejected: response time too old

glsErr.responseHostidMismatch Capability response hostid does not match. Expected {0}, got {1}

glsErr.responseNoHostid Capability response must have at least one server hostid

glsErr.responseNotSingleHostid Capability response must have exactly one server hostid

glsErr.responseStale Capability response rejected: update time invalid - a later response
has been processed

Table 4-14 • License Server Errors (cont.)

Exception Definition

Chapter 4 License Server REST APIs
Exception Handling

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 167

glsErr.responseUuidMismatch Capability response rejected: the response host UUID does not
match the server instance

glsErr.restNoSuchApi No such REST API and METHOD combination supported: {0} with {1}

glsErr.restParsing REST request parsing problem: {0}

glsErr.restUnimplemented REST service not implemented

glsErr.rightsCopiesInvalid The rights ID copies must be non-negative: {0}

glsErr.rightsIdMissing A rights ID must be specified

glsErr.rightsOnlyRequestOp Rights IDs are only allowed for request operations

glsErr.securityGroupNotFound Security group not found: {0}

glsErr.serializingSync Serialization/signing error in sync message generation for instance
{0}

glsErr.serverNoHostid Server instance has no hostids available

glsErr.serverNoId Server instance ID is missing

glsErr.serverNoIdentity Server instance identity is missing

glsErr.serverNotFound Server instance not found: {0}

glsErr.serverNotReady Server instance {0} is not ready

glsErr.serverNoVm License server not configured to allow running it on a virtual
machine

glsErr.serverPendingDeletion Server instance {0} is unavailable, pending deletion

glsErr.serverSuspended Server instance {0} is suspended

glsErr.serviceBusyDueToReservations Service is busy processing reservations.

glsErr.signatureInvalid Signature of received binary message was not valid

glsErr.soapFailure SOAP service {0} failed

glsErr.sslMisconfigured SSL is misconfigured: {0}

glsErr.syncDisabled Offline sync cannot be performed. Sync is disabled.

Table 4-14 • License Server Errors (cont.)

Exception Definition

Chapter 4 License Server REST APIs
Exception Handling

168 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

glsErr.syncInProgress Offline sync cannot be performed. Instance busy.

glsErr.tooManyFailedLogins Too many failed logins for user {0} on instance {1}. Logins will be
blocked for {2} minutes.

glsErr.unexpectedMessageType Message of type {0} was not expected and cannot be processed

glsErr.unknownServer Unknown server instance {0}

glsErr.userAccessDenied Access denied to {0} for user {1}.

glsErr.userAlreadyExists User already exists: {0}.

glsErr.userAuthFailed Authorization attempt at {0} failed for user {1} (error {2}).

glsErr.userDoesNotExist User cannot be found: {0}.

glsErr.userMismatch That user record has a different name to the one supplied.

glsErr.userNotSpecified A user name was not specified.

glsErr.userTokenExpired Authorization attempt at {0} failed due to token expiry for user {1}.

glsErr.wrongFailoverRole Wrong failover role: {0}

glsErr.wrongMessageType Message of type {0} expected, but {1} found

glsErr.wrongServerIdentityType Supplied identity data variant {0} is not the expected variant of {1}

Table 4-14 • License Server Errors (cont.)

Exception Definition

5

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 169

More About Basic License Server
Functionality

This chapter provides background information about functionality that you can enable for your FlexNet Embedded
license server and that might require additional setup performed by you or the license server administrator:

• Synchronization Operations (applicable to local license servers only)

• Allocating Licenses Using Named License Pools (applicable to local license servers and CLS license servers)

• License Reservations (applicable to local license servers and CLS license servers)

The following is information to keep in mind when referring to this chapter.

“licenseServer_baseURL” Used in Commands
Some the commands referenced in this chapter use the license server’s base URL, indicated by
licenseServer_baseURL in the command. For more information about this URL, see Base URLs in Chapter 4,
License Server REST APIs.

Authorization Credentials for Administrative Security
If administrative security is enabled for the license server, the license server administrator might need to provide
authorization credentials to perform certain operations described in this chapter. For more information about
administrative security and defining authorization credentials, see Administrative Security in Chapter 6, Advanced
License Server Features.

Synchronization Operations
Server synchronization is functionality that enables a FlexNet Embedded license server to synchronize its license-
distribution or metered-usage information with the back office (FlexNet Operations) or its license-distribution
information with another license server in a failover scenario (for local license servers only). Server
synchronization enables you to offer new business models based on usage of the client capabilities and capacity,
recover from catastrophic server failure, and provide enhanced support and upgrade processes.

Server synchronization can be configured in the following ways:

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

170 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• Synchronization to the back office: In this configuration, the license server periodically sends information
about the current state of license distribution or metered usage to the back office. Information about clients
that have been served licenses will then be visible in the back office and usage-capture information is
properly accounted for in the metered-license models. An offline synchronization process to the back office
is also supported.

• Synchronization to and from the back office: In this configuration, in addition to sending license-distribution
and metered-usage information to the back office, the license server can recover from catastrophic failure by
synchronizing its state back from the data stored in the back office.

• Synchronization to another FlexNet Embedded local license server: (Local license servers only) In this
configuration, the current FlexNet Embedded local license server sends its license-distribution data to
another local license server, enabling server failover should the main license server fail or be shut down. This
configuration is independent of synchronization with the back office.

The following sections describe how to enable and configure the different types of server synchronization:

• Online Synchronization to the Back Office

• Offline Synchronization to the Back Office

• Synchronization From the Back Office

• Failover Using Synchronization to FlexNet Embedded

The section Notes about Policy Settings for Synchronization provides references for more information about the
producer-settings.xml file.

Notes about Policy Settings for Synchronization
The various types of synchronization processes described in the next sections are controlled by specific policy
settings, as defined for the license server in the producer-settings.xml file, which you generate and provide with
the license server.

Use the following references for more information about the policy settings in the producer-settings.xml file:

• For a description of the settings specified in these sections, see Appendix A, Reference: Policy Settings for
the License Server.

• For instructions on generating the producer-settings.xml file, see License Server Configuration Utility in
Chapter 7, Producer Tools.

• Some of these settings are editable by the license server administrator at the customer site. To determine
which settings the administrator can edit, see Appendix A, Reference: Policy Settings for the License Server.

Using the /configuration REST endpoint, the administrator can display and edit these settings (see APIs to
Manage Instance Configuration in Chapter 4, License Server REST APIs). Additionally, the license server
administration tools that are included in your license server software package—and that you can make
available to the customer—provide facilities to view and update these settings. See the FlexNet Embedded
License Server Administration Guide for details.

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 171

Online Synchronization to the Back Office
When synchronization to the back office is configured, the FlexNet Embedded local license server automatically
sends a synchronization message to the back office on a periodic basis through an active internet connection
with the back office. The type of data submitted in the synchronization message depends on the value specified
for the policy setting lfs.syncTo.IncludeAll (see Table 5-1 for more information). When the back office receives
and processes the synchronization message, it sends back a synchronization acknowledgment. The
synchronization acknowledgment contains status information and any error information regarding the
processing. Additionally, the server log records the event, along with any related errors or warnings.

After a successful synchronization session, information about client devices that have been served licenses is
accessible to the back office. Consult your FlexNet Operations documentation for details.

Note • This synchronization process described here is “online”—that is, it uses direct internet access as a means
of transmitting data to and from the back office. As an alternative to this type of data transmission, the FlexNet
Embedded local license server supports an offline synchronization process that does not require the server to
have direct internet access. See Offline Synchronization to the Back Office.

Configuring Online Synchronization
The following policy settings in the producer-settings.xml file control scheduled online synchronization to the
back office. For information about additional settings that might be available, see Appendix A, Reference: Policy
Settings for the License Server.

Table 5-1 • Policy Settings for Online Synchronization

Policy Setting Description

lfs.url The URL for the back office to which the license server sends the
synchronization messages.

lfs.syncTo.enabled Determines whether synchronization to the back office is enabled.

Must be set to true for scheduled synchronization.

lfs.syncTo.IncludeAll Determines whether historical data is collected and sent to the back office
as part of the synchronization.

If set to false: This mode collects only the current state for each active
client device at the point of synchronization and uploads this data to the
back office.

If set to true: This mode collects all historical client actions (license
distribution and metered usage on client devices, based on the server’s
deduction records) in the synchronization history and uploads this data to
the back office as part of the synchronization.

lfs.syncTo.repeats The amount of time between synchronization sessions to the back office.
The value can be specified with an optional unit-suffix letter—s, m, h, d, or
w—indicating seconds, minutes, hours, days, or weeks. If no suffix is used,
the server assumes the value is in seconds. (Default is 5m; minimum is 10s.)

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

172 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

On-Demand Synchronization
The normal synchronization process to the back office is run automatically at a set interval. However, situations
might arise where when the license server administrator needs to trigger an online synchronization before the
next scheduled one. For example, the server might be accumulating an unusually large amount of metered-usage
data or the enterprise is anticipating a high volume of network traffic during of the next scheduled
synchronization. Running an extra synchronization might be a way to avoid problems getting license data sent to
the back office.

Using the /sync_message REST endpoint, the administrator can run a synchronization to the back office at any time
without altering the normal synchronization schedule. See Generating an Offline Sync Message in Chapter 4,
License Server REST APIs.

Configuring On-Demand Synchronization
The following policy settings in the producer-settings.xml file control on-demand synchronization to the back
office. For information about additional settings that might be available, see Appendix A, Reference: Policy
Settings for the License Server.

Offline Synchronization to the Back Office
The traditional process of synchronizing license data from the license server to the back office relies on the
license server having direct internet access to transmit data to the back office. For security reasons, such as data
privacy, license servers might have limited or no external network connections, making it difficult to synchronize
data about concurrent-license distribution and metered usage on the server to the back office. The offline
synchronization feature supports the ability to download this data from the license server on to another device
that has an external network connection and then transmitting the data to the back office.

The following sections describe offline synchronization to the back office:

• Configuring Offline Synchronization

• Tools

Table 5-2 • Policy Settings for On-Demand Synchronization

Policy Setting Description

lfs.url The URL for the back office to which the license server sends the
synchronization messages.

lfs.syncTo.IncludeAll Determines whether historical data is collected and sent to the back office
as part of the synchronization.

If set to false: This mode collects only the current state for each active
client device at the point of synchronization and uploads this data to the
back office.

If set to true: This mode collects all historical client actions (license
distribution and metered usage on client devices, based on the server’s
deduction records) in the synchronization history and uploads this data to
the back office as part of the synchronization.

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 173

• Offline Synchronization Process

• Keeping Enterprises in Compliance When Offline Synchronization Is Used

Configuring Offline Synchronization
The following policy settings in the producer-settings.xml file control offline synchronization to the back office.
For information about additional settings that might be available, see Appendix A, Reference: Policy Settings for
the License Server.

Tools
The license server provides these two tools to perform the offline synchronization operations. The tools can be
found in the enterprise directory of the FlexNet Embedded local license server installation directory.

• “serverofflinesynctool.bat” (or “serverofflinesynctool.sh”)

• “backofficeofflinesynctool.bat” (or “backofficeofflinesynctool.sh”)

“serverofflinesynctool.bat” (or “serverofflinesynctool.sh”)
This utility downloads the client records to be synced to the back office to a temporary storage location on (or
accessible by) the device that has direct internet access to the back office. It is also used to upload and process
the synchronization acknowledgment sent by the back office, purge old downloaded records, and force a
download of all synchronization records when necessary.

If administrative security is enabled for the license server, the utility command (shown in the steps that follow)
must include an -authorize option to specify the credentials needed to run the utility, as shown:

serverofflinesynctool.bat -authorize name password -url http://licenseServerHostName:port/api/1.0/
...

Table 5-3 • Policy Settings for Offline Synchronization

Policy Setting Description

lfs.url The URL for the back office to which the license server sends the
synchronization messages.

lfs.syncTo.enabled Determines whether synchronization to the back office is enabled.

Must be set to false for offline synchronization.

lfs.syncTo.IncludeAll Determines whether historical data is collected.

Must be set to true: All historical and current client actions (license
distribution and metered usage on client devices, based on the server’s
deduction records) are collected. This data is retained on the license server
until the offline synchronization tools are run (see Tools).

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

174 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Note • (Linux only) If you supply a password directly on the command line you may need to escape some
characters with a backslash in order to prevent the shell from interpreting them. The safest approach is to
surround the whole password with single quotes, and backslash any single quote that is part of the password.

For more information about administrative security and setting up authorization credentials, see Administrative
Security in Chapter 6, Advanced License Server Features.

“backofficeofflinesynctool.bat” (or “backofficeofflinesynctool.sh”)
This utility uploads the client records to be synchronized from the temporary location to the back office. It also
receives and saves the synchronization acknowledgment received from back office.

Offline Synchronization Process
The following describes how to perform the offline synchronization process using serverofflinesynctool and
backofficeofflinesynctool.

Step 1: Download Records
The first step is to download the transaction records to be synchronized from the license server using the
serverofflinesynctool.bat (in Windows) or serverofflinesynctool.sh (in Linux) tool:

serverofflinesynctool.bat -url http://licenseServerHostName:port/api/1.0/sync_message/offline
-generate path

where:

• licenseServerHostName:port is the server name and port for the license server URL from where the records
are being downloaded (default port is 7070)

• path is the path on the local machine where the records will be temporarily stored

Additionally, if administrative security is enabled, you must include your authorization credentials in the
command. See “serverofflinesynctool.bat” (or “serverofflinesynctool.sh”) for details.

This command can be run on a system with an external network connection or on the hosting license server. If
you run the command on the hosting license server, the files containing the data to be synchronized need to be
copied to a machine with external network connectivity. Once the download completes, a message stating the
number of transaction records downloaded is displayed:

OfflineSync utility started.
Sync completed for 3 device records.

If there are no new transaction records to download, the message displays the following:

OfflineSync utility started.
No new data is available.

Step 2: Synchronize to the Back Office
Next, use the backofficeofflinesynctool.bat (in Windows) or backofficeofflinesynctool.sh (in Linux) tool to
synchronize the data to the back office:

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 175

backofficeofflinesynctool.bat -url https://siteID.flexnetoperations.com/flexnet/deviceservices -out
filename path

where:

• siteID is your organization’s DNS name or the specific site ID supplied by Revenera (see More About the
Base URL).

• filename is the name of the file to which the synchronization acknowledgment will be written to (for example,
sync_ack.bin).

• path is the path on the local machine where the transaction records to be synchronized were stored by the
serverofflinesync tool. To specify a specific file, provide the path and file name.

A sync acknowledgment message is returned:

Successfully sent sync data and received a sync acknowledgment.

The sync acknowledgment received from the back office is written to the output file (default is syncack.bin in the
current directory).

MessageType=”Server sync acknowledgment”
MessageTIme=”Jan 13, 2019 10:53:46 AM”
LastSyncTime=”Jan 13, 2019 10:52:45 AM”
SourceIDType=String
SourceID=BACK_OFFICE
SourceIds=BACK_OFFICE
TargetID=A088B436F208
TargetIDType=Ethernet

Step 3: Update the Synchronization Time
The synchronization acknowledgment needs to be processed on the license server to update the last time of
synchronization so that it knows that the data has been synchronized to the back office. When executing the tool,
use the same path value used to download and synchronize the data to the back office so that the tool can
remove the old synchronized data file after it processes the response. (Additionally, if administrative security is
enabled, you must include your authorization credentials in the command, as described in
“serverofflinesynctool.bat” (or “serverofflinesynctool.sh”).)

serverofflinesynctool.bat -url http://licenseServerHostName:port/api/1.0/sync_ack/offline
-process filename path

The server responds with the following message:

OfflineSync utility started.
Purging file 20140613T105312.fnesync

Force a Download of All Synchronization Records
The -force option can be used with the serverofflinesync tool if you encounter an error similar to the following:

“Mismatched or out of order time stamp in sync message”: “Expected sync time Jan 24, 2019 11:04:09
AM, got Jan 24, 2019 11:05:00 AM”)

Checking the synchronized records in the back office reveals that those records processed after a mismatch are
not synchronized. To correct the problem, you must force a download of all transaction records to account for any
records missed during synchronization. The -force option allows you to start the record collection and download
from the last successful synchronization time.

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

176 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Task To force a download of all records since the last time of synchronization

1. Process the synchronization acknowledgment on the license server (as described in Step 3: Update the
Synchronization Time). This will update the records up to the point of the mismatch. Only those records that
were synchronized to the back office are deleted.

2. Recover the records missing from synchronization. However, if you try to download the records again, the
server thinks it has already downloaded all the records and responds with No new data is available. To
remedy the problem, use the -force option with serverofflinesynctool. (If administrative security is
enabled, you must also include your authorization credentials in the command, as described in
“serverofflinesynctool.bat” (or “serverofflinesynctool.sh”).)

serverofflinesynctool.bat -url http://licenseServerHostName:port/api/1.0/sync_message/offline
-generate path -force

This will dump all the records since the lastSyncTime specified in the last synchronization acknowledgment.

3. Run the backofficeofflinesynctool utility to upload the data to the back office.

4. Once the data has been successfully synchronized, process the acknowledgment on the server to update the
synchronization date and delete the synchronized data.

Keeping Enterprises in Compliance When Offline Synchronization Is
Used

When FlexNet Embedded local license servers use the offline synchronization to send data to the back office, the
producer’s ability to enforce timely synchronization can be difficult. You must rely on the enterprise to run an
offline synchronization at scheduled times to keep license-distribution and meter-usage information on the back
office up to date. A missed synchronization can cause an enterprise to be out-of-compliance with your business
policies or, in the case of metered usage, can result in an enterprise exceeding their usage limit for a given time
period.

The license server provides ways to monitor the current synchronization status at an enterprise and take
appropriate action when synchronization is out of compliance.

Synchronization Status Reports
You can use the following two methods to obtain the current synchronization status for an enterprise customer.
Each method reports the following information:

• Last time metered usage was synchronized to the back office

• Total number of transaction records in trusted storage that have not been synchronized

Run the “status” Command in the FlexNet License Server Administrator Command-line Tool

Use the FlexNet License Server Administrator command-line tool (included in the enterprise directory in your
license-server software package) to run the -status command, as shown in this example:

flexnetlsadmin.bat -server licenseServer_baseURL -status

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 177

The output includes the synchronization status, as highlighted in this sample excerpt. (In this case, 42 records
are pending synchronization, and the last synchronization occurred 7 days, 4 hours, 38 minutes and 28 seconds
ago.)

Version : 2020.01.0
Build Version : 262400
Server : https://localhost:7070/api/1.0/instances/~
State : Ready
Backup Server : Not configured
BackOffice Server : http://localhost:8080/request
Records Pending Sync : 42
Last Sync : 7d 4h38m28s

Note • The time format for the “Last Sync” value is nYnMnD nHnMnS, where Y=years, M=months, D=days, H=hours,
M=minutes, and S=seconds. If any leading elements are missing, they are assumed to have a value of zero. If a
sync has never been performed, "sync to back office pending" is displayed.

See the “Using the FlexNet License Server Administrator Command-line Tool” chapter in the FlexNet Embedded
License Server Administration Guide for details about the -status command.

Use the “instances/instanceID” REST API

Use the /instances/instanceID REST API with syncinfo=true query argument to display the properties
recordsPendingSync and lastSyncTime (listed in Greenwich Mean Time), which report the server’s synchronization
status:

http://licenseServer_baseURL?syncinfo

The following shows a sample response body:

{
 "id": 1,
 "maintenanceEndTime": "1970-01-01T00:00:00.000Z",
 "suspended": false,
 ...
 "publisherName": "demo",
 "failOverRole": "MAIN",
 "lastSyncTime": "1970-01-01T00:00:00.000Z",
 "lastUpdateTime": "2018-08-24T15:52:20.000Z",
 "lastUpdateHostid": {
 "hostidValue": "7C7A77BA777B",
 "hostidType": "ETHERNET"
 },
 "identityName": "demo-med-rsa",
 "recordsPendingSync": 2
}

For more information about this REST API, see Chapter 4, License Server REST APIs.

Disabling Synchronization to the Back Office
To disable synchronization to the back office, the lfs.syncTo.enabled and lfs.syncTo.IncludeAll settings in
producer-settings.xml must both be set to false. In this scenario, no synchronization data is collected. Client
data is deleted from the license server as soon as the client expires.

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

178 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Synchronization From the Back Office
Another type of synchronization is synchronization of license data from a back-office server. Synchronization from
a back office enables a FlexNet Embedded local license server’s distribution state to be restored from the back
office’s distribution information after catastrophic server failure. (This configuration thus requires
synchronization to the back office also to be enabled prior to the server failure.)

The following sections describe synchronization from the back office:

• Configuring Synchronization From the Back Office

• Synchronization Process

Configuring Synchronization From the Back Office
The following policy settings in the producer-settings.xml file control the synchronization from the back office.
For information about additional settings that might be available, see Appendix A, Reference: Policy Settings for
the License Server.

Synchronization Process
Once the license server is up and running, if trusted storage is empty, the server first sends a capability request
to the back office to obtain its pool of licenses. The server then sends a synchronization request message to the
back office to obtain the server’s license-distribution and metered-usage data required to restore the deduction
records on the server. (If synchronization from the back office is enabled, the server log contains an entry stating
as such.)

Once the synchronization from the back office is complete, the server can start responding to capability requests
from client devices. (Licensing data for active clients is once again visible using the /clients REST endpoint,
described in APIs to Manage Clients in Chapter 4, License Server REST APIs.) Moreover, transaction records will
be reflected in the back office with updated timestamps the next time synchronization to the back office is
performed. These updated records indicate successful restore of the server’s license-distribution and metered-
usage state.

Failover Using Synchronization to FlexNet Embedded
The FlexNet Embedded local license server includes support for license server failover. Failover involves two local
license servers—the main license server and the back-up license server—that work together to ensure that
licenses in the enterprise remain available for serving to client devices should the main server fail.

Table 5-4 • Policy Settings for Scheduled Synchronization

Policy Setting Description

lfs.syncFrom.enabled Determines whether license-recovery from the back office is enabled. If
recovery is enabled, the metered-usage data and license-distribution state
for concurrent features is recovered from the back office when the license
server initially starts up with a new or reset trusted storage.

Must be set to true.

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 179

The two license servers in a failover configuration must be of the same version.

In a failover configuration, the back-up license server periodically contacts the main FlexNet Embedded local
license server, requesting that the main license server send its current client-usage information. The back-up
license server then applies this information to mirror the state of the main server, thus synchronizing the two
servers.

If a client device determines that the main license server has failed—by a failure to respond to the client’s
capability request, for example—it can communicate with the back-up license server, which then takes over
responsibility for serving the pool of licenses until the main license server is restored, or until the configured
maintenance interval has elapsed. You, as the software producer, configure this maintenance interval using the
server.backupMaintenance.interval setting in the producer-settings.xml file.

The back-up license server does not synchronize to the back office or to the main license server. Therefore, data
about clients served by the back-up license server during a failover period is not stored in the back office.
However, once the main license server has come back online, license-distribution data collected from that point
on is once again synchronized to the back office.

The following sections describe license server failover:

• Configuring License Server Failover

• Additional Failover Considerations

Configuring License Server Failover
The following process describes the responsibilities that you, as software producer, and your enterprise
customer’s license server administrator need to perform to enable support for license server failover. (Certain
steps in this process describe defining specific license-server policy settings. See Notes about Policy Settings for
Synchronization for information about synchronization settings in general.)

Step 1: Provide the Producer Settings File
You provide a producer-settings.xml file that defines the server.backupMaintenance.interval setting to define
how long the back-up license server can serve licenses without the main license server being online. This file is
installed with both license servers, but the setting is used by only the back-up license server. (Optionally, you can
provide two separate files so that this setting is defined only in the file to be installed on the back-up license
server.)

If necessary, also update the fne.syncTo.repeats license server policy using the /configuration API to set the
synchronization interval between the back-up license server and the main license server. (The license server
administrator does not have permission to edit this setting.) See APIs to Manage Instance Configuration.

Step 2: Install and Configure the License Servers
The license server administrator installs both the main and back-up license servers. As part of the installation
process, the administrator configures both license servers with basically the same local settings, with some
allowable differences. For example, the administrator can specify different PORT values for the license servers.
Additionally, if specifying the BACKUP_SERVER_HOSTID setting, the administrator does so only on the main license
server (see (Optional) Automatic Registration of the Failover Pair).

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

180 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

For more information about installing a license server and editing its local settings file—flexnetls.settings on
Windows or /etc/default/flexnetls-producer_name on Linux, see Chapter 3, Installing and Running the
License Server.

Step 3: Register the Main and Backup License Servers
Using the FlexNet Operations End-User Portal, the license server administrator registers the main license server
with the back-up license server as a failover pair on the back-office server. (This registration is performed by
specifying the hostid of the back-up license server on the portal’s Create Server page for the main license server.)
The hostid for each the main and the back-up license server must be of the same type.

Note • It may be necessary to enable support for server failover in FlexNet Operations.

For more information about registering the failover pair from the Create Server page for the main license, the
administrator can locate instructions in the online help system for the FlexNet Operations End-User Portal. (As
producer, you can also navigate to Manage Hosts | Add License Server in the Producer Portal to register a failover
pair.)

This step can be replaced with an automatic registration of the failover pair through the capability request sent
from the main license server. See (Optional) Automatic Registration of the Failover Pair for details.

Step 4: Set Up an Entitlement for the License Servers
You need to set up an entitlement of the license rights for the main license server. If you map these rights to the
failover pair through the main license server, both license servers automatically receive the entitled features
when they start up. If you do not map the rights to the main license server, the license server administrator can
use rights IDs to activate the licenses once the license servers are running.

Step 6: Start Up the License Servers
The license server administrator starts up the license servers. Any license rights already mapped to the failover
pair through the main license server are automatically activated on the both license servers. If the administrator
needs to activate licenses manually, see Step 9: Activate Licenses on the Servers.

The administrator can now use the administrator tool provided with the license server to update policy settings,
as described next in Steps 7 and 8.

Step 7: Enable Failover Support on the Back-Up Server
The license server administrator makes changes to policy settings on the back-up license server, using the
license-server administrator tool you provide, such as the FlexNet License Server Administrator command-line
tool or your own administrator interface or tool:

1. Sets the following license server policy settings on the back-up server:

• fne.syncTo.mainUri - Set to the URI of the main license server (in the format http://
licenseServerHostName:port/fne/bin/capability).

• fne.syncTo.enabled - Set to true.

2. (Optional) Sets other failover-related policy settings, such as other fne.syncTo.* settings or the
licensing.backup.uri and the licensing.main.uri settings. (The format http://
licenseServerHostName:port/fne/bin/capability must be used for the URI settings.)

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 181

For information about these policy settings, see Appendix A, Reference: Policy Settings for the License Server.

(Optional) Step 8: Edit Producer Settings on the Main Server
The license server administrator can configure one or both of the following license server policy settings on the
main license server to include these URIs as reference information sent in capability responses to client devices.
(The format http://server:port/fne/bin/capability must be used for the URIs.)

• licensing.backup.uri

• licensing.main.uri

For information about these policy settings, see Appendix A, Reference: Policy Settings for the License Server.

Step 9: Activate Licenses on the Servers
If no license rights were activated on the license servers at startup, the license server administrator performs
these steps to provision the servers with licenses:

1. Starts up both license servers.

2. Sends one or more rights ID in a capability request to activate identical license rights on both license servers
via the current (main) license server. (You need to let the administrator know which rights IDs are available to
the license server.)

Step 10: Verify Failover Roles
The license server administrator can verify the failover role of each license server after the servers receive their
license rights. (The failover roles are determined by the back office and included in the capability response.)

Verification can also be obtained using the FlexNet License Server Administrator command-line tool (for example,
flexnetlsadmin -server licenseServer_baseURL -status). Additionally, the primary server log will state the
failover role of the given license server.

(Optional) Automatic Registration of the Failover Pair
As described in Step 3: Register the Main and Backup License Servers, the license server administrator must
register the main and back-up license servers as a failover pair in FlexNet Operations. One way to perform this
registration is to do so manually through the FlexNet Operations End-User Portal.

Another way to perform this registration is to use the capability request sent to FlexNet Operations by the main
license server at startup as a means of conveying the back-up license server’s hostid to the back-office server.
FlexNet Operations then uses the hostid information in the capability request to automatically register both
license servers as a failover pair, thus avoiding the extra step of having to access the End-User Portal to perform
the registration.

To set up this automatic registration process, the license server administrator does the following:

1. Shuts down both the main and back-up license servers.

2. On the main license server, updates the local license-server settings to include the BACKUP_SERVER_HOSTID
setting. This value identifies the hostid of the back-up license server. It must be the same hostid type (such
as “ETHERNET”) as the type of hostid used by the main (current) license server. See Chapter 3, Installing and
Running the License Server for details about updating local settings.

Chapter 5 More About Basic License Server Functionality
Synchronization Operations

182 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

3. Starts up the main license server first.

The main license server sends a capability request containing the back-up license server’s hostid to FlexNet
Operations, where both servers are then registered as a failover pair.

4. Starts up the back-up license server once the main license server has successfully communicated with
FlexNet Operations. Both servers can now obtain license rights either through rights IDs sent in a capability
request or through capability polling if licenses rights are subsequently mapped in FlexNet Operations to the
registered failover pair.

Note • The license server administrator should wait until the main license server has successfully started and
communicated with FlexNet Operations before starting the back-up license server. Otherwise, FlexNet
Operations might assign the back-up license server to the “main server” role, generating an error when
FlexNet Operations then attempts to register the actual main license server.

5. Configures the license servers as described in Step 7: Enable Failover Support on the Back-Up Server and
(Optional) Step 8: Edit Producer Settings on the Main Server.

The license server administrator can view registration details for the main and back-up server by searching for
the main license server (from the Search Servers page) in the FlexNet Operations End-User Portal. The View
Server page for the main license server shows both license servers registered as a failover pair.

Additional Failover Considerations
The following lists additional considerations when enabling failover configuration:

• Since the back-up license server does not synchronize to the back office or the main license server, data
about clients served by the back-up server during a failover period is permanently missing in the back office.
Once the main server has come back online, the new license-distribution data can be synchronized to the
back office.

• Metered-usage data is currently not supported in a failover scenario.

• License server failover has limited compatibility with JSON security in REST-driven licensing, mainly because
the private and public keys required for this type of security are not part of the synchronization process from
the main server to the backup server.

For specific information about failover compatibility with JSON security, see Online REST API Reference
Documentation Available. For more information about JSON security in REST-driven licensing in general, see
API for Enabling JSON Security for the Cloud Monetization API in Chapter 4, License Server REST APIs.

• Failover functionality is dependent on the clocks of the main license server and back-up license server being
accurate, synchronized with each other, and in the same time zone. If any of these requirements are not met,
unpredictable behavior can occur.

• The failover configuration does not support reservations.

• The failover configuration does not support named license pools. During a failover period, feature counts will
only be distributed from the default license pool.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 183

Allocating Licenses Using Named License Pools

Important • License server administrators can use either reservations or named license pools for license
allocation. Reservations and named license pools cannot coexist alongside each other. If currently no license
reservations are defined for a license server, review the information in Comparison of Named License Pools and
Reservations to decide which approach is best for you. In general, reservations are conceptually similar to named
license pools, but named license pools offer significantly more flexibility in controlling a server’s license estate.
See also Named License Pools vs. Reservations.

Note • In previous releases of the FlexNet Embedded license server, named license pools used to be referred to
as “partitions”.

In a generic setup, each license server has a license pool which contains all the licenses available to its client
devices. The license server distributes licenses from this license pool on a first-come-first-served basis to client
devices requesting them. This license pool is also referred to as the default license pool.

However, in addition to the server’s default license pool the license server administrator can create named
license pools, which divide an organization’s license estate into groups of licenses. By defining rules of access,
administrators can allocate licenses to a group of client devices or users to help ensure that these entities have
access to the features they need.

Thus, a license server serves licenses from its default license pool and any named license pools that the license
server administrator creates. Each named license pool contains license counts for one or more features, which
can be allocated to client devices or users. It is important to note that in a named license pool, licenses are not
assigned to individual client devices or users. Instead, counts allocated to a named license pool can be accessed
by a number of devices or users that meet certain criteria, such as, for example, be member of a particular
business unit or have a certain hostid. Allocated license counts can be checked out by any device or user that
fulfills the specified criteria.

The license server administrator can choose to allocate the entire pool of licenses, a portion of the licenses, or
none of the licenses. Any license that is not allocated remains in the default license pool and is available to any
device on a first-come-first-served basis.

The following sections provide information about named license pools on the FlexNet Embedded license server:

• Named License Pool Terminology

• Introduction to the Model Definition

• Model Definition Components

• Server Behavior When Distributing Feature Counts to Named License Pools

• Server Behavior when Assigning Features to Clients

• Named License Pools vs. Reservations

• Limitations of Named License Pools

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

184 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Named License Pool Terminology
The following table provides brief definitions for the terminology used around the named license pool
functionality:

Introduction to the Model Definition
Named license pools are defined using a model definition. The model definition is configured and uploaded per
local license server instance or Cloud Licensing Service (CLS) instance. The license server administrator can
either use the REST API endpoints or the FlexNet License Server Administrator command-line tool to view or
delete named license pools and license count allocations on the license server.

 A model definition specifies the following:

• License pools—Named license pools are optional. If a model definition does not include any named license
pools, all counts are placed in the default license pool, and rules can only allow or deny access to the default
license pool.

Table 5-5 • Named License Pool Terminology

Name Definition

License Pool When no named license pools have been defined, “license pool” means the
license estate from which the license server serves licenses to its client
devices.

In setups where named license pools have been defined, the term “license
pool” is used to refer to a nondescript license pool, that is, it can refer to a
default license pool and/or named license pool.

Default License Pool Every server has a default license pool which cannot be deleted. If no
named license pools have been defined, the default license pool holds all
licenses on the server.

If one or more named license pools have been defined, the default license
pool holds any licenses that have not been allocated to a named license
pool.

Named License Pool A pool that holds any licenses that have been allocated to it by rules of
access. A named license pool is separate from the default license pool.

Model Definition The model definition specifies the license pools and the rules of access that
define how licenses are allocated to license pools (named or default).

Rules of Access Rules of access define the criteria that allow or block certain client devices
or users from obtaining licenses from specified license pools (named or
default).

Conditions Criteria used in rules of access that allocate licenses to license pools
(named or default).

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 185

If a model definition contains named license pools, each named license pool will hold one or more features.
Within the license pools (named or default), counts are arranged in feature slices based on their feature ID,
meaning each slice contains only counts from a single feature (which has a unique feature ID). For each
feature, the license pool specifies the name of the feature, its version, and its feature count. The feature
count can either be specified as a number or as a percentage of the total of the available feature count.

• Rules of access allowing access to licenses.—Rules allow client devices or users that fulfill certain
conditions access to counts in specified license pools (named or default), in a given order. For example, the
license server administrator could specify that only clients of a specific host type can receive licenses from a
certain named license pool.

• Rules of access denying access to licenses.—The license server administrator can define criteria that block
certain client devices or users from obtaining licenses. This means that no licenses will be allocated to
entities meeting those criteria, even if sufficient licenses are available on that license server.

After the model definition has been uploaded to the license server, the definition is saved in the database. Named
license pools and rules of access defined in the model definition persist even if the license server is restarted.

Note • On the local license server, the size of the model definition must not exceed 900 KB.

Refer to the following section, Model Definition Components, for information about how to create named license
pools and building rules of access.

For detailed information about the format and grammar of the model definition, see Model Definition Grammar for
Named License Pools. This section also contains some sample definitions that help license server administrators
write their own definition.

For information about managing (uploading, deleting, and viewing) the model definition, see Managing Named
License Pools.

Model Definition Components
A model definition typically contains the following entities:

• Model

• Named License Pools

• Rules of Access and Conditions

A full description of the grammar and valid values can be found in Appendix D, Model Definition Grammar for
Named License Pools. This appendix also includes a number of use cases and sample model definitions that help
license server administrators write their own model definition.

This example shows a simple model definition. The individual components are described in the following
sections.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

186 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Model
The top line of the model definition specifies the model name. The model name cannot be “default” or
“reservations”, because these names are reserved.

Example
model "test"

Named License Pools
The license server administrator can define one or more named license pools under the optional partitions
element. If no named license pool is specified, all feature counts are placed in the default license pool. (The
naming of the element stems from previous releases of the FlexNet Embedded license server, where named
license pools were referred to as “partitions”.)

For each named license pool, the administrator needs to specify a name followed by one or more features that
the named license pool should contain. For each feature, they need to specify the feature name, feature version,
and feature count. The feature count can be expressed as a number or as a percentage of the overall feature
count that is available on the license server.

Example
partitions {

partition "p1" {

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 187

"f1" 1.0 50
"f1" 2.0 25
"f2" 1.0 100

}
}

The following section, Rules of Access and Conditions, describes the syntax and condition types used in rules of
access.

For information about how the license server allocates feature counts to license pools, see Server Behavior When
Distributing Feature Counts to Named License Pools.

Rules of Access and Conditions
Rules define criteria that allow or block certain client devices or users from obtaining licenses from specified
license pools. This section covers the following topics:

• Syntax for Rules of Access

• Condition Types

• Advanced Keywords and Directives—Covers how to use advanced keywords to build more sophisticated
rules of access.

For detailed information about the format and grammar of the model definition, see Model Definition Grammar for
Named License Pools. This section also contains some sample definitions that help license server administrators
write their own definition.

Syntax for Rules of Access
Rules of access are defined using the following simplified syntax:

on <condition> {
[use "<license-pool-name>"]
[accept|deny|continue]

}

where <condition> specifies one or more conditions that must be matched.

Example

If the condition dictionary("business-unit" : "engineering") evaluates to true—that is, the capability
request's vendor dictionary contains the business-unit:engineering key-value pair—access to the named
license pool engineering is granted:

on dictionary("business-unit" : "engineering") {
use "engineering"
accept

}

The following subsections provide more information about configuring rules:

• Conditions Syntax—Describes how to configure a condition in simple terms.

• AND, OR, and NOT Operators—Describes how to combine individual rules to create more complex conditions.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

188 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• Basic Keywords and Their Actions—Explains the keywords accept, deny, and continue.

• Default Behavior—Describes how feature counts are served when a feature request does not meet any of the
conditions in the model definition.

Conditions Syntax
This section describes the syntax for defining conditions in simple terms. For detailed information, see Model
Definition Grammar and Syntax—EBNF.

The following shows a simplified conditions syntax:

[NOT]<condition_type>(<parameter_list>) [AND|OR [NOT] <condition_type>(<parameter_list>)]

where <condition_type> is replaced with a condition type (hostid, hostname, hosttype, dictionary, or any),
followed by a value or value/type pair that qualifies the condition.

Optionally, additional conditions—<condition_type>(<parameter_list>)—can be chained on using an AND, OR,
or optional NOT operator.

AND, OR, and NOT Operators
The syntax supports the AND, OR, and NOT operators to combine conditions within a rule to create a more
complex rule. The operators have synonyms that are familiar to C and Java programmers:

The syntax for combining conditions within a rule using these operators is illustrated in detail in section Model
Definition Grammar and Syntax—EBNF. You may also find it helpful to review the provided sample rules.

Precedence Considerations

The AND and OR operators have left-to-right associativity; NOT has right-to-left associativity. NOT has a higher
precedence than AND and OR.

Parentheses are not supported. An expression like this:

on hosttype("tv") and not hostname("xyz") || hostid("h1")

is interpreted as :

OR(
AND(hosttype("tv"), NOT(hostname("xyz"))),
hostid("h1")

)

Sample Rules of Access

The following sample rules in the Appendix C, Model Definition Grammar for Named License Pools, illustrate the
use of operators:

Operator Synonym

AND &&

OR ||

NOT !

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 189

• Use Case: Exclusive Use of Feature Counts for Business Unit With Exception of Specific Clients

• Use Case: Exclusive Use of Feature Counts for Business Unit and Specified Clients from other Business Units

• Use Case: Assigning Features Based on Combined hosttype and hostname Properties

Basic Keywords and Their Actions
The following table explains the keywords accept, continue, and deny and their actions. For additional keywords
and directives, see Advanced Keywords and Directives.

Default Behavior
When a feature request does not satisfy any of the rules in the model definition, an on any() condition is expected
that either denies or allows access to a license pool. If no such on any() condition is provided, the default is that
the feature will be served from the default license pool (if features are available). This behavior is equivalent to
the following code:

on any() {
use "default"
accept

}

The examples in this book generally do not explicitly show this final on any() condition.

Condition Types
This section describes the following condition types:

• Hostid Condition

Table 5-6 • Basic Keywords

Keyword Action

accept If the conditions of the rule are met and the rule ends with accept, the feature request is
granted. No further rules are evaluated.

continue The continue keyword causes rules on subsequent lines to be evaluated, allowing multiple
rules that match a single request. The continue keyword therefore allows clients to
accumulate counts from more than one license pool. For a use case example, see Use Case:
Accumulating Counts from Multiple Named License Pools (“Continue” Action).

This is the default behavior if no other keywords are present.

The lack of an accept or deny action also means that the on any clause (see Default Behavior,
below) will be in scope to be matched.

deny If the conditions of the rule are met and the rule ends with deny, the feature request is
refused. No counts are acquired and any previously held counts are returned to the server.
No further rules are evaluated.

If the conditions of the rule are not met and the rule ends with deny, the next rule is
evaluated.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

190 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• Hostname (Device Name) Condition

• Hosttype (Device Type) Condition

• Vendor Dictionary Condition

These condition types can be combined using AND, OR, and NOT, to form more complex rules. For more
information, see AND, OR, and NOT Operators.

Note that in this section, the syntax describing each condition has been simplified. For a detailed syntax
description, refer to Model Definition Grammar and Syntax—EBNF.

Hostid Condition
When a client requests a license from the license server, the client includes the unique hostid in the request to
which the license server binds the licenses sent in the response. The hostid condition enables the license server
administrator to allocate licenses from a specified license pool to one or more client devices that are identified by
a hostid.

The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition does not
specify the hostid type, it is assumed that the hostid is of type string.

Syntax
hostid_condition = 'hostid', '(', parameter_list, ')' ;

Example

The following hostid condition allows any feature requests with hostid h1 or h2 to use features from the named
license pool p1.

on hostid("h1", "h2") {
use "p1"
accept

}

Hostname (Device Name) Condition
You as the software producer can set a host name on a client device. (This host name is also sometimes referred
to as a device name.) A host name is a human-readable “alias”—in contrast to the hostid—which can optionally
be included in a capability request. Communicate the available host names to your enterprise customer’s license
server administrator if you want to enable them to use the hostname rule.

Syntax
hostname_condition = 'hostname', '(', parameter_list, ')' ;

Example

The following host name condition allows any feature requests with host name ABC to use features from the
named license pool p2.

on hostname("ABC") {
use "p2"
accept

}

Note that the host name is case-sensitive.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 191

Hosttype (Device Type) Condition
You as the software producer can set a host type on a client device. (This host type is also sometimes referred to
as a device type.) A host type can optionally be included in a capability request. Communicate the available host
types to your enterprise customer’s license server administrator if you want to enable them to use the hosttype
rule.

Syntax
hosttype_condition = 'hosttype', '(' parameter_list, ')' ;

Example

The following host type condition allows any feature requests with host type device to use features from the
named license pool p3.

on hosttype("device") {
use "p3"
accept

}

Note that the host type is case-sensitive.

Vendor Dictionary Condition
The vendor dictionary provides an interface for an implementer to send custom data in a capability request (in
addition to the FlexNet Embedded–specific data) to the license server and vice-versa. Basically, the vendor
dictionary provides a means to send information back and forth between the client and server for any producer-
defined purposes, as needed; FlexNet Embedded does not interpret this data.

Vendor dictionary data is stored as key–value pairs. The key name is always a string, while a value can be a string
or a 32-bit integer value, or an array of those types (arrays are only supported when using the Cloud Monetization
REST API). Keys are unique in a dictionary and hence allow direct access to the value associated with them.

Communicate the available vendor dictionary data to your enterprise customer’s license server administrator if
you want to enable them to use the vendor dictionary rule.

Syntax

vendor_dictionary_condition = 'dictionary', '(', keyword_parameter_list, ')' ;

Example

The following vendor dictionary condition allows any feature requests from the engineering business unit (as
defined in the vendor dictionary) to use features from the named license pool p4.

on dictionary("business-unit" : "engineering") {
use "p4"
accept

}

Tip • For an example that demonstrates a vendor dictionary condition that uses an array, see Use Case: Making
Feature Counts Available to Multiple Business Units.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

192 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Advanced Keywords and Directives
The following table introduces advanced keywords and directives and their usage. For a description of the
keywords accept, continue, and deny, see Basic Keywords and Their Actions.

Allocating Remaining License Counts
The remainder keyword can be used to allocate any remaining license counts to a specified named license pool.
This keyword is particularly useful in preventing the situation where integer rounding would cause left-over
counts to remain in the default license pool when trying to configure named license pools summing up to a count
of 100%.

Using the remainder keyword is equivalent to specifying 100%, which allocates all available license counts. Any
license pool later in the model definition than the one specifying the remainder keyword (or 100%) in the model
definition (including the default license pool) receives zero counts for that feature. For an example demonstrating
its use, see the Use Case: Named License Pool Receiving Entire Remaining Feature Count.

Example
partitions {

partition "p1" {
"f1" 1.0 33%

}

partition "p2" {
"f1" 1.0 33%

Table 5-7 • Keywords and Directives for Rules of Access

Keyword or Directive Description Refer to Section

remainder Allocates any remaining license counts to a specified
license pool. Useful in scenarios where integer
rounding could cause left-over counts to remain in
the default license pool when trying to configure
license pools summing up to a count of 100%.

Allocating Remaining
License Counts

vendor string matches Allocates feature counts to license pools based on
variables specified in the vendor string.

Allocating Counts
Based on Vendor String
Property

max Limits the number of feature counts that a single user
or device can consume.

Limiting Checkout of
Feature Counts per
User or Device

without requested
features

Lets the license server specify the features that
should be served to a client when a capability request
lists no desired features.

Letting Server Specify
Counts

[regular expressions] Match patterns to reduce the number of license pools
and conditions.

Syntax: ~/REGEX/

Using Regular
Expressions

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 193

}

partition "p3" {
"f1" 1.0 remainder

}
}

Allocating Counts Based on Vendor String Property
The directive vendor string matches enables license administrators to allocate feature counts to license pools
based on variables specified in the vendor string. After use, feature counts are returned to their original license
pool.

To use the directive, the producer must define a vendor string in the license model when they create a line item in
the back office. The vendor string can hold arbitrary producer-defined license data. Data can range from feature
selectors to pre-defined substitution variables. For more information, see Set Up the Selectors in FlexNet
Operations, or Predefined Substitution Variables for License Strings in the FlexNet Operations User Guide.

The directive vendor string matches is located in the partitions section of the model definition. This directive
is evaluated when the license server loads the model definition.

Syntax Example

model "exampleModel" {
partitions {

partition "engineering" {
"f1" 1.0 75% vendor string matches "ProductName:Premium"
"f2" 1.0 75% vendor string matches "ProductName:Premium"

}
partition "sales" {

"f1" 1.0 25% vendor string matches "ProductName:Basic"
"f2" 1.0 25% vendor string matches "ProductName:Basic"

}
}

For a use case example, see Use Case: Assigning Features Based on Vendor String Property.

Limiting Checkout of Feature Counts per User or Device
Use the max keyword to limit the number of feature counts that a single user or device can consume.

max is used in the partitions section of the model definition. The following shows an example model definition
which limits the consumption of features f1 and f2 to 10 and 1 counts, respectively:

Syntax Example

model "exampleModel" {
partitions {

partition "engineering" {
"f1" 1.0 100 max 10
"f2" 1.0 100 max 10

}
partition "sales" {

"f1" 1.0 5 max 1
"f1" 1.0 5 max 1

}

https://docs.revenera.com/fno_CURRENT/producer/Content/helplibrary/opsSubstVars.htm

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

194 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

}

on dictionary("business-unit" : "engineering") {
use "engineering"
accept

}

on dictionary("business-unit" : "sales") {
use "sales"
accept

}
}

If max is set to 0, access to that feature from the license pool is denied.

If a client requests a feature count that is greater than the value of max, the request is denied with the error
FEATURE_COUNT_INSUFFICIENT.

To allow a partial checkout, set the “partial” attribute to true. In that scenario, a client is granted access to the
requested number of features up to the value of max, even if a feature count exceeding max is requested.

Letting Server Specify Counts
There might be scenarios when the license server administrator wants the license server to specify the features
that should be served to a client. The server cannot override a capability request containing desired features
coming from the client. However, if a capability request lists no desired features, the without requested features
directive lets the server allocate feature counts.

The administrator can use the without requested features directive to do the following:

• Allocate specific feature counts. To achieve this, list the feature counts that should be served. The following
example shows the syntax:

on hostname("myhost") {
use "p1", "default"
without requested features {

"f1" 1.0 1
}
accept

}

For a use case example, see Use Case: Letting Server Specify Counts.

• Allocate the entire feature count from a license pool. To achieve this, combine without requested features
with the all from "license_pool_name" instruction. Replace license_pool_name with the name of the named
license pool whose entire list of features, as specified in the model definition, should be allocated. Note that
if the specified license pool does not have sufficient counts to satisfy the request, counts are allocated from
subsequent license pools listed in the rules of access (provided that the client has access to those license
pools). The following example shows the syntax:

on hostname("myhost") {
use "p1", "default"
without requested features {

all from "p1"
}
accept

}

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 195

For a use case example, see Scenario: Server-specified Counts.

Using Regular Expressions
Rules of access can include regular expressions to match patterns in conditions. This means that the number of
license pools and conditions can be greatly reduced, simplifying management of license pools.

Regular expressions can be included in conditions using the following syntax: ~/REGEX/

For a list of supported expressions, see https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/
util/regex/Pattern.html.

Full vs Partial Equality

The regular expression is generally matched against the whole value of the property on which the condition is
based (that is, hostid, hostname, hosttype, or vendor dictionary string). It is not necessary to add the ^ and $ meta
characters to signify the beginning and end of the expression.

Example

The following expression...

on hostname("~/[A-Z]{2}[0-9]{3}/") {
...

}

... matches the hostname AB123, but not ABCD1234.

However, when a regular expression is used in combination with the vendor string matches directive, the
expression is used as a “contains” match.

Example

The following expression...

… vendor string matches "~/%%ProductName:[A-Z]{3}[0-9]{3}%%/

... matches %%ProductName:AAA111%% found anywhere inside the vendor string.

For a use case example, see Use Case: Using Regular Expression to Allocate License Counts.

Server Behavior When Distributing Feature Counts to
Named License Pools

This section describes the distribution of feature counts to named license pools for these situations:

• When a New Model Definition Is Uploaded

• When the Feature Count Changes on the License Server

• When Clients Return or Renew Counts to the Server

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

196 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

When a New Model Definition Is Uploaded
When the model definition is uploaded to the license server, feature counts are placed into license pools. Counts
are allocated to named license pools in the order that is specified in the model definition, starting with the
topmost named license pool.

The following rules apply when allocating feature counts of the same name, but with different versions and expiry
dates:

1. Features that match the version specified in the model definition are allocated first. Features with longer
expiry dates are allocated before features with a shorter expiry date.

2. If no features are available that match the version specified in the model definition, features of the next
higher version are allocated. Features with longer expiry dates are allocated before features with a shorter
expiry date. (Features of a lower version are not allocated.)

Features holding a start date in the future will not be allocated to named license pools but will remain in the
default license pool. A feature with a future start date will stay in the default license pool even beyond its start
date until the model definition is reapplied to the license server.

Within named license pools, counts are arranged in feature slices based on their feature ID, meaning each slice
contains only counts from a single feature (which has a unique feature ID). Named license pools that have the
exact feature counts, including the exact feature versions, as specified in the model definition are considered
fully satisfied.

When the available number of counts has been distributed, any named license pool for which insufficient counts
are available will remain empty or will only be partially filled.

When the model definition on the license server changes, any counts that are currently in use by clients are
recorded as used against the named license pool the counts originate from. If a named license pool is deleted, it
stays active until all used counts have been returned to it. Only after that is the named license pool removed. This
enables the license administrator to maintain an overview of all used feature counts.

Optimization Logic For Model Definition Changes

When the model definition changes, any named license pools that are already fully satisfied are skipped when
feature counts are placed into named license pools. As a result, it is possible that existing features in fully
satisfied named license pools are not replaced with newly available features that have a longer expiry date.
Instead, these newly available features are placed into lower-ranked named license pools (provided that these
are not fully satisfied) or the default license pool.

To ensure that higher-ranking named license pools receive features with longer expiry dates, it is recommended
that you delete and re-upload the model definition. This forces a redistribution of feature counts across all license
pools, regardless of the current allocation of feature counts.

When the Feature Count Changes on the License Server
When feature counts are added, reduced or expire on the license server, the server reapplies the model
definition. The server redistributes the counts across license pools as described in When a New Model Definition
Is Uploaded.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 197

When Clients Return or Renew Counts to the Server
When there have been no changes to the model definition or to the licenses held by the server, licenses returned
by clients are returned to the original slice from which they were acquired.

However, in scenarios where clients were holding usage prior to a model change or a change to the licenses held
by the server, counts returned by clients may need to be redistributed to reflect the new state of the server.

The following sections describe more about feature count redistribution:

• Basic Redistribution Rules

• Order of Redistributing Counts

In these sections, slices in deficit refers to slices that have fewer counts than they should have, according to the
model definition and the number of counts the server has been provisioned with ("slice" < "computedCount").

Basic Redistribution Rules
When clients had counts in use prior to a model change or prior to a change of feature counts on the license
server, the following basic redistribution rules apply:

• A client cannot renew counts that it could not have acquired, based on the current model definition that is in
force on the license server.

• Counts can only be reallocated to slices with a matching feature ID.

Order of Redistributing Counts
The server redistributes returned counts in the following order:

1. The server allocates feature counts to reduce or eliminate overage before redistributing counts.

2. Counts are redistributed to slices in deficit that are accessible to the client, in the order in which license
pools that are accessible to the client are specified in the current model definition.

3. Counts are redistributed to slices in deficit, irrespective of whether these are accessible to the client. The
server redistributes counts to license pools in the order in which they are specified in the current model
definition.

4. Returned counts are only returned to overdraft after all slices in deficit have been adjusted to the counts they
should have according to the model definition. Overdraft counts are only ever available from the default
license pool.

5. Any remaining counts are returned to the default license pool.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

198 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Server Behavior when Assigning Features to Clients
When the license server receives a capability request from a client, it tries to serve the feature counts matching
the requested version from the first named license pool that is configured in the model definition. If the request
cannot be fulfilled from the first named license pool, or can only be partially fulfilled, the server will try to serve
any remaining counts to the client from further feature slices and license pools in a specific hierarchy. The
following rules apply, in order, when fulfilling capability requests:

1. Regular counts take priority over overdraft counts (overdraft counts are only available from the default
license pool).

2. Counts are served from accessible named license pools in the order license pools are specified in the model
definition (starting from the top).

3. Counts that match the requested version are served before counts of a higher version (lower versions are not
accepted).

4. Counts with the shorter expiry date are served before counts with a later expiry date.

The following diagrams illustrate this hierarchy. Figure 5-1 shows the order in which feature counts are assigned
from license pools.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 199

Figure 5-1: Flow of feature allocation

Figure 5-1 includes a subroutine (highlighted in green) that explains how counts are assigned if the request is
served from more than one slice. This subroutine—see Figure 5-2—also comes into play when regular (non-
overdraft) counts are exhausted, but the request has access to the default license pool which includes overdraft
counts:

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

200 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Figure 5-2: Flow of feature allocation in the subroutine

Named License Pools vs. Reservations
Named license pools are conceptually similar to reservations but offer significantly more flexibility in controlling a
server’s license estate. If currently no license reservations are defined for your license server, Revenera strongly
recommends to use the Named License Pools functionality to allocate licenses.

Read this section if one or more of the following statements apply to you:

• You want to know the pros and cons of using named license pools or reservations. See Comparison of Named
License Pools and Reservations.

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 201

• You are currently using reservations and would like to find out how named license pools affect the behavior
of reservations. See Impact of “Named License Pools” Functionality on Using Reservations.

• You have previously been using reservations and would like transition to named license pools. See
Transitioning from Reservations to Named License Pools.

• You have transitioned to named license pools but want to use reservations again. See Returning to
Reservations after Transitioning to Named License Pools.

If you have not been using reservations before and are now starting to use named license pools, you can skip this
section.

The following diagram illustrates your options:

Comparison of Named License Pools and Reservations
If reservation groups or entries change frequently, it is recommended to use reservations. Otherwise, it it is
recommended to use named license pools.

The following table lists the main differences between named license pools and reservations.

Table 5-8 • Named License Pools vs. Reservations

Action Named License Pools Reservations

Counts are allocated based on... • hostid

• host name (device name)

• host type (device type)

• vendor dictionary data

• hostid

Chapter 5 More About Basic License Server Functionality
Allocating Licenses Using Named License Pools

202 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Impact of “Named License Pools” Functionality on Using Reservations
The introduction of the Named License Pools functionality has no impact on the reservations functionality. A
license server administrator can continue configuring reservations using the FlexNet License Server
Administrator command-line tool, and the license server will distribute licenses according to the reservations that
have been configured.

When reservations are configured, attempts to upload a model definition will fail.

Transitioning from Reservations to Named License Pools
If the license server administrator decides to move from using reservations to using named license pools, they
need to perform the following steps:

1. Delete any reservation groups.

2. Create a new model definition which defines rules and named license pools (see Introduction to the Model
Definition and Uploading the Model Definition)

The new model definition takes effect immediately after upload.

Before starting the transition, the license server administrator might want to view information about the
reservations currently active on their license server. Procedural information is available under APIs to Manage
Named License Pools in Chapter 4, License Server REST APIs.

A Note on Reserved Counts in Use

If any reserved license counts are in use by clients while transitioning from reservations to named license pools,
such used counts are recorded as used against the default license pool. They remain in the default license pool
until the client renews or returns these counts, after which point the license counts are allocated to their named
license pool according to the model definition.

If the license server has been
provisioned with less counts than are
posted in a reservation or are specified
in the model definition, respectively,...

...the license server allows
access to feature counts based
on the rules in the model
definition until all available
counts are in use by entitled
clients.

...the license server rejects the
entire reservation group.

Users’ and devices’ access to feature
counts can be...

...allowed or denied. ...allowed.

Criteria that allow or block certain
client devices or users from obtaining
licenses can be configured using...

...an extensible model language. ...a file in JSON format.

Table 5-8 • Named License Pools vs. Reservations

Action Named License Pools Reservations

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 203

Returning to Reservations after Transitioning to Named License Pools
To return to using reservations, the license server administrator needs to delete the active model definition. After
that, they can configure reservations using the FlexNet administrator tools supplied with the license server
software package. For a description of the endpoints for managing reservations, see APIs to Manage
Reservations in Chapter 4, License Server REST APIs.

For information about deleting the active model definition, see Deleting the Model Definition.

Limitations of Named License Pools
Note the following about named license pools:

• Named license pools support only concurrent features, but not metered features. Metered features will
always remain in the default license pool. This matches the behavior of reservations, because metered
features cannot be reserved.

• Using feature selectors in combination with named license pools may produce unexpected results. A feature
selector is a key-value structure included as part of the feature’s definition created in the back office.To find
out more, see the FlexNet Operations User Guide.

• The license server failover configuration does not support named license pools. During a failover period,
feature counts will only be distributed from the default license pool.

License Reservations

Important • A license server administrator can use either reservations or named license pools. Reservations and
named license pools cannot coexist alongside each other. For more information, see Named License Pools vs.
Reservations.For general information about named license pools, see Allocating Licenses Using Named License
Pools.

If currently no license reservations are defined for a license server, review the information in Comparison of
Named License Pools and Reservations to decide which approach is best for you. In general, reservations are
conceptually similar to named license pools, but named license pools offer significantly more flexibility in
controlling a server’s license pool.

The license reservation feature available with the FlexNet Embedded license server (the local license server or a
CLS instance) provides a means for the license server administrator at a customer’s enterprise to control the
distribution of the server’s license pool.

With no reservations defined, the license server distributes licenses on a first-come-first-served basis to client
devices requesting them. However, with the use of reservations, the server can pre-allocate a certain number of
licenses from the pool to specific entities (for example, client devices or users) to help ensure that these entities
have access to the licenses they need. The license server administrator can choose to pre-allocate the entire pool
of licenses, a portion of the licenses, or none of the licenses. Any license not reserved remains in the shared pool
of licenses and is available on a first-come-first-served basis.

The following sections provide more information about reservations:

• Overview of Reservation Types

Chapter 5 More About Basic License Server Functionality
License Reservations

204 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• Reservation Hierarchy

• Managing Reservations

• License Allocation on the Server

• Processing the Capability Request When Reservations Are Used

• Reservation Considerations and Limitations

Overview of Reservation Types
The FlexNet Embedded license server supports two types of license reservations: device-based and user-based.
The reservations defined for a license server can be all of one type of reservation or a combination of both types.
The following sections provide more information about these reservation types and their associated hostids:

• Device-based Reservations

• User-based Reservations

• About Main and Secondary Hostids

Device-based Reservations
A device-based reservation is assigned to a unique hostid identifying the client device on which your product
(enabled with FlexNet Embedded licensing) is running. Whenever that device requests a specific feature count
(called a desired feature), the license server checks the current reservations to determine whether a reservation
for the requested feature exists for the specified hostid. The following happens:

• If a reservation is found and the reserved count is enough to satisfy the requested count, the requested
count of the feature is granted from the reserved count and sent to the device.

• If no reservation is found or the reservation count is not enough to satisfy the requested feature count, the
server attempts to obtain the remaining requested license count from the combination of reserved and
shared (non-allocated) feature counts remaining in the license pool. If the sum of the available shared and
reserved counts is insufficient to satisfy the request, the request for the desired feature is denied.

The client device can also send a request without specifying any desired features. In this case, the full count for
all reserved features allocated to the device is served. However, if the device has no reserved features allocated,
no new licenses are served.

Note about Special Capability Request Options
Capability request options—specifically the “incremental” option used to preserve the client device’s currently
served features and the “partial” attribute assigned to a desired feature to allow partial checkout should the
feature’s count fall short of the desired count—can affect the license server’s behavior in granting licenses from
reserved and shared counts. See the appendix Effects of Special Request Options on Use of Reservations for
more information.

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 205

User-based Reservations
A user-based reservation is assigned to a particular user instead of a client device. A user with reserved counts
for a feature can access these counts from any client device. Thus, user-based reservations help to ensure that
users who always need access to certain licenses can obtain them from any client device. (For example, users
might need to access their licensed application from their laptop, tablet, or phone.)

Implementing a user-based reservation typically involves specifying a secondary hostid for the user in the
capability request. When processing a request that contains a secondary hostid, the license server follows the
same basic process described for Device-based Reservations, with the added step of searching for reservations
that match the secondary hostid:

• If the capability request specifies desired features, the license server attempts to satisfy the desired count
for a given feature first from reservations for the client device. If this count is insufficient, the server then
searches reservations for the user (specified by the secondary hostid) for an additional count. If the sum of
reserved device-based and user-based counts is still not enough, the server attempts to satisfy the
remaining desired count from the pool of shared features.

• If the capability request contains no desired features, the license server serves the full count of all reserved
features allocated to the client device, as well as the counts of reserved features allocated to the user. If both
the device and the user have no reserved features allocated, no licenses are served.

As described in the previous section, certain options sent in the capability request can affect the license server’s
behavior in granting licenses from reserved counts. See Effects of Special Request Options on Use of
Reservations for more information.

Note • When a secondary hostid (typically used for user-based reservations) requests reserved feature counts,
these counts are ultimately served to and returned from the client device from which they were requested. A
secondary hostid (that is, a user) can use multiple client devices to request partial counts of its available reserved
count for a given feature. Once the secondary hostid has checked out all its available reserved counts for the
feature across one or more devices, the hostid’s next request for reserved counts for this feature will not be
satisfied unless the reserved counts served to any of these devices have been previously returned to the license
server.

About Main and Secondary Hostids
The capability request always includes a main hostid, but can also include one or more secondary hostids. The
following provides more information about these two types of hostids.

Main Hostid
The main hostid sent in the capability request is the hostid to which the license server binds the licenses sent in
the response. For security purposes, this hostid is traditionally the unique client-device hostid. The client-device
hostid is also used in defining device-based reservations.

Chapter 5 More About Basic License Server Functionality
License Reservations

206 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Secondary Hostid
One or more secondary hostids can also be sent in the capability request (and are identified as such in the
request). In general, secondary hostids are sent in the capability request as a means of capturing extra data
about the FlexNet Embedded clients that can later be seen in reports in FlexNet Operations. Another use for a
secondary hostid is to provide a second key for locating reservations—typically, user-based reservations— on the
license server.

Should multiple secondary hostids be sent in the capability request, the license server uses only the first
secondary hostid listed in the request to check for reservations.

Important • Capability requests must not use a main hostid as secondary hostid or vice-versa. Capability requests
that specify the same hostid as a main hostid in one request and as a secondary hostid in another are rejected.

Reservation Setup
When setting up a license reservation on the license server, the enterprise license server administrator must
provide a hostid to identify the entity—client device or user—to which the reservation belongs. However, no
specification exists in the actual reservation definition to distinguish this hostid as main or secondary.

If a secondary hostid is included in the capability request, the license server’s search for reservations to satisfy
the request is handled differently from when only the main hostid is present. The only way the license server
knows to treat the hostid for a given reservation as secondary during its reservation search is through the
hostid’s designation as secondary in the capability request. For more information about setting up the license
server’s reservations, see Managing Reservations. For a detailed description of how reservations are used to
satisfy requested features, see Processing the Capability Request When Reservations Are Used.

As producer, you must inform the license server administrator of the specific hostid types (for example,
ETHERNET, STRING, USER, or other) that can be used for the reservation definitions.

Reservation Hierarchy
The reservations you post to the license server are ordered in a hierarchy, enabling more granularity in managing
them. For example, reservation entries are the actual feature reservations assigned to a reservation, which is
identified by the hostid for the specific client device or user to which the feature reservations apply. One or more
reservations are assigned to a reservation group, which represents an entity to which the client devices and users
identified by the reservations belong. This entity might be a department, a job role assigned to specific
employees within the company, a physical location, or any other entity applicable to your company. This hierarchy
enables you to view, add, or delete reservations at the group level, the reservation (hostid) level, or the
reservation entry (feature) level.

When reservations are added to the license server, the following IDs are generated for the various hierarchal
components that define a reservation:

• A group ID (GID) for a reservation group

• A reservation ID (RID) for the reservation, based on the hostid identifying a specific client device or user
within the reservation group

• A reservation-entry ID (EID) for each reservation entry defined in a specific reservation

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 207

The following diagram illustrates the reservation hierarchy. For example, reading from right to left, trace the
reservation entry EID 1 for feature Feat1:

• EID 1 belongs to the reservation RID 1, defined for the hostid Host1.

• RID 1 is one of three reservations belonging to the reservation group GID 1, also named Group1.

Managing Reservations

Important • You can use either reservations or named license pools. Reservations and named license pools
cannot coexist alongside each other. For more information, see Named License Pools vs. Reservations.For
general information about named license pools, see Allocating Licenses Using Named License Pools.

The following sections provide an overview of ways to manage reservations using the /reservationgroups REST
endpoints. You can use these endpoints to write your reservation-management tool (or you can simply distribute
one of the FlexNet administrator tools supplied with your license server software package). For a complete
description of these endpoints, see APIs to Manage Reservations in Chapter 4, License Server REST APIs.

• Add a New Reservation Group

• Add Reservations to an Existing Group

• Enable or Disable Reservation Entries

• Delete Reservations

Chapter 5 More About Basic License Server Functionality
License Reservations

208 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Important • If you were previously using named license pools, you must delete the model definition before
creating reservations. See Deleting the Model Definition.

Add a New Reservation Group

Important • If you were previously using named license pools, you must delete the model definition before
creating reservations. See Deleting the Model Definition.

The following shows an example of a request (in JSON format) that you post to define a new reservation group—
in this case, a group named support, containing reservation entries for two reservations, one for hostid
7A7A77AAA77A and one for hostid Joe:

When this request is posted without any errors, the /reservationgroups REST endpoint shows the added group
support with its GID 194:

[{
 "creationDate" : "2019-02-27T16:27:33.013Z",
 "ipAddress" : "10.20.42.164",
 "name" : "Support",
 "id" : 194

}]

The /reservationgroups/194/reservations endpoint shows the two new reservations—one for hostid
7A7A77AAA77A (RID 193) and one for hostid Joe (RID 196)—to the reservation group support.

[{
 "id" : 193,
 "lastModified" : "2019-02-27T16:27:33.013Z",
 "ipAddress" : "10.20.42.164",
 "reservationEntries" : [{
 "id" : 194,
 "state" : "ENABLED",
 "featureCount" : 1,
 "featureVersion" : "1.0",
 "featureName" : "f1"
 }, {

Table 5-9 • Add a New Reservation Group

{ "name" : "support", "reservations" :
 [
 { "hostId": { "value" : "7A7A77AAA77A", "type" : "ETHERNET" },
 "reservationEntries": [
 { "featureName": "f1", "featureVersion": "1.0", "featureCount": 1 },
 { "featureName": "f2", "featureVersion": "1.0", "featureCount": 2 }]},
 { "hostId": { "value" : "Joe", "type" : "USER" },
 "reservationEntries": [
 { "featureName": "f3", "featureVersion": "1.0", "featureCount": 3 }]}
]}

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 209

 "id" : 195,
 "state" : "ENABLED",
 "featureCount" : 2,
 "featureVersion" : "1.0",
 "featureName" : "f2"
 }],
 "hostId" : {
 "type" : "ETHERNET",
 "value" : "7A7A77AAA77A"
 }
}, {
 "id" : 196,
 "lastModified" : "2019-02-27T16:27:33.013Z",
 "ipAddress" : "10.20.42.164",
 "reservationEntries" : [{
 "id" : 197,
 "state" : "ENABLED",
 "featureCount" : 3,
 "featureVersion" : "1.0",
 "featureName" : "f3"
 }],
 "hostId" : {
 "type" : "USER",
 "value" : "Joe"
 }
}]

Errors that Cause Rejection of New Reservation Groups
When a new reservation group is processed during the posting phase, the entire group is rejected if any of
following errors exist.

• A group name is repeated within the reservation posting. A group name must be unique within the entire
reservation posting.

• A hostid is used in more than one reservation group. A given hostid can be used only once, not only within a
given group, but within the entire reservation posting.

• A hostid is missing. A group reservation cannot be created without at least one reservation, defined by a
hostid and its reservation entries. Additionally, reservation entries not associated with a reservation cause
the entire reservation group to be rejected.

• A reservation has no reservation entries associated with it.

• A reservation entry is invalid. For example, the entry might be missing a feature name, version, or reserved
count, or the specified reserved count is less than or equal to zero.

• The feature or feature version specified in a reservation entry is not found in the license pool.

• The feature specified in a reservation entry is expired or has not yet started.

• The feature specified in a reservation entry is a metered feature.

• The license server has an insufficient count of a given feature to satisfy the total requested count for that
feature across all reservation entries within the entire group. For more explanation, see the later section
License Allocation on the Server.

Chapter 5 More About Basic License Server Functionality
License Reservations

210 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Add Reservations to an Existing Group
Within an existing reservation group, you can add the following:

• A new reservation with its reservation entries

• New reservation entries to an existing reservation

Add a New Reservation
Using the /reservationgroups REST endpoint you can add a new reservation with one or more reservation entries
to an existing reservation group.

The following shows an example of a request (in JSON format) that you post to define a new reservation—in this
case, for hostid dev1. The reservation contains three reservation entries, one each for features f1, f2, and f3.

The reservation is successfully added as long as no error is encountered. (A subset of errors that cause a
reservation group to be rejected cause a reservation to be rejected as well. See Errors that Cause Rejection of
New Reservation Groups for a error list.)

Especially note that, if the license server’s feature counts can satisfy the requested feature counts for all
reservation entries in the reservation, the reservation is added. However, if any one reservation entry cannot be
satisfied by the current license server counts, the entire reservation is rejected. For more information, see
License Allocation on the Server.

Add New Reservation Entries to an Existing Reservation
Using the /reservationgroups/GID/reservation/RID/entries REST endpoint, you can add new reservation entries
to an existing reservation.

The following shows an example of a request (in JSON format) that you post to add a new reservation entries to
an existing reservation:

Table 5-10 • Add a New Reservation to an Existing Group

{ "hostId": { "value" : "dev1", "type" : "USER" },
 "reservationEntries": [
 { "featureName": "f1", "featureVersion": "1.0", "featureCount": 1 },
 { "featureName": "f2", "featureVersion": "1.0", "featureCount": 2 }
 { "featureName": "f3", "featureVersion": "1.0", "featureCount": 5 }
]}

Table 5-11 • Add New Reservation Entries to an Existing Reservation

[
{ "featureName": "f1", "featureVersion": "1.0",
 "featureCount": 1 },
{ "featureName": "f2", "featureVersion": "1.0",
 "featureCount": 2 },
{ "featureName": "f3", "featureVersion": "1.0",
 "featureCount": 3 }
]

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 211

The reservation is successfully added as long as no error is encountered. (A subset of errors that cause a
reservation group to be rejected cause reservation entries to be rejected as well. See Errors that Cause Rejection
of New Reservation Groups for a error list.)

Especially note that, if the license server’s feature counts can satisfy the requested feature counts for all the
reservation entries being added to the reservation, the entries are added. However, if any of the requested
feature counts cannot be satisfied by the current license server counts, the entire array of new reservation entries
is rejected. For more information, see License Allocation on the Server.

Enable or Disable Reservation Entries
A new reservation entry is never added with a “disabled” status. However, when license rights on a the license
server change, reservation entries can become disabled due to an insufficient feature count on the license
server.

To view disabled reservation entries, use the /reservationgroups/GID/reservations REST endpoint. You have the
option to delete disabled reservation entries or re-enable them should more licenses become available on the
license server through a new capability response from the back office or through the deletion of other reservation
entries. You can also disable reservation entries if you choose.

Use the /reservationgroups/GID/reservations/RID/entries/EID/state REST endpoint to enable or disable
reservation entries.

Delete Reservations
Using the /reservationgroups REST endpoints, you can delete an entire reservation group, individual reservations
within a given group, or individual reservation entries within a given reservation. See APIs to Manage
Reservations in Chapter 4, License Server REST APIs, for details.

License Allocation on the Server
License allocation when using reservations is handled as follows for these situations:

• When Adding a New Reservation Group

• When Adding Reservations to an Existing Reservation Group

• When Feature Counts Change on the Server

When Adding a New Reservation Group
In the attempt to add a new reservation group, the license server determines the total feature counts required by
all the reservation entries within the new group. If the totals cannot be satisfied by counts not reserved to other
reservation groups on the license server, the entire new group is rejected.

Chapter 5 More About Basic License Server Functionality
License Reservations

212 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Example Allocations When Adding a New Reservation Group
The examples described in this section use the following reservations to pre-allocate the licenses in the server’s
license pool. All these reservations are being created in the single new reservation group payroll.

Example 1: Sufficient Feature Counts
In this example, a license server is allocated 1 count of f1 and 8 counts of feature f3 from the back office. When
processing the new reservation group, the license server does the following:

• Determines that a total of 1 count of f1 is required (for device 111A11AAA11A).

• Determines that a total of 6 counts of f3 is required—2 counts for device 111A11AAA11A, 1 count for device
222A22AAA22A, and 3 counts for user Joe.

• Reserves 6 counts of f3 and 1 count of f1.

• Keeps 2 unreserved counts of f3 available for any request on a first-come-first-served basis.

Example 2: Insufficient Feature Counts
If a license server is allocated 1 count of f1 and 4 counts of f3, it does the following when the reservations are
posted:

• Determines that a total of 1 count of f1 is required (for device 111A11AAA11A).

• Determines that a total of 6 counts of f3 are required—2 counts for device 111A11AAA11A, 1 count for
device 222A22AAA22A, and 3 counts for user Joe.

• Rejects the entire reservation group since only 4 counts of f3 are available.

Example 3: Features Not in the License Pool
If a license server is allocated no (0) counts of f1 but is allocated 8 counts of f3, it rejects the entire reservation
group since f1 is not available in the license pool.

Table 5-12 • Reservations Used in Example Allocations

{ "name" : "payroll", "reservations" :
 [
 { "hostId": { "value" : "111A11AAA11A", "type" : "ETHERNET" },
 "reservationEntries": [
 { "featureName": "f1", "featureVersion": "1.0", "featureCount": 1 },
 { "featureName": "f3", "featureVersion": "1.0", "featureCount": 2 }]},
 { "hostId": { "value" : "222A22AAA22A", "type" : "ETHERNET" },
 "reservationEntries": [
 { "featureName": "f3", "featureVersion": "1.0", "featureCount": 1 }]},
 { "hostId": { "value" : "Joe", "type" : "USER" },
 "reservationEntries": [
 { "featureName": "f3", "featureVersion": "1.0", "featureCount": 3 }]}
]}

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 213

When Adding Reservations to an Existing Reservation Group
If you are adding a reservation to an existing reservation group or are adding reservation entries to an existing
reservation, the basic allocation rules used to add a reservation group apply:

• If you are adding a reservation to an existing reservation group, the license server must be able to satisfy the
total feature counts requested for all reservation entries in the reservation. If total feature counts cannot be
satisfied, the entire reservation is rejected.

• If you are adding a single reservation entry to an existing reservation, the license server must be able to
satisfy the feature count requested for the new entry. If the feature count cannot be satisfied, the new
reservation entry is rejected.

• If you are adding an array of reservation entries to an existing reservation, the license server must be able to
satisfy the total feature counts requested for all the reservation entries in the array. If any of these total
counts cannot be satisfied, the entire array of reservation entries is rejected. (Existing reservation entries
remain unaffected.)

When Feature Counts Change on the Server
When feature counts are reduced or expire on the license server, the server automatically disables certain
reservation entries to adjust to the new feature count. The server uses no particular order as it processes the
reservation groups, reservations, or reservation entries to determine which reservation entries to disable.

Processing the Capability Request When Reservations
Are Used

The following sections describe how the license server processes capability requests to grant licenses when
reservations are available:

• Basic Process for Granting Licenses

• Example Scenarios: Basic Process for Granting Licenses

Basic Process for Granting Licenses
When reservations have been added and the license server receives a capability request from a client device, the
server uses the following basic process in its attempt to grant the license count requested.

Note • This process described here assumes that the capability request is not defined as “incremental” and that
no desired feature is enabled for partial checkout in the request. For a description of the effect that these options
have on granting licenses, see the appendix Effects of Special Request Options on Use of Reservations.)

1. Validates that the capability request contains the appropriate content for processing.

2. Returns all licenses currently served to the client device. (Reserved licenses remain reserved. Shared
licenses are returned to the pool.)

3. Searches for reservations assigned to the client device and to the user sending the request.

Chapter 5 More About Basic License Server Functionality
License Reservations

214 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

4. Determines whether desired features are specified in the request:

If no desired features are requested, the server grants the client device whatever licenses have been
reserved for it through device-based reservations and, if a secondary hostid is included in the capability
request, through user-based reservations. If no reservations exist, no licenses are granted.

If a desired feature is specified, the server determines whether the specified feature is available through a
reservation. If not, it determines whether any shared counts are available. In summary, the server does the
following:

a. Checks for the device-based reserved count first.

b. If device-based reserved count is not sufficient, checks the user-based reserved count (if the secondary
hostid is sent in the capability request) for an additional count.

c. If the sum of device-based and user-based reserved counts is not sufficient, checks the available shared
counts to satisfy the remaining requested count.

d. If enough reserved and shared counts are available, grants the licenses.

Example Scenarios: Basic Process for Granting Licenses
The following scenarios illustrate instances of the basic process (described in the previous section) that the
license server uses to grant licenses when reservations are involved. The sections describing the scenarios in
include the following:

• Feature Allocation on the License Server

• Starting State for Each Scenario

• Scenario 1—No Device or User Reservations Available

• Scenario 2—Device Reservations But No User Reservations Available

• Scenario 3—User Reservations But No Device Reservations Available

• Scenario 4—Device and User Reservations Available

For the sake of simplicity, the feature version is omitted in these scenarios. Anytime feature F1 is mentioned,
assume that its version is 1.0.

Feature Allocation on the License Server
The license server has 10 counts of feature F1:

• 3 reserved counts for device D1

• 2 reserved counts for user U1

• 5 shared counts available

Starting State for Each Scenario
The starting state for each scenario is a follows:

• Device D1 has been served 4 counts (all 3 reserved counts, 1 shared count).

• Device D2 has been served 3 counts (3 shared counts).

Chapter 5 More About Basic License Server Functionality
License Reservations

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 215

• User U1 currently has no served counts.

• 1 shared count remains available.

Scenario 1—No Device or User Reservations Available
When user U7 (who has no reservations) sends a capability request from device D2 (which also has no
reservations), the 3 counts of F1 currently served to D2 are returned to the shared counts. (Four shared counts are
now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, no counts are served since neither D2 nor U7 has reserved counts.

• If the request specifies 4 counts of F1, the remaining 4 available shared counts are served.

• If the request specifies 5 counts of F1, no counts of F1 are sent in the response since only 4 shared counts
are available.

Scenario 2—Device Reservations But No User Reservations Available
When user U7 (who has no reservations) sends a capability request from device D1, the 4 counts of F1 currently
served to D1 (3 reserved counts for D1 and 1 shared count) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, the 3 counts of F1 reserved for D1 are served.

• If the request specifies 4 counts of F1, the 3 counts reserved for D1 plus 1 shared count are served.

• If the request specifies 6 counts of F1, the 3 counts reserved for D1 and the remaining 2 shared counts are
insufficient to satisfy the request, so no counts of F1 are sent in the response.

Scenario 3—User Reservations But No Device Reservations Available
If user U1 sends a capability request from device D2 (which has no reservations), the 3 counts of F1 currently
served to D2 are returned to shared counts. (Four shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, the 2 counts of F1 reserved for U1 are served.

• If the request specifies 4 counts of F1, the 2 counts reserved for U1 plus 2 shared counts are served.

• If the request specifies 7 counts of F1, the two counts reserved for U1 and the remaining 4 shared counts are
not sufficient to satisfy the request, so no counts of F1 are sent in the response.

Scenario 4—Device and User Reservations Available
If user U1 sends a capability request from device D1, the 4 counts of F1 currently served to D1 (3 reserved and 1
shared) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, all reserved features—3 counts of F1 for D1 and 2 counts for U1—are
served.

Chapter 5 More About Basic License Server Functionality
License Reservations

216 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• If the requests specifies 4 counts of F1, the 3 counts reserved for D1 and 1 of the 2 counts reserved for U1 are
served.

• If the request specifies 8 counts of F1, the 3 counts reserved for D1, the 2 counts reserved for U1, and the 2
remaining shared counts are not sufficient to satisfy the request, so no counts are sent in the response.

Reservation Considerations and Limitations
Note the following about reservations:

• A license server administrator can use either reservations or named license pools on a license server.
Reservations and named license pools cannot coexist alongside each other. For more information, see
Named License Pools vs. Reservations.For general information about named license pools, see Allocating
Licenses Using Named License Pools.

• Reservations support only concurrent features; metered features cannot be reserved.

• Capability requests that specify the same hostid as a main hostid in one request and as a secondary hostid in
another are rejected.

• If you need to reset trusted storage on a license server, note that all server data, including reservations, are
deleted. Therefore, make sure that the license server administrator backs up all reservation information to a
file before the trusted-storage reset is performed. The reservations can then be restored once the reset has
taken place. The administrator can use the FlexNet License Server Administrator command-line tool to
perform both the backup and the restoration. See the FlexNet Embedded License Server Administration
Guide for details.

• The license server failover configuration does not support reservations.

6

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 217

Advanced License Server
Features

This chapter provides background information about special features that you can enable for your FlexNet
Embedded local license server and that might require additional setup to be performed by you or the license
server administrator at the enterprise customer site.

Some of these features are also supported by the CLS instance, and are noted as such in this chapter.

• Producer-defined Hostids

• Secure Anchoring

• Clone Detection Reporting

• Binding-Break Detection with Grace Period

• Trusted Storage Backup and Restoration

• Outgoing HTTPS

• Incoming HTTPS

• Proxy Support for Communication with the Back Office

• Extended Hostids

• Trusted-Storage Reset

• License Checkout: Support for Special Capability-Request Options

• Usage Capture and Management

• Administrative Security

Producer-defined Hostids
When the FlexNet Embedded local license server communicates with the back office, FlexNet Operations, to
obtain its pool of licenses, the back office uses the server’s hostid to identify that particular server. This kind of
standard server hostid is typically the server system’s Ethernet address or can be an attached dongle ID or VM
UUID.

Chapter 6 Advanced License Server Features
Producer-defined Hostids

218 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

In addition to these standard hostid types, you can optionally specify a producer-defined hostid value to identify
the server to the back office.

The following sections describe producer-defined hostids:

• Configuring Support for the Producer-defined Hostid

• Providing the Shared Library for Hostid Retrieval

• Using the Producer-defined Hostid

Configuring Support for the Producer-defined Hostid
To use a producer-defined hostid, you must enable support for this feature on the back office and the license
server.

Enable Support on the Back Office
Check your FlexNet Operations documentation for information about enabling support for producer-defined
hostids.

Enable Support on the License Server
To enable support for producer-defined hostids on the license server, you must set the
server.publisherDefinedHostId.policy to strict in the policy settings file (producer-settings.xml) file:

server.publisherDefinedHostId.policy=strict

By default, this parameter is set to disabled.

You use the FlexNet Embedded local license server configuration utility to edit this setting. For more information,
see License Server Configuration Utility in Chapter 7, Producer Tools.

Providing the Shared Library for Hostid Retrieval
Use the following process to create the shared library that retrieves the producer-defined hostid:

• Step 1: Implement Hostid Retrieval Code

• Step 2: Build the Shared Library

• Step 3: Distribute the Shared Library

If you are also configuring the license server to use the binding-break detection feature, the same shared library
you create to retrieve binding elements for the detection feature is also used to retrieve your producer-defined
hostid. See Using the Same Library to Retrieve Binding Elements for more information.

Chapter 6 Advanced License Server Features
Producer-defined Hostids

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 219

Step 1: Implement Hostid Retrieval Code
The license server software package provides the following example C interface header file and code
implementation for retrieving the producer-defined hostid. These files are located in directories under the
example directory in the software package.

• ExamplePublisherDefinedHostId.c (found in the publisher_defined_hostid directory)

• PublisherDefinedExtensionExports.h (found in the include directory)

You can use these examples as the basis for your implementation; or you can create your own implementation in
C, C++, or asm. As long as you keep the interface to the shared library (as provided in the examples) intact, the
license server will be able to load the shared library.

The following shows the interface required in your implementation. Refer to the example code for a complete
sample implementation.

FlxServerExtensionRef FlxServerExtensionCreate(void);

const char * FlxServerExtensionGetHostId(FlxServerExtensionRef extension);

void FlxServerExtensionDelete(FlxServerExtensionRef extension);

int FlxServerExtensionGetLastError(FlxServerExtensionRef extension)

Note • The FlexNet Embedded local license server does not support the Windows COM interface for the shared
library.

Hostid Specifications
Instead of returning a hard-coded value, your code typically reads a system characteristic—for example, a
hardware serial number—and returns that value. When using a producer-defined hostid, try to use a value that
cannot easily be spoofed.

The return value for FNE_SERVER_PUBLISHER_HOSTID_STRING must follow the standard hostid-value rules, such as
not containing any white space. The value also cannot contain commas. The following special characters are
acceptable in the hostid: underscore (_), period (.), hyphen (-), ampersand (&), dollar sign ($), “at” sign (@), hash
(#), colon (:).

If the return value is null or an empty string, an error is generated. In this situation, the license server cannot
serve licenses because no valid active hostid exists. Make sure the return value is a valid hostid.

Step 2: Build the Shared Library
Use gcc/clang on Linux or Visual Studio on Windows to build the shared library. The compiler version you use is
your choice.

Chapter 6 Advanced License Server Features
Producer-defined Hostids

220 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

It is critical that the shared library uses the name listed here for the specific platform:

Step 3: Distribute the Shared Library
Once you have built the shared library for retrieval of the producer-defined hostid, create a subdirectory with your
producer name in the same directory where the flexnetls.jar will reside in the enterprise customer’s license
server installation. Then copy the shared library there. For example, if the flexnetls.jar file will reside in the root
installation directory c:\FNELicenseServer and your producer name is “companyA”, create the directory
c:\FNELicenseServer\companyA. Place the shared library there.

Using the Same Library to Retrieve Binding Elements
If you are also using the binding-break detection feature (as described in Binding-Break Detection with Grace
Period), the same shared library you create to retrieve binding elements for the detection feature is also used to
retrieve your producer-defined hostid. To create a shared library that supports the combined functionality,
incorporate this interface in your code:

FlxServerExtensionCreate

FlxServerExtensionGetHostid

FlxServerExtensionGetBindingIdentity

FlxServerExtensionGetLastError

Use the sample C code implementations found in the example directory in the license server software package as
a guide for creating code that retrieves both a producer-defined hostid and the binding elements.

Using the Producer-defined Hostid
Keep these points in mind when using producer-defined hostids:

• Using a producer-defined hostid results in other hostid types (Ethernet, dongle, or VM UUID) being
unavailable for the license server.

• When using the manual testing tools provided in (bin\tools in your license server software package) to
generate capability responses that contain producer-defined hostids, use the syntax
PUBLISHER_DEFINED=value in the text license file used as input to capresponseutil, along with the hostid-type
switch -idtype publisher_defined.

Table 6-1 • Required Name for the Shared Library per Operating System

OS Platform Name

Windows (JVM 64-bit) ServerExtension64.dll

Windows (JVM 32-bit) ServerExtension.dll

Linux (JVM 64-bit) libServerExtension64.so

Linux (JVM 32-bit) libServerExtension.so

Chapter 6 Advanced License Server Features
Secure Anchoring

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 221

Secure Anchoring
The FlexNet Embedded local license server offers advanced functionality called secure anchoring that provides a
greater level of anchor security than the standard FlexNet Embedded anchoring techniques normally used for
trusted storage on machines that run the license server. While default anchoring stores the anchoring
information in the anchor file, secure anchoring uses additional techniques to store anchor information on the
target system.

The following sections describe secure anchoring:

• Prerequisites

• Enabling a Secure Profile

Prerequisites
The operating systems supported by the FlexNet Embedded local license server generally provide all of the
resources required to enable secure anchoring. However, if you choose to enable secure anchoring, you should
be aware that its methods might result in issues, such as insufficient-rights issues, on some end-user systems. If
a required resource is not available, the license server seamlessly defaults to a reduced set of anchoring
techniques for that system.

Additionally, you need the binary file containing your producer-identity data for the license server (for example,
ClientServerIdentity.bin). This identity data is generated—along with your identity data files for the back office
and the FlexNet Embedded client—by the back office itself or by the example pubidutil utility provided in your
license server software package (see Publisher Identity Utility in the Chapter 7, Producer Tools.)

Enabling a Secure Profile
After you have obtained the file containing the server-identity binary data, you must run the Secure Profile Utility
secureprofileutil. This utility uses a specified security profile to embed secure-anchoring configuration
information into the identity data. (Security profiles, which are pre-defined by FlexNet Embedded, configure
specific levels of anchor security. Currently, FlexNet Embedded offers only one security profile, called server-
medium.) A typical command is:

secureprofileutil -profile server-medium IdentityClientServer.bin IdentityClientServerSecure.bin

Note that anchors created with secure-anchoring functionality are independent of anchors using standard
anchoring functionality. This means, for example, that an existing product that uses standard anchors will not be
affected by a newer product version that uses secure-anchoring functionality.

Clone Detection Reporting
FlexNet Embedded provides a mechanism that detects when your licensed product or an enterprise local license
server (that is, the FlexNet Embedded local license server) might be running on a cloned machine—virtual or
physical—and provides this information to FlexNet Operations, where you can generate a report about the clone
suspects.

Note that this clone detection feature simply reports on potential clones; it does not take any action on clone
activity.

Chapter 6 Advanced License Server Features
Clone Detection Reporting

222 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

For the most part, you can ignore FlexNet Embedded clients or license servers that this feature infrequently flags
as clone suspects. For example, if a FlexNet Embedded client accidentally gets disconnected during license
checkout from the license server, the client might be marked as a clone suspect the next time it connects with
the back office or license server, even though no cloned environment exists. However, if a client or license server
is persistently identified as a clone suspect, you might want to investigate further with the customer and take
action if necessary.

The following sections describe this clone detection feature:

• About the Clone Detection Process

• Requirements

• Generate the Clone Detection Report in FlexNet Operations

• Report Alternatives

• Considerations and Limitations

About the Clone Detection Process
The clone detection mechanism is found in the following components:

• The license server (FlexNet Embedded local license server or CLS license server) to detect served FlexNet
Embedded clients running on cloned devices

• The back office (FlexNet Operations) to detect FlexNet Embedded clients and FlexNet Embedded local
license servers running on possible cloned devices

If a possible cloned device is detected, the FlexNet Embedded client or the FlexNet Embedded local license
server running on that device is flagged as a “clone suspect”. Information about this clone suspect is ultimately
stored in the back office, as described next.

License-Server Detection of Possible Cloned Client
If the license server detects that a possible client device to which it has served licenses is a clone, it records a
“clone suspect” flag in the client record on the server. This flag is then included in the synchronization message
to the back office, where this “clone suspect” information is recorded for reporting purposes.

Back-Office Detection of Possible Cloned Client or Local License Server
If the back office detects a possible cloned device running a FlexNet Embedded local license server or a FlexNet
Embedded client that obtains its licenses directly from the back office, it stores this “clone suspect” information
for reporting purposes.

Requirements
Make sure that the following requirements are met to enable clone detection reporting:

• Capability Exchange Required for Clone Detection

• Synchronization Enabled from the License Server to the Back Office

• Back Office Enabled to Record Clone Detection Information

Chapter 6 Advanced License Server Features
Clone Detection Reporting

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 223

Capability Exchange Required for Clone Detection
Clone detection occurs only when a capability exchange takes place. (These exchanges require communications
between the FlexNet Embedded client or the license server and the back office—that is, FlexNet Operations.) By
design, the FlexNet Embedded local license server always obtains its licenses from online or offline capability
exchanges with the back office. However, you must ensure that a FlexNet Embedded client obtains its licenses
through online or offline capability exchanges with the back office or with a license server, not through another
means such as a license file. (For information about the API used on the client to retrieve its clone detection
status from a capability response, refer to the Using the FlexNet Embedded APIs chapter in your FlexNet
Embedded client SDK user guide.)

Synchronization Enabled from the License Server to the Back Office
To ensure that the back office receives information about possible client device clones at your enterprise
customer sites, configure the license server to perform online or offline synchronization to the back office. (Note
that online synchronization ensures that any captured “clone suspect” information is sent on a timely basis to the
back office.) For information about performing synchronization, see Online Synchronization to the Back Office in
Chapter 5, More About Basic License Server Functionality.

Back Office Enabled to Record Clone Detection Information
As a prerequisite for generating the back office reports describing possible clones, enable the recording of “clone
suspect” information in the back office. To do so, in the FlexNet Operations Producer Portal, navigate to the
Embedded Devices tab of the System Configuration page, and select the Clone Detection option. If necessary,
refer to the Producer Portal help system available with FlexNet Operations for additional details.

If this option is not enabled, “clone suspect” information is not recorded in the back office and therefore not
available for reports.

Generate the Clone Detection Report in FlexNet
Operations

FlexNet Operations Web Services provides the API generateCloneDetectionReport to extract the information
stored in the back office about the detected clone suspects and generate a report listing this information. (Each
clone entry provides the device ID, client type—client, served client, or license server—and other details.) For
details about accessing this API and integrating it in your business code to obtain the report as needed, refer to
the FlexNet Operations Web Services Guide and the FlexNet Operations Web Services Integration Guide.

Report Alternatives
Aside from the generation of reports in the back office, the clone detection feature provides other ways to help
you view the detected clone suspects:

• Obtain Clone Status in Capability Response

• View History Event Through Producer Portal

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

224 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Obtain Clone Status in Capability Response
The capability response sent to a FlexNet Embedded client (whether from a license server or the back office)
includes the client’s current clone detection status. FlexNet Embedded provides functionality that you can
incorporate in the client code to retrieve this status from the response. See the Using the FlexNet Embedded APIs
chapter in your FlexNet Embedded client SDK user guide for more information.

View History Event Through Producer Portal
When the clone detection mechanism determines a clone suspect, the information is stored in the back office as
a history event for the specific FlexNet Embedded client (called “device”), served client, or license server. If the
client or license server is a clone suspect, its history, as accessed through the Producer Portal, lists the following
event:

The capability request might have been out of order

For security purposes, this event description does not explicitly state that the given client or license server is a
clone suspect, as histories for license servers and non-served clients can be viewed through the End User Portal
as well.

Considerations and Limitations
Note the following about clone detection reporting:

• This feature is compatible with capability requests defined with the request and undo operation types only. It
is not compatible with the report operation type.

• Should a potential clone be detected, this feature does not take any action to deny capability exchanges with
the “suspect” FlexNet Embedded client or license server, nor does it send you any alerts. The only way to
view clone information is through back-office reports (see Generate the Clone Detection Report in FlexNet
Operations) or through your retrieval of this information from individual client installations (see Report
Alternatives). It is your responsibility to decide how to act on the gathered clone detection information.

Binding-Break Detection with Grace Period
During normal licensing operations at an enterprise customer site, FlexNet Operations provides the FlexNet
Embedded local license server with features that are bound to a unique device hostid identifying the machine on
which the server is running. (This hostid is typically the server system’s Ethernet address or can be a VM UUID or
the ID of an attached dongle ID.) In turn, the license server distributes these “bound” features to FlexNet
Embedded clients requesting them. Should the device hostid of the license server change, the binding becomes
broken, and the server is considered to be in a state of a “hard binding break” and unable to serve licenses.

Tip • For step-by-step instructions that walk you through setting up binding on a local license server, see the
appendix Workflow Example for Producer-Defined Binding. The appendix also simulates a binding break and
explains how to repair the break.

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 225

Problem with Maintenance Events
Maintenance situations can arise when the license server administrator needs to change the environment in
which the license server is running. For example, the administrator might need to replace or upgrade the
hardware on which the server runs or, in a virtual environment, restore a machine image if the primary image is
corrupted or move the virtual machine across hardware to optimize performance. Because a change in
environment can cause the hostid binding to break, the license server administrator most likely attempts to
maintain the same hostid in the new environment to avoid any workflow disruptions. However, when the same
hostid is maintained but no environment change is detected, you are at risk for license-leakage.

Solution
FlexNet Embedded provides an additional binding-break detection feature which locks license rights of a local
license server to the machine on which the server is running. This feature helps to ensure compliance by
preventing license rights being transferred to another system.

Specifically, the binding-break detection does the following:

• Perceives an environment change in the license server even when the binding hostid remains the same. It
does this through the use of system attributes that you select as binding elements.

• Enables you to configure a grace period before any action is taken against licensing in the changed
environment. This approach gives the license server administrator time to plan for a repair, as well as
provides you with a level of protection against any license leakage.

• Reports the binding-break status in the server’s log, in capability responses sent to FlexNet Embedded
clients, in capability requests sent to the back office, and through the license server’s binding REST API.

Tip • The binding-break detection feature is particularly useful for license servers running in an air-gapped
environment. For license servers that run with back-office support (FlexNet Operations), Revenera recommends
to use the clone detection feature. For more information, see Clone Detection Reporting.

Separate from Normal Binding-Break Checks
This producer-defined binding-break detection feature is separate from FlexNet Embedded’s normal check for
breakage in the server’s device hostid binding. Whether the producer-defined binding-break detection feature is
enabled or disabled, the normal checks for breaks in the device hostid binding on the server continue.

For More Information
For more information about configuring and using the binding-detection feature, see the following:

• Enabling the Binding-Break Detection Feature

• Providing the Shared Library to Retrieve the Binding Elements

• How the Binding-Break Detection Works

• Repairing the Broken Binding

• Considerations and Limitations

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

226 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Enabling the Binding-Break Detection Feature
To enable producer-defined binding-break detection, you need to add a policy setting called
binding.break.policy to the producer-settings.xml file for the license server. This policy uses one of the
following values to define the action taken when the binding-break detection feature perceives a break:

• hard—An immediate hard binding break is imposed—that is, the license server can no longer serve licenses.

• soft—A soft binding break is in effect, allowing the license server to continue to serve licenses despite the
break.

• interval—A soft binding break with a grace period is in effect, allowing the license server to continue to serve
licenses until the grace period expires. When the expiration occurs, a hard binding break goes into
immediate effect, and licenses can no longer be served.

By default, this policy is not automatically included in producer-settings.xml; hence, the binding-break detection
feature is disabled unless you add the policy.

Example Policy
The following shows an example binding.break.policy entry to add to producer-settings.xml. This policy setting
specifies that an initial soft binding break with a grace period of 86400 seconds (1 day) is put into effect once a
binding break is detected. (For the grace period, you can also specify an equivalent value in minutes, hours, or
weeks, as in 1d or 1440h for 1 day.) When the grace period expires, a hard binding break goes in effect.

binding.break.policy=86400

For details about providing a value for this policy, see Reference: Policy Settings for the License Server appendix.
For instructions on adding the policy to producer-settings.xml, see License Server Configuration Utility in
Chapter 7, Producer Tools.

Once you add the binding.break.policy setting, it is not visible in the actual producer-settings.xml file for
security purposes.

Providing the Shared Library to Retrieve the Binding
Elements

Use the following process to create the shared library that retrieves the system attributes to be used as binding
elements:

• Step 1: Determine the Binding Elements

• Step 2: Implement Code to Retrieve the Binding Elements

• Step 3: Build the Shared Library

• Step 4: Distribute the Library with the License Server

The license server calls this shared library to retrieve the binding information whenever the server starts up or
attempts to reset the binding per instructions from the back office (see Repairing the Broken Binding).

If you are also configuring the license server to use a producer-defined hostid, the same shared library you create
to retrieve your producer-defined hostid is also used to retrieve your binding elements. See Using the Same
Library to Retrieve a Producer-defined Hostid for more information.

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 227

Step 1: Determine the Binding Elements
The choice of system attributes that you select as binding elements in the binding-break detection feature should
be attributes that are likely to change if the license server’s environment changes, but that are not easily retained
between environments.

The recommendation is to use a a combination of system attributes (the Ethernet address, VM type, the SMBIOS
UUID, and such). If any one of these attributes change, the binding data sent to the license server reflects this
change, and a binding break is detected.

Step 2: Implement Code to Retrieve the Binding Elements
You need to implement code that retrieves the system attributes that you want to use as binding elements. You
then build the code as a shared library that you distribute with the license server.

The license server software package provides the following example C interface header file and code
implementation for retrieving the system attributes and returning them as binding data to the server. These files
are located in directories under the example directory in the software package:

• ExamplePublisherDefinedBinding.c (found in the publisher_defined_binding_identity directory)

• PublisherDefinedExtensionExports.h (found in the include directory)

You can use these examples as the basis for your implementation; or you can create your own implementation in
C, C++, or asm. As long as you keep the interface to the shared library intact (as provided in the examples), the
license server will be able to load the shared library.

The following shows the basic interface required in your implementation. Refer to the example code for a
complete sample implementation.

FlxServerExtensionRef FlxServerExtensionCreate(void);

unsigned int FlxServerExtensionGetBindingIdentity(
 FlxServerExtensionRef extension,
 FxServerBindingContextRef context,
 FlxProvideBindingInfoFn provideBindingInfo);

void FlxServerExtensionDelete(FlxServerExtensionRef extension);

int FlxServerExtensionGetLastError(FlxServerExtensionRef extension)

Note • The FlexNet Embedded local license server does not support the Windows COM interface for the shared
library.

Binding Data Specifications and Considerations
Note the following:

• The binding data returned to the license server must be in byte array format and not exceed 512 bytes.

• If the initial return value for the shared library is null or an empty string, no binding break is triggered.
However, if in subsequent server startups, the library starts to return binding data, the license server is
considered to be in a state of binding breakage.

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

228 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• If the shared library is unable to retrieve binding information, a hard binding break goes into effect.

Step 3: Build the Shared Library
Use gcc/clang on Linux or Visual Studio on Windows to build the shared library. The compiler version you use is
your choice.

It is critical that the shared library uses the name listed here for the specific platform:

Step 4: Distribute the Library with the License Server
Once you have built the shared library for retrieval of the binding elements, create a subdirectory with your
producer name in the same directory where the flexnetls.jar will reside in the enterprise customer’s license
server installation. Then copy the shared library there. For example, if the flexnetls.jar file will reside in the root
installation directory c:\FNELicenseServer and your producer name is “companyA”, create the directory
c:\FNELicenseServer\companyA. Place the shared library there.

Using the Same Library to Retrieve a Producer-defined Hostid
If you are also using a producer-defined hostid (as described in Some of these features are also supported by the
CLS instance, and are noted as such in this chapter.), the same shared library you create to retrieve the producer-
defined hostid is also used to retrieve the binding elements for producer-defined binding-break detection. To
create a shared library that supports the combined functionality, incorporate this basic interface in your code:

FlxServerExtensionCreate

FlxServerExtensionGetHostid

FlxServerExtensionGetBindingIdentity

FlxServerExtensionGetLastError

Use the sample C code implementations found in the example directory in the license server software package as
a guide for creating code that retrieves both the binding elements and a producer-defined hostid.

Table 6-2 • Required Name for the Shared Library per Operating System

OS Platform Name

Windows (JVM 64-bit) ServerExtension64.dll

Windows (JVM 32-bit) ServerExtension.dll

Linux (JVM 64-bit) libServerExtension64.so

Linux (JVM 32-bit) libServerExtension.so

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 229

How the Binding-Break Detection Works
The following provides an overview of how the producer-defined binding-break detection approach works after
you have configured the license server with the appropriate binding-break policy and provided the shared library:

• At Server Startup

• During Normal Server Operations

• During the Grace Period for the Binding Break

• When the Grace Period for the Binding Break Expires

• When the Binding Is Restored

• Reporting a Binding Break to the Back Office

At Server Startup
The first time that the license server starts up, it calls the shared library to retrieve the binding data from server
environment and persists this data in trusted storage.

Each time thereafter when the server starts up, the binding data is retrieved and compared with the data
persisting in trusted storage. If no change exists in the binding data, the license server continues to run normally.
However, if a change in binding data is detected, the binding break policy you set goes into effect (see Enabling
the Binding-Break Detection Feature).

You, the enterprise license server administrator, and the FlexNet Embedded clients can use various methods to
view the license server’s current binding status.

About the “binding” REST API
As producer, you can access the FlexNet Embedded local license server /binding REST API to view the binding
policy and current binding status for a given enterprise license server at any time. You might want to incorporate
this API in your custom license server administrator tool so that the enterprise license server administrator can
view this information as well.

The -binding command option in the FlexNet License Server Administrator command-line tool also accesses this
API. For details, see the “Using the FlexNet License Server Administrator Command-line Tool” chapter in the
FlexNet Embedded License Server Administration Guide.

The following sections shows the information retrieved by the /binding API, depending on the license server’s
binding status. For more information about this REST API, see Chapter 4, License Server REST APIs.

During Normal Server Operations
When no binding break is detected at server startup, the /binding REST API returns an “ok” status with results
similar to this example, depending on the setting for the binding-break policy:

{
 "bindingPolicy" : "86400 seconds",
 "bindingStatus" : "ok"
}

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

230 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

See About the “binding” REST API for information about how the /binding REST API is used in the binding-break
detection feature.

No other binding status information is reported to the back office or FlexNet Embedded clients.

During a Soft or Hard Binding Break
If a binding break is detected at server startup and the license server is configured with a “hard” or “soft” binding
break policy, the license server administrator and FlexNet Embedded clients are alerted of the break status in the
following ways.

View License Server Log
The license server administrator can view the current binding status in the log displayed when the license server
starts.

The following example log shows the status when a soft binding break occurs. (The license server continues to
serve licenses and operate normally).

server>flexnetls.bat
 15:44:45,848 INFO Starting FlexNet License Server 2018.12 (build 244007)
 15:44:45,850 INFO Copyright (C) 2013-2018 Flexera.
 15:44:45,851 INFO All Rights Reserved.
 15:44:45,852 INFO Running as a console session
 15:44:61,852 WARN Soft binding break detected at startup.

If a hard binding break occurs, the log shows the following status instead, as the license server is no longer able
to serve licenses:

ERROR: Features will not be available due to a hard binding break.

Access “binding” REST API
The /binding REST API shows the server’s binding status as “soft break” or “hard break”, depending on the
binding-break policy:

{
 "bindingPolicy" : "soft",
 "bindingStatus" : "soft break"
}

See About the “binding” REST API for information about how you can use the /binding REST API to alert enterprise
license server administrators about the current binding status.

View Capability Response on the Client
The capability response sent to a FlexNet Embedded client includes the appropriate status code. If a soft binding
break occurs, the response includes the licenses requested by the client (since the server can continue to serve
licenses) and provides the following status code specifying the "soft" value:

FLX_MS_CODE_SERVER_BINDING_BREAK_DETECTED, "soft"

If a hard binding break occurs, the response includes no requested features (since the server can no longer serve
licenses) and shows the provides the following status code specifying the "hard" value:

FLX_MS_CODE_SERVER_BINDING_BREAK_DETECTED, "hard"

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 231

Your client code can retrieve this status information from the response to send the client an alert. Upon receiving
the alert, the client can contact the license server administrator about breakage status.

During the Grace Period for the Binding Break
If a binding break is detected when the license server starts up and you have configured a grace period for the
binding-break policy, the server immediately enters into a soft binding break state and continues to serve
licenses until the grace period ends.

The license server administrator and client devices are alerted of the server’s initial “soft break” status in the
various ways described in this section.

If, during the grace period, the current binding data once again matches the binding data in trusted storage, the
license server is removed from the “soft break” state and resumes normal operations. See When the Binding Is
Restored.

View License Server Log
The license server administrator can view the current binding status in the log that is displayed when the license
server starts, as shown in this example:

server>flexnetls.bat
 15:44:45,848 INFO Starting FlexNet License Server 2018.12 (build 244007)
 15:44:45,850 INFO Copyright (C) 2013-2018 Flexera.
 15:44:45,851 INFO All Rights Reserved.
 15:44:45,852 INFO Running as a console session
 15:44:61,852 WARN Soft binding break detected at startup.

Access REST API
The /binding REST API lists the server’s binding policy and the current binding status, along with the grace period
expiration time (in ISO-8601 format), as shown in this example:

{
 "bindingPolicy" : "86400 seconds",
 "bindingStatus" : "soft break",
 "gracePeriodExpiry" : "2019-02-15T16:59:52Z"
}

See About the “binding” REST API for information about how you can use the /binding REST API to alert enterprise
license server administrators about the current binding status.

View Capability Response on the Client
The capability response sent to clients includes the licenses requested by the given client (since the server can
continue to serve licenses during the grace period) and provides the following status code, where n represents
the grace period’s expiration timestamp in epoch (also called “Unix”) format:

FLX_MS_CODE_SERVER_BINDING_BREAK_DETECTED, "<n seconds>"

Your client code can retrieve this status information from the response to send the client an alert. Upon receiving
the alert, the client can contact the license server administrator about breakage status.

Chapter 6 Advanced License Server Features
Binding-Break Detection with Grace Period

232 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

When the Grace Period for the Binding Break Expires
When a grace period expires, the license server goes into a hard binding break and can no longer serve licenses.
At this point, the license server administrator and FlexNet Embedded client devices are informed of the expiration
of the server’s grace period through various means.

View License Server Log
The license server administrator can view the current binding status in the log that is displayed when the license
server starts:

server>flexnetls.bat
 15:44:45,848 INFO Starting FlexNet License Server 2018.12 (build 244007)
 15:44:45,850 INFO Copyright (C) 2013-2018 Flexera.
 15:44:45,851 INFO All Rights Reserved.
 15:44:45,852 INFO Running as a console session
 ERROR: Features will not be available due to a hard binding break.

Access REST API
The /binding REST API lists the server’s binding policy and shows the binding status as a “hard break” due to the
expired grace period (in ISO-8601 format), as shown in this example:

{
 "bindingPolicy" : "86400 seconds",
 "bindingStatus" : "hard break",
 "gracePeriodExpiry" : "2019-02-15T16:59:52Z"
}

See About the “binding” REST API for information about how you can use the /binding REST API to alert enterprise
license server administrators about the current binding status.

View Capability Response on the Client
The capability response sent to clients includes no requested features (since the server can no longer serve
licenses) and provides the following status code, specifying that grace period has expired. The 0 value (always
provided with this status code) indicates that the server has entered into a hard break from the soft break.

FLX_MS_CODE_SERVER_BINDING_GRACE_PERIOD_EXPIRED, "0"

Your client code can retrieve this status information to send the client an alert. Upon receiving the alert, the client
can contact the license server administrator about breakage status.

When the Binding Is Restored
If, during the grace period or after its expiration, the current binding information once again matches the binding
information in trusted storage (for example, through a broken-binding repair or restoration of the original
machine), the license server is restored to a normal state and can resume normal licensing operations.

At this point, the status information described in At Server Startup is again in effect.

For information about how to repair a broken binding, see Repairing the Broken Binding.

Chapter 6 Advanced License Server Features
Trusted Storage Backup and Restoration

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 233

Reporting a Binding Break to the Back Office
When the license server experiences a binding break, subsequent capability requests originating from the server
conveys information about the breakage. If the server is running under a grace period, this information includes
the expiration date in the epoch (Unix) timestamp format. The back office can then determine how to handle
breakage (for example, by sending a “reset binding” flag in the capability response to the server, as described in
Repairing the Broken Binding).

Viewing Breakage Events on FlexNet Operations Portals
When a capability request sent to the back office indicates that the license server is experiencing a binding break,
you can view the breakage event in the FlexNet Operations Producer Portal on the server’s View Host Requests
and View Host History pages. Likewise, the license server administrator can view the event in the server’s history
in the End User Portal. For more information, refer to the help system for either FlexNet Operations portal.

Repairing the Broken Binding
Once alerted about the binding break, the license server can send a capability request containing the binding-
break status to the back office, which, in return, sends a “reset binding” flag in the capability response to the
server. When the server processes the response, the server’s trusted storage is reset. When the license server is
restarted, the new binding data is persisted in trusted storage.

This reset process should have no effect on the existing device hostid used by the license server.

Considerations and Limitations
Note the following about the producer-defined binding-break detection feature:

• This feature is for the FlexNet Embedded local license server only.

• Checks for binding breaks occur only when the license server starts up.

Trusted Storage Backup and Restoration
The FlexNet Embedded local license can be enabled to back up its trusted storage at designated times. Should
trusted storage become corrupted, the license server administrator can restore the last backup without having to
contact FlexNet Operations. The following sections describe the trusted-storage backup and restoration process
and other implications:

• Performance Implications

• Enabling Backups of Trusted Storage

• Overview of the Backup Process

• Running a Trusted Storage Restoration

Chapter 6 Advanced License Server Features
Trusted Storage Backup and Restoration

234 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Performance Implications
Regular trusted-storage backups can negatively affect the local license server’s performance. Revenera therefore
recommends to disable trusted-storage backups (setting database.backup-enabled=false) in setups where the
license server exhibits performance issues. In scenarios where no trusted-storage backup is available, license
administrators can rely on the back office (FlexNet Operations) to be the source of truth for license counts.

Enabling Backups of Trusted Storage
To enable backups of trusted storage on the license server, set the database.backup-enabled policy to true in
producer-settings.xml. (By default, this policy is false.) For instructions on updating policies in producer-
setting.xml, see License Server Configuration Utility in Chapter 7, Producer Tools.

Overview of the Backup Process
The following provides an overview of the backup process for trusted storage on the license server:

• One. The license server automatically initiates a trusted-storage backup whenever the following events
occur:

• A capability response from the back office is processed.

• A quantity of capability requests from FlexNet Embedded clients have been processed. (This quantity is
based on anchor thresholds you define, as described in Appendix A, Reference: Policy Settings for the
License Server.)

• Two. Once the backup is initiated, the license server suspends the processing of capability responses and
requests until the backup completes.

• Three. If the backup is successful, the backed-up trusted storage data is stored in the file
tsBackup/flexnetls_licenses.mv.db.ts, located in the directory containing trusted storage. (A failed backup
can be an indicator that trusted storage is corrupt.)

The license server maintains only one copy of the backed-up data at any given time.

Running a Trusted Storage Restoration
If trusted storage is determined to be corrupt, the license server administrator can use these steps to restore the
last successful backup of trusted storage.

Task To restore trusted storage from the backup

1. Stop the license server.

2. Use the -restore-database or -restore-service-database argument with the command that runs the license
server script to restore trusted storage.

The path value used in this command is the path to the trusted-storage backup file
flexnetls_licenses.mv.db.ts, located under tsBackup in the trusted storage directory. Note that the explicit
path values listed in this step use the default value (${base.dir}) for the license server policy

Chapter 6 Advanced License Server Features
Outgoing HTTPS

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 235

server.trustedStorageDir, which defines the trusted storage directory. You might need to adjust the path
based on this policy definition on your license server. (See Appendix A, Reference: Policy Settings for the
License Server.)

If more than one user log-in will be doing a restore, you should set server.trustedStorageDir to a path other
than ${base.dir}.

On Windows

• In console mode, enter:

flexnetls.bat -restore-database path

where path is C:\Users\user_name\flexnetls\producer_name\tsBackup\flexnetls_licenses.mv.db.ts.

• As a service, enter:

flexnetls -restore-service-database path

where path is C:\Windows\ServiceProfiles\NetworkService\flexnetls\producer_name\tsBackup\
flexnetls_licenses.mv.db.ts.

On Linux

• In Linux console mode, enter:

./flexnetls -restore-database path

where path is /var/opt/flexnetls/producer_name/tsBackup/flexnetls_licenses.mv.db.ts.

• As a service (Systemd or SysV), use the same command as used for console mode. Note that the
database can be restored only if a custom installation location is defined.

3. Restart the license server.

Best practice for license server administrators is never to delete any files in directory containing the corrupted
trusted storage; they should allow the restoration process handle the fix. However, if for some reason
administrators need to remove the corrupted data, they should delete only flexnetls_licenses.mv.db.

One basic method that license server administrators can use to verify that trusted storage has been restored to
its previous uncorrupted state is to run an administrator tool you provide to check the feature counts in trusted
storage.

Outgoing HTTPS
The FlexNet Embedded local license server is capable of HTTPS communication with FlexNet Operations—that is,
outgoing HTTPS.

The initial step in this process is for the producer to determine whether to include a truststore file in the server
installation and what configuration is needed on the license server.

For a secure connection, a truststore file containing root and intermediate certificates is required.

• If you are using the Revenera-hosted FlexNet Operations as your back office, the back-office server
certificate is signed by a known certificate authority. In this case, little or no configuration is needed on the
server. See Default Server Configuration.

Chapter 6 Advanced License Server Features
Outgoing HTTPS

236 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• If you are using the “on-premises” version of FlexNet Operations as your back office and you are providing
your own truststore file which has been signed by an unknown (private) certificate authority, you need to
perform some configuration steps. Some configuration is also required if you changed the password found in
the Java cacerts file. See Enabling Server for HTTPS When Another Certificate Is Used for instructions.

Default Server Configuration
In most scenarios, HTTPS will work “out of the box”. A secure connection to the back office requires access to the
appropriate root and intermediate certificates for connection validation. The default behavior is to use the
truststore shipped with the Java runtime environment (JRE). This is the “cacerts" file found in the lib/security
directory of the JRE installation. The file is encrypted, and is installed with a password of “changeit”.

It is considered best practice to change the password to guard against malware that is silently adding bogus root
certificates. Note that this will make JRE updates harder, as the action will have to be repeated. If you choose to
do this, then the password should be supplied in local-configuration.yaml. You can do this in an obfuscated
form by using the java -jar flexnetls.jar -password command. If you change the password, inform the
license server administrator of the new password.

When defining the lfs.url setting in the producer-settings.xml file to identify the back-office URL, ensure that
the URL begins with https://. (See the Reference: Policy Settings for the License Server appendix for more
information about the lfs.url setting and about generating the producer-settings.xml file.)

No additional configuration should be needed for Revenera-hosted FlexNet Operations instances and instances
where FlexNet Operations is hosted on AWS.

Important • Ensure that you are using an up-to-date version of Java 8. Older versions of Java 8 do not contain the
requisite AWS root and intermediate certificates. If used, you will encounter HTTPS errors. For more information
about Java prerequisites, consult the FlexNet Embedded License Server Release Notes.

If any SSL-related errors appear in the server log, refer to the following section, Enabling Server for HTTPS When
Another Certificate Is Used.

Enabling Server for HTTPS When Another Certificate Is
Used

Use the following steps to enable the license server for HTTPS communications when you have the “on premises”
version of FlexNet Operations installed that is using a private certificate authority whose root certificates are not
found in the cacerts file.

• Step 1: Provide the Client Certificate

• Step 2: Provide Access to Client Certificate

• Step 3: Specify the Correct Back-office URL in Policy Settings

Chapter 6 Advanced License Server Features
Outgoing HTTPS

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 237

Step 1: Provide the Client Certificate
As producer, generate a client certificate file containing the same root certificate (and possibly the certificate
chain) that FlexNet Operations used to sign its server certificate. This certificate file is created using certificate-
management tools included in your Java installation. For information, see the FlexNet Operations Installation
Guide (only available for publishers using an on-premises implementation of FlexNet Operations).

Include this client certificate file as a deliverable in the license server installation at the enterprise.

Step 2: Provide Access to Client Certificate
There are different ways to provide access to the client certificate, depending on whether the license
administrator is newly installing the local license server or whether they have an existing installation.

• New License Server Installations—updating the local-configuration.yaml file

• Existing License Server Installations—creating or updating the “client” configuration file

New License Server Installations
Update the local-configuration.yaml file to override the default server configuration. On Linux systemd
systems, this file is generated in the /opt/flexnetls/producer directory during installation. For SysV installs, the
license server software package includes an example local-configuration.yaml file.

On Windows, the local-configuration.yaml file is located in the same directory as flexnetls.jar.

You might need to change the password or the path to the truststore file, or both.

Edit the following settings in local-configuration.yaml so that they look similar to this:

https-out:
 # Set to true to enable
 enabled: true
 # Path to truststore containing server certificate.
 truststore-path: path-to-your-truststore
 # Truststore password. You can obfuscate this with java -jar flexnetls.jar -password your-
password-here

 truststore-password: your-password-here
 # Switch off if you're having host validation problems (not recommended)
 host-verify: true
 # Set to true if you're using self-signed certificates (not recommended)
 self-signed: false

The password is not required to be stored in plain text; you can obfuscate it first. The following shows an example
session to obfuscate the password:

$ java -jar flexnetls.jar --password=abracadabra
abracadabra => OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7

Be sure to set the truststore-password value to the entire obfuscated string, including the OBF: prefix.

For detailed instructions about editing the local-configuration.yaml file, see Edit “local-configuration.yaml”
(Windows) and Edit “local-configuration.yaml” (Linux).

Chapter 6 Advanced License Server Features
Outgoing HTTPS

238 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Existing License Server Installations
In older installations of the local license server, a “client” configuration file was used that provides access to the
client certificate file you are providing (step 1). This method is no longer recommended; instead, Revenera
recommends you update the local-configuration.yaml file (see New License Server Installations). If you have
an existing configuration file, you can transfer the HTTPS values from the “client” configuration file to local-
configuration.yaml, as described in Transferring HTTPS Values from “client” Configuration File to YAML File,
below.

If you choose to use a “client” configuration file, include it in the license server installation at the enterprise. If the
license server administrator creates the file, provide the administrator with instructions on how to create the file,
including what path and password to use for the certificate file.

Task To create or update the “client” configuration file

1. The minimum content of this file includes the following:

truststore.path=path-to-client-certificate
truststore.password=password

The password is not required to be stored in plain text; it can be obfuscated first. Here is an example session:

$ java -jar flexnetls.jar --password=abracadabra
abracadabra => OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7

Set the truststore-password value to the entire obfuscated string, including the OBF: prefix.

2. The license server administrator at the enterprise uses one of these steps to tell the license server where the
“client” configuration file is located:

• In Windows, the administrator edits the flexnetls.settings file to include this option to specify the path
to the configuration file:

HTTPS_CLIENT_CONFIG=path-to-configuration-file

In Linux, the administrator edits the following variable in the /etc/default/flexnetls-producer_name file,
replacing the comment with the path to the configuration file:

HTTPS_CLIENT_FILE= #empty, can replace by -https-client-configuration path

See Manage the License Server Service on Linux in Chapter 3, Installing and Running the License Server,
for complete instructions on editing this local settings file.

Chapter 6 Advanced License Server Features
Incoming HTTPS

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 239

Transferring HTTPS Values from “client” Configuration File to YAML File

Instead of using the “client” configuration file, you can use the https-out setting in local-configuration.yaml.
The following table shows how to transfer the values from the “client” configuration file to local-
configuration.yaml. Note that the settings truststore-path and truststore-password in local-
configuration.yaml use a hyphen instead of a dot.

Step 3: Specify the Correct Back-office URL in Policy Settings
As producer, ensure that the correct URL for your “on premises” version of FlexNet Operations is defined for the
lfs.url setting in the producer-settings.xml file. The URL must begin with https://.

See the Reference: Policy Settings for the License Server appendix for more information about the lfs.url setting
and about generating the producer-settings.xml file.

Incoming HTTPS
In most cases, communication between client devices and the license server need not be secure. However, in
deployments where security is required, the local license server can be configured to support exchanges with the
client devices over a secure HTTPS connection.

Best practice for the enterprise customer is to offload the HTTPS protocol work to a separate device that
specializes in this type of processing. However, if this practice is not feasible or desirable, the enterprise’s license
server administrator can use these steps to configure the server to support incoming HTTPS connections.

• Step 1: Obtain Certificate

• Step 2: Enable Access to “server” Certificate

• Step 3: Define Scope of HTTPS Communications

“client” Configuration File Content local-configuration.yaml File Content

truststore.path=path-to-client-certificate
truststore.password=password

https-out:

Set to true to enable
enabled: true

Path to truststore containing server certificate.
truststore-path: path-to-your-truststore

Truststore password. You can obfuscate this with
java -jar flexnetls.jar -password your-password-here
truststore-password: your-password-here

Switch off if you're having host validation
problems (not recommended)
host-verify: true

Set to true if you're using self-signed
certificates (not recommended)
self-signed: false

Chapter 6 Advanced License Server Features
Incoming HTTPS

240 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Step 1: Obtain Certificate
The license server administrator requires a “server” certificate from a certificate authority (CA) such as Verisign.
This certificate must be in Java keystore or PKCS#12 format. The latter should have a filename extension of '.pfx'
or '.p12'. The certificate must be secured by a password. The certificate provider will have instructions on how to
request it in this format (or convert to it.)

Step 2: Enable Access to “server” Certificate
Access to the “server” certificate can be provided in different ways, depending on whether the license server
administrator is newly installing the local license server or whether they have an existing installation.

• New Installations—updating the local-configuration.yaml file

• Existing Installations—creating or updating the “server” configuration file

New Installations
For new installations of the local license server, the administrator specifies the location of the keystore file
holding the “server” certificate in the local-configuration.yaml file using the https-in parameter. On Linux
systemd systems, the local-configuration.yaml file is generated in the /opt/flexnetls/ producer directory
during installation. For SysV installs, the license server software package includes an example local-
configuration.yaml file.

On Windows, it is located in the same directory as flexnetls.jar.

The license server administrator should edit the following settings in local-configuration.yaml so that they
look similar to this:

https-in:
Set to true to enable
enabled: true
HTTPS listening port

 port: 1443
Path to keystore

 keystore-path: path-to-your-keystore
Keystore password. You can obfuscate this with
java -jar flexnetls.jar -password your-password-here

 keystore-password: your-password-here

Note the following:

• The password is not required to be stored in plain text; the license server administrator can obfuscate it first.
The following shows an example session to obfuscate the password:

$ java -jar flexnetls.jar --password=abracadabra
abracadabra => OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7

The keystore-password value must be the entire obfuscated string, including the OBF: prefix.

• The standard HTTPS port is 443 (as defined by the HTTPS protocol)

Chapter 6 Advanced License Server Features
Incoming HTTPS

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 241

• Best practice on Linux is to use a port number greater than 1024 to avoid issues with possibly having to
obtain extra privileges to use a lesser port number. Should port 443 be required at a customer
enterprise, you can always use iptables to redirect the port from 443.

• Ensure that a firewall is not blocking the license server.

Existing Installations
In older installations of the local license server, a “server” configuration file was used that provides access to the
“server” certificate file that the administrator obtained in step 1. This method is no longer recommended; instead,
Revenera recommends that the license server administrator update the local-configuration.yaml file (see New
Installations). If they have an existing configuration file, they can transfer the HTTPS values from the “client”
configuration file to local-configuration.yaml, as described in Transferring HTTPS Values from “client”
Configuration File to YAML File, below.

Task To create or update the “server” configuration file

1. The minimum content of this file includes the following:

keystore.path=path-to-server-certificate
keystore.password=password
https.port=1443

Note the following:

• The password is not required to be stored in plain text; the license server administrator can obfuscate it
first. The following shows an example session to obfuscate the password:

$ java -jar flexnetls.jar --password=abracadabra
abracadabra => OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7

The keystore-password value must be the entire obfuscated string, including the OBF: prefix.

• The default HTTPS port is 443.

• Best practice on Linux is to use a port number greater than 1024 to avoid issues with possibly
having to obtain extra privileges to use a lesser port number. Should port 443 be required at a
customer enterprise, you can always use iptables to redirect the port from 443.

• On Windows, ensure that a firewall is not blocking the license server.

2. Use the appropriate step to tell the license server where the “server” configuration file is located:

• In Windows, edit the flexnetls.settings file to include this option to set the path to the configuration
file:

HTTPS_SERVER_CONFIG=path-to-configuration-file

• In Linux, edit following variable in the /etc/default/flexnetls-producer_name file, replacing the
comment with the path to the configuration file:

HTTPS_SERVER_FILE= #empty, can replace by -https-server-configuration path

See Editing Local Settings Post-Installation in the Installing and Running the License Server chapter for complete
instructions on editing the local settings file.

Chapter 6 Advanced License Server Features
Proxy Support for Communication with the Back Office

242 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Transferring HTTPS Values from “server” Configuration File to YAML

Instead of using the “server” configuration file, you can use the https-in setting in local-configuration.yaml.
The following table shows how to transfer the values from the “server” configuration file to local-
configuration.yaml. Note that the settings keystore-path and keystore-password in local-
configuration.yaml use a hyphen instead of a dot.

Step 3: Define Scope of HTTPS Communications
At this point, the license server administrator should have a license server that is operating in both HTTP and
HTTPS modes. The next step is to define the scope of HTTPS usage for the license server. For example, perhaps
the administrator wants to run the FlexNet Embedded local license server entirely in HTTPS mode. To do so, the
administrator must switch off the HTTP listening port by changing the PORT value to zero (0) in the
flexnetls.settings file (in Windows) or the /etc/default/flexnetls-producer_name file (in Linux).

See Editing Local Settings Post-Installation in Chapter 3, Installing and Running the License Server, for complete
instructions on editing this local-settings file.

Proxy Support for Communication with the Back
Office

For security purposes, some corporate networks require networking proxies as an intermediary between their
internal systems and the Internet. To address this requirement, the FlexNet Embedded local license server
supports outbound communication with FlexNet Operations through an HTTP proxy. The license server depends
on Java Runtime to provide networking services.

Note • The local license server supports both authenticating and non-authenticating HTTP proxies.

The following sections explain how to set up the license server to use this proxy:

• Configuring the License Server for Proxy Support

• Obfuscating the Proxy Password

“client” Configuration File Content local-configuration.yaml File Content

keystore.path=path-to-server-certificate
keystore.password=password
https.port=1443

https-in:

Set to true to enable
enabled: true

HTTPS listening port
 port: 1443

Path to keystore
 keystore-path: path-to-your-keystore

Keystore password. You can obfuscate this with
java -jar flexnetls.jar -password your-password-here

 keystore-password: your-password-here

Chapter 6 Advanced License Server Features
Proxy Support for Communication with the Back Office

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 243

Configuring the License Server for Proxy Support
You and the license server administrator for the enterprise customer perform these tasks to configure the license
server for HTTP communications with the back office through a networking proxy:

• Producer: Provide Appropriate Information in the Producer Settings File

• License Server Administrator: Configure the License Server

Producer: Provide Appropriate Information in the Producer Settings File
As producer, ensure that the lfs.url setting, identifying the back-office URL, is included in the producer-
settings.xml file delivered with the license server product to the enterprise customer.

See the Reference: Policy Settings for the License Server appendix for more information about the lfs.url setting
and about generating the producer-settings.xml file.

License Server Administrator: Configure the License Server
Use this information to configure the license server for HTTP communications with the back office through a
networking proxy:

• Proxy Configuration Basics

• Supported Proxy Parameters

• Parameter Format

Proxy Configuration Basics
The license server administrator for the enterprise customer must define a set of proxy parameters as local
settings on the license server (flexnetls.settings on Windows or /etc/default/flexnetls-producer_name on
Linux). These parameters are passed to the Java Runtime system to identify the HTTP proxy.

The administrator defines these parameters in the EXTRA_SYSPROPERTIES setting, which must be “uncommented”
if it is currently “commented” in the this file.

For complete instructions on editing the local settings file, refer to the Installing and Starting the License Server
and Manage the License Server Service on Linux sections of Chapter 3, Installing and Running the License Server.

Supported Proxy Parameters
The following proxy parameters are supported:

• http.proxyHost

• http.proxyPort

• http.proxyUser

• http.proxyPassword

Consider the following:

• If not included, the http.proxyPort parameter defaults to 80.

Chapter 6 Advanced License Server Features
Extended Hostids

244 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• The http.proxyUser and http.proxyPassword parameters are optional. They are required only if the proxy
requires authentication.

• Best practice is to use an obfuscated password instead of a plain-text value for http.proxyPassword. See
Obfuscating the Proxy Password for encryption details.

Parameter Format
Follow these instructions when adding the proxy parameters to the EXTRA_SYSPROPERTIES setting in the local
settings file:

• Each parameter specified for EXTRA_SYSPROPERTIES must use the following Java system syntax:

 -Dproperty=value

• The parameters are separated from each other with a space, and the entire set of parameters are enclosed in
double quotations. The following shows an example EXTRA_SYSPROPERTIES setting with proxy parameters
specified:

EXTRA_SYSPROPERTIES="-Dhttp.proxyHost=10.90.3.133 -Dhttp.proxyPort=3128 -Dhttp.proxyUser=user1a
-Dhttp.proxyPassword=user1apwd35"

Even if you specify only a single parameter, it must be enclosed in double quotations:

EXTRA_SYSPROPERTIES="-Dhttp.proxyHost=10.90.3.133"

Obfuscating the Proxy Password
Best practice for the license server administrator is to obfuscate the proxy password and use this encrypted value
for the http.proxyPassword parameter.

The following is an example session showing both the command used to obfuscate a plain-text password (in this
case, user1apwd35) and the resulting obfuscated string:

$ java -jar flexnetls.jar --password=user1apwd35 user1apwd35 =>
OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7

The administrator would then set the http.proxyPassword value to the entire obfuscated string, including its OBF:
prefix, as shown in this example:

-Dhttp.proxyPassword=OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7

Extended Hostids
The FlexNet Embedded local license server typically resides with an enterprise customer, serving its pool of
licenses within that enterprise. When the license server communicates with the back office (FlexNet Operations)
to obtain its pool of licenses, the back office uses the server’s hostid to identify that particular server. This kind of
standard server hostid is typically the server system’s Ethernet address or can be a VM UUID or the ID for an
attached dongle.

Chapter 6 Advanced License Server Features
Extended Hostids

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 245

However, there are some cases in which the same license server will be conveyed by an operative of the producer
to multiple enterprises to distribute features to multiple enterprises. Specifically, one such case is a field
engineer running a notebook with the server installed, taking the notebook to multiple sites to distribute licenses
to enterprise customers. In such cases, it is undesirable to use the same server hostid at each location, as each
enterprise’s pool of licenses is expected to be different.

For this sort of case, the license server supports extended hostids. An extended hostid is the standard hostid
value extended with the hostid type (Ethernet/MAC address, dongle, or VM UUID) and an engineer-defined suffix.

Note • Refer to the “FlxHostIdType.h” in the FlexNet Embedded client toolkit for a definition of all the possible
hostid type enumerations.

The following sections describe extended hostids:

• Scenario Using Extended Hostids

• Enabling Support for Extended Hostids

• Setting and Using Extended Hostids

Scenario Using Extended Hostids
Using an extended hostid, field engineers can each assign a unique suffix for each enterprise customer visited,
which keeps the license server instances distinct as far as the back office is concerned. For example, Field
Engineer 1 might have a notebook with Ethernet address 11111111. While at Customer A, Engineer 1 might use
suffix “E1CA”, resulting in extended hostid of “11111111-3-E1CA”. (The “3” is FlexNet Embedded’s predefined
identifier for the Ethernet address hostid type.) When the license server contacts the back office, this extended
hostid is registered and associated with the pool of licenses for Customer A. The engineer then distributes
licenses to Customer A’s client systems, and the server’s synchronization process will report this distribution
information to the back office.

After finishing synchronization of Customer A’s data and before continuing to the next customer, the field
engineer must reset trusted storage using the license server’s reset-database option (or a similar custom option).
(The reset-database option works only when all transaction records in trusted storage have been synchronized to
the back office.)

At Customer B, Engineer 1 might then use suffix “E1CB”, resulting in extended hostid of “11111111-3-E1CB”.
This second extended hostid is separately registered in the back office and associated with the new customer’s
pool of licenses. Once again, synchronization to the back office communicates this customer’s license
distribution to the producer.

Using this technique, the same server host can appear as distinct license servers in the back office, enabling
each enterprise customer’s entitlements and license checkouts to remain separate.

Enabling Support for Extended Hostids
To enable support for extended hostids on the license server, ensure that the server.extendedHostId.enabled
setting is set to true (the default value) in the policy settings file (producer-settings.xml) file:

server.extendedHostId.enabled=true

Chapter 6 Advanced License Server Features
Extended Hostids

246 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Also, the reset-database option used to reset trusted storage between customers works only when all transaction
records from the previous customer have been synchronized to the back office. However, if you want your field
engineer or operative to be able to force a reset of the trusted storage when unsynchronized records still exist in
trusted storage, set the server.forceTSResetAllowed setting to true (false is the default). See Enabling a Forced
Trusted-Storage Reset in the Trusted-Storage Reset section for complete instructions.

The license server configuration utility is used to edit these policy settings. For more information, see License
Server Configuration Utility in Chapter 7, Producer Tools.

Setting and Using Extended Hostids
On the host license server, use the following procedure to set a specific extended hostid (for a specific
customer), obtain the licenses entitled to that hostid, and distribute them to the hostid’s clients. Once license
distribution for the extended hostid is synchronized to the back office, you must reset trusted storage on the host
license server in preparation to use a different extended hostid (for another customer).

Extended hostid suffixes should contain only the following characters: a-z, A-Z, and 0-9. Use of other characters
can result in errors from third-party applications.

Task To set and use an extended hostid on the host license server

3. On the host license server, specify the extended hostid by providing its suffix:

• If the license server is running on Windows, open the flexnetls.settings file in a text editor, and enter a
value for the EXTENDED_SUFFIX parameter, as shown in this example:

EXTENDED_SUFFIX=HOSTID1

• If the license server is running on Linux, configure the /etc/default/flexnetls-producer_name file to
include this setting:

EXTENDED_SUFFIX=HOSTID1

See Manage the License Server Service on Linux in Chapter 3, Installing and Running the License Server, for
complete instructions on editing and reapplying the server’s local-settings file in a Windows or Linux
environment.

4. To verify that the extended hostid is currently in effect, access the /hostids REST API (see Viewing Instance
hostids in Chapter 4, License Server REST APIs).

5. Send a capability request to the back office to obtain the licenses entitled to the extended hostid, and
distribute these licenses to the hostid’s clients.

6. To ensure that the current license distribution for the extended hostid is available in the back office, wait for
the license server to synchronize (or force a synchronization using the /sync REST API).

7. Use the procedures in Determining Whether Records Pending Synchronization Exist in the Trusted-Storage
Reset section to ensure that synchronization is complete. (Trusted-storage reset, described in the next step,
fails if any unsynchronized transaction records remain in trusted storage.)

8. Reset trusted storage using the procedures described in Resetting Trusted Storage in the Trusted-Storage
Reset section.

9. Repeat the previous steps to set and use another extended hostid.

Chapter 6 Advanced License Server Features
Trusted-Storage Reset

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 247

Trusted-Storage Reset
The FlexNet Embedded local license server provides a reset-database option to reset trusted storage on the
license server. Because this option removes all licenses and stored information from trusted storage, you should
use this option cautiously, such as for testing purposes, deployment of extended hostids (see Extended Hostids),
or repairing a corrupted trusted storage.

Caution • In general, the enterprise license server administrator should not have direct access to the “reset-
database” option. You can provide this access as necessary, such as to repair trusted storage, and under your
direction.

This section covers the following procedures for using the reset-database option:

• Determining Whether Records Pending Synchronization Exist

• Resetting Trusted Storage

• Enabling a Forced Trusted-Storage Reset

Determining Whether Records Pending Synchronization
Exist

By default, the reset-database option to reset trusted storage will not work if any transactions records are
pending synchronization. Before running the reset, use the following procedure to determine whether trusted
storage contains unsynchronized records. If such records do exist, you need ensure they are synchronized before
resetting trusted storage.

As an alternative, you can set a license server policy that allows you to force a trusted-storage reset when
transaction records are pending synchronization. See Enabling a Forced Trusted-Storage Reset for details.

Task To determine whether trusted storage contains transaction records pending synchronization

1. Perform either action to determine whether unsynchronized records exist and to obtain the time of the last
synchronization:

• Using the FlexNet License Server Administrator command-line tool (included in the enterprise directory
in your license-server software package), run the -status command shown in this example:

flexnetlsadmin.bat -server http://localhost:7070 -status

The output includes the synchronization status, as highlighted in this sample excerpt. (In this case, 42
records are pending synchronization, and the last synchronization occurred 7 days, 4 hours, 38 minutes
and 28 seconds ago.)

Version : 2020.01.0
Build Version : 262400
Server : https://localhost:7070/api/1.0/instances/~
State : Ready
Backup Server : Not configured
BackOffice Server : http://localhost:8080/request

Chapter 6 Advanced License Server Features
Trusted-Storage Reset

248 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Records Pending Sync : 42
Last Sync : 7d 4h38m28s

Note • The time format for the “Last Sync” value is nYnMnD nHnMnS, where Y=years, M=months, D=days,
H=hours, M=minutes, and S=seconds. If any leading elements are missing, they are assumed to have a
value of zero. If a sync has never been performed, "sync to back office pending" is displayed.

See the “Using the FlexNet License Server Administrator Command-line Tool” chapter in the FlexNet
Embedded License Server Administration Guide for details about the -status command.

• Use the /instances/instanceID?syncinfo REST API. The response body includes lastSyncTime (listed in
Greenwich Mean Time) and recordsPendingSync to show the synchronization status, as depicted in this
sample output excerpt:

{
 "id" : 1,
 "pendingDeletion" : false,
 ...
 "lastUpdateTime" : "2019-08-24T16:44:36.000Z",
 "failOverRole" : "MAIN",
 "lastSyncTime" : "2020-02-12T20:24:16.093Z",
 "lastUpdateHostid" : {
 "hostidType" : "ETHERNET",
 "hostidValue" : "7C7A9999999B"
 },
 "identityName" : "demo-rsa",
 "recordsPendingSync" : 2,
}

For more information about this REST API, see Chapter 4, License Server REST APIs.

2. If transaction records are pending synchronization, either wait for the next scheduled synchronization (which
you can determine from the lastSyncTime), or use the /sync REST API to force a synchronization. For
information about synchronization, see Synchronization Operations in Chapter 5, More About Basic License
Server Functionality.

3. Once synchronization occurs, check for the following message in the log file:

Sync completed for instance instanceID.

Also, you might want to redo Step 1 to confirm that no transaction records are pending synchronization.

Resetting Trusted Storage
Use the appropriate procedure to reset trusted storage on the license server.

On Windows
The following procedure resets trusted storage on a license server installed as a service in a Windows
environment.

Chapter 6 Advanced License Server Features
Trusted-Storage Reset

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 249

Task To reset trusted storage for a license server running as a service on Windows

As an administrator, open a command window, and execute the following:

flexnetls.bat -reset-database

On Linux
The following procedure resets trusted storage on a license server installed as a service in a Linux environment.

Task To reset trusted storage when running the license server as a service on Linux

Stop the service, run the following command, and then start the service:

./flexnetls -reset-database

See Chapter 3, Installing and Running the License Server, for details about stopping and starting the license
server service on Linux.

Enabling a Forced Trusted-Storage Reset
By default, if unsynchronized transaction records exist in the license server’s trusted storage, any attempt to
reset trusted storage using the reset-database option will fail with an error message. However, you can configure
the license server to permit a forced trusted-storage reset in emergency cases when a reset is needed but
records have not been synchronized.

Task To enable a forced trusted-storage reset

1. Make a copy of your current policy settings file, producer-settings.xml.

2. Generate a new policy settings file that sets server.forceTSResetAllowed to true. Use the license server
configuration utility to generate the new file. For more information about this process, see License Server
Configuration Utility in Chapter 7, Producer Tools.

3. In the server directory of the license server, replace the current producer-settings.xml file with the new one.

With server.forceTSResetAllowed set to true, you or your operative (or, in special cases, the enterprise license
server administrator) can force a trusted-storage reset even though transaction records are pending
synchronization.

For security purposes, once trusted storage has been reset, best practice is to restore the previous version of the
policy settings file (in which server.forceTSResetAllowed is set to false) on the license server.

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

250 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

License Checkout: Support for Special
Capability-Request Options

The FlexNet Embedded local license server and the CLS instance supports the following special capability-
request options:

• Incremental Capability-Request Processing

• Granting All Available Quantity for a Feature

• Feature-Selector Filtering

• Vendor Dictionary Data

• Capability Preview

Incremental Capability-Request Processing
When the license server processes a regular capability request from the FlexNet Embedded client, requesting
desired features, the server considers the licenses currently served to the client as “returned” and sends a
capability response with the desired features, if they are available. When the FlexNet Embedded client processes
the capability response, the client’s existing licenses are removed and the new licenses added.

If the client wants to maintain its existing licenses when it requests new features, it must either explicitly include
the existing features as desired features in the capability request or mark the request as “incremental” (without
specifying existing features). The following describes how the license server processes an incremental capability
request:

• Processing Overview

• Incremental Request Examples

• Considerations and Limitations

For more information about setting up a capability request marked as “incremental”, refer to either of the
following:

• Performing a JSON Capability Exchange chapter in the Cloud Monetization API User Guide (when using the
Cloud Monetization API, a form of REST-driven licensing)

• “Licenses Obtained from a License Server” section in the Using the FlexNet Embedded APIs chapter in your
FlexNet Embedded client SDK user guide (when using the language-based APIs delivered in a FlexNet
Embedded client SDK).

Processing Overview
When the license server processes a capability request marked as “incremental”, it attempts to renew all licenses
currently served to the client and include them in the capability response along with the desired features that are
available. (When processing the request, the license server attempts to renew existing features first, then
processes the desired features.) If the license server determines that a certain existing feature cannot be
renewed (that is, it has expired or is no longer available), it is not included in the response. Ultimately then, the

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 251

license server’s response to an incremental request includes all available non-expired existing features, along
with all available desired features. If no desired features are specified in the incremental request, the server
sends only the available non-expired existing features.

The capability request can also explicitly include an existing feature as a desired feature with a positive or
negative count to add to or decrement the count renewed for that feature.

Incremental Request Examples
The following sections provide examples of how the incremental capability request is processed.

Example 1: Renew Existing Features and Add New Features
For example, if the license server receives a capability request for 1 desired count of the highres feature from a
client that has previously been served 1 count of the survey license, the following happens:

• If the capability request is a regular request (that is, not marked as “incremental”), the license server
generates a capability response with the 1 desired count of the highres feature, if it is available. (If highres is
not available, the response is sent with no feature included, and the client ends up with no licenses.)

• If the request is marked as “incremental”, the license server generates a response with both 1 count of
survey (if the feature is renewable) and 1 desired count of highres (if it is available). If the 1 count of survey
is not renewable but the 1 desired count of highres is available, the response contains the 1 desired count of
highres only. Conversely, if the 1 count of survey is renewable but the 1 desired count of highres is
unavailable, the response contains 1 count of survey only.

Example 2: Renew Existing Features and Add Counts to Selected Renewed Features
An incremental capability request allows the client to increment the count of a renewed feature. For example, if
the license server receives a capability request for 2 desired counts of survey from a client that has been
previously served 1 count of survey, the following happens (assuming that the existing feature is renewable and
the requested new counts are available):

• If the capability request is not marked as “incremental”, the capability response from the license server
includes simply the requested 2 desired counts of survey.

• If the request is marked as “incremental”, the license server generates a response with 3 counts of survey—
1 count of the renewed survey feature and the requested 2 new counts of survey.

Example 3: Renew Existing Features But Reduce Counts for Selected Renewed
Features
An incremental capability request allows the client to renew all existing features but reduce the count of (or not
renew at all) selected existing features. To set up such a request, you must explicitly include the existing feature
whose count you want to reduce (or that you do not want to renew) as a desired feature with a negative count in
the request.

For example, a client has previously been served 10 counts of the survey feature, 4 counts of the highres feature,
and 1 count of the lowres feature. If the license server receives a capability request for -3 desired counts of
survey,
-1 desired count of lowres, and 2 desired counts of medres, the following happens (assuming that the existing
features are renewable and the requested counts for the new feature are available):

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

252 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• If the capability request is not marked as “incremental”, the license server responds with only what you ask
for in the request. Hence, the response includes the 2 counts of new feature medres (and indicates that the
negative counts for survey and lowres are invalid). Best practice is to avoid including negative counts for
features when the capability request is not marked as “incremental”.

• If the request is marked as “incremental”, the license server generates a response with 7 renewed counts of
survey (the original 10 counts decremented by 3), 4 renewed counts of highres, and 2 counts of the new
feature medres. The original 1 count of lowres was negated by the requested -1 count for this feature, and
thus lowres was not renewed.

Considerations and Limitations
Note the following about incremental request processing:

• An incremental capability request is compatible with only the “request” operation type and concurrent
features.

• Incremental capability requests are compatible with the use of reservations on the license server. For more
information, refer to License Reservations in Chapter 5, More About Basic License Server Functionality, and
to the appendix Effects of Special Request Options on Use of Reservations.

• Incremental capability requests are compatible with the use of named license pools on the license server.
For more information, refer to Allocating Licenses Using Named License Pools in Chapter 5, More About
Basic License Server Functionality.

• If the borrow interval for an existing feature has expired, that feature must be explicitly included in the
capability request as a desired feature.

• The license server processes desired features in the order in which they are listed in the capability request.
This order can be important when an incremental capability request includes both negative and positive
counts that decrement and add to the existing counts of selected features being renewed.

• When an incremental capability request includes a negative count that is greater than the current count for
the specified version of an existing feature, the server first negates (that is, does not renew) all counts of the
specified feature version. It then attempts to complete the decrement from the counts of a greater version
for that feature.

For example, a client might have 1 count of f1 version 1.0 and 2 counts of f1 version 2.0. If the
incremental request asks for -2 counts for f1 version 1.0, the server would negate the 1 count of f1 version
1.0 first and then decrement 1 count of f1 version 2. The remaining 1 count of f1 version 2.0 would be
renewed.

When no greater version of the specified feature exists, all counts of the specified feature version are
negated, and a status message is generated to state that the requested negative count was greater than the
actual count for the feature. For example, if the client has 1 count of f1 version 1.0 and the incremental
request asks for -2 counts for f1 version 1.0, the server would negate the 1 count of f1 version 1.0 and
provide the status message.

• When an incremental capability request includes a negative count for a concurrent feature for which the
client currently has a 0 count, the license server sends the error message The feature cannot be returned
because it is not reusable. (This specific error message is issued because the server perceives the feature
as metered, not as incremental, since there is no count to increment on the client.)

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 253

Granting All Available Quantity for a Feature
By default, the license server grants a given “desired feature” only if the count requested for that feature is
available on the server. As an alternative to this default behavior, the FlexNet Embedded client can mark a feature
in a capability request as “partial”, indicating that the license server should go ahead and send whatever is
available for that feature should the available count for the feature on the server fall short of the requested count.

The following describes more about desired features marked with the “partial” attribute, also called partial-
checkout features:

• How the Request is Processed

• Considerations and Limitations

For more information about setting up a capability request that marks features as “partial”, refer to either of the
following:

• Performing a JSON Capability Exchange chapter in the Cloud Monetization API User Guide (when using the
Cloud Monetization API, a form of REST-driven licensing)

• “Licenses Obtained from a License Server” section in the Using the FlexNet Embedded APIs chapter in your
FlexNet Embedded client SDK user guide (when using the language-based APIs delivered in a FlexNet
Embedded client SDK).

How the Request is Processed
When the license server processes a capability request that contains a feature marked as “partial”, the server
attempts to satisfy the count requested for that feature. If the server does not have a sufficient count to satisfy
the requested count, it sends whatever remaining count is available for that feature in the capability response.
The following examples demonstrate what happens when given features are marked or not marked as “partial”.

Example 1
The FlexNet Embedded client sends a capability request for 5 counts of the highres feature and 15 counts of
survey. The license server currently has 5 counts of highres but only 10 counts of survey. The following happens:

• If neither feature is marked as “partial”, the license server sends the 5 counts of highres only. No survey
licenses are included in the capability response because the license server cannot satisfy all 15 counts
requested.

• If both features are marked as “partial”, the license server sends the 5 counts of highres and the available 10
survey licenses in the capability response.

Example 2
The FlexNet Embedded client sends a capability request for 5 counts of the highres feature and 15 counts of
survey. The license server currently has only 4 counts of highres and 10 counts of survey. The following happens:

• If neither feature is marked as “partial”, the license server sends no features in the capability response since
it cannot satisfy the requested count for either feature.

• If the highres feature is marked as “partial” but the survey feature is not, the license server sends the
remaining available 4 counts of highres in the capability response but includes no survey licenses.

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

254 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• If both features are marked as “partial”, the license server sends the remaining 4 counts of highres and the
remaining 10 counts of survey in the capability response.

Considerations and Limitations
Note the following about partial-checkout features:

• The availability of features on the license server depends on the collective activities of all FlexNet Embedded
clients in the enterprise. Therefore, if a client resends a capability request for partial-checkout features, the
resulting capability response can include counts different from those returned when the request was sent
previously.

• Partial-checkout features can be metered or concurrent and are compatible with the use of license
reservations. For more information about reservations, refer to License Reservations in Chapter 5, More
About Basic License Server Functionality, and to the appendix Effects of Special Request Options on Use of
Reservations.

• Partial-checkout features are compatible with the use of named license pools on the license server. For more
information, refer to Allocating Licenses Using Named License Pools in Chapter 5, More About Basic License
Server Functionality.

• These features are compatible with incremental capability requests (see Incremental Capability-Request
Processing).

• They are compatible with the capability requests defined with the request operation type only. They are not
compatible with the report or undo operation type.

Feature-Selector Filtering
The license server always tries to satisfy a FlexNet Embedded client’s request for a desired feature by serving a
feature that matches three basic criteria—feature name, version, and count—as specified in the capability
request. However, in some cases, additional criteria might be needed to ensure proper feature distribution. For
example, as producer, you might also want to filter a given feature by the client’s region and department because
you vary the cost and availability of this feature by these attributes.

To filter a feature on one or more attributes in addition to the basic criteria, you must set up each additional
attribute as a separate feature selector—a key-value structure included as part of the feature’s definition created
in the back office. Once the license server obtains this feature, the client code can include the feature selectors,
along with feature’s basic criteria, in the capability request. The feature is served only if all its criteria, including
the selectors, in the capability request match the feature’s criteria on the license server.

The following sections describe more about feature-selector filtering:

• Set Up the Selectors in FlexNet Operations

• Provision the Feature on the License Server

• Include Feature Selectors in the Capability Request

• Considerations and Limitations

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 255

Set Up the Selectors in FlexNet Operations
You define the feature selectors in FlexNet Operations, using the Vendor String property for the license model
that will be associated with the feature. The following description highlights important aspects about this
feature-selector setup process. For complete instructions on setting up a license model, associating it with the
product (to which the feature belongs), and entitling the product to an enterprise customer, see the FlexNet
Operations User Guide, in particular the section “FlexNet Operations Getting Started Guide for Usage
Management”.

Each feature selector entered for the Vendor String property must be in key:value format, where value must be a
string, not an integer. Additionally, each key:value string must be enclosed with “%%” to set it up as a token. You
can tokenize individual key:value pairs (for instance, %%key:value%%), especially when these pairs are
interspersed among other vendor strings defined for the property; or you tokenize the entire set of the key:value
pairs as shown:

%%key1:value1,key2:value2,key3:value3%%

As an example, you might want to define two feature selectors, one each for the customer’s region and
department. For the Vendor String value, you can enter explicit feature selectors:

%%REGION:Global,DEPARTMENT:Acct%%

Alternatively, you can set up user-defined functions or use “customized attribute” substitution in FlexNet
Operations to populate the selector values. For example, you might define REGION as a customized license
attribute and DEPARTMENT as a customized entitlement-line attribute. In this case, the values for both attributes are
specified when a feature (as part of a product) is entitled. To set up the Vendor String value to capture these
values, provide the proper substitution functionality, similar to this:

%%REGION:{REGION},DEPARTMENT:{EntitlementLineItem.DEPARTMENT}%%

When the REGION and DEPARTMENT values are selected during the entitlement process for the enterprise customer,
the selector values are also populated in the Vendor String property.

Whether feature selectors are defined explicitly or populated through functions for Vendor String, this
information for the property is used to generate a “features selector” dictionary when the feature is provisioned
on the license server.

You can implement more complex feature-selector filtering using an MVEL script.

Provision the Feature on the License Server
Once the entitled feature is provisioned on the license server, you can invoke the license server’s /features REST
API to view the “feature selectors” dictionary for the feature, as well as the vendor-string value used as a basis for
the dictionary. For example, if Vendor String was populated with EMEA for REGION and Acct for DEPARTMENT for the
license model in the back office for feature f2, the information for the feature on the license server might look like
this:

{
 "id" : 1,
 "selectorsDictionary" : {
 "REGION" : "EMEA",
 "DEPARTMENT" : "Acct",
 },
 "used" : 0,
 "featureName" : "f2",

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

256 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 "expiry" : "2020-12-31",
 "vendorString" : "%%REGION:EMEA, DEPARTMENT:Acct%%",
 "issued" : "2018-08-31",
 "type" : "CONCURRENT",
...
}

Include Feature Selectors in the Capability Request
The client application code generates a capability request that includes the feature selectors. The license server
serves the requested feature (or tracks its metered usage) only when the selectors in the request match all those
in the “selectors dictionary” for the feature in the license server’s trusted storage. (Based on the example, the
capability request would need to specify both EMEA for REGION and Acct for DEPARTMENT as the feature selectors in
order to obtain feature f2.)

For more information about including feature selectors in the capability request, refer to the appropriate guide:

• Performing a JSON Capability Exchange chapter in the Cloud Monetization API User Guide (when using the
Cloud Monetization API, a form of REST-driven licensing)

• “Licenses Obtained from a License Server” section in the Using the FlexNet Embedded APIs chapter in your
FlexNet Embedded client SDK user guide (when using the language-based APIs delivered in a FlexNet
Embedded client SDK).

Considerations and Limitations
Note the following about filtering with feature selectors:

• If feature selectors are included in the capability request, they must match all selectors in the “selectors
dictionary” for a given feature on the license server; otherwise, the feature is not served. No partial matching
is performed.

• If no feature selectors are included in the capability request, no filtering takes place on the license server;
features are served based on their match to the basic criteria only—feature name, version, and count—
defined in the request.

• The comma is not supported within the key or value.

• The key element in the feature selector is case-sensitive and supports UTF-8 characters.

• The value element in the feature selector is case-insensitive and supports UTF-8 characters. Additionally,
value must be a string, not an integer.

• The order of the feature selectors in the capability request does not affect the matching process on the
license server.

• The set of feature selectors in the capability request applies to all desired features listed in the request. Only
those features matching all the criteria are served.

• Best practice is to not include feature selectors in capability requests for clients that have reservations on
the license server. This practice helps to avoid possible waste of reserved licenses.

• Using feature selectors in combination with named license pools may produce unexpected results.

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 257

• Feature selectors are compatible with the capability-request operation types “request” and “preview”, but
are not compatible with “report” and “undo”.

Vendor Dictionary Data
The vendor dictionary provides an interface for an implementer to send custom data in a capability request (in
addition to the FlexNet Embedded–specific data) to the license server and vice-versa. Basically, the vendor
dictionary provides a means to send information back and forth between the client and server for any producer-
defined purposes, as needed; FlexNet Embedded does not interpret this data.

Vendor dictionary data is stored as key–value pairs. The key name is always a string, while a value can be a string
or a 32-bit integer value, or an array of those types (arrays are only supported when using the Cloud Monetization
REST API). Keys are unique in a dictionary and hence allow direct access to the value associated with them. The
maximum size for a vendor dictionary is 7168 bytes after the dictionary’s conversion to base64.

For more information about including a vendor dictionary in capability requests, refer to either of the following:

• Performing a JSON Capability Exchange chapter in the Cloud Monetization API User Guide (when using the
Cloud Monetization API, a form of REST-driven licensing)

• “Licenses Obtained from a License Server” section in the Using the FlexNet Embedded APIs chapter in your
FlexNet Embedded client SDK user guide (when using the language-based APIs delivered in a FlexNet
Embedded client SDK).

Capability Preview
The FlexNet Embedded client application can preview features currently available to it on the license server by
sending a capability request marked for “preview” purposes. In return, the license server sends a capability
response specifying the available features, but the features are for preview only. In a “preview” capability
exchange, the licensing state of the license server and the client does not change. That is, no feature,
reservation, or client records are updated on the license server; and no licenses are processed into the client’s
trusted storage.

The client application can request the availability of specific desired features or can request a preview of all
available features (and their versions). Additionally, feature selectors can be included in the preview request to
enable the license server to filter the available features (see Feature-Selector Filtering).

The following sections describe what the license server returns in the preview capability response:

• Feature Counts Returned in the Preview

• Calculation of Available Counts for Preview

For a list of capability request attributes currently not supported in a preview capability request, see
Considerations and Limitations.

For more information about setting up a preview capability request”, refer to either of the following:

• Performing a JSON Capability Exchange chapter in the Cloud Monetization API User Guide (when using the
Cloud Monetization API, a form of REST-driven licensing)

• “Licenses Obtained from a License Server” section in the Using the FlexNet Embedded APIs chapter in your
FlexNet Embedded client SDK user guide (when using the language-based APIs delivered in a FlexNet
Embedded client SDK).

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

258 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Feature Counts Returned in the Preview
The license server returns a preview response containing two types of count for each feature available to the
client:

• Count—The feature count, as determined by what the capability request has asked to preview:

• If it requested to preview a particular desired feature (with a specific version and count), the returned
value is the count that would be served had the client provided the license server with a regular (that is,
non-preview) capability request for the same desired feature.

• If it requested to preview all available features, the returned value for each feature shows the
immediately available count—that is, the count to which the client is entitled to according to the model
definition, or, if reservations are used, the count reserved for the client—plus all shared counts that are
not currently served to other clients.

• Maximum count—The potentially available count that includes the count pre-allocated according to the
model definition or reserved for the client plus all shared counts, whether currently served to other clients or
not. (In other words, this count assumes that all shared counts are available.)

See Considerations and Limitations for factors that can affect the calculation of these two counts.

Based on the preview results, the client application can then send a regular capability request to check out the
available features.

Calculation of Available Counts for Preview
In general, the license server selects those features to include in the preview capability response that meet the
“desired feature” or “all” specification and that match the feature-selector criteria specified in the capability
request. However, the server does not include the following in the response:

• Expired features

• Features not yet started

• Features with no counts available for the requesting client

The following scenarios illustrate how the license server computes the preview counts for features:

• Basic Preview Example

• Preview Example for Processing Metered Features

• Preview Example for Processing Overdraft Counts

In the following scenarios, “reserved” refers to pre-allocated feature counts, but no distinction is made whether
features are reserved using reservations or using the named license pools functionality.

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 259

Basic Preview Example
Suppose the license server has the following concurrent features:

The following sections describe how the license server handles a capability preview:

• For All Available Features

• For a Specific Desired Feature

For All Available Features
If client1 sends a preview capability request for all features and counts, the license server computes the
following counts for client1 (assuming that feature f2 through f6 have met the feature-selector criteria in the
request):

Table 6-3 • Basic Preview Example: Current Feature State on License Server

Feature on
License Server

Activated
Count Current State

f1 10 Feature attributes do not match client1
feature selectors

f2 10 Expired

f3 10 Not yet started

f4 10 All counts reserved for client2

f5 10 5 counts served to client3

f6 10 • 1 count reserved for client1

• 1 count reserved for client2

• 1 count served to client3

Table 6-4 • Basic Preview Example: Initial “All Features” Counts Computed for Client

Feature on
License Server

Computed
Count

Computed
Maximum
Count Current State

f1 - - Rejected—feature does not meet client1
feature-selectors criteria

f2 - - Rejected—feature expired

f3 - - Rejected—feature not yet started

f4 0 0 All counts reserved for client2

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

260 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

However, the license server sends only the following features in the preview capability response for client1. The
f4 feature is not included because the count has a zero (0) value.

For a Specific Desired Feature
If client2 sends a preview capability request for 3 counts of f5, the license server determines that the 5 counts
currently available for f5 are enough to satisfy client2’s request:

Therefore, the license server includes the 3 counts of f5 in the preview capability response for client2:

However, if client2 had requested 6 counts of f5, the license server would include no features in the preview
capability response since the current count of 5 for f5 is not enough to cover the requested preview count of 6 for
client2.

f5 5 10 5 counts currently served to client3

f6 8 9 • 1 count reserved for client2

• 1 count currently served to client3

Table 6-5 • Basic Preview Example: Actual “All Features” Counts Returned in Preview Response

Feature in
Preview Response Count

Maximum
Count

f5 5 10

f6 8 9

Table 6-6 • Basic Preview Example: Initial Desired Feature Counts Computed for Client

Feature on
License Server

Computed
Count

Maximum
Computed
Count Current State

f5 5 10 5 counts currently served to client3

Table 6-7 • Basic Preview Example: Actual Desired Feature Counts Returned in Preview Response

Feature in
Preview Response Count

Maximum
Count

f5 3 10

Table 6-4 • Basic Preview Example: Initial “All Features” Counts Computed for Client (cont.)

Feature on
License Server

Computed
Count

Computed
Maximum
Count Current State

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 261

Preview Example for Processing Metered Features
When processing a preview capability request, the license server treats any currently served metered feature as
permanently consumed, a factor that affects the maximum count for the metered feature.

For example, suppose the license server has 10 counts of the concurrent feature f1 and 10 counts of the metered
feature m1. Currently 2 counts of each feature is served to client1.

The following sections describe how the license server handles a capability preview:

• For All Available Features (When Metered Features Exist)

• For Desired Metered Features

For All Available Features (When Metered Features Exist)
When the client requests a preview of all features, the license server always computes the count and maximum
count as identical for a metered feature (even if the feature is defined as “undoable” or “reusable”).

For example, if client2 sends a preview capability request asking for all features (and specifying no features
selectors), the license server sends the following features in the preview capability response to client2:

While the maximum count for the concurrent feature f1 is based on the eventual return of the served 2 counts,
the maximum count for the metered feature m1 assumes that 2 counts currently served to client1 have been
permanently consumed and therefore remains 8.

Table 6-8 • Metered Feature Preview Example: Current Feature State on License Server

Feature on
License Server

Activated
Count Current State

f1 10 2 counts served to client1

m1 (metered) 10 2 counts served to client1

Table 6-9 • Metered Feature Preview Example: Actual “All Features” Counts Returned in Preview Response

Feature in
Preview Response Count

Maximum
Count

f1 8 10

m1 (metered) 8 8

Chapter 6 Advanced License Server Features
License Checkout: Support for Special Capability-Request Options

262 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

For Desired Metered Features
If client2 sends a preview request for 2 counts of concurrent feature f1 and 2 counts of metered feature m1, the
license server sends the following features in the preview capability response to client2:

The 8 counts currently available for each f1 and m1 are enough to satisfy client2’s request, so the license server
sends the desired 2 counts for each feature in the preview capability response. However, because the 2 counts of
metered featured m1 currently served to client1 are considered permanently consumed, the maximum count for
m1 remains 8.

Preview Example for Processing Overdraft Counts
The count and maximum count for a feature includes overdraft counts.

For example, suppose a license server has 10 regular counts and 10 overdraft counts for concurrent feature f1.
Currently, 15 counts of f1 are served to client1:

If client2 sends a preview capability request for all features (and specifying no feature selectors), the license
server sends the following in the preview capability response for client2:

The 5 counts are from the remaining overdraft count; the maximum count includes the 10 regular counts and the
10 overdraft counts.

Table 6-10 • Metered Feature Preview Example: Actual Desired Feature Counts Returned in Preview Response

Feature in
Preview Response Count

Maximum
Count

f1 2 10

m1 (metered) 2 8

Table 6-11 • Preview Example for Overdraft Counts: Current Feature State on License Server

Feature on
License Server

Regular
Count

Overdraft
Count Current State

f1 10 10 15 counts server to client1 (10 regular,
5 overdraft)

Table 6-12 • Preview Example for Overdraft Counts: Actual Counts Returned in Preview Response

Feature in
Preview Response Count

Maximum
Count

f1 5 20

Chapter 6 Advanced License Server Features
Usage Capture and Management

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 263

Considerations and Limitations
Note the following about the capability preview feature:

• As described previously, only features with non-zero counts are included in the preview capability response.
This behavior can limit the usefulness of the maximum count in certain circumstances, such as when all
counts of a feature are currently being served to other clients or when multiple features with the same name
are present on the license sever.

• The capability preview functionality currently does not support the following attributes in a preview capability
request and generates an error during request generation should either attribute exist:

• The “partial” attribute for features (described in Granting All Available Quantity for a Feature)

• The “incremental” attribute for the capability request (described in Incremental Capability-Request
Processing)

The client does not allow a preview capability request to be generated when either of these attributes are
enabled in the request.

Usage Capture and Management
The FlexNet Usage Capture and Management feature uses metering licensing to support various pay-for-use and
pay-for-overage license models. This feature requires FlexNet Usage Management—a separately purchased
component of FlexNet Operations—for metered-licensing setup and usage management and FlexNet Embedded
for usage capture. Additionally, a license server—either the FlexNet Embedded local license server or a CLS
license server—is required to channel the captured usage data from the FlexNet Embedded client device to
FlexNet Operations.

Synchronization Required
The license server uses a synchronization process to send the captured usage data to FlexNet Operations.

The CLS license server performs an automatic (and almost immediate) synchronization once it receives the usage
data from the client.

The FlexNet Embedded local license server, however, must be configured to perform synchronization (either
online or offline) to send usage data to FlexNet Operations. To support online synchronization, you must ensure
that, in the producer-settings.xml file, the online synchronization feature is enabled and that the lfs.url setting
is included (and defined with the URL for FlexNet Operations). To support offline synchronization, you must
provide the appropriate synchronization tools (such as serverofflinesynctool and backofficeofflinesynctool) to
the enterprise customer. You or the enterprise can determine the synchronization configuration, such as the
synchronization interval (for online synchronization), page size, and other parameters that meet your usage-
capture and usage-management requirements. For more information about the license server’s synchronization
to FlexNet Operations, see Online Synchronization to the Back Office in Chapter 5, More About Basic License
Server Functionality.

For More Information
Additional information about usage-capture and management is found in the following resources:

Chapter 6 Advanced License Server Features
Administrative Security

264 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• For instructions about setting up the metered-license model, metered features, and other associated
components used to create the metered-license entitlement that enterprise customer activates on their
FlexNet Embedded license server, see the section “FlexNet Operations Getting Started Guide for Usage
Management” in the FlexNet Operations User Guide.

• For information about viewing usage reports and exporting usage data to other entities, such as to your
billing system, see the FlexNet Operations User Guide, in particular the section “FlexNet Operations Getting
Started Guide for Usage Management”.

• For examples of usage-capture implementations in the FlexNet Embedded client code, refer to the
appropriate FlexNet Embedded SDK user guide specific to your programming language.

• For information about the CLS license server, see the FlexNet Operations User Guide, in particular the section
“FlexNet Operations Getting Started Guide for Cloud Licensing Service”.

Administrative Security
The FlexNet Embedded license server uses a set of REST APIs to manage the license server, as described in
Chapter 4, License Server REST APIs. The license server offers a facility that secures access to these REST APIs to
prevent unauthorized queries or access to administrative operations on the local license server or a CLS instance.
When this administrative security is enabled on the license server, authorization credentials are needed to access
REST API endpoints, thus protecting access to data and administrative operations on the license server.

For either a local license server or CLS instance, administrative security enables the license server administrator
to restrict access to certain license server operations, as required by enterprise policies. For a CLS instance, this
security is especially critical if you want to provide the enterprise with a REST API client to administer the license
server. Because REST APIs are accessed through the Internet, the CLS instance’s REST endpoints are insecurely
exposed to the public when administrative security is not enabled. With security enabled, however, a CLS
instance can be safely managed using the Revenera administration tools or your custom REST API client to
manage their license servers.

Additionally, you can provide a single REST API administration client that works with both a secured CLS instance
and a local license server.

Overview: Deploying a License Server with Security
Enabled

The following provides an overview of the process used to deploy a license server with administrative security
enabled.

Table 6-13 • Process for Deploying a License Server with Administrative Security Enabled

Deployment Task CLS Instance Local License Server

Enable and configure
administrative security

Performed by the Revenera Cloud
operator using REST APIs.

Accomplished when you generate the
producer-settings.xml file with security
policies defined. See Enabling
Administrative Security on a Local
License Server.

Chapter 6 Advanced License Server Features
Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 265

About Administrative Security
The following sections provide more information about administrative security:

• Secured Functionality on the License Server

• User Management Functionality

• User Roles Defining Administrative Privileges

• Policies to Configure Administrative Security

• Credential Requirements

Create the default
administrator account

Automatically created when the CLS
instance is created (manually or through
auto-provisioning).

Created when you generate the
producer-settings.xml file with security
policies defined. See Enabling
Administrative Security on a Local
License Server.

Set up the default
administrator
credentials

Automatically generated when CLS
instance is created:

• User name: admin

• Password: Randomly generated
value

The password must be reset before
accessing the instance. See the “Reset
default password” entry in this table.

Provided by you:

• User name: admin

• Password: Value you specify when
using flexnetlsconfig to generate
the producer-settings.xml file. See
Enabling Administrative Security on
a Local License Server.

Provide administration
tool

Provided by you when you deploy the license server. The tool can be any of the
following:

• FlexNet License Server Administrator command-line tool

• Your custom REST API administration client

See About License Server Administrator Tools.

Reset default
administrator password

Performed by the enterprise license
server administrator using the FlexNet
Operations End-User Portal. (For more
information, see the portal’s help
system.)

Performed by the enterprise license
server administrator using one of the
tools listed in the previous table entry.

Create enterprise user
accounts (optional)

Performed by the enterprise license server administrator using the FlexNet License
Server Administrator command-line tool or a REST API client you provide. See About
License Server Administrator Tools.

Table 6-13 • Process for Deploying a License Server with Administrative Security Enabled (cont.)

Deployment Task CLS Instance Local License Server

Chapter 6 Advanced License Server Features
Administrative Security

266 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Secured Functionality on the License Server
When security is enabled on the license server, authorization credentials are required to access the REST APIs
that perform the following administrative operations:

• Resetting the administrator password

• Creating and managing other enterprise user accounts

• Adding and deleting a model definition

• Adding and deleting license reservations

• Setting or resetting license server policies, including security policies

• Suspending and resuming the license server

• Manual initiating a binary exchange between the license server and the back office, such an online or offline
activation or synchronization event

Additionally, “read” operations might also require credentials, depending on how you configure security on the
license server. Refer to the next section Policy Affecting “read” Security for more information.

For more information about the /authorization API used to authenticate credentials needed to access to secured
REST APIs, see Authorizing Access to Secured REST APIs in Chapter 4, License Server REST APIs.

Operations Exempt from Security
The following operations are always exempt from license-server security measures (that is, no credentials are
ever needed to perform these operations):

• Binary exchanges between the license server and FlexNet Operations that are initiated by the license server,
such capability-polling exchanges and synchronization at set intervals

• Binary exchanges between the license server and license-enabled clients

Policy Affecting “read” Security
When administrative security is enabled on the license server, it uses the security.anonymous license-server
policy to determine whether users need to provide credentials simply to “read” information—such as current
reservations, features, licenses, or status—on the license server. See Policies to Configure Administrative
Security for more information.

User Management Functionality
When you deploy a license server with administrative security enabled, a default license-server administrator
account is automatically created when the license server starts up. This account is assigned ROLE_ADMIN,
enabling it to create, edit, and delete other user accounts as needed, using the /users REST API. For more
information about the /users API, see APIs to Manage User Accounts in Chapter 4, License Server REST APIs.

For more information about the roles assigned to the default administrator account and to other user accounts
that the administrator can create, see the next section, User Roles Defining Administrative Privileges.

Chapter 6 Advanced License Server Features
Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 267

User Roles Defining Administrative Privileges
The default license-server administrator account—created when the license server starts up—is assigned
ROLE_ADMIN, ROLE_RESERVATIONS, ROLE_DROPCLIENT, and ROLE_READ, giving the administrator full rights to
administer the license server. Any user account that the administrator creates thereafter can be assigned one or
more roles of these roles, including ROLE_ADMIN to create another administrator. The following table describes
these roles.

Keep in mind that any of these roles can perform capability exchanges and synchronization operations, as this
functionality is exempt from security measures.

Policies to Configure Administrative Security
The following describes the license server policies that enable and configure administrative security on the
license server you are about to deploy. These policies are viewed and edited through the /configuration REST
API.

• security.enabled to enable or disable security on the license server. (This policy is editable on a local license
server only.) See Enabling Administrative Security on a Local License Server.

The following policies are in effect only when security is enabled:

• security.anonymous to indicate whether “read” operations require credentials to determine whether users
need to provide credentials simply to “read” information—such as current reservations, the model definition,
named license pools, features, licenses, or status—on the license server:

Table 6-14 • User Roles Used to Define Administrative Privileges on the License Server

Role Privileges

ROLE_READ Privileges to perform “read” operations (for example, to query features, licenses,
named license pools, reservations, the model definition, or server status). When no
other role is assigned to a user account, ROLE_READ is assigned by default as the
only role.

Additionally, depending on the security configuration, either every account is
automatically given “read” rights, or you are required to assign ROLE_READ
explicitly to each account to give it “read” rights. See Policy Affecting “read”
Security.

ROLE_RESERVATIONS Privileges to add and delete reservations.

ROLE_DROPCLIENT Privileges to delete client records on the license server.

ROLE_ADMIN Administrator privileges to update license server policies (local license server only),
create and manage other enterprise user accounts, upload and delete a model
definition, and perform other administrative tasks, such as suspend or resume the
license server.

ROLE_PRODUCER Privileges given to a producer account (by convention, the account named
"producer"). Required to supply or delete checkout filters, and change configuration
values not editable by the administrator account (for example, lfs.syncTo.enabled).

Chapter 6 Advanced License Server Features
Administrative Security

268 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• When security.anonymous is set to true, user accounts, including administrator accounts, are
automatically granted “read” rights (ROLE_READ); no credentials are needed to perform “read”
operations. This policy lessens the administrative burden to manage user accounts.

• When this policy is set to false, the license server administrator must explicitly assign ROLE_READ to a
user account, including an administrator account, to allow that account to perform “read” operations.
(The exception occurs when no role is assigned to an account, in which case ROLE_READ is
automatically assigned as the only role.) Users are then required to provide credentials to perform any
“read” operation. If an account is not authorized for ROLE_READ, no “read” access is given.

• security.token.duration to limit token validity. This policy sets a time limit on how long an authorization
“token” is in effect before it expires, requiring a user to re-enter credentials. Note the following:

• This policy is relevant to those custom administrator tools where credentials are entered once and then
automatically applied to each subsequent operation requiring authorization. Once the token expires, the
user must re-enter credentials.

• The policy is not relevant for tools like the FlexNet License Server Administrator command-line tool,
where users must manually re-enter credentials every time they perform an operation requiring
authorization.

• security.ip.whitelist to grant to one or more secure machines (whose IP addresses you specify for this
policy) unrestricted access to the license server administrative interface.

• security.http.auth.enabled to control whether HTTPS is required to access secured REST APIs:

• When set to true, this policy allows access to REST APIs using either the HTTPS or HTTP protocol.

• When set to false, the policy enforces the use of the HTTPS protocol to access REST APIs. An error is
generated when HTTP is used.

This policy has no effect on those operations exempt from license-server security measures, as described in
Operations Exempt from Security.

More Information About the Policies
Refer to the following for more information about security polices:

• For a local license server, you enable this security by setting policies in the producer settings file (see
License Server Configuration Utility in Chapter 7, Producer Tools). For a CLS instance, follow the procedures
described in the FlexNet Operations documentation.

• For a description of the /configuration REST API, see APIs to Manage Instance Configuration in Chapter 4,
License Server REST APIs.

• For details about policies and their defaults, refer to Appendix A, Reference: Policy Settings for the License
Server.

• The administrator of a local license server can edit these policies once the server is deployed. The policy-
editing operation is described in detail in the FlexNet Embedded License Server Administration Guide.

Credential Requirements
The following lists the requirements for the user name and password needed for the default license-server
administrator account (and any other user account).

Chapter 6 Advanced License Server Features
Administrative Security

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 269

User Name
The user name (up to 64 characters) is case-sensitive but requires no special characters.

User Password
The password for a user account is case-sensitive and must meet the following criteria:

• At least 8 characters (with a maximum of 64 characters)

• At least one digit

• At least one upper-case character

• At least one special character (for example, ^ * $ - + ? _ & = ! % { } / # @ and such)

• No whitespace

About License Server Administrator Tools
The license server administrator needs a tool that authenticates the administrator’s credentials, providing access
to the REST APIs needed to perform administrative functions. You can provide any of these tools:

• FlexNet License Server Administrator command-line tool. For information about using this tool, see the
“Using the FlexNet License Server Administrator Command-line Tool” chapter in the FlexNet Embedded
License Server Administration Guide.

• Your own custom REST API administration client. For information about creating a tool that supports
administrative security, see Writing a REST API Client for a Secured License Server in Chapter 4, License
Server REST APIs.

Enabling Administrative Security on a Local License
Server

Follow these step to enable and configure administrative security on a local license server you are about to
deploy.

Task To enable and configure administrative security on a local license server

1. Generate the producer-settings.xml file to enable administrative security:

• Be sure to set the security.enabled policy to true and update other security policies as needed. See
Policies to Configure Administrative Security for more information.

• When providing the flexnetlsconfig command to generate the file, include the -admin-password option
to specify the password for the default license-server administrator account. The password must meet
the criteria listed in Credential Requirements.

Refer to License Server Configuration Utility in Chapter 7, Producer Tools, for instructions on how to use the
flexnetlsconfig utility to update, generate, and distribute the producer-settings.xml file.

2. When you deploy the license server, be sure you also distribute the following:

Chapter 6 Advanced License Server Features
Administrative Security

270 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

• The license server administration tool. See About License Server Administrator Tools.

• The user name (admin) and password for the default license-server administrator account. Inform the
administrator that these credentials are case-sensitive and that password needs to be reset using the
administration tool.

7

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 271

Producer Tools

The following tools are found in the bin/tools directory of the FlexNet Embedded local license server software
package. These tools help you to test and prepare the license server for production use by simulating an end-to-
end license server process. For example, you can set up a test scenario that uses a test back-office server utility
to activate license rights on the license server and then runs utilities in which “example” client devices check out
licenses from the license server.

This tool set also includes utilities needed to configure the license server for production.

Tools Used to Test

• Publisher Identity Utility used to generate identity data for client product, back office, and license server

• Print Binary Utility used to display binary files or convert them to source code for embedding in the solution

• Identity Update Utility used to inject filters for hostid detection on the client

• License Conversion Utility used to create signed licenses

• Trial File Utility used to create trial licenses

• Capability Server Utility used to simulate a back-office server

• Capability Request Utility used to request and process license rights on client devices

• Capability Response Utility used to create a capability response that can be processed on the license server
or client

Tools Used to Prepare the License Server for Production

• Secure Profile Utility

• License Server Configuration Utility

Chapter 7 Producer Tools
Publisher Identity Utility

272 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Publisher Identity Utility
The Publisher Identity utility, pubidutil, enables you to create producer-specific identification data in binary
format. The back-office identity data is used by your back-office tools for digitally signing license rights and
notification messages; the client–server identity is used by the FlexNet Embedded local license server; and the
client identity data is used by your FlexNet Embedded or FlexNet Connect code to validate your license rights or
notification messages, respectively, and to perform other validation operations.

Purpose
The Publisher Identity utility pubidutil enables producers to create API-compatible producer-specific
identification data in binary format. This binary data is passed as a buffer to the API function FlxIdentityCreate
for the creation of an Identity object. The Identity object is then associated with other API functions (such as
FlxLicenseSourceCreateFromTrustedStorage in FlexNet Embedded or FlxConnectCreate in FlexNet Connect) to
validate and secure your product for licensing and notification operations.

The Publisher Identity utility is provided to enable each producer to create unique identity files used to digitally
sign the following:

• FlexNet Embedded license files, trial rights, and capability responses

• Notification messages sent to and from the notification-enabled client and the FlexNet Connect notification
server

Three files are generated: one for the producer’s back office use that contains all public and private key
information (by default called IdentityBackOffice.bin), a second used by the license server (by default called
IdentityClientServer.bin), and a third, used by the client code, that contains only the public keys used to
validate signatures (by default called IdentityClient.bin).

Important • It is essential that your back-office identity file (like “IdentityBackOffice.bin”), which contains your
private-key information, and the license-server identity file (like “IdentityClientServer.bin”) be kept secure.

Usage
The Publisher Identity utility can be run in a command-line shell or by clicking on it. It takes optional arguments
that specify where the identity files will be written and whether it should run in console mode (no GUI). An
argument is also available to list the supported RSA encryption strengths.

pubidutil [-backOffice backofficeidfile.bin] [-clientServer clientserveridfile.bin]
[-client clientidfile.bin] [-console] [-listRsaTypes]

The default value for the -backOffice option is IdentityBackOffice.bin, the default for -clientServer is
IdentityClientServer.bin, and the default for the -client option is IdentityClient.bin.

To generate your binary identity files, run the pubidutil script in the bin/tools directory of the toolkit. With no
arguments, it will bring up a graphical UI which can be used to generate the identity files:

pubidutil

Highlight

Chapter 7 Producer Tools
Publisher Identity Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 273

Note • When running “pubidutil” in console mode to generate identity files for FlexNet Connect functionality only,
you are not required to include the “-clientServer” argument since the client-server identity is not used by FlexNet
Connect.

Figure 7-1: Pubidutil in GUI Mode

To avoid the use of the GUI, use the -console switch (running pubidutil -? gives additional usage information):

pubidutil -console

You will prompted for all of the required information at the command line.

If you specify existing identity files, you can modify the previous settings and then regenerate the identity files.
Naturally, if you update your producer identity files, it will likely be necessary to update the client-identity buffer
data in your license-enabled or notification-enabled code to correspond with the back-office identity data used in
your back-office server to sign licenses.

Caution • If you intend to use FlexNet Operations as the back-office tool, you must generate the identity
information with the back-office tool and then export the client and client–server identity files for use with the
FlexNet Embedded Client C SDK. The identity files you use throughout an environment must all be generated at
the same time; mixing identity data generated at different times or with different tools—for example, using client-

Chapter 7 Producer Tools
Publisher Identity Utility

274 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

identity data generated with “pubidutil” with back-office identity data generated with FlexNet Operations—will
result in a run-time error.

Entering Your Identity Data
The utility prompts you to enter the following producer-specific data:

• Identity Name—Enter a unique name for this collection of identity settings (the name can be used by your
back-office server to distinguish among different collections representing different host types, for example).

• Publisher Name—Enter the producer name provided by Revenera, or “demo” for an evaluation license server
software package.

• Publisher Keys—Enter the producer keys (five hexadecimal numbers) provided by Revenera.

• Signature Type—Choose RSA, TRL, or License Key (the demo software package uses RSA signatures on most
architectures). The digital signature algorithm and signature strength you select are used for digitally signing
licenses, capability response envelopes, and product notification messages.

• Signature and digest strengths—For signature types that have multiple encryption strength options, choose
the signature strength you prefer. Keep in mind that the higher the strength, the more computational
overhead is incurred by the signature.

For RSA, SHA-1 and SHA-2 hash algorithms are available. For a list of all RSA signature strengths and digests,
use pubidutil -listRsaTypes.

When you have entered all of the required data, pubidutil creates the output files you specified, or uses the
default names if none were specified. (The utility reports an error if the producer keys are invalid or evaluation
keys have expired.) The back-office identity file is used when signing licenses and notification messages, the
client–server identity is used with served licenses, and the client-identity file is used in license-enabled and
notification-enabled code.

Updating Your Identity Data
In some cases you might need to update existing identity data with new information. For example, if you
purchase additional platforms from Revenera and therefore receive new publisher keys, you need to update your
identity data so that it reflects the new platform information. New identity data is always generated based on
existing identity data. In other words, the publisher keys contained within the identity files are replaced with the
new values. Other elements, such as signing and encryption keys, remain unchanged.

You can generate new identity data either in command-line or GUI mode. To ensure that pubidutil generates new
identity data that is compatible with the previous set of identity files, you need to specify the existing back-office
identity file when running pubidutil.

GUI Mode
To update identity data using pubidutil in UI mode, provide the required information as described in section
Entering Your Identity Data. Make sure that you use all original settings (identity files, identity name, publisher
name, and signature details), with the exception of the publisher keys which you need to replace with the new
keys that you received from Revenera.

Chapter 7 Producer Tools
Print Binary Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 275

Console Mode
To update identity data using pubidutil in console mode, run the pubidutil script with the -console switch:

pubidutil -console

You will prompted for all of the required information at the command line, with the previous identity information
provided as default values. Press Enter to accept the default values, except for the publisher keys. When
prompted, enter the new publisher keys.

Further Tasks and Considerations
Once you have generated the identity data, note the following:

• You can configure the client identity binary to include hostid filtering and caching parameters for use during
hostid detection on the client device. For more information, see Identity Update Utility. (This configuration is
available for identities generated for FlexNet Embedded C XT, .NET XT, and Java XT client applications only.)

• The printbin utility, described next, converts the binary client identity data into C code that can be copied
into this license-enabled or notification-enabled code.

• For security reasons, the identity data in IdentityClient.bin or IdentityClientServer.bin should generally
not be read from an external binary file into a buffer at run time, unless the file containing the identity data is
in a locked-down part of the client storage.

• If you are using the Capability Server Utility (which is the test back-office server, capserverutil) for FlexNet
Embedded licensing, you specify the back-office identity data when you start up the server.

Print Binary Utility
The print-binary utility printbin displays human-readable contents of binary files such as the following:

• FlexNet Embedded binary license file, capability request, capability response, or trial file created with
licensefileutil, caprequestutil, capresponseutil, or trialfileutil, respectively

• Request and response messages sent between the FlexNet Connect client and the notification server

The print-binary utility also displays the contents of a binary identity file created with pubidutil, and optionally
converts it to a Java- or C-compatible format for use in your compiled license-enabled and notification-enabled
code.

Viewing Contents
To view the binary’s contents (mainly keys and their values), use the command:

printbin binaryFile.bin

You can list multiple files in the printbin command to view their contents in a single output.

To display all the contents of the binary file (or files), use the -full switch.

Chapter 7 Producer Tools
Print Binary Utility

276 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Caution • When using the “-full” switch, be aware that some information displayed might be used internally by
Revenera for troubleshooting purposes and is subject to change between releases. Do not rely on this
information for your own troubleshooting or coding purposes.

Viewing Contents and Validating Signatures
To view contents of a binary file, such as a FlexNet Embedded license file or FlexNet Connect message file, and
validate any signatures contained in the file, use the command:

printbin -id IdentityBackOffice.bin binaryFile.bin

where IdentityBackOffice.bin is the producer identity file that you previously created with the Publisher Identity
Utility and used to sign and convert the binary file.

Displaying Binary in Compiler-Readable Format
To display contents of a binary identity file in a format that can be used in C code (typically as a hard-coded array
to be passed to FlexNet Embedded or FlexNet Connect functions that require the binary data), use the -C switch.
The following shows the command used for the identity-client binary file:

printbin -C IdentityClient.bin

The resulting array will be directed to the console, or you can add the -o outputFile switch to save the output in
a file. The output for a client-identity file should look similar to the following:

/*
 Publisher Identity Version = 0
 Identity Name = demo-medium-trl
 Publisher Name = demo
 Publisher Key = ...
 Signature Type = TRL
 Signature Strength = 1
*/
static const unsigned char identity_data[] = {
 0x68, 0x61, 0x70, 0x70, 0x79, 0x20, 0x6c, 0x69, 0x63, 0x65,
 0x6e, 0x73, 0x69, 0x6e, 0x67, 0x21, 0x20, 0x2d, 0x72, 0x6f,
 ...
 0x62, 0x65, 0x72, 0x74, 0x64, 0x00
};

You can then compile the client identity data in your FlexNet Embedded or FlexNet Connect code.

Conversion to Base 64 Format in FlexNet Embedded
For FlexNet Embedded functionality, the printbin utility can convert binary licensing data into a base-64
encoding, which is useful in cases where a binary file cannot be conveyed to the end user of a client system, but
where an encoded text representation can be used. To display a binary license file in Base 64 format, for
example, use the switch -base64:

printbin -base64 license.bin -o license64.txt

Chapter 7 Producer Tools
Identity Update Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 277

In order to query or acquire a Base 64 license, the license-enabled code must call FlxBase64Decode before
passing it to the FlexNet Embedded functionality.

Note • FlexNet Embedded uses the base-64 encoding used by MIME, where encoded data follows these
requirements:

• Uses the letters A–Z and a–z, numerals 0–9, and “+” and “/” characters

• Uses “=” as padding character

• Encodes lines with a maximum of 76 characters

• Uses CRLF as line separator

Additional printbin Switches
Additional switches to printbin include:

• -ident identifier: An array variable identifier other than IDENTITY_DATA when using the -java switch.

• -compact: Option that displays file contents in a compact format, which can be useful for large license files,
for example.

• -long: Option that displays contents in an expanded, multi-line format.

• -raw: Option that displays contents using internal property names instead of “friendly” names (-raw and -
compact cannot both be used).

• -java [-package_name]: Option that converts and displays the binary data to Java-compatible format

Identity Update Utility
The FlexNet Embedded Identity Update utility sets up filtering and caching parameters for use during hostid
detection on a FlexNet Embedded client device. This configuration is injected into the binary containing the
identity data for your FlexNet Embedded client applications and is retrieved whenever a FlexNet Embedded client
function, such as the getHostid API or method, is called to detect available hostids on the client device. The
configuration helps to reduce hostid retrieval time by limiting the detection process to specific hostid types and
(optionally) by caching retrieved hostids for future hostid-detection calls.

This utility supports the configuration of client identities for applications that you create with the FlexNet
Embedded C XT, .NET XT, or Java XT SDK. It does not support the configuration of client identities for applications
created with the FlexNet Embedded C SDK; nor does it support the configuration of a FlexNet Embedded license
server identity.

The following describes the Identity Update utility:

• Usage

• Device Hostid Types Used to Restrict Hostid Detection

• Example Identity Update

For more information about generating the identity binary for a FlexNet Embedded client application, see
Publisher Identity Utility.

Chapter 7 Producer Tools
Identity Update Utility

278 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Usage
Usage for the Identity Update utility is as follows:

identityupdateutil -help |
 [-restrict-device-id-detection type]
 [-enable-device-id-caching type]
 [-caching-duration seconds]
 input-identity-file output-identity-file

The following is a description of the utility arguments:

• -restrict-device-id-detection type: The hostid type to which to restrict hostid detection on the client
device. Repeat this argument for each additional hostid type to which you want to restrict detection. See
Device Hostid Types Used to Restrict Hostid Detection for information about the hostid types you can specify.

• -enable-device-id-caching type: (Optional) The hostid type for those detected hostids that you want to
cache for future detection on the client device. (The hostid type must be specified for a -restrict-device-
id-detection argument in the current command.) Repeat this argument for each hostid type you want to
specify for caching. See Device Hostid Types Used to Restrict Hostid Detection for more information.

Note the following:

• To cache all detected hostids, use the all value.

• Do not enable caching for dongle hostids (flexid9 or flexid10 hostid type) or for removable Ethernet
adapters (mac or mac_ecmc hostid type)

• If the -enable-device-id-caching argument is not included in the command, hostid caching is disabled.

• -caching-duration seconds: (Optional) The duration in seconds for which detected hostids are held in cache,
after which cache is reset. Specify this argument only if caching is enabled (that is, one or more -enable-
device-id-caching-type arguments are specified). Note the following:

• The duration value is applied to all cached hostids.

• The maximum value is 232 seconds (specified in decimal format only).

• If caching is enabled and this argument is set to 0 or omitted, the detected hostids remain cached until
the current process is exited.

• input-identity-file: The relative path and name of the binary file containing the client identity you are
updating.

• output-identity-file: The relative path and name of the binary file to which you are outputting the updated
client identity. (The utility creates or overwrites this file as needed.)

Chapter 7 Producer Tools
Identity Update Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 279

Device Hostid Types Used to Restrict Hostid Detection
The -restrict-device-id-detection argument restricts the type the hostids that you want to retrieve during
hostid detection on the client device. The following table provides a brief description of the hostid-type values
you can specify for this restriction and discusses any special considerations for a given value. You can specify
more than one hostid-type value to enlarge the range of detected hostids.

Table 7-1 • Values for Hostid Types Used to Restrict Hostid Detection

Value for Hostid Type
Restriction Detects...

mac Certain types of MAC (Ethernet) hostids. Hostid detection using this value is
generally faster than the detection process using mac_ecmc, which also
detects MAC hostids (as described next). However, the mac value might not
detect certain MAC hostids and therefore is not so reliable in ensuring MAC
hostid retrieval.

If hostid detection fails with the mac value, use mac_ecmc instead.
Alternatively, to detect the greatest number of MAC hostid types, use mac
and mac_ecmc in parallel.

mac_ecmc Almost any type of MAC hostid. Hostid detection with this value might be
slower than a detection process that uses mac, but it is more reliable in
ensuring the retrieval of MAC hostids on the client machine.

If the detection process for this hostid type seems slow, consider caching
the detected hostids (that is, include the argument -enable-device-id-
caching mac_ecmc).

vmuuid The UUID of the virtual machine on which the client application is running.

If the virtual-machine detection is disabled on the client device (through the
appropriate FlexNet Embedded API or method available in your SDK),
specifying vmuuid for -restrict-device-id-detection will not retrieve a
hostid.

flexid9
OR flexid10

The hostid of the Aladdin dongle or the Wibu-Systems dongle, respectively,
on the client device.

If restricting hostid detection with either of these hostid types, you are
strongly recommended not to enable the hostid type for caching.

ip4,
ip6,
OR ip_all

The IP version 4, IP version 6, or all IP addresses, respectively, on the client
device.

user User hostids (user IDs used to log on to the client device).

all Hostids for all hostid types valid for retrieval.

Chapter 7 Producer Tools
License Conversion Utility

280 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Example Identity Update
The following is an example command for the Update Identity utility:

identityupdateutil -restrict-device-id-detection mac -restrict-device-id-detection ipv4 -enable-
device-id-caching mac -caching-duration 500 IdentityClient.bin IdentityClient_out.bin

The command will configure the FlexNet Embedded client to limit device hostid detection to MAC and IPv4
hostids only and will cache all detected MAC hostids for 500 seconds. The utility is run against the client identity
data in IdentityClient.bin and the updated identity is output to IdentityClient_out.bin.

The following shows the contents of IdentityClient_out.bin when you run printbin (see Print Binary Utility). The
client-identity configuration information, represented as a 32-bit unsigned, encoded integer, is displayed for the
XtConfiguration property.

IdentityName=demo-med-rsa
PublisherName=demo
PublisherKey=9ddcd080
PublisherKey=99aa8309
PublisherKey=33995896
PublisherKey=86971320
PublisherKey=b165dcb
SignatureType=RSA
SignatureStrength=1
XtConfiguration=0002000501010002f403

License Conversion Utility
The license conversion utility licensefileutil converts a human-readable, text-based, unsigned license file into
the FlexNet Embedded binary format. This binary format is commonly used when pre-loading license rights on a
host before distribution.

Before converting any license files, you must create a producer back-office identity file that specifies how the
converted license file will be signed, using the Publisher Identity Utility.

The tool syntax is:

licensefileutil -id id-file text-license binary-license

The arguments include:

• -id id-file: Name of the file containing your producer back-office identity, required to digitally sign license

• text-license: Name of the unsigned text license containing one or more feature definitions

• binary-license: Name of the signed binary license file to create

For example, create a text license file (called unsignedInput.lic, for example) using a feature-definition syntax
similar to the following. For details on the syntax for feature definitions, refer to the “Feature Definitions” section
in the FlexNet Embedded client SDK user guide specific to the toolkit used to implement your licensing code.

INCREMENT survey demo 1.0 permanent uncounted HOSTID=ID_STRING=1234567890
INCREMENT lowres demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890

Next, run licensefileutil to generate a binary version of the license file:

licensefileutil -id IdentityBackOffice.bin unsignedInput.lic signedLicenseOutput.bin

Chapter 7 Producer Tools
Trial File Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 281

Copy the binary output file—signedLicenseOutput.bin, in this example—to the host. Now you can run license-
enabled code that acquires the license rights, such as the Client example program. The diagnostic View example
also prints a summary of feature information contained in a binary license file.

You can also use licensefileutil to sign a license file to be served by a license server; that is, a license file
containing a SERVER line along with one or more INCREMENT lines containing count values.

Trial File Utility
The trial file utility trialfileutil enables you to generate signed binary trial license rights, which can then be
processed by license-enabled code such as the Trials example. Such trial license rights can be pre-loaded on a
host to enable a customer to test product functionality for a limited duration. Trial license rights can also be
loaded after the initial deployment to act as an emergency license.

Its usage is as follows:

trialfileutil -id id-file -product product-id [-expiration date] [-duration seconds]
 [-trial trial-id] [-once | -always] lic-file binary-file

The arguments include the following:

• -id id-file: File containing your producer back-office identity, required to digitally sign the trial rights

• -product product-id: The product ID for the trial

• -expiration date: Optional expiration date for the trial, in dd-mmm-yyyy format (e.g., 1-jan-2020), or
“permanent” (the default)

• -duration seconds: Trial duration in seconds, rounded up to the nearest day (default is 1 day; each day is
86,400 seconds)

• -trial trial-id: Unique numeric trial ID for the trial (defaults to 1; valid values are integers from 1 through
65535)

• -once: Trial can be loaded only once on a host; default unless -always is specified

• -always: Trial can always be loaded on a host (rarely used)

• lic-file: Text-formatted license file listing features included in trial

• binary-file: Name of the binary trial file to create

For example, create a text license file (called unsignedInput.lic, for example) using a feature-definition syntax
similar to the following. For details on the syntax for feature definitions, refer to the “Feature Definitions” section
in the FlexNet Embedded client SDK user guide specific to the toolkit used to implement your licensing code.

INCREMENT survey demo 1.0 permanent uncounted
INCREMENT highres demo 1.0 permanent uncounted

The FlexNet Embedded binding functionality locks the trial rights to the host on which the trial is activated, and so
the feature need not include a HOSTID value. Similarly, the trial’s expiration, whether based on duration or explicit
expiration date, overrides the expiration date of all features in the unsigned text license; and the trial’s activation
date overrides any start date (START keyword value) specified for a feature.

Next, run trialfileutil to generate a binary version of the trial:

trialfileutil -id IdentityBackOffice.bin -product SampleApp -trial 1 -duration 86400
unsignedInput.lic signedTrialOutput.bin

Chapter 7 Producer Tools
Capability Server Utility

282 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Copy the binary output file—signedTrialOutput.bin, in this example—to the client system. You can now run
license-enabled code that processes and acquires the trial license rights, such as the Trials example program.
The example command uses the default trial duration of one day from the time the trial rights are processed.

Capability Server Utility
The Capability Server utility is used to test and debug the online capability exchange functionality of a FlexNet
Embedded client application. The utility functions as a simple back-office server that receives HTTP POST
capability requests from clients—FlexNet Embedded license-enabled code or local license servers—and then
generates and returns capability responses. The utility also accepts synchronization messages from license
servers (but generates no client records).

Caution • The Capability Server utility is provided for testing purposes only; it is not intended for use in a
production environment.

Refer to the following for more information about using the Capability Server utility:

• Considerations for Using the Utility

• Usage

• Starting and Stopping the Capability Server Utility

• About License Templates

• Endpoint for Sending Capability Requests to the Utility

Considerations for Using the Utility
The Capability Server utility operates as a simple back-office server. Before using this utility, consider the
following:

• No license accounting—The utility performs no accounting of license rights. That is, it does not limit the
number of licenses issued. If a client requests 100 copies of particular license right (that is, license
template), the utility activates 100 copies. If another client requests 100 copies of the same license right, the
utility activates another 100 copies. It never responds with an “insufficient count” message.

• No CLS support—The utility supports the FlexNet Embedded client application and the FlexNet Embedded
local license server, but not the Cloud Licensing Service (CLS) license server, as clients.

• No client records generated—The utility does not create or manage client records during synchronization
from a license server.

• Console mode only—The utility runs only in console mode, not as a daemon or service.

• Other limitations—It does not support HTTPS, synchronization recovery, or license server failover.

• Response lifetime—The lifetime of a capability response generated by the Capability Server utility is 1
minute.

Chapter 7 Producer Tools
Capability Server Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 283

Usage
The following shows the usage for the Capability Server utility:

 capserverutil -help | -id id-file -template template-dir [-port port] [-v]

Arguments include the following:

• -id id-file: The binary file containing the back-office identity, required to digitally sign the capability
response.

• -template template-dir: The directory containing license templates that the utility uses to store and manage
license rights. A sample templates directory is provided in the bin\tools directory where the utility resides,
but you can specify your own location (making sure that you include the appropriate path). See About
License Templates for more information.

• -port port: The port on which the utility listens. If no port is specified, 8080 is used.

• -v: The flag to provide more detail in the utility output.

Starting and Stopping the Capability Server Utility
To start the Capability Server utility, enter the capserverutil command similar to this (which, in this case,
assumes the default port 8080 and specifies the detailed format for output):

capserverutil -id IdentityBackOffice.bin -template templates -v

To stop the utility, press Enter.

About License Templates
The utility uses license templates as means of organizing license rights to simulate a real back-office server
system. Each template, identified by either a client device hostid (device_hostid.lic) or a rights ID
(rightsID.lic), stores a set of licenses. You can create your own license templates or use the sample license
templates found in the bin\tools\templates directory. These two sample templates, 1234567890.lic and li1.lic,
work easily with the example applications and test tools (included in the SDK) that use a back-office server, but
you can use the samples for your own tests.

The following sections provide more information about how the Capability Server utility uses the templates to
activate license rights:

• Use of License Templates to Generate Responses

• Examples

• Creating a License Template

Use of License Templates to Generate Responses
When license-enabled client code sends a capability request to the Capability Server utility, the utility follows this
general process to generate a capability response.

Chapter 7 Producer Tools
Capability Server Utility

284 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

It first searches for a license template with a name that matches the hostid of the device sending the request. If a
match exists, the utility returns a capability response with the licenses found in that license template, but ignores
any rights ID sent in the request.

However, if no license template matches the device hostid sending the capability request, the utility then
searches for a license template with a name that matches a rights ID sent in the request. If a match exists, the
utility returns a capability response with the licenses found in the license template.

Examples
The examples described next use the sample license templates, located in the bin\tools\templates directory, to
illustrate how the Capability Server utility activates license rights. Consider the contents of these sample license
templates:

• The 1234567890.lic template contains the following licenses:

INCREMENT survey 1.0 permanent 1
INCREMENT highres 1.0 permanent 1

• The li1.lic template contains these licenses:

INCREMENT f1 1.0 permanent 5
INCREMENT f2 1.0 permanent 10

Keep in mind that the client in the following examples can be either FlexNet Embedded license-enabled code or a
FlexNet Embedded license server.

Example 1: Activate all rights mapped to a client device
Suppose the client on device hostid “1234567890” sends a capability request without a rights ID. To simulate the
search for all license rights mapped to the device hostid, the Capability Server utility looks for a license template
with a name matching the hostid. When it locates license template 1234567890.lic, it sends a capability response
containing a copy of the rights in that template (that is, 1 count of survey and 1 count of highres).

A rights ID sent in the same capability request would be ignored in this case.

Example 2: Activate a a specific rights ID
Suppose the client on device hostid “1111” sends a capability request for 2 copies of the rights ID li1. To
simulate the search for a specified rights ID, the utility first looks for a license template with a name matching the
device hostid (“1111”). Finding no matching template, it locates the license template (li1.lic) matching the
rights ID and sends a capability response containing 2 copies of all rights in that template—that is, 10 counts of
f1 (2 times the initial 5 counts) and 20 counts of f2 (2 times the initial 10 counts).

Creating a License Template
To create a license template, you can use one of the sample license templates as a basis. In a text editor, set up
an INCREMENT line for each feature, providing the feature’s name, version, expiration, and count, and defining any
additional attributes as needed (see Feature Attributes to Consider Adding). The following shows sample
contents for a license template. The same content format is used whether you are defining license rights for a
FlexNet Embedded client or a license server.

Chapter 7 Producer Tools
Capability Server Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 285

INCREMENT f1 1.0 permanent 6
INCREMENT f2 1.0 permanent 10 VENDOR_STRING=“global”
INCREMENT f3 1.0 1-jan-2025 5
INCREMENT m4 1.0 permanent 15 METERED UNDO_INTERVAL=120

Save the file, using a device hostid or a rights ID for the file name and adding the .lic extension. The utility does
not discern the hostid type; it simply processes it as a string.

Keep in mind that, when a license template containing both non-metered and metered features is used to satisfy
a capability request from a license server, both the metered and the non-metered features are activated on the
server. If the same template is used to satisfy a request from a FlexNet Embedded client application, only the
non-metered features are activated on the client (since the client can obtain metered features only through a
license server).

Feature Attributes to Consider Adding
The following lists some feature attributes you might want to add for a given feature. (This is not an exhaustive
list, just a list of suggestions. For more information about attributes, see the “Feature Definitions” section in your
FlexNet Embedded client SDK user guide.)

• START (if not explicitly identified, the start date is set by the Capability Server utility to one day prior to the
date of issue)

• ISSUED

• VENDOR_STRING

• SN

• ISSUER

• METERED (metered feature only)

• REUSABLE (metered feature only)

• UNDO_INTERVAL (metered feature only, incompatible with REUSABLE)

To keep the license template generic for testing purposes, best practice is to not add the vendor (producer)
name, such as demo, as feature attribute.

Endpoint for Sending Capability Requests to the Utility
Use the following endpoint when sending a capability request to the Capability Server utility:

http://capserverutil_IP_address:capserverutil_port/request

The endpoint includes the following components:

• capserverutil_IP_address—The IP address on which the Capability Server utility is running; or, if it is running
on your local machine, the value localhost.

• caperservertutil_port—The port on which the utility listens (by default, 8080).

The following is an example endpoint:

http://localhost:8080/request

Chapter 7 Producer Tools
Capability Request Utility

286 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Capability Request Utility
The capability request utility caprequestutil enables you to manually generate a capability request for a client
device and save it as a file or send it to the license server or back office. Its common usage is:

caprequestutil [-idtype idtype] -host host_id
[-id pubidfile | -publisher name identity identity-name]
[-name machine-name] [-type host-type] [-server | -client]
[-serverInstance instance-number] [-attr key1 val1 ...] [-machine machine-type]
[-vmname name] [-vmattr key value] [-selector key value] [-force] [-incremental]
[-timestamp seconds | storage file | -response file]
[-activate activation_id [copies]...] [-feature name version [count] [partial]...]
[-requestor requestor-id] [-acquisition acquisition-id] [-enterprise enterprise-id]
[-correlation correlation-id] [-bindingBreakType binding-break-type]
[-bindingGracePeriodEnd binding-grace-period-end] -requestAll [-operation op-type]
binary_file|server_url [response_file]

This utility is intended for quick testing involving capability requests. It is implemented using Java, and therefore
does not make use of the callouts or other information used in “native” FlexNet Embedded code, but instead uses
a text file as a substitute for trusted storage.

The following are commonly used arguments and switches. (For a complete list of arguments available to the
capability request utility, run caprequestutil with the -help switch. Some switches are used only for infrequently
encountered scenarios and are not described in the following list.)

• [-id pubidfile | -publisher name identity identity-name]: The binary producer client identity file
(normally called IdentityClient.bin), created using pubidutil; or the producer and identity name used to
create the identity.

• -host host_id: The client hostid or transaction ID to use.

To specify one or more secondary hostids, repeat this argument for each additional hostid. The first hostid
used with this option will be considered the main hostid. Each subsequent hostid is considered secondary.
When license reservations are used, only the main hostid and the first secondary hostid are used in the
reservation search. (For more information, see About Main and Secondary Hostids in the License
Reservations section of Chapter 5, More About Basic License Server Functionality.)

• -idtype type: The hostid type, one of any, ethernet, flexid9, flexid10, internet (for IPv4), internet6 (for
IPv6), string (the default), or vm_uuid. (Some of these types are supported only by the classic prebuilt
FlexNet Embedded server application.) When specifying multiple hostids (see the previous -host
description), you can repeat this argument to specify a different hostid type for a given hostid.

• -server | -client: Flag to identify the request as coming from a license server or client (for testing).

• -serverInstance instance-number: (For use in a multiple-source regenerative licensing environment) The
number identifying the target license-server instance (for example, 5 for server instance 5) to which the
capability request is being sent. This ID is optional in the capability request. When echoed back in the
capability response, it is used to verify the location in client trusted storage where the requested licenses are
to be stored. For more information, see the user guide for the FlexNet Embedded client SDK specific to your
programming language.

• -name name and -type type: Optional host name (alias) and type, used in some logging and back-office-server
scenarios.

• -machine: One of physical, virtual, or unknown (the default). If set to virtual, the -vmname and -vmattr
switches populate the virtual-machine name and dictionary attributes.

Chapter 7 Producer Tools
Capability Request Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 287

• -timestamp seconds: Time stamp of the message; if unset, uses system time in seconds since midnight (UTC),
1 January 1970.

• -storage file: A text-formatted .properties file—used in place of trusted storage—containing the time
stamp to use in the message (value 1 is used if the file does not contain a time stamp or does not exist); the
contents of the file are updated with a new time stamp if a valid response is received.

• -response file: An existing capability response file containing the timestamp to be used in the message.

• -activate activation_id [copies] [partial]...: One or more activation IDs (also called rights IDs) to add to
the request meant for a back-office server such as FlexNet Operations; each activation ID can specify an
optional “number of copies” count (count is 1 if omitted).

The optional partial attribute tells the back-office server to send however many copies are available for that
activation ID should the available copy count in the back office fall short of the requested count. (Without the
“partial” attribute, the back-office server does not include the features for the activation ID in the capability
response if it cannot satisfy the requested copy count for that ID.)

• -feature name version [count] [partial]...: One or more desired features to add to a capability request
sent to a FlexNet Embedded server; the count is 1 if omitted.

The optional partial attribute tells the license server to send whatever is available for that feature should the
available count for the feature on the server fall short of the requested count. (Without the partial attribute,
the server does not include the requested feature in the capability response if it cannot satisfy the requested
count for the feature.) See Granting All Available Quantity for a Feature in Chapter 6, Advanced License Server
Features, for details.

This option can be used with the preview value for -operation to preview counts for specified features. It is
not compatible with the -requestAll option.

• -attr key1 val1 ...: One or more key–value pairs for the request vendor dictionary.

• -selector key value: A key-value pair (called a “feature selector”) sent in the request to filter the requested
features on the license server. You can specify this option multiple times, one for each “feature selector”.
The value must be a string, not an integer. See Feature-Selector Filtering in Chapter 6, Advanced License
Server Features, for details.

• -force: The “force response” flag, which indicates that a server response is required even if license rights on
the host have not changed since the last response was processed.

• -incremental: Flag to mark the request as “incremental” so that available non-expired licenses currently
served to the client are automatically sent in the response along with the available desired features from the
license server. See Incremental Capability-Request Processing in Chapter 6, Advanced License Server
Features, for details.

• -requestor requestor-id, -acquisition acquisition-id, -enterprise enterprise-id,
-correlation correlation-id: Optional IDs in the capability request:

• The requestor ID is used to associate the client device with a “device user”.

• The correlation ID, generated and sent in the response by the license server for a client “request”
operation, is used in “undo” operations in a usage-capture scenarios to specify which “request”
operation to recall.

• The acquisition ID identifies the resource that was acquired.

• The enterprise ID identifies the end-user account on behalf of the acquisition performed.

Chapter 7 Producer Tools
Capability Request Utility

288 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 For more details about these IDs, refer to your FlexNet Embedded client SDK user guide.

• -bindingBreakType binding-break-type: The type of binding break (SOFT or HARD) that is currently in effect
for the license server.

• A soft break indicates that a binding break is detected on the license server, but the server can continue
to serve licenses. (If the -bindingGracePeriodEnd option is included in the request, the soft break
changes to a hard break when the grace period expires.)

• A hard break indicates that a binding break is detected, and the server can no longer serve licenses.

This information is sent in capability requests from the license server to the back office. The back office can
then choose to send a “reset binding flag” in the capability response to repair the break (see Capability
Response Utility). For more information about the binding-break detection feature, see Binding-Break
Detection with Grace Period in Chapter 6, Advanced License Server Features.

• -bindingGracePeriodEnd binding-grace-period-end: The timestamp indicating when the for a binding
break on the license server expires. When this option is included, the SOFT status changes to a HARD status
when the expires. For more information about the binding-break detection feature, see Binding-Break
Detection with Grace Period in Chapter 6, Advanced License Server Features.

• -requestAll: The flag indicating that the client is requesting all features and their versions from the license
server. (This option works only with the preview value for -operation and is not compatible with the -feature
option.)

• -operation op-type: The operation of a capability request. The back-office server supports only the “request”
operation (and for only concurrent features). The FlexNet Embedded license server supports all operations.

• request—Request that concurrent features be included in the response or that usage for capped
metered features be sent. (This is the default if no operation is specified.)

• report—Report usage of metered features.

• undo—Undo usage previously sent for the given correlation ID

• preview—View available feature counts without deprecating counts on the license server or processing
features into client trusted storage. Use this operation with either the -feature or -requestAll option
(but not both) to specify features to preview. The operation is not compatible with the -incremental, -
feature...partial, and -correlation options. For more information, see Capability Preview in Chapter 6,
Advanced License Server Features.

• binary_file: File name for the binary request output.

• server_url: URL of the back-office server or FlexNet Embedded license server. The request will be sent
directly to this URL using HTTP POST—as opposed to using an intermediate file—and caprequestutil will
parse and print the response received.

• For FlexNet Operations, a typical value is http://hostname:8888/flexnet/deviceservices (with
modifications to match your FlexNet Operations installation).

• For the Capability Server Utility (the test back-office server capserverutil), provide the value http://
localhost:8080/request.

• For a local license server, a typical value is http://licenseServerHostName:7070/request.

• For a CLS license server, a typical value is
https://siteID-uat.compliance.flexnetoperations.com/instances/instanceID/request.

Chapter 7 Producer Tools
Capability Response Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 289

Note the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat following
the siteID. For production environments, the -uat is omitted.

• response_file: Name of file in which to save the binary response received.

Capability Response Utility
The capability response utility capresponseutil enables you to manually generate a capability response without
using a back office or license server. Its usage is:

capresponseutil -id id-file -host host_id [-idtype type] [-timestamp seconds]
[-timestamp-milliseconds milliseconds] [-lifetime seconds] [-attr key1 val1...]
[-machine machine-type] [-status code detail] [-vmname name] [-vmattr key value]
[-clone] [-server server-id] [-serverIdType type] [-resetBinding]
[-serverInstance instance-number] [-feature name version [count] [maxCount]...]
[-preview] [-enterpriseId enterpriseId] text_license binary_response

The following describes commonly used arguments and switches. (For a complete list of arguments available to
the capability response utility, run capresponseutil with the -help switch. Some switches are used only for
infrequently encountered scenarios and are not described in the following list.)

• -id id-file: Your binary producer back-office identity file, created using pubidutil. This is required to sign
the output response file.

• -host host_id: The hostid of the client.

• -idtype type: The hostid type of the client, one of any, ethernet, flexid9, flexid10, internet (for IPv4),
internet6 (for IPv6), string (the default), vm_uuid, or publisher_defined (for a producer-defined hostid). If
using a producer-defined hostid, also include PUBLISHER_DEFINED=hostid_value in text license file specified in
the command.

Note • Some of these types are supported only by the classic prebuilt FlexNet Embedded server application.

• -timestamp seconds: The timestamp (with second granularity) to use in the capability response. The current
system time is used if this option is omitted. To provide a timestamp other than the current system time, do
one of the following:

• For a timestamp without a clock time, enter a value in the format m/d/y, such as 02/22/2019. (The system
generates the clock time as 12:00:00 AM.)

• For a timestamp that includes a clock time, provide the total number seconds from Unix epoch
(00:00:00 January 1, 1970 UTC). For example, the value 1485820908 represents January 31, 2017
00:01:48 GMT.

A given FlexNet Embedded client application uses the timestamp to determine whether the capability
response is in proper sequence—that is, has a timestamp later than the previous response’s timestamp
stored in client trusted storage. A response with a timestamp earlier than or equal to the timestamp in
trusted storage is rejected as stale. However, you can use this -timestamp option in conjunction with the -
timestamp-millliseconds option (described next) to avoid stale responses that occur when timestamps sent
to the given client application are rounded off to the same second.

• -timestamp-milliseconds milliseconds: A millisecond value between (and including) 0 and 999 that adds a
millisecond precision to the timestamp indicated by the -timestamp value. This precision allows multiple

Chapter 7 Producer Tools
Capability Response Utility

290 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

capability exchanges to occur within a second between the local license server and a given FlexNet
Embedded client application. If the -timestamp-milliseconds option is used without the -timestamp option,
the response uses the system time including the millliseconds. (If you omit the -timestamp-milliseconds
value when a
-timestamp value exists, the response time is rounded to whole seconds.)

If either the local license server or the client application does not support the millisecond-precision feature,
the client application continues to use only the -timestamp value (or system time) to process responses.

• -lifetime seconds: The lifetime of the response, in seconds (defaults to one day), after which the response is
considered “stale” and cannot be processed by the client; a lifetime value of zero indicates a response that
will never expire.

• -attr key1 val1 ...: One or more key–value pairs for vendor dictionary.

• -machine: One of physical, virtual, or unknown (the default), indicating the type of machine intended to
process the response. If set to virtual, the -vmname and -vmattr switches populate the virtual-machine name
and dictionary attributes.

• -status code detail: A status code and its associated value or detail to include in the capability response.
You can repeat this option multiple times.

An example use of this option is to alert a FlexNet Embedded client of a binding break on the license server.
You would supply one of these arguments:

• -status SERVER_BINDING_BREAK_DETECTED soft (soft break)

• -status SERVER_BINDING_BREAK_DETECTED hard (hard break)

• -status SERVER_BINDING_BREAK_DETECTED interval (break with in effect, specified by interval shown in
s, w, or d units, as in 1d for 1 day)

• -status SERVER_BINDING_GRACE_PERIOD_EXPIRED 0 (expired)

See Binding-Break Detection with Grace Period in Chapter 6, Advanced License Server Features, for details.

• -clone: Designation that the client device is a clone suspect.

• -server: The hostid of the license server serving the licenses. If not specified, the response is generated as if
it is from the back office.

• -serverIdType: The hostid type for the license server if it is other than “string” (which is the default.)

• -resetBinding: The flag sent in a capability response from the back office to the license server, enabling the
license server to repair its broken binding so that it can continue to serve licenses. For more information
about the binding-break detection feature, see Binding-Break Detection with Grace Period in Chapter 6,
Advanced License Server Features.

• -serverInstance instance-number: (For use in a multiple-source regenerative licensing environment) The
number of the target license-server instance being echoed back from the capability request (see the
previous section Capability Request Utility). This ID is used to verify the location in client trusted storage
where the requested licenses are to be stored. For more information, see the user guide for the FlexNet
Embedded client SDK specific to your programming language.

• -feature name version [count] [maxCount]...: A feature listed in the text_license file that you want to
include explicitly in the capability response (instead of using all features in the text_license file). You can
repeat this option for multiple features; only features listed with this option are included in the capability
response. You can override the current counts for a feature specified with this option. If counts are omitted,

Chapter 7 Producer Tools
Secure Profile Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 291

count defaults to 1, and maxCount defaults to 0. This option is used only when a license server (identified by
the -server and -serveridtype options) is serving the features.

• -preview: The flag sent in a capability response from the license server (identified by the -server and
-serveridtype options) indicating that the response is in “preview” mode and therefore is not be processed
into trusted storage on the client. Use the text_license file (and the -feature option if needed) to specify
features to preview. For more information about the capability preview feature, see Capability Preview in
Chapter 6, Advanced License Server Features.

• -enterpriseId enterpriseId: The enterprise ID to be included in the generated capability response. An
example use of this option is to aggregate licenses by the enterprise ID. The enterprise ID must match the
enterprise ID generated by FlexNet Operations.

• text_license: The unsigned text license used as input. If you want the capability response to include only
specific features defined in this file (instead of using all features in the file), also use the -feature option to
identify these features.

• binary_response: Name of signed binary response file to create as output.

After generating a capability response, the binary capability response file created with capresponseutil should be
conveyed to the host and then processed using code similar to that in the CapabilityRequest example included
with the FlexNet Embedded functionality. Once the response has been processed, the license rights described in
the response are written to trusted storage and are available for acquisition.

Note • For a complete list of arguments to the capability response utility, run “capresponseutil” with the “-help”
switch. Some switches are used only for infrequently encountered scenarios.

Secure Profile Utility
The FlexNet Embedded secure profile utility (secureprofileutil) configures existing identity binary data to
enable a greater level of anchor security than what is normally provided for trusted storage on machines running
the license server. (See Secure Anchoring in Chapter 6, Advanced License Server Features, for more information.)

Before using this utility, you must obtain the binary file containing your identity data for the license server (for
example, identityClientServer.bin) from FlexNet Operations or by running the pubidutil utility (see Publisher
Identity Utility).

Secure anchoring must be enabled before you generate license server policy settings, as described in License
Server Configuration Utility. The updated identity data for the license server is used to generate these settings in
the producer-settings.xml file.

Viewing Available Security Profiles
The secureprofileutil utility embeds a secure-anchoring configuration into the identity data, enabling a certain
level of anchor security. The configuration is defined by a security profile, which you specify when you run the
utility. (Currently, FlexNet Embedded local license server supports only one security profile, called server-medium,
which implements medium-level secure anchoring.)

To display the list of available security profiles, use the following command:

secureprofileutil -profilelist

Chapter 7 Producer Tools
License Server Configuration Utility

292 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Enabling Secure Anchoring
Once you have determined which security profile to use, run the secureprofileutil command against the license
server’s identity binary data, specifying the desired specific security profile. The following shows the command
syntax:

secureprofileutil -profile profilename input_clientServerIdentityFile.bin
output_clientServerIdentityFile.bin

The arguments include:

• -profile profilename: Name of the security profile you want to use to implement secure anchoring.
(Currently, only the server-medium security profile is available.)

• input_clientServerIdentityFile.bin: Name of the file containing the license server’s identity binary data
obtained from FlexNet Operations or generated using the pubidutil utility (see Publisher Identity Utility).

• output_clientServerIdentityFile.bin: Name you want to give the output file containing license server’s
identity binary data configured for secure anchoring.

To ensure that secure anchoring is enabled, run the printbin utility on the update identity file; it will include an
AnchorConfiguration element if secure anchoring is enabled. See Print Binary Utility for more information.

License Server Configuration Utility
The FlexNet Embedded local license server configuration utility, flexnetlsconfig, generates a settings file (in
.xml format) that defines your license server policies. These policies control the various operations that the
license server can perform, such as synchronization to and from the back office, licensing distribution, logging,
license server failover, and others. You must include this file with the distribution of the license server to the
enterprise customer.

The following shows the command syntax for generating the policy settings file:

flexnetlsconfig -help | -version | [-prop prop_file] [-o output_file] -id -id_file [-admin-password
-password] [-producer-password -password]

The arguments include:

• -version version: The current version of the configuration tool.

• -prop prop_file: Name of the file containing any policy settings that you want update or add to the file.

• -o output_file: Name you want to give the output .xml file containing your policy settings for the license
server.

The expected name on Windows is producer-settings.xml. If you generate the file with a different name, the
enterprise customer must change the value of the PUBSETTINGS parameter in the local settings file
flexnetls.settings distributed with the license server. If you omit this argument, the settings are written to
screen output.

• -id id_file: The license server’s identity binary data obtained from FlexNet Operations or generated using
pubidutil (see Publisher Identity Utility). This file is required.

• -admin-password -password: Provides administrator credentials that are required to deploy a license server
with administrative security enabled. For more information, see Considerations about Settings.

Highlight

Chapter 7 Producer Tools
License Server Configuration Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 293

• -producer-password -password: Provides credentials for the producer account. Credentials are required to
supply or delete checkout filters, and change configuration values not editable by the default administrator
account (for example, lfs.syncTo.enabled).

You can generate a file containing only the default policy settings or a file containing customized settings.

Policy Settings Reference
For a description of each policy setting available for inclusion in this file, the setting’s default value, and whether
it is editable by the enterprise license server administrator, see Appendix A, Reference: Policy Settings for the
License Server. Note that, by default, some available settings are not included in the default version of the
settings file. Therefore, to enable and control certain types of license server functionality, you need to add
specific settings to this file. The chapters More About Basic License Server Functionality and Advanced License
Server Features, which describe different types of functionality available with the license server, inform you
which settings you need to include if are enabling a specific function.

Generating the Policy Settings
To generate an .xml file listing the default policy settings, execute a command similar the following, specifying
the output file name and license server’s identity binary file. This command generates the producer-settings.xml
file with the settings shown in Default Policy Settings. (In Windows, use flexnetlsconfig.bat.)

flexnetlsconfig -o producer-settings.xml -id IdentityClientServer.bin

To generate a file with customized settings, create a separate “properties” text file that defines only the settings
you want to update or add. Then run a command similar to the following, where properties1.txt is the properties
file. See Sample Properties File for Updates or Additions for an example of a properties file.

flexnetlsconfig -prop properties1.txt -o producer-settings.xml -id IdentityClientServer.bin

This command generates a policy settings file that includes the default settings plus any setting overrides and
additions defined in the properties file.

Default Policy Settings
The following shows the contents of a sample file generated with default policy settings:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<configuration version="1">
 <!--
 database.backup-enabled=false
 fne.syncTo.repeats=5m
 lfs.capability.enabled=true
 lfs.capability.repeats=1d
 lfs.capability.retryCount=3
 lfs.capability.retryRepeats=30s
 lfs.syncFrom.enabled=false
 lfs.syncTo.delay=2s
 lfs.syncTo.enabled=false
 lfs.syncTo.includeAll=true
 lfs.syncTo.pagesize=50
 lfs.syncTo.repeats=5m
 lfs.syncTo.retryCount=4

Chapter 7 Producer Tools
License Server Configuration Utility

294 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

 lfs.syncTo.retryRepeats=5m
 licensing.allowVirtualClients=true
 licensing.allowVirtualServer=true
 licensing.defaultBorrowGranularity=second
 licensing.hostIdValidationInterval=2m
 licensing.responseLifetime=1d
 licensing.security.json.enabled=true
 logging.directory=${base.dir}/logs
 security.anonymous=false
 security.enabled=false
 security.http.auth.enabled=true
 security.ip.whitelist=
 security.jwt.cookies=false
 security.token.duration=1d
 server.accessLogPattern=access_yyyy_mm_dd.request.log
 server.backupMaintenance.interval=3d
 server.extendedHostId.enabled=true
 server.forceTSResetAllowed=false
 server.publisherDefinedHostId.policy=disabled
 server.syncCompatibility=false
 server.trustedStorageDir=${base.dir}
 -->
 <data>
AAAZxQAAB6...
APxB...</data>
 <publisher>demo</publisher>
 <signature>rRi0HvqsIZtCZMh9lCYulIeFUj0=</signature>
</configuration>

Sample Properties File for Updates or Additions
When you want to edit the default settings in producer-settings.xml, create a properties text file that lists the
policy settings you are editing or adding. List each setting on a separate line in setting_key=value format. The
following contents in the properties file will add the lfs.url policy and reset the current value of
lfs.sycTo.enabled to true:

lfs.url=https://demo.compliance.flexnetoperations.com/flexnet/deviceservices
lfs.syncTo.enabled=true

When the settings file is generated with the properties file, the updates are applied. The snippet of the settings
file that follows shows that these updates have occurred (when compared with the default settings shown in
Default Policy Settings):

• The setting lfs.url=https://demo.compliance.flexnetoperations.com/flexnet/deviceservices has been
added.

• The existing setting lfs.syncTo.enabled has been updated from false to true.

<configuration version="1">
 <!--
 database.backup-enabled=false
 fne.syncTo.repeats=5m
 lfs.capability.enabled=true
 lfs.capability.repeats=1d
 lfs.capability.retryCount=3
 lfs.capability.retryRepeats=30s

Chapter 7 Producer Tools
License Server Configuration Utility

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 295

 lfs.syncTo.enabled=true
 lfs.syncTo.includeAll=true
 lfs.syncTo.pagesize=50
 lfs.syncTo.repeats=5m
 lfs.syncTo.retryCount=4
 lfs.syncTo.retryRepeats=5m
 lfs.url=https://demo.compliance.flexnetoperations.com/flexnet/deviceservices
 licensing.allowVirtualClients=true
 licensing.allowVirtualServer=true...
 ...

Considerations about Settings
Keep the following in mind when defining settings:

• The policy settings file is platform-independent, so choose values appropriate for the platform on which the
license server will run (for example, no spaces in path names for Linux installations) or for both platforms if
the license server supports both Windows and Linux.

• If the license server is using a back office (FlexNet Operations) to activate its license pool and to synchronize
license distribution and usage, you must include the lfs.url setting to identify the URL for the back office.

• If you are migrating to the FlexNet Embedded local license server from the classic FlexNet Embedded server
application, change the default false value for the server.syncCompatibility setting to true. This update is
required for a successful migration and for successful synchronization activities after migration.

• If you want to deploy a license server with administrative security enabled, set the security.enabled policy to
true. In the flexnetlsconfig command, you must also include the -admin-password option to specify the
password for the default administrator account. The password is not listed in the generated producer-
settings.xml file for security purposes. For more information about administrative security, see
Administrative Security in Chapter 6, Advanced License Server Features.

Distributing this File
To install the license server, this file must reside in the same directory as the flexnetls batch or shell file (found
in the server directory in your license server software package). Make sure this file is placed in the correct
location when the license server is distributed to the enterprise customer.

Updating the File After Server Installation
If you update the policy settings file and redistribute it, the license server that runs with this new file must be
stopped and restarted to put the new policies into effect.

Chapter 7 Producer Tools
License Server Configuration Utility

296 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

8

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 297

Troubleshooting Reference

This chapter offers some troubleshooting measures for issues commonly encountered when using the FlexNet
Embedded local license server.

• If you install the license server as a Window service, the server runs under the user context of the network
service. When you then try to reset the trusted storage database using the flexnetls -reset-database
command, you will be running under the current user context and will not be able to reset the trusted storage
database.

As a workaround:

• For the server.trustedStorageDir setting in the producer-settings.xml file, define an explicit value for
the default trusted-storage location that is user-independent. (Currently, the default value $ {base.dir}
is different for each user. The license server gets the USERPROFILE value, appends flexnetls\producer,
and uses this path to name the trusted storage directory.)

• Ask the enterprise license server administrator to configure the base.dir value. To do this, the
administrator adds the BASE_DIR property to flexnetls.settings and defines a specific path for this
property.

When you explicitly set the value of base.dir, the license server does not append flexnetls\producer to
the value. However, when base.dir is not explicitly set, the server uses flexnetls\producer to segregate
data for multiple producers who do not set this directory.

• When you start the license server in HTTP mode, but attempt to access REST endpoints using the HTTPS
mode, an error is generated and recorded in the license server log (an excerpt of which is shown here):

badMessage: 400 Illegal character for HttpChannelOver...

As a workaround, either start the license server in HTTPS mode, or use only HTTP to access the REST
endpoint.

• When you attempt to start the license server installed in a Linux environment, the startup might fail with an
error similar to the following, as recorded in the license server log:

java.net.UnknownHostException: machinename: machinename: Temporary failure in name resolution"
[90028-179]

Chapter 8 Troubleshooting Reference

298 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

As a possible workaround, check the hosts file in /etc and determine whether the host has a name-
resolution line added. If not, then add the line, which includes the machine’s IP address and hostname, as
shown in this example:

10.99.999.999 CentOS63x64999

• If the license server has not been provisioned with any features, it responds to client requests with a 503
error with the error message "Server instance <instanceID> is not ready". This is expected behaviour
because the server is not ready in this state.

A

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 299

Reference: Policy Settings for the
License Server

The following chart serves as reference to the various settings that you can include in the policy settings file,
producer-settings.xml, which you create and distribute with the FlexNet Embedded local license server. These
settings define policies for the various operations that the license server can perform, such as synchronization to
and from the back office, licensing distribution, logging, license server failover, and others. (You use the license
server configuration utility to generate this file, as described in License Server Configuration Utility in Chapter 7,
Producer Tools.)

Note that this chart also includes policy settings related to license server failover, even though these settings
cannot be set using producer-settings.xml. Instead, these settings can be edited using the FlexNet License
Server Administrator command-line tool or the /configuration API.

In the chart, the specific settings that enterprise license-server administrator can override show “Yes” in the
“Editable?” column. To view all settings and to override editable ones, the administrator must have access to the
/configuration REST API endpoint (see APIs to Manage Instance Configuration in Chapter 4, License Server REST
APIs). The administration tools included in the license server software package—and that you can make available
to the enterprise administrator—provide facilities that access this API, enabling the administrator to view and
override settings (see the FlexNet Embedded License Server Administration Guide).

Table A-1 • License Server Policy Settings

Setting Description
Edit-
able?

database.backup-enabled The property that determines whether the license server takes a backup of
trusted storage at given times and stores it on the server. Should trusted
storage become corrupt, the license server administrator can then restore it
from the backup without contacting the back office. See Trusted Storage
Backup and Restoration for details. (Default is false.)

Note • Note that regular trusted-storage backups can negatively affect the
license server performance.

No

Appendix A Reference: Policy Settings for the License Server

300 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Licensing Policies

licensing.clientExpiryTimer The frequency of checks for expired features on clients. (An expired feature
is one whose borrow interval has expired or that has reached its expiration
date as defined in the back office.) Expired features found during a given
check are returned to the license-server feature pool. The frequency value
can be specified with an optional unit-suffix letter—s, m, h, d, or w—indicating
seconds, minutes, hours, days, or weeks. If no suffix is used, the server
assumes the value is in seconds.

The default frequency for these checks is 2s. Consider increasing this value
if the current frequency is interfering with capability-request processing or
with overall throughput, particularly when features have large borrow
intervals. (Minimum is 1s.)

Yes

licensing.dropClientEnforcedDelay The delay that is enforced between client deletion requests. This value can
be specified with an optional unit-suffix letter—s, m, h, d, or w—indicating
seconds, minutes, hours, days, or weeks. If no suffix is used, the server
assumes the value is in seconds.

This setting can also be used to disallow the deletion of clients; in this case,
set the value DROP_CLIENT_DISALLOWED.

(Default is 0s, meaning deleting client records is allowed and there is no
enforced delay between deletions.)

No

licensing.responseLifetime The lifetime of a served-license response on the client. This value can be
specified with an optional unit-suffix letter—s, m, h, d, or w—indicating
seconds, minutes, hours, days, or weeks. If no suffix is used, the server
assumes the value is in seconds. If this value is 0 (zero), the response has an
unlimited lifetime. (Default is 1d.)

No

licensing.allowVirtualClients The property that determines whether virtual client devices are allowed to
obtain licenses. (Default is true.)

No

licensing.allowVirtualServer The property that determines whether the license server is allowed to run on
a virtual host. (Default is true.)

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 301

licensing.defaultBorrowGranularity The time unit to which the borrow interval used by the license server rounds
up. Valid values include day, hour, minute, or second. (Default is second.)

For example, if the borrow interval (which is always expressed in seconds) is
60 seconds, and the borrow granularity is day, then a license issued at
5:05:01 PM expires at 11:59:59 PM—the borrow interval (5:06:01 PM)
rounded to the end of the nearest day. Likewise, if granularity is minute,
expiration is at 5:06:59 PM. If the granularity is second, expiration is 5:06:01
PM.

This setting is used for those clients that do not specify one in their
capability requests.

Note • For FlexNet Embedded client SDKs released before version 4.0, the
granularity is always “day”, regardless of this setting.

No

licensing.borrowInterval The borrow interval for served licenses. This server borrow interval is only
considered if the back office does not specify a borrow interval for a feature
within the license model. The current version of FlexNet Operations
mandates that a borrow interval (also referred to as the feature borrow
interval) be specified for new license models.

This value can be specified with an optional unit-suffix letter—s, m, h, d, or
w—indicating seconds, minutes, hours, days, or weeks. If no suffix is used,
the server assumes the value is in seconds. (Default is 1w.)

For information on how to determine the effective borrow interval, see
licensing.borrowIntervalMax.

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

302 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

licensing.borrowIntervalMax Restricts the borrow period of the clients. This value can be specified with
an optional unit-suffix letter—s, m, h, d, or w—indicating seconds, minutes,
hours, days, or weeks. If no suffix is used, the server assumes the value is in
seconds. Default is NOT_CONFIGURED (0). This is also referred to as the admin
borrow interval.

The following helps you determine the effective borrow interval.

• If the feature borrow interval has been set in the back office, the borrow
interval is the lowest of the following values:

• feature borrow interval (set in the back office)

• client borrow interval (set in a client capability request)

• admin borrow interval (set using licensing.borrowIntervalMax)

• If the feature borrow interval has not been set in the back office, the
borrow interval is the lowest of the following values:

• server borrow interval (defined in producer-settings.xml by the
property licensing.borrowInterval)

• client borrow interval (set in a client capability request)

• admin borrow interval (set using licensing.borrowIntervalMax)

A feature’s current borrow expiration can never exceed the final expiration
time for that feature. In addition, a borrow-interval granularity may be
applied to the effective borrow interval.

This parameter cannot be used for metered features.

Yes

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 303

licensing.renewInterval The default renew interval is set as a percentage of the effective borrow
interval. It is a security setting that may be used to require the served clients
to contact the license server. This value specifies how often—if ever—the
client may attempt to recontact the local license server. Successful contact
extends the expiration based on the effective borrow period (in other words,
the timer for the effective borrow interval is restarted).

If set to zero, the renew interval is at client discretion. (Default is 15.)

For information on how to determine the effective borrow interval, see
licensing.borrowIntervalMax.

Important • This specification by itself does not lead to enforcement. The
client-side APIs must extract this value from the license server capability
response and take appropriate action.

Example

Effective borrow interval = 604800s (1 week); renew interval = 15

Suppose the device initially obtains its license on January 1. The 7-day
effective borrow interval results in a license that is valid until January 8. The
15% renew interval indicates that the device should attempt to recontact the
server after 90720 seconds, that is, on January 2 (15% of 604800 seconds
= 90720 seconds = approx. 1 day). If successful, the license is now valid
until January 9. If unsuccessful, the license remains valid until the end of the
original borrow period, which is still January 8.

No

licensing.hostIdValidationInterval The frequency with which the license server validates that its hostid has not
changed. This value can be specified with an optional unit-suffix letter—s, m,
h, d, or w—indicating seconds, minutes, hours, days, or weeks. If this value is
0 (zero), validation is disabled. (Default is 2m.)

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

304 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

licensing.defaultTimeZone Defines the time zone that will be applied when determining a feature’s
expiry date, start date, and issue date.

Valid values:

• UTC— If UTC is set, a feature’s start date is the start of the specified day
in Coordinated Universal Time (UTC). Equally, a feature will expire at the
end of the day of the configured expiry date in UTC time. This is the
default value.

• SERVER—If SERVER is set, a feature’s start date is the start of the
specified day in the server’s default time zone. Equally, a feature will
expire at the end of the day of the configured expiry date in the server's
default time zone.

See Setting the Server Time Zone for additional information.

No

licensing.security.json.enabled The option that enables (true) or disables (false) security for JSON
capability exchanges used in REST-driven licensing. When the value is true,
a token signed by an enterprise private key must be attached to each
capability request, allowing the license server to authenticate the request
against matching public key data stored on the server. See API for Enabling
JSON Security for the Cloud Monetization API in Chapter 4, License Server
REST APIs for details. (Default is true.)

Yes

licensing.backup.uri (Defined on back-up or main license server in a failover configuration;
optional) The URI of the back-up server to be included in the capability
response to the client device. Use the following format:

http://server:port/fne/bin/capability

where server:port is the back-up license server’s name and port number, as
in:

http://22.22.2.222:7070/fne/bin/capability

Yes

licensing.main.uri (Defined on back-up or main license server in a failover configuration;
optional) The URI of the main server to be included in the capability response
to the client device. Use the following format:

http://server:port/fne/bin/capability

where server:port is the main license server’s name and port number, as in:

http://11.11.1.111:7070/fne/bin/capability

Yes

License Server Settings

server.uuid Host UUID that uniquely identifies this server instance when communicating
with the back office.

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 305

server.trustedStorageDir The directory in which trusted storage resides. (Default is ${base.dir},
which points to the flexnetls/producer_name folder in the service’s or user’s
home directory.)

No

server.publisherDefinedHostId.
policy

The property that determines whether to enable support for the use of a
producer-defined hostid to identify the license server. To enable support,
use the value STRICT. (Default is false, meaning support for this feature is
disabled.)

If the property is set to STRICT, the server.hostType.order property (if set)
is ignored.

No

server.extendedHostId.enabled The property that enables support for the use of extended hostids to identify
the license server. (Default is true.)

No

server.hostType.order The property that enables producers to specify the order in which the local
license server picks the hostid type. The order of the hostid types is
specified as a comma-separated list, for example:

server.hostType.order=ETHERNET,FLEXID9,FLEXID10,VM_UUID

Valid values are all hostid types, with the exception of producer-defined
hostid types.

The following settings override the server.hostType.order property:

• server.publisherDefinedHostId.policy—If a producer-defined hostid
type is set using the server.publisherDefinedHostId.policy
property, the server.hostType.order property is ignored.

• ACTIVE_HOSTID—If ACTIVE_HOSTID is set either through the REST API or
using a configuration file during server startup, the
server.hostType.order property is ignored.

No

server.forceTSResetAllowed The property that determines whether trusted storage can be reset when
unsynchronized data still exists on the license server. (Default is false.)

No

server.backupMaintenance.interval (Defined on back-up license server in a failover configuration; required) The
maximum amount of time that the back-up server can serve licenses in a
failover event. This value can be specified with an optional unit-suffix
letter—s, m, h, d, or w—indicating seconds, minutes, hours, days, or weeks. If
no suffix is used, the server assumes the value is in seconds. If this value is
set to 0, the back-up license server will serve licenses for an unlimited time
while in failover mode. (Default is 3d.)

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

306 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

server.syncCompatibility (Used for migration from the classic FlexNet Embedded server application)
The property that enables proper conversion of time units used for
synchronization to and from the back office during the migration from the
FlexNet Embedded server application to the FlexNet Embedded local license
server. (Default is false.)

No

binding.break.policy (Used to enable the binding-break detection feature described in Binding-
Break Detection with Grace Period in Chapter 6, Advanced License Server
Features.) The type of action to take when a binding break is detected in any
of the producer-specified binding elements:

• hard—An immediate hard binding break is imposed—that is, the license
server can no longer serve licenses.

• soft—A soft binding break is in effect, allowing the license server to
continue to serve licenses despite the break.

• interval—A soft binding break with a grace period is in effect, allowing
the license server to serve licenses until the grace period expires. Then
a hard binding break goes into immediate effect, and licenses can no
longer be served. The length of the grace period is the interval value,
specified with an optional unit-suffix letter—s, m, h, d, or w—indicating
seconds, minutes, hours, days, or weeks (for example, 3d is 3 days). If
no suffix is used, the server assumes the value is in seconds.

Once set, this policy is not visible in producer-settings.xml. However, the
binding status is viewable through the license server’s /binding REST API
and in the license server log. It is also reported to the FlexNet Embedded
clients and the back office through capability exchanges with the license
server.

No

Back Office URL

lfs.url The URL for back office to which the license server sends capability requests
and synchronization data. The property is required for the online deployment
model of the license server.

No

Policies for Polling Back Office for License Updates

lfs.capability.enabled The property that determines whether capability-request polling is enabled.
If polling is enabled, a capability request is sent to the back office
periodically to update the license server’s license rights.

This property is used for the online deployment model of the license server.
(Default is true.)

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 307

lfs.capability.repeats The amount of time between polling sessions to the back office. The value
can be specified with an optional unit-suffix letter—s, m, h, d, or w—indicating
seconds, minutes, hours, days, or weeks. If no suffix is used, the server
assumes the value is in seconds. (Default is 1d; minimum is 10s.)

Yes

lfs.capability.retryCount The number of polling attempts allowed if the initial attempt fails. (Default is
3.)

Yes

lfs.capability.retryRepeats The amount of time between polling attempts, if the initial attempt fails. The
value can be specified with an optional unit-suffix letter—s, m, h, d, or w—
indicating seconds, minutes, hours, days, or weeks. If no suffix is used, the
server assumes the value is in seconds. (Default is 30s; minimum is 1s.)

Yes

Policies for Synchronizing to Back Office

lfs.syncTo.enabled The property that determines whether synchronization to the back office is
enabled. This property should be viewed in combination with
lfs.syncTo.includeAll:

• lfs.syncTo.enabled=true and lfs.syncTo.includeAll=true: (Online
synchronization) This mode collects all historical client actions in the
synchronization history and uploads this data to the back office as part
of the synchronization.

• lfs.syncTo.enabled=true and lfs.syncTo.includeAll=false: (Online
synchronization) This mode collects only the current state for each
active client device at the point of synchronization and uploads this data
to the back office

• lfs.syncTo.enabled=false and lfs.syncTo.includeAll=true: (Offline
synchronization) This mode collects all historical and current client
actions. This data is retained on the license server until the offline
synchronization tools are run (see Offline Synchronization to the Back
Office).

• lfs.syncTo.enabled=false and lfs.syncTo.includeAll=false: No
synchronization data is collected (synchronization is disabled). Client
data is deleted from the license server as soon as the client expires.

(Default is false.)

No

lfs.syncTo.pagesize The maximum number of client records to include in a synchronization
message to the back office. A smaller page size limits the memory overhead
at the expense of having multiple synchronization transactions. (Default is
50; minimum is 10; maximum is 256.)

Yes

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

308 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

lfs.syncTo.threads The number of parallel threads allocated to handle the synchronization of
metered-usage and license-distribution data to the back office. (Default is
1.)

Yes

lfs.syncTo.repeats The amount of time between synchronization sessions to the back office.
The value can be specified with an optional unit-suffix letter—s, m, h, d, or w—
indicating seconds, minutes, hours, days, or weeks. If no suffix is used, the
server assumes the value is in seconds. (Default is 5m; minimum is 10s.)

Yes

lfs.syncTo.retryCount The number of synchronization attempts to the back office allowed when an
initial attempt fails. (Default is 4.)

Yes

lfs.syncTo.retryRepeats The amount of time between synchronization attempts when an initial
attempt fails. The value can be specified with an optional unit-suffix letter—
s, m, h, d, or w—indicating seconds, minutes, hours, days, or weeks. If no
suffix is used, the server assumes the value is in seconds. (Default is 5m;
minimum is 1s.)

Yes

lfs.syncTo.delay At license server startup, the amount of time the server should wait before
initiating a synchronization session to the back office. (Default is 2s;
minimum is 2s.)

Yes

lfs.syncTo.includeAll The property that determines whether historical license-distribution data for
concurrent features is collected and sent to the back office as part of the
synchronization. This property should be viewed in combination with
lfs.syncTo.enabled:

• lfs.syncTo.enabled=true and lfs.syncTo.includeAll=true: (Online
synchronization) This mode collects all historical client actions in the
synchronization history and uploads this data to the back office as part
of the synchronization.

• lfs.syncTo.enabled=true and lfs.syncTo.includeAll=false: (Online
synchronization) This mode collects only the current state for each
active client device at the point of synchronization and uploads this data
to the back office

• lfs.syncTo.enabled=false and lfs.syncTo.includeAll=true: (Offline
synchronization) This mode collects all historical and current client
actions. This data is retained on the license server until the offline
synchronization tools are run (see Offline Synchronization to the Back
Office).

• lfs.syncTo.enabled=false and lfs.syncTo.includeAll=false: No
synchronization data is collected (synchronization is disabled). Client
data is deleted from the license server as soon as the client expires.

(Default is true.)

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 309

Policies for Synchronizing from Back Office

lfs.syncFrom.enabled The property that determines whether license-recovery from the back office
is enabled. If recovery is enabled, the metered-usage data and license-
distribution state for concurrent features is recovered from the back office
when the license server initially starts up with a new or reset trusted
storage. (Default is false.)

No

Policies for License Server Failover

These settings are normally set by the license server administrator on the back-up server in a failover configuration. The
administrator can set these using the FlexNet License Server Administrator command-line tool.

Note that these settings cannot be set using producer-settings.xml. As a producer, you can edit these settings via the
/configuration API. The setting fne.syncTo.repeats can only be edited via the /configuration API.

fne.syncTo.enabled (Defined on back-up license server only; required) The property that
determines whether to enable “license server to license server”
synchronization in a failover configuration. (Default is false.)

Yes

fne.syncTo.mainUri (Defined on back-up license server only; required) The URI of the main
license server in a failover configuration. Use the following format:

http://server:port/fne/bin/capability

where server:port is the main license server’s name and port number, as in:

http://11.11.1.111:7070/fne/bin/capability

Yes

fne.syncTo.repeats (Can only be set using the /configuration API; defined on back-up license
server only) The amount of time between synchronization sessions from the
main server to the back-up server. (The back-up server initiates the
sessions.) The value can be specified with an optional unit-suffix letter—s, m,
h, d, or w—indicating seconds, minutes, hours, days, or weeks. If no suffix is
used, the server assumes the value is in seconds. (Default is 300s; minimum
is 5m.)

No

fne.syncTo.pagesize (Defined on back-up license server only) The maximum number of client
records to include in a synchronization message to the back-up server. A
smaller page size limits the memory overhead at the expense of having
multiple synchronization transactions. (Default is 100.)

Yes

fne.syncTo.retryCount (Defined on back-up license server only) The number of synchronization
attempts from the main server allowed when an initial attempt fails. (Default
is 1.)

Yes

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

310 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

fne.syncTo.retryRepeats (Defined on back-up license server only) The amount of time between
synchronization attempts when an initial attempt fails. The value can be
specified with an optional unit-suffix letter—s, m, h, d, or w—indicating
seconds, minutes, hours, days, or weeks. If no suffix is used, the server
assumes the value is in seconds. (Default is 60s.)

Yes

Security Policies

security.enabled The option that enables (true) or disables (false) administrative security on
the license server.

When administrative security is enabled, REST APIs used to administer the
license server are “secured” (that is, credentials are required to access
them). See Managing Administrative Security on a Local License Server or
CLS Instance.

When this option is true, the remaining policies in this Security Policies
section are in effect.

(Default is false.)

Yes

security.token.duration (Available only when security.enabled is true) The duration of the JSON
Web Token (generated when a user successfully authenticates credentials
to access secured REST API endpoints on the license server). When the
token expires, credentials must be re-entered to re-authorize.

The value can be specified with an optional unit-suffix letter—s, m, h, d, or w—
indicating seconds, minutes, hours, days, or weeks. If no suffix is used, the
server assumes the value is in seconds.

(Default is 1d.)

Yes

security.http.auth.enabled (Available only when security.enabled is true) The option that enforces the
use of HTTPS to access secured REST APIs.

• When false, the policy enforces the use of HTTPS to access REST API
endpoints. (An error is generated during attempts to access REST API
with HTTP.)

• When true, the policy allows either HTTP or HTTPS to access REST API
endpoints.

This policy also enforces the use of HTTPS when calling the
/access_request REST API used to perform a JSON capability exchange, as
described in API for Enabling JSON Security for the Cloud Monetization API.

(Default is true.)

Yes

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 311

security.ip.whitelist (Available only when security.enabled is true) The list of IP addresses for
those components (devices) that you determine should have access to the
license server without having to provide credentials to access secured REST
API endpoints. For example, you might want a machine in your IT department
to have such access to the endpoints for fixing issues or performing
maintenance.

List only IP4 or IP6 addresses; and separate each address with a comma, as
this example value shows:

111.222.2.2,111.333.3.3

Yes

security.anonymous (Available only when security.enabled is true) The option that determines
whether or not users need credentials for “read” access to the secured REST
API endpoints.

• When the value is true, all user accounts are automatically given “read”
rights (ROLE_READ) and do not need to provide credentials for “read”
access.

• When the value is false, a given user account must be explicitly
assigned ROLE_READ in order to perform “read” operations. (The
exception occurs when no role is assigned to an account, in which case
ROLE_READ is assigned as the only role by default.) Credentials are then
required to perform any “read” operation. If an account is not
authorized for ROLE_READ, no “read” access is given. This setting
provides additional protection against unauthorized queries on the
license server.

(Default is false.)

Yes

Logging Policies

logging.directory The directory to which the license server writes the log for the license server.
The default is ${base.dir}/logs, where ${base.dir} points to the
flexnetls/producer_name folder in the service’s or user’s home directory.

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

312 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

logging.threshold The lowest level of log-message granularity to record—FATAL, ERROR, WARN,
INFO, LICENSING, POLICY, or DEBUG. For example, if FATAL is set, only messages
about fatal events are recorded. However, if WARN is set, fatal-event, error,
and warning messages are recorded.

The POLICY threshold records information about the checkout process when
feature selectors are used to filter features (see Feature-Selector Filtering).
This threshold can be especially useful for monitoring checkouts when an
MVEL script is used to manage feature-selector priorities.

(Default is INFO.)

Logging categories

FATAL—Errors that prevent the server from starting up

ERROR—Serious errors

WARN—Warnings

INFO—Informational messages

LICENSING—Server responses such as, for example, capability responses and
JSON replies

POLICY—Additional information for checkout filters

DEBUG—Additional debug-level information. The license server should not use
a logging level of DEBUG for a long period, because it can have a negative
impact on license server performance. It is not recommended to use DEBUG
on production license servers.

Yes

graylog.host The host name of a Graylog server, if any, to which logging messages are
sent.

Yes

graylog.threshold The lowest level of log-message granularity to record—FATAL, ERROR, WARN,
INFO, LICENSING, POLICY, or DEBUG. For example, if FATAL is set, only messages
about fatal events are recorded. However, if WARN is set, fatal-event, error,
and warning messages are recorded. (Default is WARN.)

Yes

Anchor Policies

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 313

anchoring.request.counter.limit The threshold for the maximum number of capability requests received from
clients at which the anchor on the license server is updated.

This threshold is used in conjunction with anchoring.time.limit threshold.
Whichever threshold is reached first triggers an anchor update.

When changing the default for either policy, consider that an anchor update
incurs overhead. If you have also enabled trusted-storage backups on the
license server (database.backup-enabled is true), a backup is performed
each time the anchor is updated. You need to balance the frequency of
anchor updates with your security requirements and the enterprise
threshold for possible data loss during trusted-storage restoration.

(Default and minimum is 1000.)

No

anchoring.time.limit The threshold specifying the maximum amount of time to elapse before the
anchor on the license server is updated.

The value can be specified with an optional unit-suffix letter—s, m, h, d, or w—
indicating seconds, minutes, hours, days, or weeks. If no suffix is used, the
server assumes the value is in seconds.

This threshold is used in conjunction with anchoring.time.limit threshold.
Whichever threshold is reached first trigger an anchor update.

(Default and minimum is 60s.)

No

Table A-1 • License Server Policy Settings (cont.)

Setting Description
Edit-
able?

Appendix A Reference: Policy Settings for the License Server

314 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

B

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 315

Effects of Special Request
Options on Use of Reservations

Two options that you can enable in a capability request affect how the license server processes the request when
reservations are used. (For more about standard request processing, see Processing the Capability Request
When Reservations Are Used in Chapter 5, More About Basic License Server Functionality.) The following
describes the basic behavior of these options, whether license reservations are used or not:

• Incremental capability request—When the license server processes a capability request marked as
“incremental”, it attempts to renew all licenses currently served to the client and include them in the
capability response along with the requested desired features. By default, the incremental flag is not
included in the request; the server considers any licenses currently served to the client as “returned” and
sends a capability response with the requested desired features only. For more details, see Incremental
Capability-Request Processing in Chapter 6, Advanced License Server Features.

• Partial-checkout feature—If a desired feature is marked as “partial” in the capability request, the license
server can send whatever is available for that feature should the available count for the feature on the server
fall short of the requested count. Without the “partial” attribute enabled for a desired feature, the license
server grants the feature only if the count requested for that feature is available on the server. For more
details, see Granting All Available Quantity for a Feature in Chapter 6, Advanced License Server Features.

To help you understand the effects that these options have on how the license server grants licenses when
reservations are available, refer to the following sections describing scenarios:

• Scenario Assumptions

• Incremental Option Enabled

• Partial-Checkout Option Enabled

• Both Incremental and Partial-Checkout Options Enabled

For the sake of simplicity, the feature version is omitted in these scenarios. Anytime feature F1 is mentioned,
assume that its version is 1.0.

Appendix B Effects of Special Request Options on Use of Reservations
Scenario Assumptions

316 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Scenario Assumptions
The scenarios are based on the following assumptions about the license server and the current feature
distribution:

• Feature Allocation on the License Server in the Scenarios

• Starting State for Each Scenario

Feature Allocation on the License Server in the Scenarios
The license server has 10 counts of feature F1:

• 3 reserved counts for device D1

• 2 reserved counts for user U1

• 5 shared counts available

Starting State for Each Scenario
The starting state for each scenario is a follows:

• Device D1 has been served 4 counts (all 3 reserved counts, 1 shared count).

• Device D2 has been served 3 counts (3 shared counts).

• User U1 currently has no served counts.

• 1 shared count remains available.

Incremental Option Enabled
When a capability request is marked as “incremental”, the server first searches the reserved and shared counts
to satisfy whatever count is needed to preserve current licenses on the client device. Then, if desired features are
specified in the request, the license server attempts to grant the requested features from the remaining reserved
and shared counts.

If no desired features exist in the request, the license server attempts to satisfy only the feature counts needed to
preserve current licenses on the client device. Any remaining reserved features are not automatically served
when the “incremental” option is enabled. (For a description of normal processing, see Basic Process for
Granting Licenses and its related scenarios.)

The following scenarios assume that the capability request is marked as “incremental”.

• Scenario 1—Incremental: No Device or User Reservations Available

• Scenario 2—Incremental: Device Reservations But No User Reservations Available

• Scenario 3—Incremental: User Reservations But No Device Reservations Available

• Scenario 4—Incremental: Device and User Reservations Available

Appendix B Effects of Special Request Options on Use of Reservations
Incremental Option Enabled

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 317

Scenario 1—Incremental: No Device or User Reservations Available
When user U7 (who has no reservations) sends a incremental capability request from device D2 (which also has no
reservations), the 3 counts of F1 currently served to D2 are returned to the shared counts. (Four shared counts are
now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, 3 shared counts are served to preserve the previous 3
counts on the device.

• If the incremental request specifies 1 count of F1, 3 shared counts are served to preserve the previous count.
Additionally, the 1 remaining available shared count is served as the 1 desired count.

• If the incremental request specifies 2 counts of F1, 3 shared counts are served to preserve the previous
count. However, no additional counts are served to satisfy the 2 desired counts since only 1 shared count
remains available.

Scenario 2—Incremental: Device Reservations But No User Reservations Available
When user U7 (who has no reservations) sends a capability request from device D1, the 4 counts of F1 currently
served to D1 (3 reserved counts for D1 and 1 shared count) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, the 3 counts of F1 reserved for D1 plus 1 shared count are
served to preserve the previous 4 counts on the device.

• If the incremental request specifies 1 count of F1, the 3 counts reserved for D1 plus 1 shared count are
served to preserve the previous count. Additionally, the 1 remaining available shared count is served as the 1
desired count.

• If the incremental request specifies 2 counts of F1, the 3 counts reserved for D1 plus 1 shared count are
served to preserve the previous count. However, no additional counts are served to satisfy the 2 desired
counts since only 1 shared count remains available.

Scenario 3—Incremental: User Reservations But No Device Reservations Available
When user U1 sends a capability request from device D2 (which has no reservations), the 3 counts of F1 currently
served to D2 are returned to shared counts. (Four shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, the 2 counts of F1 reserved for U1 plus 1 shared count are
served to preserve the previous 3 counts on the device.

• If the incremental request specifies 3 counts of F1, the 2 counts of F1 reserved for U1 plus 1 shared count are
served to preserve the previous count. Additionally, the remaining 3 available shared counts are served to
satisfy the desired 3 counts.

• If the incremental request specifies 4 counts of F1, the 2 counts of F1 reserved for U1 plus 1 shared count are
served to preserve the previous count. However, no additional counts are served to satisfy the 4 desired
counts since only 3 shared counts remain available.

Appendix B Effects of Special Request Options on Use of Reservations
Partial-Checkout Option Enabled

318 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Scenario 4—Incremental: Device and User Reservations Available
If user U1 sends a capability request from device D1, the 4 counts of F1 currently served to D1 (3 reserved and 1
shared) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, the 3 counts of F1 reserved for D1 plus 1 of the 2 reserved
counts for U1 are served to preserve the previous 4 counts on the device. However, the remaining 1 reserved
count (for U1) is not automatically served once the preserved count is satisfied.

• If the incremental request specifies 2 counts of F1, the 3 counts reserved for D1 and 1 of the 2 counts
reserved for U1 are served to preserve the previous count. Additionally, the remaining 1 reserved count for U1
and 1 shared count are served to satisfy the desired 2 counts.

• If the incremental request specifies 4 counts of F1, the 3 counts reserved for D1 and 1 of the 2 counts
reserved for U1 are served to preserve the previous count. However, no additional counts are served to satisfy
the 4 desired counts since only 1 reserved count for U1 and 2 shared counts remain available.

Partial-Checkout Option Enabled
The following scenarios assume that the feature F1 is enabled for partial checkout:

• Scenario 1—Partial Checkout: No Device or User Reservations Available

• Scenario 2—Partial Checkout: Device Reservations But No User Reservations Available

• Scenario 3—Incremental: User Reservations But No Device Reservations Available

• Scenario 4—Partial Checkout: Device and User Reservations Available

Scenario 1—Partial Checkout: No Device or User Reservations Available
When user U7 (who has no reservations) sends a capability request from device D2 (which also has no
reservations), the 3 counts of F1 currently served to D2 are returned to the shared counts. (Four shared counts are
now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, no counts are served since neither D2 nor U7 has reserved counts.

• If the request marking F1 for partial-checkout asks for 4 counts of F1, the remaining 4 available shared
counts are served.

• If the request marking F1 for partial-checkout asks for 5 counts of F1, the remaining 4 available shared
counts are served, satisfying 4 of the 5 desired counts.

Scenario 2—Partial Checkout: Device Reservations But No User Reservations
Available
When user U7 (who has no reservations) sends a capability request from device D1, the 4 counts of F1 currently
served to D1 (3 reserved counts for D1 and 1 shared count) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, the 3 counts of F1 reserved for D1 are served.

Appendix B Effects of Special Request Options on Use of Reservations
Both Incremental and Partial-Checkout Options Enabled

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 319

• If the request marking F1 for partial-checkout asks for 4 counts of F1, the 3 counts reserved for D1 plus 1
shared count are served.

• If the request marking F1 for partial-checkout asks for 6 counts of F1, the 3 counts reserved for D1 and the
remaining 2 available shared counts are served, satisfying 5 of the 6 desired counts.

Scenario 3—Partial Checkout: User Reservations But No Device Reservations
Available
If user U1 sends a capability request from device D2 (which has no reservations), the 3 counts of F1 currently
served to D2 are returned to shared counts. (Four shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, the 2 counts of F1 reserved for U1 are served.

• If the request marking F1 for partial-checkout asks for 4 counts of F1, the 2 counts reserved for U1 plus 2
shared counts are served.

• If the request marking F1 for partial-checkout asks for 7 counts of F1, the two counts reserved for U1 and the
remaining 4 available shared counts are served, satisfying 6 of 7 desired counts.

Scenario 4—Partial Checkout: Device and User Reservations Available
If user U1 sends a capability request from device D1, the 4 counts of F1 currently served to D1 (3 reserved and 1
shared) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the request has no desired features, all reserved features—3 counts of F1 for D1 and 2 counts for U1—are
served.

• If the requests marking F1 for partial-checkout asks for 7 counts of F1, the 3 counts reserved for D1, the 2
counts reserved for U1, and the remaining 2 available shared counts are served.

• If the request marking F1 for partial-checkout asks for 8 counts of F1, the 3 counts reserved for D1, the 2
counts reserved for U1, and the remaining 2 available shared counts are served to satisfy 7 of the 8 desired
counts.

Both Incremental and Partial-Checkout Options
Enabled

The following scenarios assume that the capability request is flagged as incremental and feature F1 is enabled for
partial checkout:

• Scenario 1—Incremental and Partial Checkout: No Device or User Reservations Available

• Scenario 2—Incremental and Partial Checkout: Device Reservations But No User Reservations Available

• Scenario 3—Incremental and Partial Checkout: User Reservations But No Device Reservations Available

• Scenario 4—Incremental and Partial Checkout: Device and User Reservations Available

Appendix B Effects of Special Request Options on Use of Reservations
Both Incremental and Partial-Checkout Options Enabled

320 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Scenario 1—Incremental and Partial Checkout: No Device or User Reservations
Available
When user U7 (who has no reservations) sends a incremental capability request from device D2 (which also has no
reservations), the 3 counts of F1 currently served to D2 are returned to the shared counts. (Four shared counts are
now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, 3 shared counts are served to preserve the previous 3
counts on the device.

• If the incremental request marking F1 for partial-checkout asks for 1 count of F1, 3 shared counts are served
to preserve the previous count. Additionally, the remaining 1 available shared count is served as the 1
desired count.

• If the incremental request marking F1 for partial-checkout asks for 2 counts of F1, 3 shared counts are served
to preserve the previous count. Additionally, the remaining 1 available shared count is served to satisfy 1 of
the 2 desired counts.

Scenario 2—Incremental and Partial Checkout: Device Reservations But No User
Reservations Available
When user U7 (who has no reservations) sends a capability request from device D1, the 4 counts of F1 currently
served to D1 (3 reserved counts for D1 and 1 shared count) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, the 3 counts of F1 reserved for D1 plus 1 shared count are
served to preserve the previous 4 counts on the device.

• If the incremental request marking F1 for partial-checkout asks for 1 count of F1, the 3 counts reserved for D1
plus 1 shared count are served to preserve the previous count. Additionally, the remaining 1 available shared
count is served as the 1 desired count.

• If the incremental request marking F1 for partial-checkout asks for 2 counts of F1, the 3 counts reserved for
D1 plus 1 shared count are served to preserve the previous count. Additionally, the remaining 1 available
shared count is served to satisfy 1 of the 2 desired counts.

Scenario 3—Incremental and Partial Checkout: User Reservations But No Device
Reservations Available
When user U1 sends a capability request from device D2 (which has no reservations), the 3 counts of F1 currently
served to D2 are returned to shared counts. (Four shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, the 2 counts of F1 reserved for U1 plus 1 shared count are
served to preserve the previous 3 counts on the device.

• If the incremental request marking F1 for partial-checkout asks for 3 counts of F1, the 2 counts of F1 reserved
for U1 plus 1 shared count are served to preserve the previous count. Additionally, the remaining 3 available
shared counts are served to satisfy the desired 3 counts.

Appendix B Effects of Special Request Options on Use of Reservations
Both Incremental and Partial-Checkout Options Enabled

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 321

• If the incremental request marking F1 for partial-checkout asks for 4 counts of F1, the 2 counts of F1 reserved
for U1 plus 1 shared count are served to preserve the previous count. Additionally, the remaining 3 available
shared counts are served to satisfy the desired 3 of the desired 4 counts.

Scenario 4—Incremental and Partial Checkout: Device and User Reservations
Available
If user U1 sends a capability request from device D1, the 4 counts of F1 currently served to D1 (3 reserved and 1
shared) are returned. (Two shared counts are now available.)

The following describes possible scenarios of what happens next:

• If the incremental request has no desired features, the 3 counts of F1 reserved for D1 plus 1 of the 2 reserved
counts for U1 are served to preserve the previous 4 counts on the device.

• If the incremental request marking F1 for partial-checkout asks for 2 counts of F1, the 3 counts reserved for
D1 and 1 of the 2 counts reserved for U1 are served to preserve the previous count. Additionally, the
remaining 1 reserved count for U1 and the remaining 1 available shared count are served to satisfy the
desired 2 counts.

• If the incremental request marking F1 for partial-checkout asks for 4 counts of F1, the 3 counts reserved for
D1 and 1 of the 2 counts reserved for U1 are served to preserve the previous count. Additionally, the 1
remaining reserved count for U1 and the remaining 2 available shared counts are served to satisfy the
desired 3 of the desired 4 counts.

Appendix B Effects of Special Request Options on Use of Reservations
Both Incremental and Partial-Checkout Options Enabled

322 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

C

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 323

SysV Alternative for Installation on
Linux

As an alternative to installing the FlexNet Embedded local license server as a Linux service using systemd
(described in Chapter 3, Installing and Running the License Server), you can use the SysV init runlevel system to
perform the installation. This type of installation is an option only if your operating system supports SysV.

This following sections describe how to use SysV to install and run the license server as a Linux service:

• Files Required for License Server Installation Using SysV

• Prepare for Linux Installation

• Install and Start as a Linux Service

• Install and Start in Console Mode

• Edit Local Settings Post-Installation

• Uninstall the License Server

Files Required for License Server Installation
Using SysV

The following files, distributed with the license server, support the installation and running of the license server
service under SysV:

• producer-settings.xml

• flexnetls

• configure

• local-configuration.yaml

Note • The example local-configuration.yaml file included in the license server package is for installs
under SysV. For systemd installs, the install script generates the local-configuration.yaml file.

Appendix C SysV Alternative for Installation on Linux
Prepare for Linux Installation

324 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Residing in the same directory as flexnetls.jar, these files work together to generate the components required
to install and start the license server service in a SysV configuration.

For a list of all files (aside from the SysV installer files) that can be distributed with the license server, see License
Server Components in Chapter 2, Getting Started.

Prepare for Linux Installation
Use the following steps to configure license server in preparation for installation.

Task To prepare for installation

1. If you have not already done so, extract the contents of the .tar file to the an installation directory.

2. Copy the producer-settings.xml file that you created into the server directory in the installation directory for
the license server software package. This file defines operational policies for your license server. See License
Server Configuration Utility in Chapter 7, Producer Tools, for details about this file.

3. To create and edit settings for your local environment, execute sudo ./configure from the installation
directory to generate the /etc/default/flexnetls-producer_name file. Do either of the following:

• To generate the file with the default settings, simply issue the sudo ./configure command.

• To generate the file with settings specific to your environment, run the command with one or more of the
options described in the following table to edit settings as needed. For example, to update the port and
user name for the license server service, you might enter the following, where 7071 and user1 are the
new values to which you are updating the port and user name:

sudo ./configure --port 7071 --user user1

Note • Any setting value that uses a space must be enclosed in double quotations (for example, “user
1”).

Table C-1 • Local Settings for the License Server on Linux

Option Description

--program-dir dir The installation location of the license server service (default is /opt/
flexnetls/producer_name).

--data-dir dir The location of trusted storage (default is /var/opt/flexnetls/
producer_name). This overrides the server.trustedStorageDir value in the
producer-settings.xml.

Appendix C SysV Alternative for Installation on Linux
Install and Start as a Linux Service

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 325

Install and Start as a Linux Service
Use these steps to install and start the license server as a service on your Linux device.

Task To install and start the license server as a service on Linux

1. Execute sudo ./flexnetls install to install the license server as a service. If the server service is installed
properly, you receive the message Service flexnetls-producer_name installed, where flexnetls-
producer_name is the name of the service.

2. Go to the /etc/init.d directory, and execute sudo service flexnetls-producer_name start to start the
service. You should receive a message stating that the service has started.

Note • Before starting a license server that uses the VM UUID as its hostid, you might need to run a special
service to enable the retrieval of the VM UUID. See Manage the License Server Service on Linux in Chapter 3,
Installing and Running the License Server, for details.

3. To confirm that the service is running, execute sudo service flexnetls-producer_name status. You should
receive the message flexnetls is running. (To stop the service, execute sudo service flexnetls-
producer_name stop.)

--port port The listening port used by the license server service (default is 7070).

If the device on which the license server is running uses multiple network
interfaces, you can use the port option to specify the interface that you
want the license server to use. Simply include the IP address for the
interface in square brackets, as shown in this example:

--port [127.0.0.1].1443

--user user_name The user name under which the service runs (default is flexnetls).

--group group_name The group name under which the service runs (default is flexnetls).

--java_home path
or
--jre_home path

The path for JDK or JRE installation that the license server should use.

By default, the license server uses the value of your JAVA_HOME or
JRE_HOME system environment variable, whichever is defined on your
device, to determine the Java installation location. However, if you want
the license server to use different Java installation on your system,
provide the installation’s explicit path for either the java_home or jre_home
setting. (This override pertains to the license server only; your system
continues to use the Java installation defined by the system environment
variable.)

Table C-1 • Local Settings for the License Server on Linux (cont.)

Option Description

Appendix C SysV Alternative for Installation on Linux
Install and Start in Console Mode

326 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

4. To view the license server log, navigate to the server’s logging directory (by default, /var/opt/flexnetls/
producer_name/logs), and review the contents of the appropriate .log file.

Note • Once you install the license server as service, you cannot use any of the “flexnetls” non-service
command-line options, such as “console” or “install”.

Install and Start in Console Mode
Use these steps to install and start the license server in console mode on your Linux device.

Note • Run the license server in console mode for testing and development purposes only. It is recommended
that the enterprise customer run the license server only as a service.

Task To install and start the license server in console mode on Linux

1. If you attempt to start the license server in console mode as a non-root user, you receive the message You
must be a member of the flexnetls group to do this. Therefore, as a root user, run the following command
to add your user name as a non-root user to the flexnetls group:

usermod -g flexnetls user

Note • Before starting a license server that uses the VM UUID as its hostid, you might need to run a special
service to enable the retrieval of the VM UUID. See Manage the License Server Service on Linux in Chapter 3,
Installing and Running the License Server, for details.

2. Log in as the non-root user, navigate to the server directory, and run the command ./flexnetls.

Edit Local Settings Post-Installation
As part of the installation process, the license server package generates a local settings file that configures the
license server for your local environment, as described in the previous section, Prepare for Linux Installation. The
installation process provides a facility that lets you change default settings before the settings file is generated.

However, if you need to modify the license server’s local settings after you have installed the license server on a
Linux platform, use these procedures:

• When Server Runs as a Service

• When Server Runs Console Mode

When Server Runs as a Service
Use this procedure to update local settings when the license server is running as a SysV service on Linux.

Appendix C SysV Alternative for Installation on Linux
Edit Local Settings Post-Installation

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 327

Task To modify local settings after installing the license server as a service on Linux

1. Open the /etc/default/flexnetls-producer_name file in a text editor, and edit the settings as needed. (For
example, you can uncomment settings or change existing values.) See the previous section Prepare for Linux
Installation for a description of most settings.

Note that the following settings are automatically added (as commented text) to the file at the time it is
created with the configure tool:

Setting Description

ACTIVE_HOSTID=value/type The hostid to use for the license server.

The hostid can only be set using a configuration file if no hostid has yet
been specified for the license server. Once a hostid has been set, it can
only be changed using the REST API /hostids/selected or using FlexNet
License Server Administrator.

The syntax is value/type (for example, 7200014f5df0/ETHERNET). If no
value is specified for this setting and no active hostid has yet been set for
the license server, the license server uses, by default, the first available
Ethernet address on the machine. If using a dongle ID or a hostid other
than the first available Ethernet address, the license server administrator
can specify it here.

Important • It is not recommended to change the hostid of a license
server that has licenses mapped in the back office (FlexNet Operations).
If the hostid is changed to a value that is different to that specified for the
license server in the back office, any existing licenses mapped to the
license server that is locked to the old hostid in the back office will be
orphaned.

To prevent this from happening, it is best practice to return the license
server in the back office. During the return operation, you as the producer
can transfer the licenses to a different device; this can be the same
machine with the desired hostid. After the transfer, wait for the license
server to synchronize with the back office (server synchronization occurs
based on synchronization policies or on-demand).

For more information on returning the license server, refer to the FlexNet
Operations User Guide, section “Returning a Device”.

Important • If you specify a server hostid using ACTIVE_HOSTID, the
server.hostType.order property (if set) is ignored.

Appendix C SysV Alternative for Installation on Linux
Edit Local Settings Post-Installation

328 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

HTTPS_SERVER_FILE=path The path to the HTTPS “server” configuration file used to support
incoming HTTPS from client devices. For details on how the enterprise
creates this configuration file and configures the server, see Incoming
HTTPS in Chapter 6, Advanced License Server Features.

HTTPS_CLIENT_FILE=path The path to the HTTPS “client” configuration file used to support outgoing
HTTPS communication to FlexNet Operations.

Note • The “client” configuration file is being deprecated and will be
removed in a future release. For more information about the
configuration file and HTTPS setup on the license server, see Outgoing
HTTPS in Chapter 6, Advanced License Server Features.

SERVER_ALIAS=alias A user-defined name (sometimes called host name) for the license
server. This name is added to server’s capability requests to the back
office, where it is then saved and used to identify the license server in the
FlexNet Operations Producer and End User portals.

One important use for this setting is that the alias can be included in the
initial capability request sent at server registration, providing a helpful
name by which users can identify the new server in the portals. If no alias
is sent at registration, the server is identified by its hostid.

EXTENDED_SUFFIX=suffix The suffix used for the extended hostid feature. See Extended Hostids in
Chapter 6, Advanced License Server Features for details.

EXTRA_SYSPROPERTIES=
-property1=value1
[-property2=value2...]

One or more system properties (each in -Dkey=value format) that are
passed to the Java Runtime system. The license server depends on the
Java Runtime Environment to support certain network functionality, such
as specifying the HTTP proxy.

For example, if you plan to have the license server communicate with the
back office through an HTTP proxy, use this setting to identify the proxy
parameters needed to configure the server. (For details, see Proxy
Support for Communication with the Back Office in Chapter 6, Advanced
License Server Features.) The following shows example proxy parameters
listed as -D system properties for this setting:

EXTRA_SYSPROPERTIES="-Dhttp.proxyHost=10.90.3.133
-Dhttp.proxyPort=3128 -Dhttp.proxyUser=user1a
-Dhttp.proxyPassword=user1apwd35"

Setting Description

Appendix C SysV Alternative for Installation on Linux
Uninstall the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 329

2. Execute sudo service flexnetls-producer_name restart to restart the license server service.

When Server Runs Console Mode
Use this procedure to update local settings when the license server is running in console mode on Linux.

Task To modify local settings after installing the license server in console mode on Linux

1. Close the command window running the license server in console mode to stop the server.

2. Use command-line options with flexnetls to update settings. For example, to update the port setting, enter
a command similar to this:

./flexnetls -port 7171

For a description of the options, see the previous section Prepare for Linux Installation.

3. From the server directory, run ./flexnetls to restart the server in console mode.

Uninstall the License Server
Use the appropriate procedure to uninstall the license server:

• Uninstall the License Server Service

• Uninstall the License Server Running in Console Mode

Uninstall the License Server Service
Use this procedure to uninstall the license server service.

BACKUP_SERVER_HOSTID The hostid of the back-up license server in a failover configuration with
the current license server (as the main server), if the back-up server is
“unknown”—that is, not registered—in FlexNet Operations. This setting
adds the back-up server’s hostid to the capability request sent by the
current license server to the back office. The back office then
automatically registers the back-up server in a failover configuration with
the main server. This process saves the extra step of having to manually
register the failover pair in FlexNet Operations. For more information, see
Failover Using Synchronization to FlexNet Embedded in Chapter 5, More
About Basic License Server Functionality.

Make sure the back-up server’s hostid is the same type (for example,
“ETHERNET”) as the hostid type of the current (main) license server.

You might need to include this setting manually if it is not automatically
generated in the settings file.

Setting Description

Appendix C SysV Alternative for Installation on Linux
Uninstall the License Server

330 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Task To uninstall the license server service

1. Execute the following command: sudo service flexnetls-producer_name stop.

2. Delete the /opt/flexnetls/producer_name folder.

3. Delete the /etc/init.d/flexnetls-producer_name and /etc/default/flexnetls-producer_name files.

4. Optionally, delete these files (listed here with their default locations):

• The trusted storage files in /var/opt/flexnetls/producer_name

• The log files in /var/opt/flexnetls/producer_name/logs

Trusted storage and log locations are defined by the license server policies server.trustedStorageDir and
logging.directory, respectively, the defaults for which are based on ${bases.dir}. Depending on the values
set for these policies on your server, your trusted storage and log files might be in locations different from
those mentioned in this step. See Appendix A, Reference: Policy Settings for the License Server.

Uninstall the License Server Running in Console Mode
Use this procedure to uninstall the license server running in console mode.

Task To uninstall the license server running in console mode

1. Close the command window running the license server.

2. Delete both the /opt/flexnetls/producer_name folder and these files:

• /etc/init.d/flexnetls-producer_name

• /etc/default/flexnetls-producer_name

3. Optionally, delete the following (listed here with their default locations):

• The trusted storage files in /var/opt/flexnetls/producer_name

• The log files in /var/opt/flexnetls/producer_name/logs

Trusted storage and log locations are defined by the license server policies server.trustedStorageDir and
logging.directory, respectively, the defaults for which are based on ${bases.dir}. Depending on the values
set for these policies on your server, your trusted storage and log files might be in locations different from
those mentioned in this step. See Appendix A, Reference: Policy Settings for the License Server.

Manage the License Server Service: Command Summary
The following command options are available to manage a license server service installed using a SysV init run-
level system. To obtain the complete syntax usage for a given command, refer to the following sections:

• Install and Start as a Linux Service

• Edit Local Settings Post-Installation

Appendix C SysV Alternative for Installation on Linux
Uninstall the License Server

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 331

• Uninstall the License Server

Table C-2 • Options Available for Managing the License Server Service

Option Description

install Installs the license server as a service.

start Starts the license server service.

stop Stops the license server service.

restart Stops and restarts the license server service (for example, after you have made
changes to local server settings in /etc/default/flexnetls-producer_name).

status Shows the status of the license server service.

reset-database Resets trusted storage on the license server. This option is rarely used except
for testing purposes or deploying extended hostids. The enterprise license
server administrator should not use this option unless you provide a directive
to do so in specific situations.

restore-database Restores trusted storage from a backup copy stored on the license server. See
Trusted Storage Backup and Restoration.

Important • When the local license server is running as a service, the
-restore-database command only restores the database if a custom
installation location is defined. The command cannot be used to restore
trusted storage from the backup at the service mode installation location.

Appendix C SysV Alternative for Installation on Linux
Uninstall the License Server

332 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

D

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 333

Model Definition Grammar for
Named License Pools

The model definition defines named license pools and conditions for rules that allow or deny access to features.

The following sections provide information and examples for creating model definitions:

• Model Definition Grammar and Syntax—EBNF

• Use Case Examples and Their Model Definitions for Named License Pools

• Model Definition Examples for Reservations Converted to Named License Pools

Model Definition Grammar and Syntax—EBNF
The following section shows all possible grammar structures of the language used to write a model definition.
The syntax representation is based on the Extended Backus–Naur Form (EBNF), which is a formal notation that
can be used to describe other languages. It is grouped into the Parser and the Lexer. Both can be used with
ANTLR (for more information, see antlr.org).

Important • Each definition can have only one model. Reserved model names are reservations and default.

Parser
parser grammar model;
options { tokenVocab=modelLexer; }

// Parser
model: MODEL model_name LBRACE partitions? modelRule* RBRACE EOF;

model_name: QUOTEDSTRING ;
partitions: PARTITIONS LBRACE partition* RBRACE ;

partition: PARTITION partition_name LBRACE feature_spec* RBRACE ;
partition_name: QUOTEDSTRING ;

https://www.antlr.org/

Appendix D Model Definition Grammar for Named License Pools
Model Definition Grammar and Syntax—EBNF

334 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

feature_spec: feature_name feature_version amount vendor_match? ;
feature_name: QUOTEDSTRING ;
feature_version: major_version (DOT minor_version)? ;
major_version: DIGIT+ ;
minor_version: DIGIT+ ;
amount: integer_amount | percentage_amount | REMAINDER ;
integer_amount: DIGIT+ ;
percentage_amount: DIGIT+ PERCENT ;

vendor_match: VENDOR STRING MATCHES match_string;
match_string: QUOTEDSTRING ;

modelRule: ON compound_matcher LBRACE rule_body RBRACE ;

compound_matcher: negatable_matcher compound_rhs* ;

compound_rhs: compound_and_rhs | compound_or_rhs ;

compound_and_rhs: (AND | C_AND) negatable_matcher ;
compound_or_rhs: (OR | C_OR) negatable_matcher ;

negatable_matcher: negated_matcher | simple_matcher ;

negated_matcher: (NOT | C_NOT) simple_matcher ;

simple_matcher: hostid_matcher | hostname_matcher | hosttype_matcher | vendor_dictionary_matcher |
any_matcher ;

hostid_matcher: HOSTID LPAREN parameter_list RPAREN ;
hostname_matcher: HOSTNAME LPAREN parameter_list RPAREN ;
hosttype_matcher: HOSTTYPE LPAREN parameter_list RPAREN ;
vendor_dictionary_matcher: DICTIONARY LPAREN keyword_parameter_list RPAREN ;
any_matcher: ANY LPAREN RPAREN ;

parameter_list: parameter (COMMA parameter)* ;
parameter: QUOTEDSTRING ;
keyword_parameter_list: keyword_parameter (COMMA keyword_parameter)* ;

keyword_parameter: keyword_key COLON keyword_value ;
keyword_key: QUOTEDSTRING ;
keyword_value: WILDCARD | QUOTEDSTRING ;

rule_body: use_statement? server_specified? action? ;
use_statement: USE partition_name_list ;

server_specified: WITHOUT REQUESTED FEATURES LBRACE partition_server_specified |
feature_server_specified RBRACE ;

partition_server_specified: ALL FROM partition_name_list ;
feature_server_specified: feature_spec* ;

partition_name_list: partition_name (COMMA partition_name)* ;

action: ACCEPT | DENY | CONTINUE ;

Appendix D Model Definition Grammar for Named License Pools
Model Definition Grammar and Syntax—EBNF

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 335

Lexer
lexer grammar modelLexer;

MODEL : 'model';
ON : 'on';
PARTITIONS : 'partitions';
PARTITION : 'partition';
REMAINDER : 'remainder';
ANY : 'any';
HOSTID : 'hostid';
USE: 'use';
ACCEPT : 'accept';
DENY : 'deny';
CONTINUE : 'continue';
WITHOUT : 'without';
REQUESTED : 'requested';
FEATURES : 'features';
ALL : 'all';
FROM : 'from';
HOSTNAME: 'hostname';
HOSTTYPE: 'hosttype';
DICTIONARY: 'dictionary';
VENDOR: 'vendor';
STRING: 'string';
MATCHES: 'matches';

LPAREN : '(';
RPAREN : ')';
LBRACE : '{';
RBRACE : '}';
COMMA : ',';
COLON : ':';
WILDCARD : '*';
PERCENT : '%';
DOT : '.';
AND : 'and';
OR : 'or';
NOT : 'not';
C_AND : '&&';
C_OR : '||';
C_NOT : '!';

DIGIT: '0'..'9' ;
QUOTEDSTRING: '"' (~('"' | '\\' | '\r' | '\n') | '\\' ('"' | '\\'))* '"';

// Whitespace, comments
WS : [\t\r\n\u000C]+ -> skip;
COMMENT : '/*' .*? '*/' -> skip ;
LINE_COMMENT : '//' ~[\r\n]* -> skip ;

UNKNOWN_CHAR : . ;

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

336 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Use Case Examples and Their Model Definitions
for Named License Pools

The following examples illustrate possible use cases for sharing feature counts between license pools:

• Use Case: Simple Allow List

• Use Case: Simple Block List

• Use Case: Sharing Counts Between Business Units

• Use Case: Assigning Extra Counts To Business Unit

• Use Case: Exclusive Use of Feature Counts for Business Unit

• Use Case: Exclusive Use of Feature Counts for Business Unit With Exception of Specific Clients

• Use Case: Assigning Features Based on Combined hosttype and hostname Properties

• Use Case: Assigning Features Based on Vendor String Property

• Use Case: Device-specific Handling—Sharing Feature Counts Based On Hosttype

• Use Case: Named License Pool Receiving Entire Remaining Feature Count

• Use Case: Using Regular Expression to Allocate License Counts

• Use Case: Making Feature Counts Available to Multiple Business Units

• Use Case: Letting Server Specify Counts

• Use Case: Accumulating Counts from Multiple Named License Pools (“Continue” Action)

Background Information for Use Cases
The following is information to keep in mind when reading the information in this section.

Vendor Dictionary Data
Many of the following use cases use vendor dictionary data to define conditions for license allocation.

The vendor dictionary provides an interface for an implementer to send custom data in a capability request (in
addition to the FlexNet Embedded–specific data) to the license server and vice-versa. Basically, the vendor
dictionary provides a means to send information back and forth between the client and server for any producer-
defined purposes, as needed; FlexNet Embedded does not interpret this data.

Vendor dictionary data is stored as key–value pairs. The key name is always a string, while a value can be a string
or a 32-bit integer value, or an array of those types (arrays are only supported when using the Cloud Monetization
REST API). Keys are unique in a dictionary and hence allow direct access to the value associated with them.

A common theme across the use cases in this appendix is that feature counts are shared between business units
called Sales and Engineering. These business units would be identified by "business-unit" : ["engineering",
"sales"] entries in the vendor dictionary.

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 337

Communicate the available vendor dictionary data to your enterprise customer’s license server administrator if
you want to enable them to use this data for license allocation rules.

Tip • For an example that demonstrates a vendor dictionary condition that uses an array, see Use Case: Making
Feature Counts Available to Multiple Business Units.

Using the Host Name and Host Type
The host type and host name are values that are optionally set by the software producer on a client device. They
are also sometimes referred to as device type and device name, respectively. Both are a type of a human-
readable “alias”—in contrast to the hostid—which can optionally be included in a capability request.
Communicate the available host types and host names to your enterprise customer’s license server administrator
if you want to enable them to use the hosttype and hostname rules.

Default Behavior If No Conditions Are Met
When a feature request does not meet any of the conditions in the model definition, an on any() condition is
expected that either denies or allows access to a license pool. If no such on any() condition is provided, the
default is that the feature will be served from the default license pool (if features are available). This behavior is
equivalent to the following code:

on any() {
use "default"
accept

}

The examples in this chapter generally do not explicitly show this final on any() condition.

Use Case: Simple Allow List
Requirement: Allow access to specific hostids

In this scenario, only declared hostids are allowed access. Note that no named license pools are needed in this
scenario.

Instead of specifying all hostids in one condition within a rule of access, you can also include multiple rules with
the “on hostid” condition in the model definition.

Model Definition Example

model "exampleModel" {
on hostid("F01898AD8DD3/ETHERNET", "5E00A4F17201/ETHERNET") {

use "default"
accept

}

on any() {
deny

}

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

338 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

}

Note • The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition
does not specify the hostid type, it is assumed that the hostid is of type string.

Use Case: Simple Block List
Requirement: Deny access to specific hostids

In this scenario, all users except a declared few are allowed access.

Model Definition Example

model "exampleModel" {
on hostid("user1@example.com/USER", "user2@example.com/USER") {

deny
}

on any() {
use "default"
accept

}
}

Note • The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition
does not specify the hostid type, it is assumed that the hostid is of type string.

Use Case: Sharing Counts Between Business Units
Requirement: Share feature counts between two business units.

This scenario features two business units called Sales and Engineering, which have been defined by entries in the
vendor dictionary.

The model definition defines two named license pools, one for the Engineering business unit and another for the
Sales business unit. The definition shares the total feature count of 10 for feature f1 equally between both
business units, meaning each business unit gets 5.

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {
"f1" 1.0 5

}
partition "sales" {

"f1" 1.0 5
}

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 339

}

on dictionary("business-unit" : "engineering") {
use "engineering"
accept

}

on dictionary("business-unit" : "sales") {
use "sales"
accept

}
}

Use Case: Assigning Extra Counts To Business Unit
Requirement: Make specified number of features accessible only to one particular business unit.

This scenario features the same business units as before—Sales and Engineering.

For this demonstration, let’s assume that the total feature count for f1 is 10. Of the total count, 3 licenses are
allocated exclusively to the named license pool called engineering. In addition, engineering is allowed access to
the remaining 7 licenses (on a first-come-first-served basis) from the default license pool.

The Sales business unit (which has no pre-allocated counts in this scenario) only has access to the default license
pool.

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {
"f1" 1.0 3

}
}

on dictionary("business-unit" : "engineering") {
use "engineering", "default"
accept

}
}

Use Case: Exclusive Use of Feature Counts for Business
Unit

Requirement: Grant exclusive use of features to a specified business unit

This scenario uses the same business units and named license pools as the previous example: the default license
pool, and a named license pool called engineering for the Engineering business unit. Other business units also
exist (for example, the Sales business unit).

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

340 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Let’s assume that the total feature count for a feature called “cad” is 10. The entire count (expressed here as
100%) is allocated to the named license pool engineering, for exclusive use by the Engineering business unit. This
effectively denies access to feature “cad” for any capability request that comes from a different business unit
(that is, any request that does not include the vendor dictionary entry "business-unit" : "engineering").

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {
"cad" 1.0 100% // entire feature count

}
}

on dictionary("business-unit" : "engineering") {
use "engineering"
accept

}
}

Use Case: Exclusive Use of Feature Counts for Business
Unit With Exception of Specific Clients

Requirement: Grant exclusive use of features to a specified business unit, with the exception of specified clients.

This scenario uses the same framework as the previous use case, Use Case: Exclusive Use of Feature Counts for
Business Unit, but adds a filter that blocks specified clients.

Capability requests are granted for all clients from the business unit Engineering, except for requests coming
from clients with the hostid "5e00a4f17204/ETHERNET" or "5e00a4f17205/ETHERNET".

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {
"cad" 1.0 100% // entire feature count

}
}

on dictionary("business-unit" : "engineering") and not hostid("5e00a4f17204/ETHERNET",
"5e00a4f17205/ETHERNET") {

use "engineering"
accept

}
}

Note • The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition
does not specify the hostid type, it is assumed that the hostid is of type string.

For information about the operators AND and NOT used in this example, see AND, OR, and NOT Operators.

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 341

Use Case: Exclusive Use of Feature Counts for Business
Unit and Specified Clients from other Business Units

Requirement: Grant exclusive use of features to a specified business unit and to a number of specified clients.

This scenario uses the same framework as the use case described in Use Case: Exclusive Use of Feature Counts
for Business Unit With Exception of Specific Clients. However, instead of filtering out specified clients, it also
grants access to a number of select clients that are not part of the Engineering business unit.

Capability requests are granted for all clients from the business unit Engineering, and for clients with the hostid
"5e00a4f17204/ETHERNET" or "5e00a4f17205/ETHERNET" (which may well be part of other business units).

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {
"cad" 1.0 100% // entire feature count

}
}

on dictionary("business-unit" : "engineering") or hostid("5e00a4f17204/ETHERNET", "5e00a4f17205/
ETHERNET") {

use "engineering"
accept

}
}

Note • The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition
does not specify the hostid type, it is assumed that the hostid is of type string.

For information about the operators AND and NOT used in this example, see AND, OR, and NOT Operators.

Use Case: Assigning Features Based on Combined
hosttype and hostname Properties

Requirement: Allow only clients that match specified hosttype and hostname properties access to a named license
pool.

This scenario uses the same Engineering business unit and named license pool that you already know from
previous examples.

In this example, a producer wants to allow client devices that match both a particular host type and host name
access to the named license pool engineering. This can be achieved by combining the hosttype and hostname
conditions using the AND operator. Requests from devices that match only the host type or host name, or none of
these, are served from the default license pool.

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

342 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

"f1" 1.0 100
}

}

on hosttype("tv") and hostname("device-1"){
use "engineering"
accept

}
}

Use Case: Assigning Features Based on Vendor String
Property

Requirement: Allocate feature counts to named license pools based on the product name (specified through the
vendor string property), and return counts to their original named license pool after use.

Note • This use case illustrates how to allocate feature counts to named license pools based on the product
name. However, the vendor string can be used to allocate counts on the basis of any of the substitution variables
that FlexNet Operations supports. For more information on the vendor string, see the Tip, below.

In this scenario, feature counts come from a product for which two different versions exist: an Evaluation version
and a Permanent version. The Evaluation version includes three features (f1, f2, f3), and the Permanent version
includes four features (f1, f2, f4, f5).

As a prerequisite, the product names Eval and Permanent must be defined in the vendor string
{EntitlementLineItem.productName} for the respective product version.

Tip • The producer defines the vendor string in the license model when they create a line item in the back office.
The vendor string can hold arbitrary producer-defined license data. Data can range from feature selectors to pre-
defined substitution variables. For more information, see Set Up the Selectors in FlexNet Operations, or
Predefined Substitution Variables for License Strings in the FlexNet Operations User Guide.

The model definition defines four named license pools. The vendor string matches directive is used to allocate
counts—expressed in percent—from the Evaluation and Permanent product versions to different named license
pools. The directive is evaluated when the license server loads the model definition.

Requests for feature counts are accepted or denied based on vendor dictionary data. In this scenario, the
following vendor dictionary key-value pairs must be set up:

business-unit:engineering
business-unit:sales
PartNumber:Eval
PartNumber:Permanent

The model definition’s rules of access only allow access to a particular named license pool if a capability request
satisfies both conditions in the rule: it must match the dictionary entry for PartNumber and for business-unit.
Capability requests that only satisfy one of the conditions or none are rejected, and access to the named license
pool is blocked.

https://docs.revenera.com/fno_CURRENT/producer/Content/helplibrary/opsSubstVars.htm

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 343

Model Definition Example

model "exampleModel" {
partitions {

partition "eval-engineering" {
"f1" 1.0 75% vendor string matches "ProductName:Eval"
"f2" 1.0 75% vendor string matches "ProductName:Eval"
"f3" 1.0 75% vendor string matches "ProductName:Eval"

}

partition "permanent-engineering" {
"f1" 1.0 75% vendor string matches "ProductName:Permanent"
"f2" 1.0 75% vendor string matches "ProductName:Permanent"
"f4" 1.0 75% vendor string matches "ProductName:Permanent"
"f5" 1.0 75% vendor string matches "ProductName:Permanent"

}

partition "eval-sales" {
"f1" 1.0 25% vendor string matches "ProductName:Eval"
"f2" 1.0 25% vendor string matches "ProductName:Eval"
"f3" 1.0 25% vendor string matches "ProductName:Eval"

}

partition "permanent-sales" {
"f1" 1.0 25% vendor string matches "ProductName:Permanent"
"f2" 1.0 25% vendor string matches "ProductName:Permanent"
"f4" 1.0 25% vendor string matches "ProductName:Permanent"
"f5" 1.0 25% vendor string matches "ProductName:Permanent"

}
}

on dictionary("PartNumber":"Eval") and dictionary ("business-unit" : "engineering") {
use "eval-engineering"
accept

}
on dictionary("PartNumber":"Permanent") and dictionary ("business-unit" : "engineering") {

use "permanent-engineering"
accept

}
on dictionary("PartNumber":"Eval") and dictionary ("business-unit" : "sales") {

use "eval-sales"
accept

}
on dictionary("PartNumber":"Permanent") and dictionary ("business-unit" : "sales") {

use "permanent-sales"
accept

}
on any() {

deny
}

}

The following diagram illustrates the allocation of features to the four named license pools:

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

344 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Figure D-1: “vendor string matches” Directive

Use Case: Device-specific Handling—Sharing Feature
Counts Based On Hosttype

Requirement: Use the hosttype property to route the capability request to the appropriate named license pool.

In this scenario there are three different models of routers, which are distinguished through the hosttype
property in the capability request. Counts of the “router” feature are split between three different named license
pools—called small, medium, and large—and the “on hosttype” condition is used to route the request to the
appropriate named license pool.

Model Definition Example

model "exampleModel" {
partitions {

partition "small" {
"router" 1.0 5

}
partition "medium" {

"router" 1.0 10
}
partition "large" {

"router" 1.0 20
}

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 345

}

on hosttype("small") {
use "small"
accept

}
on hosttype("medium") {

use "medium"
accept

}
on hosttype("large") {

use "large"
accept

}
}

Use Case: Named License Pool Receiving Entire
Remaining Feature Count

Requirement: Distribute all counts of a feature between three named license pools as equally as possible, with
none in the default named license pool.

If you declare three named license pools, two with a count specifier of 33% and one with 34%, integer rounding
might cause some counts to slip into the default license pool. You can avoid this by replacing the last count
specifier with the remainder keyword, which will match all available remaining counts.

Note that any license pool lower than the one specifying the remainder keyword in the model definition receives
zero counts for that feature.

Model Definition Example

model "exampleModel" {
partitions {

partition "p1" { // Total feature count of f1: 10
"f1" 1.0 33% // Feature count in p1: 3

}
partition "p2" {

"f2" 1.0 33% // Feature count in p2: 3
}
partition "p3" {

"f3" 1.0 remainder // Feature count in p3: 4
}

}

Use Case: Using Regular Expression to Allocate License
Counts

Requirement: Allow clients that match a specific hosttype pattern access to a specified named license pool.
Allow clients from business units whose name matches a specific pattern access to two specified named license
pools.

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

346 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

As before, this scenario features two business units called Sales and Engineering, which have been defined by
entries in the vendor dictionary. Using a regular expression in each condition means that the rule can be
simplified—instead of creating a separate condition for every valid hostname or vendor dictionary string, a
regular expression defines the pattern that a hostname and string must match to gain access to feature counts.

Model Definition Example

model "exampleModel" {
partitions {

partition "engineering" {
"f1" 1.0 50%

}
partition "sales" {

"f1" 1.0 50%
}

on hostname("~/[A-Z]{2}[0-9]{3}/") {
use "engineering"
accept

}

on dictionary("business-unit":"~/Eng[0-9]+/") {
use "engineering", "sales"
accept

}

on any() {
deny

}

Interpreting the Regular Expression

• Requests from clients with a hostname matching the following pattern get access to the engineering license
pool:

[A-Z] any uppercase letter
{2} matched exactly twice
[0-9] any number
{3} matched exactly three times

Examples for valid hostnames: AB123, CD789

• Requests from the engineering business unit (as defined in the vendor dictionary) matching the following
pattern get access to the engineering and sales license pools:

Eng must start with “Eng” (matching capitalization)
[0-9] followed by any number

Examples for valid vendor dictionary entries: Eng123, Eng456789

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 347

Use Case: Making Feature Counts Available to Multiple
Business Units

Requirement: Make feature count from multiple named license pools available to users that belong to more than
one business unit.

Important • This use case is only applicable to scenarios where the vendor dictionary value can be an array.
Arrays are only supported if the capability exchange is handled via the REST interface of the Cloud Monetization
API (CMAPI).

Previous use cases showed how the model definition could allocate feature counts based on a business unit
named in the vendor dictionary. However, these only catered for scenarios where a user belongs to a single
business unit.

This use case demonstrates a simple way of allocating feature counts to multiple business units—called DevOps
and Engineering in this example—that are specified in an array in the vendor dictionary.

The vendor dictionary entry would look similar to this:

"vendorDictionary": {
"business-unit": [

"Engineering",
"DevOps",
"Security"
],

"Region": "EMEA"
}

Consider the following capability request that contains an array of strings associated with the business-unit key
in the vendor dictionary:

{
"features": [

{
"count": 20,
"name": "cad",
"version": "1.0"

}
],
 "hostId": {

"type": "string",
"value": "h1"

},
"vendorDictionary": {"Region":"EMEA", "business-unit" : ["Engineering","DevOps"]},
"borrow-interval": "300"

}

The vendor dictionary will match any of these clauses:

• on dictionary("business-unit", "Engineering")

• on dictionary("business-unit", "DevOps")

• on dictionary("Region", "EMEA")

If the vendor dictionary element contains a simple value (string, 32-bit integer) an equality match is done.

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

348 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

If the vendor dictionary element contains an array, a "contains" match is done, meaning that it is sufficient if only
one matching element exists in the array.

The conditions in the following model would grant such a capability request—coming from a client device that
belongs to multiple business units—access to features in both named license pools, EngDevOps and EngSecurity.

Model Definition Example

model "exampleModel" {
partitions {

partition "EngDevOps" {
"cad" 1.0 30%

}
partition "EngSecurity" {

"cad" 1.0 30%
}

}

on dictionary("business-unit":"Engineering") and dictionary("Region":"EMEA"){
use "EngDevOps"
accept

}

on dictionary("business-unit":"Security") and dictionary("Region":"EMEA"){
use "EngSecurity"
accept

}

on any() {
use "default"
accept

}
}

Use Case: Letting Server Specify Counts
Requirement: Let the server specify the desired counts, instead of the client

The following model definition demonstrates how to let the server specify the features that should be assigned to
a client device. The model uses the without requested features directive in combination with a feature
specification. Note that the server cannot override a capability request containing desired features coming from
the client.

The following rule of access assigns a count of feature f1 to each capability request with the hostname “myhost”.

Model Definition Example

model "exampleModel" {
partitions {

partition "p1" {
"f1" 1.0 10

}
}

on hostname("myhost") {

Appendix D Model Definition Grammar for Named License Pools
Use Case Examples and Their Model Definitions for Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 349

use "p1", "default"
without requested features {

"f1" 1.0 1
}
accept

}
}

You can also combine the without requested features directive with all from "license_pool_name". This
variation will result in the first capability request receiving all counts from the specified named license pool. For a
scenario where all from "license_pool_name" might be used, see Scenario: Server-specified Counts.

Note • Server-specified desired feature counts should be marked with the "partial" attribute, indicating that
partial checkout is allowed if the feature’s count falls short of the desired count.

Use Case: Accumulating Counts from Multiple Named
License Pools (“Continue” Action)

Requirement: Allow a capability request to collect feature counts from more than one license pool

This use case defines two named license pools for feature counts. If a capability request comes from Europe
(containing the key-value pair "region"/"Europe", defined by the producer using vendor dictionary data), it gets
access to named license pool p1. If the request comes from a device labeled “10A” (containing the key-value pair
"model" : "10A", defined by the producer using vendor dictionary data), it gets access to named license pool p2.
If both conditions are true, the request gets access to both p1 and p2.

Model Definition Example

model "exampleModel" {
partitions {

partition "p1" {
"f1" 1.0 5

}
partition "p2" {

"f1" 1.0 5
}

}

on dictionary("region" : "Europe") {
use "p1"
continue

}

on dictionary("model" : "10A") {
use "p2"
continue

}
}

Appendix D Model Definition Grammar for Named License Pools
Model Definition Examples for Reservations Converted to Named License Pools

350 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Model Definition Examples for Reservations
Converted to Named License Pools

The following examples show model definitions that might result from manually converting reservations to
named license pools. Conversion involves creating and uploading a model definition that reproduces the
allocation achieved previously through reservations.

Important • You must delete any existing reservation groups before uploading the model definition.

Scenario: Counts Reserved By Hostid
The original reservation model consists of per-hostid reserved counts, together with the ability to get counts from
the default shared pool. Reservations might look like this when expressed in a model definition:

model "model-1" {
partitions {

partition "reservation-1" {
"f" 1.0 1

}
}

on hostid("F01898AD8DD3/ETHERNET") {
use "reservation-1", "default"
accept

}

on any() {
use "default"
accept

}
}

Note that creating rules of access based on hostids is possible, but generally not recommended. Maintaining
large lists of rules of access with the hostid condition is tedious and prone to error. Instead, consider basing the
rules of access on hostname or hosttype properties or vendor dictionary key/value pairs.

Note • The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition
does not specify the hostid type, it is assumed that the hostid is of type string.

Scenario: Server-specified Counts
Sometimes, a capability request does not contain any desired features. In this case, the server can be configured
to specify the features that should be assigned to a client device. If a reservation exists for the client that sent the
capability request, the reserved counts are acquired. The following model reservation example demonstrates how
this behavior is replicated with named license pools. The without requested features directive replicates the
server-specified count, and all from "license_pool_name" allocates all feature counts from the specified named
license pool to the first client sending a capability request that fulfills the conditions defined in the rule of access.

Appendix D Model Definition Grammar for Named License Pools
Model Definition Examples for Reservations Converted to Named License Pools

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 351

The all from "license_pool_name" instruction essentially acts as a shortcut to the feature counts specified for
the relevant named license pool in the model definition. If the specified named license pool does not have
sufficient counts to satisfy the request, counts are allocated from subsequent named license pools listed in the
rules of access (provided that the client has access to those named license pools).

Let’s assume that the original reservation model consists of per-hostid reserved counts, together with the ability
to get counts from the default shared pool. An equivalent model definition and rule of access might look like this:

model "reservations" {
partitions {

partition "reservation-1" {
"f1" 1.0 1

}
}

on hostid("F01898AD8DD3/ETHERNET") {
use "reservation-1", "default"
without requested features {

all from "reservation-1"
}
accept

}
}

The without requested features directive can also be combined with a feature specification to produce more
fine-grained rules of access. For a use case example, see Use Case: Letting Server Specify Counts.

As noted in the previous scenario, creating rules of access based on hostids is generally not recommended.
Instead, consider basing the rules of access on hostname or hosttype properties or vendor dictionary key/value
pairs.

Note • Server-specified desired feature counts should be marked with the "partial" attribute, indicating that
partial checkout is allowed if the feature’s count falls short of the desired count.

Note • The hostid is specified as a value/type pair (for example, 7200014f5df0/ETHERNET). If a hostid condition
does not specify the hostid type, it is assumed that the hostid is of type string.

Appendix D Model Definition Grammar for Named License Pools
Model Definition Examples for Reservations Converted to Named License Pools

352 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

E

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 353

Logging Functionality on the Local
License Server

This appendix describes the logging functionality available for the local license server, specifically:

• Logging Style

• Custom Log Configurations

• Integration of License Server Logging With External Systems

Logging Style
A logging style configuration parameter can be used to configure rollover, JSON formatting and timestamp
behavior. The different logging styles can be specified in the local-configuration.yaml file, using the
loggingStyle property.

Set the property using the following format (the space after the colon is mandatory):

loggingStyle: value

The property can take one of the following values:

• DAILY_ROLLOVER—The log file is closed at midnight local time, compressed with gzip, and a new log file is
started. Timestamp values use the local time zone. This is the default if no logging style is specified.

• DAILY_ROLLOVER_UTC—Same as DAILY_ROLLOVER, but with UTC timestamp.

• CONTINUOUS—Legacy value. Rollover is handled as DAILY_ROLLOVER.

• CONTINUOUS_UTC—Legacy value. Rollover is handled as DAILY_ROLLOVER_UTC.

• JSON_ROLLOVER—Logs are formatted using JSON. The log file is closed at midnight local time, compressed
with gzip (suitable for Filebeat), and a new log file is started. Always uses ISO 8601 UTC timestamps.

• JSON—Logs are emitted as JSON to stdout only (suitable for Docker). Always uses ISO 8601 UTC timestamps.

Appendix E Logging Functionality on the Local License Server
Custom Log Configurations

354 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Note • The Docker-friendly JSON logging style is not supported when the local license server is run as a
Windows or Linux service (because it only writes to stdout). If set, the style will be changed to
DAILY_ROLLOVER.

Custom Log Configurations
If the preconfigured logging styles do not meet your requirements, you can customize the logging configuration.
To do so, prepare an external configuration file and specify the path to that file in an environment variable
($LOGGING_CONFIGURATION). You can also specify the path in the producer-settings.xml file, using the
server.logConfiguration property.

Documentation for logback appenders can be found here: https://logback.qos.ch/manual/appenders.html

To construct the external configuration file, extract a logback configuration from the flexnetls.jar file and
modify it to suit your requirements. The following tables shows the existing configurations.

Note • The "_UTC" variants share a configuration file with their local time counterpart, as the difference is
expressed in a "logging.timestamp" system property.

Integration of License Server Logging With
External Systems

The local license server can pass log entries to external log monitoring software. Some common configurations
are documented here, but others are possible by adapting these instructions.

Common configurations described in this section are:

• Graylog

Table E-1 •

Logging Style Extraction Command

CONTINUOUS unzip -p flexnetls.jar BOOT-INF/classes/logback-continuous.xml

CONTINUOUS_UTC unzip -p flexnetls.jar BOOT-INF/classes/logback-continuous.xml

DAILY_ROLLOVER unzip -p flexnetls.jar BOOT-INF/classes/logback-rollover.xml

DAILY_ROLLOVER_UTC unzip -p flexnetls.jar BOOT-INF/classes/logback-rollover.xml

JSON unzip -p flexnetls.jar BOOT-INF/classes/logback.xml

JSON_ROLLOVER unzip -p flexnetls.jar BOOT-INF/classes/logback-rollover-json.xml

https://logback.qos.ch/manual/appenders.html

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 355

• Elastic Stack

• logz.io

Examples for implementing some of these configurations are provided in the Example Configurations section.

Graylog
The local license server supports Graylog's GELF protocol (see graylog.org/features/gelf). GELF mode is enabled
by supplying the following configuration values in producer-settings.xml:

• graylog.host—The host name of the Graylog server to which logging messages are sent.

The format for graylog.host is: [protocol:]host[:port]

The protocol and port components are optional, and default to "udp" and 12201, respectively. The
supported protocol values are "udp" and "tcp".

• graylog.threshold—The lowest level of log-message granularity to record—FATAL, ERROR, WARN, INFO,
LICENSING, POLICY, or DEBUG. For example, if FATAL is set, only messages about fatal events are recorded.
However, if WARN is set, fatal-event, error, and warning messages are recorded. (Default is WARN.)

Instead of using producer-settings.xml, these values can also be supplied using the FlexNet License Server
Administrator—see the FlexNet Embedded License Server Administration Guide, chapter “Using the FlexNet
License Server Administrator Command-line Tool”.

The section Graylog Logging shows an example of how you can implement this configuration.

Elastic Stack
To use Elastic Stack logging, you must configure the server for JSON logging. To do so, in the local-
configuration.yaml file, specify the following property and value:

loggingStyle: JSON_ROLLOVER

The Elastic Stack consists of 3 components:

• Logstash. This component receives log entries, filters and transforms them and then passes the entries
onwards.

• Elasticsearch. This component stores the log entries.

• Kibana. This component is the GUI where log entries can be searched and visualized.

The following methods are available to pass the log entries to Logstash:

• Using Logstash’s native support of the GELF protocol—Set up the graylog.host and graylog.threshold
configuration properties to refer to Logstash.

• Using Elastic Stack's Filebeat to monitor the server’s logging directory—The use of Filebeat to send log
entries to the Elastic stack is generally preferred to the use of GELF, because the JSON output is richer and
more flexible than the GELF log entry encapsulation, and it is more robust when network interruptions
happen. For more information about Filebeat, go to elastic.co/beats/filebeat.

https://www.graylog.org/features/gelf
https://www.elastic.co/beats/filebeat

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

356 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The sections Elastic Stack and Filebeat and Elastic Stack and GELF show examples of how you can implement this
configuration.

logz.io
logz.io is a managed and customized Elastic Stack logging offering. Refer to the methods in the previous section,
Elastic Stack, for a short explanation of how to configure the server to work with it. For more information about
logz.io, go to logz.io.

Example Configurations
This section contains examples for external logging configurations.

• Graylog Logging

• Elastic Stack and Filebeat

• Elastic Stack and GELF

Graylog Logging
The following example demonstrates Graylog logging.

Task To enable Graylog logging

1. Start Graylog. You could run Graylog using Docker or run it as a a virtual machine appliance under VirtualBox,
depending on your preference.

2. Set graylog.host to localhost to specify the Graylog server and set your desired log threshold (for example,
INFO or LICENSING). If using the FlexNet License Server Administrator, you would use a command such as the
following:

flexnetlsadmin -authorize admin -passwordConsoleInput -config -set graylog.host=localhost
graylog.threshold=LICENSING

Instead of using the FlexNet License Server Administrator you could also create a new producer-
settings.xml file.

3. Restart the license server. Log information will now be sent to Graylog on port 12201 using UDP (the default
port and protocol).

4. Configure Graylog to receive the log information. For information, consult the Graylog documentation.

Elastic Stack and Filebeat
This section explains how to log to a Docker installation of the Elastic Stack (Elasticsearch, Logstash and Kibana),
using Filebeat to send log contents to the stack. Log data is persisted in a Docker volume called "monitoring-
data".

https://logz.io/
https://docs.graylog.org/en/3.3/pages/getting_started/collect.html

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 357

This configuration enables you to experiment with local license server logging to the Elastic Stack. However, it is
not recommended for production use, due to insufficient high availability, backup and indexing functionality.

This section is split into the following steps:

1. Preparing the Directory Structure

2. Preparing the Local License Server

3. Creating the “docker-compose” File

4. Creating the Elasticsearch Files

5. Adding a Logstash Configuration

6. Building the Elastic Stack

7. Preparing to Use Filebeat

8. Sending Log Entries to Logstash

Preparing the Directory Structure
This demo uses the following directory structure:

Preparing the Local License Server
Follow the steps below to prepare the server to log to a Docker installation. This step assumes that Docker is
installed.

Directory structure

demo/
|
----- docker-compose.yml
|
----- elasticsearch/
| |
| ---- Dockerfile
| |
| ---- elasticsearch.yml
|
----- filebeat/
|
----- server/
| |
| --- flexnetls.jar
| |
| --- producer-settings.xml
| |
| --- local-configuration.yaml
|
----- logstash.conf

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

358 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Task To prepare the local license server for logging to a Docker installation:

1. Copy the local license server files—flexnetls.jar, producer-settings.xml, and local-configuration.yaml—
into the server directory.

2. Configure the server for logging in JSON format. Add the following entry to the top section of local-
configuration.yaml:

loggingStyle: JSON_ROLLOVER

This causes logs to be written in JSON format to the default location of $HOME/flexnetls/$PUBLISHER/logs.

3. Start the license server using the following command from the server directory:

$ java -jar flexnetls.jar

4. Confirm that log files with a .json extension are being created.

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 359

Creating the “docker-compose” File
Use the sample below to create the docker-compose.yml file. Note that this demo uses the producer name
“acme”.

docker-compose.yml

version: '2.2'
services:
elasticsearch:
build:
context: elasticsearch/

container_name: elasticsearch
volumes:
- monitoring-data:/usr/share/elasticsearch/data

ports:
- "9200:9200"
- "9300:9300"

environment:
ES_JAVA_OPTS: "-Xmx512m -Xms512m"

logstash:
image: docker.elastic.co/logstash/logstash:7.9.1
container_name: logstash
ports:
- "5000:5000"
- "5044:5044"
- "12201:12201/udp"

expose:
- "5044/tcp"
- "12201/udp"

logging:
driver: "json-file"

environment:
LS_JAVA_OPTS: "-Xmx256m -Xms256m"

volumes:
- ./logstash.conf:/usr/share/logstash/pipeline/logstash.conf

depends_on:
- elasticsearch

kibana:
image: docker.elastic.co/kibana/kibana:7.9.1
ports:
- "5601:5601"

depends_on:
- elasticsearch

volumes:
monitoring-data:
driver: local

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

360 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Creating the Elasticsearch Files
Create the following files in the elasticsearch directory.

elasticsearch/Dockerfile

FROM elasticsearch:7.9.1

COPY ./elasticsearch.yml /usr/share/elasticsearch/config/elasticsearch.yml

FileRealm user account, useful for startup polling.
RUN bin/elasticsearch-users useradd -r superuser -p esuser admin

RUN yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm \

&& yum update -y \
&& yum install -y jq \
&& yum upgrade

elasticsearch/elasticsearch.yml

cluster.name: "docker-cluster"
network.host: 0.0.0.0

minimum_master_nodes need to be explicitly set when bound on a public IP
set to 1 to allow single node clusters
Details: https://github.com/elastic/elasticsearch/pull/17288
discovery.zen.minimum_master_nodes: 1

Use single node discovery in order to disable production mode and avoid bootstrap checks
see https://www.elastic.co/guide/en/elasticsearch/reference/current/bootstrap-checks.html
discovery.type: single-node

node.data : true
discovery.seed_hosts : []

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 361

Adding a Logstash Configuration
Add a Logstash configuration such as the following to the demo directory:

Building the Elastic Stack
You can now build the Elastic Stack by executing this command in the demo directory:

$ docker-compose build

Preparing to Use Filebeat
Download and expand Filebeat into the filebeat directory. This tool will send JSON log entries to the Elastic
Stack. You can obtain a copy from www.elastic.co/downloads/beats/filebeat. On Linux you can also use your
package manager (DEB, RPM) to install Filebeat. Using the package manager will install it as a system service
with systemd bindings. In this case the configuration can be found in /etc/filebeat/.

logstash.conf

input {
beats {
port => 5044

}
}

output {
stdout { codec => rubydebug }

if ("lls-logs" in [tags]) {
elasticsearch {

hosts => ["elasticsearch:9200"]
id => "lls-logs"
index => "lls-logs-%{+YYYY.MM.dd}"
codec => "json"

}
}

}

https://www.elastic.co/downloads/beats/filebeat

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

362 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The Filebeat distribution contains an example filebeat.yml file. Replace it with this:

Note • This sample uses the producer name “acme”. In your file, replace “acme” with your producer name, as
found in producer-settings.xml.

Sending Log Entries to Logstash
Perform the steps below to log entries to Logstash. You can then view the entries in Kibana.

Task To send log entries to Logstash

1. Bring up the Elastic Stack by executing this command from the demo directory:

$ docker-compose up -d

2. Start the license server (if it is not already running).

3. Start Filebeat to start sending log entries to Logstash:

$./filebeat -e

4. Open Kibana with a browser by going to http://localhost:5601. In Kibana's home page, click Connect to your
Elasticsearch index.

5. Create an index pattern of 'lls-logs-*'. When asked, set '@timestamp' as the primary time field. For
information on index patterns, see www.elastic.co/guide/en/kibana/current/tutorial-define-index.html.

6. Click Discover (in the grid menu); this should display license server log entries. Consult the Kibana
documentation for information about searching the log entries.

filebeat/filebeat.yml

filebeat.registry.path: ${HOME}/.filebeat-registry

filebeat.config:
modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: false

filebeat.inputs:
- type: log
json.keys_under_root: true
json.overwrite_keys: true
json.add_error_key: true
encoding: utf-8
tags: ["lls-logs"]
index : "%{[agent.name]}-lls-%{+yyyy.MM.dd}"
paths:
- ${HOME}/flexnetls/acme/logs/*.json

output.logstash:
hosts: ["localhost:5044"]

https://www.elastic.co/guide/en/kibana/current/tutorial-define-index.html
https://www.elastic.co/guide/en/kibana/current/discover.html
https://www.elastic.co/guide/en/kibana/current/discover.html

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 363

Elastic Stack and GELF
The docker-compose configuration is the same as in section Creating the “docker-compose” File, but with a
change to the Logstash part (note that the log entrypoint key would appear on a single line):

The Filebeat agent is not required in this scenario.

Elastic Stack docker-compose example 2

version: '2.2'
services:
elasticsearch:
build:
context: elasticsearch/

container_name: elasticsearch
volumes:
- monitoring-data:/usr/share/elasticsearch/data

ports:
- "9200:9200"
- "9300:9300"

environment:
ES_JAVA_OPTS: "-Xmx512m -Xms512m"

logstash:
image: docker.elastic.co/logstash/logstash:7.9.1
container_name: logstash
ports:
- "5000:5000"
- "5044:5044"
- "12201:12201/udp"

expose:
- "5044/tcp"
- "12201/udp"

logging:
driver: "json-file"

environment:
LS_JAVA_OPTS: "-Xmx256m -Xms256m"

entrypoint: logstash -e 'input { gelf { } } output { elasticsearch { id => "lls" hosts => ["http:/
/elasticsearch:9200"] } }'

depends_on:
- elasticsearch

kibana:
image: docker.elastic.co/kibana/kibana:7.9.1
ports:
- "5601:5601"

depends_on:
- elasticsearch

volumes:
monitoring-data:
driver: local

Appendix E Logging Functionality on the Local License Server
Integration of License Server Logging With External Systems

364 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

F

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 365

Consuming Streaming Content

The /clients.stream and /features.stream APIs should be used if you need to query large tables. They
asynchronously return client and feature data as individual newline-delimited JSON (NDJSON) objects. The
content type is "application/x-ndjson", not "application/json". For information about the NDJSON standard, see
https://github.com/ndjson/ndjson-spec.

Note that the /clients.stream and /features.stream APIs are available only for the local license server.

The streaming content returned by the /clients.stream and /features.stream APIs should be consumed one
line at a time as it arrives. The client that reads the stream should read without pausing, to avoid a disconnect if
the connection is determined to be idle.

The following Java example code demonstrates how to use a Jackson ObjectMapper to deserialize each line to a
Map<String, Object> representation:

Java Example

final static String CLIENT_URL = "http://localhost:7070/api/1.0/instances/~/clients.stream";
// localhost LLS

final URL url = new URL(CLIENT_URL);

HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setRequestMethod("GET");
con.addRequestProperty("Accept", "application/x-ndjson");
con.setDoInput(true);
con.setConnectTimeout(30*1000);
con.setReadTimeout(0);

int responseCode = con.getResponseCode();
if (responseCode == HTTP_OK) {
 InputStream is = con.getInputStream();

 ObjectMapper objectMapper = new ObjectMapper()

https://github.com/ndjson/ndjson-spec

Appendix F Consuming Streaming Content

366 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Some HTTP client libraries have direct support for streaming data (for instance, Retrofit's @Streaming
annotation).

 int numRecords = 0;
 try (BufferedReader reader = new BufferedReader(new InputStreamReader(is))) {
 while (true) {
 String line = reader.readLine();
 if (line == null) {
 // EOF
 break;
 }

 // Convert line from JSON.
 Map<String,Object> value = objectMapper.readValue(line, Map.class)
 System.out.println(value);
 numRecords++;
 }
 }

 System.out.println(numRecords + " client records transferred");
} else {
 System.out.println("Server error: " + responseCode);
}

G

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 367

Workflow Example for Producer-
Defined Binding

This appendix provides step-by-step instructions to help you set up binding on a local license server. Using the
example implementation that is included in the license server package, the appendix also simulates a binding
break and explains how to repair the break.

The following diagram shows an overview of the workflow when binding is broken and subsequently repaired.

Figure G-1: Workflow when producer-defined binding is in place

Appendix G Workflow Example for Producer-Defined Binding

368 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

This includes the following sections:

1. Adding Binding

2. Simulating a Binding Break

3. Repairing a Binding Break

For general information about binding, see Binding-Break Detection with Grace Period.

Adding Binding
To enable producer-defined binding on the local license server, you need to add the policy setting
binding.break.policy to the producer-settings.xml file. This policy defines the action taken when the binding-
break detection feature perceives a break. Specify one of the following values:

• hard—An immediate hard binding break is imposed—that is, the license server can no longer serve licenses.

• soft—A soft binding break is in effect, allowing the license server to continue to serve licenses despite the
break.

• interval—A soft binding break with a grace period is in effect, allowing the license server to continue to serve
licenses until the grace period expires. When the expiration occurs, a hard binding break goes into
immediate effect, and licenses can no longer be served.

The length of the grace period is the interval value, specified with an optional unit-suffix letter—s, m, h, d, or
w—indicating seconds, minutes, hours, days, or weeks (for example, 3d is 3 days). If no suffix is used, the
server assumes the value is in seconds.

Workflow for Adding Binding

The following diagram shows the workflow for activating binding on a local license server.

Appendix G Workflow Example for Producer-Defined Binding

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 369

Figure G-2: Adding binding on a local license server

Specifying the Policy Setting in the Configuration File
Let’s assume you want to implement a hard binding break. Create a separate “properties” text file with the
setting binding.break.policy=hard. For more information about creating a properties file, see Generating the
Policy Settings.

Then run a command similar to the following, where properties.txt is the properties file.

flexnetlsconfig -prop properties.txt -o producer-settings.xml -id IdentityClientServer.bin

This generates a producer-settings.xml file that can be used to start up the local license server. However, note
that an error occurs during startup of the license server, as shown in the following example log:

20:15:06,582 INFO - Starting FlexNet License Server 2022.05.0 (build 266500)
20:15:06,585 INFO - Copyright (C) 2013-2022 Flexera Software LLC.
20:15:06,585 INFO - All Rights Reserved.
20:15:06,585 INFO - Running as a service
20:15:07,681 INFO - Host Configuration [os=Linux, mem=2.0GB, mem_free=1.6GB, processors=1,
nonheap_committed=34.6MB, nonheap_init=2.4MB, nonheap_used=33.6MB]
20:15:49,654 INFO - Server hostids acquired: [00155D900105/Ethernet]
20:15:49,689 ERROR - Unable to load the library:/opt/flexnetls/fnedemo/fnedemo/
libServerExtension64.so:/opt/flexnetls/fnedemo/fnedemo/libServerExtension64.so: cannot open shared
object file: No such file or directory
20:15:49,690 ERROR - Binding info retrieval failed.
20:15:49,740 ERROR - Unable to retrieve binding data from producer supplied dll.
20:15:57,676 INFO - Active profiles: [lls, singletenant, reservations, performance, service]
20:16:02,655 INFO - New license server instance GCKSB3SZJMV1 has been constructed
20:16:03,745 WARN - No active hostID specified, choosing "00155D900105/Ethernet"
20:16:33,744 WARN - Active hostid selected: "00155D900105/Ethernet"

Appendix G Workflow Example for Producer-Defined Binding

370 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

The error occurs because the component libServerExtension64.so is missing. This is the shared library that
contains the logic for retrieving and checking the binding that is currently used by the server.

Note • The missing component depends on the operating system on which the local license server is running.

Building the Shared Library
To resolve the “missing library” error, you need to build the shared library. This demonstration uses the sample
file that can be found in /examples/publisher_defined_binding_identity.

This example takes the hard-coded ascii string "life is short" as the binding element:

const unsigned char binding_identity_data[] = { 0x6c, 0x69, 0x66, 0x65, 0x20, 0x69, 0x73, 0x20,
0x73, 0x68, 0x6f, 0x72, 0x74 };

Compiling the Code

To compile this code on Linux, use a command similar to this:

gcc -shared -o libServerExtension64.so ExamplePublisherDefinedBinding.c -I../include -fPIC

For Windows, use a commend like the following:

cl /LD ExamplePublisherDefinedBinding.c /I PublisherDefinedExtensionExports.h /o
ServerExtension64.dll

Copying the Shared Library

Copy the shared library to the location of the flexnetls.jar file in a directory named after the publisher name. In
this example, the flexnetls.jar resides in the folder fnedemo, which contains a folder also called fnedemo (the
producer name).

On Linux, use a command like the following to copy the shared library:

Sudo cp libServerExtension64.so /opt/flexnetls/fnedemo/fnedemo

Running the Server

Now when you start the server you should see output like this:

20:29:45,489 INFO - Starting FlexNet License Server 2022.05.0 (build 266500)
20:29:45,506 INFO - Copyright (C) 2013-2022 Flexera Software LLC.
20:29:45,506 INFO - All Rights Reserved.
20:29:45,506 INFO - Running as a service
20:29:45,894 INFO - Host Configuration [os=Linux, mem=2.0GB, mem_free=1.5GB, processors=1,
nonheap_committed=33.8MB, nonheap_init=2.4MB, nonheap_used=32.7MB]
20:30:20,514 INFO - Server hostids acquired: [00155D900105/Ethernet]
20:30:28,340 INFO - Active profiles: [lls, singletenant, reservations, performance, service]
20:30:32,503 INFO - Updated license server instance GCKSB3SZJMV1 is ready
20:30:33,622 WARN - No active hostID specified, choosing "00155D900105/Ethernet"
20:31:03,622 WARN - Active hostid selected: "00155D900105/Ethernet"

Appendix G Workflow Example for Producer-Defined Binding

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 371

Simulating a Binding Break
To simulate a break, change the example code so that the binding is different from what is now stored in the
server-side trusted storage. For this example, change the ascii string “life is short” to “life is not short” as shown
below:

const unsigned char binding_identity_data[] = { 0x6c, 0x69, 0x66, 0x65, 0x20, 0x69, 0x73, 0x20,
0x6e, 0x6f, 0x74, 0x20, 0x73, 0x68, 0x6f, 0x72, 0x74 };

Recompile the code, using the same steps as in Compiling the Code. Copy the shared library to the same location
as described in Copying the Shared Library.

Running the Server

You should now see output similar to the following when starting the server:

20:54:43,200 INFO - Starting FlexNet License Server 2022.05.0 (build 266500)
20:54:43,204 INFO - Copyright (C) 2013-2022 Flexera Software LLC.
20:54:43,204 INFO - All Rights Reserved.
20:54:43,204 INFO - Running as a service
20:54:43,737 INFO - Host Configuration [os=Linux, mem=2.0GB, mem_free=1.5GB, processors=1,
nonheap_committed=33.6MB, nonheap_init=2.4MB, nonheap_used=32.5MB]
20:55:19,882 INFO - Server hostids acquired: [00155D900105/Ethernet]
20:55:20,528 ERROR - Hard binding break detected at startup.
20:55:27,444 INFO - Active profiles: [lls, singletenant, reservations, performance, service]
20:55:31,417 INFO - Updated license server instance GCKSB3SZJMV1 is ready
20:55:32,561 WARN - No active hostID specified, choosing "00155D900105/Ethernet"
20:56:02,560 WARN - Active hostid selected: "00155D900105/Ethernet"

The server starts but will not serve any licenses. If you attempt to perform a capability request from the server, a
message similar to the following is displayed:

19:16:49,635 ERROR - [1234567890 request] Features will not be available due to hard binding break.

Repairing a Binding Break
Repairing a binding break involves sending a capability request to the back office, as shown in the following
diagram.

Appendix G Workflow Example for Producer-Defined Binding

372 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

Figure G-3: Workflow for repairing broken binding

It is possible to repair the binding break by sending a capability request to the back office. The server adds the
binding break to the request and the back office subsequently creates a repair that will fix the trusted storage
and allow licensing activities to continue. In situations where the license server communicates online with the
back office, this would occur via capability request polling. In situations where the license server cannot
communicate directly with the back office, you need to generate a capability request manually and process it in
the back office.

Task To repair a binding break

1. Generate an offline request using flexnetlsadmin:

./flexnetlsadmin -server HTTP://localhost:7070/api/1.0/instances/~/ -activate
-id <activation-id> -o request.bin

2. Process request.bin in the back office (FlexNet Operations) and receive the response

3. Process the response on the local license server:

./flexnetlsadmin.sh -server HTTP://localhost:7070/api/1.0/instances/~/ -activate -load
capabilityResponse.bin

This procedure also preserves the client history on the server and does not reset trusted storage.

Appendix G Workflow Example for Producer-Defined Binding

FlexNet Embedded 2023.03 License Server Producer Guide FNE-2023.03-LSG00 Company Confidential 373

Note • flexnetlsadmin does not have an option to send a blank capability request (that is, without an activation
id). If you want to send a blank capability request, you can use a tool such as curl to send the request to the
/capability_request endpoint and capture the output of the response:

curl HTTP://localhost:7070/api/1.0/instances/~/capability_request/offline > request.bin

Appendix G Workflow Example for Producer-Defined Binding

374 Company Confidential FNE-2023.03-LSG00 FlexNet Embedded 2023.03 License Server Producer Guide

	FlexNet Embedded 2023.03
	Legal Information
	Contents

	Introduction
	Local License Servers vs. License Servers Hosted in the Cloud
	What’s in this Guide
	Product Support Resources
	Contact Us

	Getting Started
	About the License Server Software Package
	License Server Requirements
	Downloading the Software Package
	License Server Components
	Additional Components

	Preparing and Deploying the License Server: Producer Experience
	Enabling Secure Anchoring
	Requirement
	Enable Secure Anchoring

	Determining Deliverables Needed to Enable Outgoing HTTPS
	Determining Administrative Security Policies
	Generating the Producer Settings File
	Policy Settings Reference
	Requirements
	Generate the Policy Settings File

	Determining Administration Tools for the Enterprise
	Entitling the Enterprise Customer Account
	Delivering the License Server

	Installing and Running the License Server
	Installing and Starting the License Server
	Prerequisites
	Install and Start on Windows
	Prepare for Windows Installation
	Install and Start as a Windows Service
	Start in Console Mode on Windows
	Manage the License Server Service on Windows

	Install and Start on Linux
	Producer Tasks
	Administrator Tasks
	Verify systemd-Enablement on Linux System
	Additional Requirement for Certain Linux Platforms in Virtual Environments
	Run the Install Script
	About the Install Script
	Install and Start the Service with the Default Configuration
	Install and Start the Service with a Modified Configuration
	Configuration Values Editable from the Command Line
	Start and Stop in Console Mode on Linux

	Manage the License Server Service on Linux
	Obtain the Service Status
	Stop the Service
	Start the Service
	Restart the Service
	Re-read All systemd Unit Files

	Setting the Server Time Zone
	Logging Functionality

	Editing Local Settings Post-Installation
	Post-Installation Configuration on Windows
	When Server Runs as a Service
	When Server Runs in Console Mode

	Post-Installation Configuration on Linux
	Edit Settings in “flexnetls.conf”
	Edit the DEFINES Setting
	Edit “local-configuration.yaml” Settings
	Define Command-Line Options for HTTPS Configuration Files

	Configuring the Cipher Choice Mechanism

	Understanding Hostids
	Hostid Types
	Specifying a Server Hostid
	Retrieving Server Hostids

	Activating the License Rights for the Server
	Using the REST API Option
	Using the Administration Tools

	Granting Client Requests
	Basic Capability-Request Processing
	Usage Capture

	Upgrading the License Server
	Uninstalling the License Server
	Uninstall the License Server Service
	Uninstall the Windows Service
	Uninstall the Linux Service

	Uninstall the License Server Running in Console Mode
	Uninstall on the License Server in Console Mode on Windows
	Uninstall the License Server in Console Mode on Linux

	License Server REST APIs
	Accessing the REST APIs
	Base URLs
	More About the Base URL
	HTTPS Protocol for Secured REST APIs
	“licenseServer_baseURL” as Base URL Designation

	Sample cURL Command
	Managing Large Amounts of Returned JSON Data

	Writing a REST API Client for a Secured License Server
	Using the Base URL
	Authorizing Access to Secured REST APIs
	Creating User Accounts

	APIs for Basic License Server Operations
	API Summary
	Viewing Instance Details
	Viewing Instance hostids
	All Available Hostids
	Hostid Selected for Instance

	Processing Requests from Clients
	Sending Requests to the Back Office
	Activating Licenses on the Server
	Suspending or Resuming Operations
	Initiating On-demand Synchronization

	APIs to Manage Clients
	Viewing All Clients
	Viewing All Current Clients and Their Features
	Retrieving Client Data as NDJSON Objects
	Viewing a Specified Client Record
	Viewing Features for a Specified Client Record
	Removing a Specified Client
	Viewing Client Record History for Specified Hostid
	Viewing Client Record History Including Features for a Specified hostid

	APIs to Obtain Feature Information
	Viewing All Features
	Viewing A Summary Of Features
	Retrieving Feature Data as NDJSON Objects
	Viewing Only Active Features
	Viewing Features in an Expiration Grace Period
	Viewing Number of Features
	Viewing Specified Feature
	Viewing Feature Usage
	Listing Overages

	APIs to Manage Named License Pools
	API Summary
	Uploading the Model Definition
	Viewing the Model Definition
	Deleting the Model Definition
	Viewing License Pools
	Viewing a Specified License Pool By ID
	JSON Response Details

	APIs to Manage Reservations
	API Summary
	Managing Reservation Groups
	Managing a Specific Reservation Group
	Managing All Reservations in a Specific Reservation Group
	Managing a Specific Reservation in a Reservation Group
	Managing a Specific Reservation Entry

	APIs to Show Statistics
	Viewing Instance Version
	Viewing Success of Database Connection

	APIs to Manage Instance Configuration
	Managing Instance Policies
	View Current Policy Settings
	Set Policies

	Viewing Configuration Metadata

	APIs to Perform Offline Binary Operations
	API Summary
	Generating an Offline Activation Request
	Generating an Offline Capability Request
	Processing an Offline Capability Response
	Generating an Offline Sync Message
	Processing an Offline Sync Acknowledgment

	API to View Binding-Break Status
	APIs to Manage Administrative Security
	APIs to Authorize Access to Secured Endpoints
	API Overview
	Generate Authorization Tokens
	Revoke Tokens

	APIs to Manage User Accounts
	API Overview
	View Current User Accounts
	Create a User Account
	Modify an Existing User Account
	Delete a User Account

	API for Enabling JSON Security for the Cloud Monetization API
	License Server Administration Security vs JSON Security
	Note About Opting Out of JSON Security

	HTTPS Protocol Recommended
	Implementing JSON Security for the Cloud Monetization API
	Step 1: Producer Generates Private-Public Key Pair
	Step 2: Producer or Enterprise Configures Appropriate Security Policies on License Server
	Step 3: Producer or Enterprise Uploads Public Key to License Server
	Enablement of JWT Validation for Incoming Capability Requests
	Response-Signing Enablement

	Step 4: Licensed Client Application Generates JWT Signed by Private Key to Include in Capability Requests

	“/rest_licensing_keys” API Details
	Method to Post Public Key on Server to Validate JWT in Capability Requests
	Method to Retrieve the Signature-Validation Public Key Stored on Server
	Method to Delete the Server’s Public Key Used to Validate JWT in Capability Requests

	Sample Code Implementations for Setting Up JSON Security
	Example for “Step 1: Producer or Enterprise Generates Private-Public Key Pair”
	Example for “Step 3: Producer or Enterprise Uploads Public Key to License Server”
	Example for “Step 4: Licensed Client Application Generates JWT Signed by Private Key to Include in Capability Requests”
	Requirements for Running the Sample Python Script
	Sample Python Script
	Command to Run Script

	Online REST API Reference Documentation Available
	Exception Handling
	List of Exceptions

	More About Basic License Server Functionality
	Synchronization Operations
	Notes about Policy Settings for Synchronization
	Online Synchronization to the Back Office
	On-Demand Synchronization
	Offline Synchronization to the Back Office
	Configuring Offline Synchronization
	Tools
	Offline Synchronization Process
	Keeping Enterprises in Compliance When Offline Synchronization Is Used

	Disabling Synchronization to the Back Office
	Synchronization From the Back Office
	Configuring Synchronization From the Back Office
	Synchronization Process

	Failover Using Synchronization to FlexNet Embedded
	Configuring License Server Failover
	(Optional) Automatic Registration of the Failover Pair

	Additional Failover Considerations

	Allocating Licenses Using Named License Pools
	Named License Pool Terminology
	Introduction to the Model Definition
	Model Definition Components
	Model
	Named License Pools
	Rules of Access and Conditions
	Syntax for Rules of Access
	Condition Types
	Advanced Keywords and Directives

	Server Behavior When Distributing Feature Counts to Named License Pools
	When a New Model Definition Is Uploaded
	When the Feature Count Changes on the License Server
	When Clients Return or Renew Counts to the Server
	Basic Redistribution Rules
	Order of Redistributing Counts

	Server Behavior when Assigning Features to Clients
	Named License Pools vs. Reservations
	Comparison of Named License Pools and Reservations
	Impact of “Named License Pools” Functionality on Using Reservations
	Transitioning from Reservations to Named License Pools
	Returning to Reservations after Transitioning to Named License Pools

	Limitations of Named License Pools

	License Reservations
	Overview of Reservation Types
	Device-based Reservations
	User-based Reservations
	About Main and Secondary Hostids

	Reservation Hierarchy
	Managing Reservations
	Add a New Reservation Group
	Add Reservations to an Existing Group
	Enable or Disable Reservation Entries
	Delete Reservations

	License Allocation on the Server
	When Adding a New Reservation Group
	When Adding Reservations to an Existing Reservation Group
	When Feature Counts Change on the Server

	Processing the Capability Request When Reservations Are Used
	Basic Process for Granting Licenses
	Example Scenarios: Basic Process for Granting Licenses

	Reservation Considerations and Limitations

	Advanced License Server Features
	Producer-defined Hostids
	Configuring Support for the Producer-defined Hostid
	Enable Support on the Back Office
	Enable Support on the License Server

	Providing the Shared Library for Hostid Retrieval
	Step 1: Implement Hostid Retrieval Code
	Step 2: Build the Shared Library
	Step 3: Distribute the Shared Library
	Using the Same Library to Retrieve Binding Elements

	Using the Producer-defined Hostid

	Secure Anchoring
	Prerequisites
	Enabling a Secure Profile

	Clone Detection Reporting
	About the Clone Detection Process
	Requirements
	Generate the Clone Detection Report in FlexNet Operations
	Report Alternatives
	Considerations and Limitations

	Binding-Break Detection with Grace Period
	Enabling the Binding-Break Detection Feature
	Providing the Shared Library to Retrieve the Binding Elements
	Step 1: Determine the Binding Elements
	Step 2: Implement Code to Retrieve the Binding Elements
	Step 3: Build the Shared Library
	Step 4: Distribute the Library with the License Server
	Using the Same Library to Retrieve a Producer-defined Hostid

	How the Binding-Break Detection Works
	At Server Startup
	During Normal Server Operations
	During a Soft or Hard Binding Break
	During the Grace Period for the Binding Break
	When the Grace Period for the Binding Break Expires
	When the Binding Is Restored
	Reporting a Binding Break to the Back Office

	Repairing the Broken Binding
	Considerations and Limitations

	Trusted Storage Backup and Restoration
	Performance Implications
	Enabling Backups of Trusted Storage
	Overview of the Backup Process
	Running a Trusted Storage Restoration

	Outgoing HTTPS
	Default Server Configuration
	Enabling Server for HTTPS When Another Certificate Is Used
	Step 1: Provide the Client Certificate
	Step 2: Provide Access to Client Certificate
	Step 3: Specify the Correct Back-office URL in Policy Settings

	Incoming HTTPS
	Step 1: Obtain Certificate
	Step 2: Enable Access to “server” Certificate
	New Installations
	Existing Installations

	Step 3: Define Scope of HTTPS Communications

	Proxy Support for Communication with the Back Office
	Configuring the License Server for Proxy Support
	Producer: Provide Appropriate Information in the Producer Settings File
	License Server Administrator: Configure the License Server

	Obfuscating the Proxy Password

	Extended Hostids
	Scenario Using Extended Hostids
	Enabling Support for Extended Hostids
	Setting and Using Extended Hostids

	Trusted-Storage Reset
	Determining Whether Records Pending Synchronization Exist
	Resetting Trusted Storage
	On Windows
	On Linux

	Enabling a Forced Trusted-Storage Reset

	License Checkout: Support for Special Capability-Request Options
	Incremental Capability-Request Processing
	Processing Overview
	Incremental Request Examples
	Considerations and Limitations

	Granting All Available Quantity for a Feature
	How the Request is Processed
	Considerations and Limitations

	Feature-Selector Filtering
	Set Up the Selectors in FlexNet Operations
	Provision the Feature on the License Server
	Include Feature Selectors in the Capability Request
	Considerations and Limitations

	Vendor Dictionary Data
	Capability Preview
	Feature Counts Returned in the Preview
	Calculation of Available Counts for Preview
	Basic Preview Example
	Preview Example for Processing Metered Features
	Preview Example for Processing Overdraft Counts

	Considerations and Limitations

	Usage Capture and Management
	Synchronization Required
	For More Information

	Administrative Security
	Overview: Deploying a License Server with Security Enabled
	About Administrative Security
	Secured Functionality on the License Server
	User Management Functionality
	User Roles Defining Administrative Privileges
	Policies to Configure Administrative Security
	Credential Requirements

	About License Server Administrator Tools
	Enabling Administrative Security on a Local License Server

	Producer Tools
	Publisher Identity Utility
	Purpose
	Usage
	Entering Your Identity Data
	Updating Your Identity Data
	Further Tasks and Considerations

	Print Binary Utility
	Viewing Contents
	Viewing Contents and Validating Signatures
	Displaying Binary in Compiler-Readable Format
	Conversion to Base 64 Format in FlexNet Embedded
	Additional printbin Switches

	Identity Update Utility
	Usage
	Device Hostid Types Used to Restrict Hostid Detection
	Example Identity Update

	License Conversion Utility
	Trial File Utility
	Capability Server Utility
	Considerations for Using the Utility
	Usage
	Starting and Stopping the Capability Server Utility
	About License Templates
	Use of License Templates to Generate Responses
	Examples
	Creating a License Template

	Endpoint for Sending Capability Requests to the Utility

	Capability Request Utility
	Capability Response Utility
	Secure Profile Utility
	Viewing Available Security Profiles
	Enabling Secure Anchoring

	License Server Configuration Utility
	Policy Settings Reference
	Generating the Policy Settings
	Distributing this File
	Updating the File After Server Installation

	Troubleshooting Reference
	Reference: Policy Settings for the License Server
	Effects of Special Request Options on Use of Reservations
	Scenario Assumptions
	Incremental Option Enabled
	Partial-Checkout Option Enabled
	Both Incremental and Partial-Checkout Options Enabled

	SysV Alternative for Installation on Linux
	Files Required for License Server Installation Using SysV
	Prepare for Linux Installation
	Install and Start as a Linux Service
	Install and Start in Console Mode
	Edit Local Settings Post-Installation
	When Server Runs as a Service
	When Server Runs Console Mode

	Uninstall the License Server
	Uninstall the License Server Service
	Uninstall the License Server Running in Console Mode
	Manage the License Server Service: Command Summary

	Model Definition Grammar for Named License Pools
	Model Definition Grammar and Syntax—EBNF
	Parser
	Lexer

	Use Case Examples and Their Model Definitions for Named License Pools
	Background Information for Use Cases
	Vendor Dictionary Data
	Using the Host Name and Host Type
	Default Behavior If No Conditions Are Met

	Use Case: Simple Allow List
	Use Case: Simple Block List
	Use Case: Sharing Counts Between Business Units
	Use Case: Assigning Extra Counts To Business Unit
	Use Case: Exclusive Use of Feature Counts for Business Unit
	Use Case: Exclusive Use of Feature Counts for Business Unit With Exception of Specific Clients
	Use Case: Exclusive Use of Feature Counts for Business Unit and Specified Clients from other Business Units
	Use Case: Assigning Features Based on Combined hosttype and hostname Properties
	Use Case: Assigning Features Based on Vendor String Property
	Use Case: Device-specific Handling—Sharing Feature Counts Based On Hosttype
	Use Case: Named License Pool Receiving Entire Remaining Feature Count
	Use Case: Using Regular Expression to Allocate License Counts
	Use Case: Making Feature Counts Available to Multiple Business Units
	Use Case: Letting Server Specify Counts
	Use Case: Accumulating Counts from Multiple Named License Pools (“Continue” Action)

	Model Definition Examples for Reservations Converted to Named License Pools
	Scenario: Counts Reserved By Hostid
	Scenario: Server-specified Counts

	Logging Functionality on the Local License Server
	Logging Style
	Custom Log Configurations
	Integration of License Server Logging With External Systems
	Graylog
	Elastic Stack
	logz.io
	Example Configurations
	Graylog Logging
	Elastic Stack and Filebeat
	Elastic Stack and GELF

	Consuming Streaming Content
	Workflow Example for Producer- Defined Binding
	Adding Binding
	Specifying the Policy Setting in the Configuration File
	Building the Shared Library

	Simulating a Binding Break
	Repairing a Binding Break

