Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Mar 9, 2020
Sep 4, 2021
Mar 13, 2020

SG-NN

SG-NN presents a self-supervised approach that converts partial and noisy RGB-D scans into high-quality 3D scene reconstructions by inferring unobserved scene geometry. For more details please see our paper SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans.

Code

Installation:

Training is implemented with PyTorch. This code was developed under PyTorch 1.1.0, Python 2.7, and uses SparseConvNet.

For visualization, please install the marching cubes by python setup.py install in marching_cubes.

Training:

  • See python train.py --help for all train options.
  • Example command: python train.py --gpu 0 --data_path ./data/completion_blocks --train_file_list ../filelists/train_list.txt --val_file_list ../filelists/val_list.txt --save_epoch 1 --save logs/mp --max_epoch 4
  • Trained model: sgnn.pth (7.5M)

Testing

  • See python test_scene.py --help for all test options.
  • Example command: python test_scene.py --gpu 0 --input_data_path ./data/mp_sdf_vox_2cm_input --target_data_path ./data/mp_sdf_vox_2cm_target --test_file_list ../filelists/mp-rooms_val-scenes.txt --model_path sgnn.pth --output ./output --max_to_vis 20

Data:

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{dai2020sgnn,
 title={SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans},
 author = {Dai, Angela and Diller, Christian and Nie{\ss}ner, Matthias},
 booktitle = {Proc. Computer Vision and Pattern Recognition (CVPR), IEEE},
 year = {2020}
}

About

[CVPR'20] SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published