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Introduction to Matlab and Octave

Chapter 1: Introduction to Matlab and Octave
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Introduction to Matlab and Octave Installation

Install it!

Install MATLAB R© following the instructions from the IT services
https://www.gla.ac.uk/myglasgow/it/software/statistics/#/matlab

or install GNU Octave c© from the Web
https://www.gnu.org/software/octave/
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Introduction to Matlab and Octave Matrix-oriented programming

Matrix-oriented programming

MATLAB and Octave are presented as ”MATrix LABoratories”,
commonly used for plotting of functions and data, implementation of
algorithms, creation of user interfaces, and interfacing with programs
written in other languages.

MATLAB R© is a proprietary programming language developed by
MathWorks, Inc. GNU Octave c© is free software under the terms of
the GNU General Public License.

MATLAB and Octave use languages that are mostly compatible. In
this course we will use syntaxes compatible with both programs,
unless otherwise stated.
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Introduction to Matlab and Octave Why MATLAB/Octave?

MATLAB and/or Octave will allow you to:

Manage large datasets (raw data, synthetic results, maps, etc.).
Perform iterative calculations.
Write self-explained calculations and share them with the scientific
community (i.e. suitable to be included in scientific publications).
Plot exactly what you want.
Learn a computing language that is easy.
Learning how to program in MATLAB/Octave makes other languages
much easier to learn: Matlab/Octave are similar to R, Python, C++,
etc.
Solve your own problems using your own programs, adapting exactly
to your needs!
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Introduction to Matlab and Octave The interface

The interface I

Matlab and Octave come with very similar interfaces containing, at least,
the following elements:

Address bar

Browser

Command window

Workspace

Editor
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Introduction to Matlab and Octave The interface

The interface II

Figure: MATLAB interface.
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Introduction to Matlab and Octave The interface

The interface III

Figure: Octave GUI.
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Introduction to Matlab and Octave The interface

The command window

This is the brain of the program. You can use this as a simple calculator
or to call functions or scripts. Ultimately, this is the only element you need
to use Matlab or Octave!

Try writing the following commands and hit enter:

97+6

23-36

23-6*6

(23-6)*6

12742*pi

3^2

sqrt(2)

log(100)

log10(100)

To clean the command window, use the command clc.
As most of the console interfaces, the command window has memory: try
using the up arrow key (↑).
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Introduction to Matlab and Octave The interface

Current directory and browser

When you want to interact with files (e.g. calling your own scripts or
creating files with your results or graphs), you need to know where you
are working. Therefore, make sure that the address you see at the top of
the screen is the folder you want to work in. You can see, create, delete or
open your files using your system browser (explorer, finder, nautilus, etc.)
or the browser integrated in Matlab or Octave.

Create a new file called my-first-file.m.
Avoid using spaces, most symbols, or start with numbers when naming
your files. Instead of spaces, use the underscore symbol ( ).
Also, note that Matlab files always end with .m
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Introduction to Matlab and Octave The interface

The editor

This is just a basic text editor. The files that you can edit do not contain
any information about formatting. You can open these files using any text
editor (e.g. notepad). However, the integrated editor format the text to
highlight the meaning of the text in the Matlab language.

Open my first file.m and write:

% This is my first Matlab script.

disp(’Hello world’)

then run it using the command my first file (no .m) in the command
window, or selecting run in the menu.

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 12 / 181



Introduction to Matlab and Octave The interface

Workspace

This is the memory of Matlab/Octave. The last answer given in the
command window is usually stored as ans.

Write x=3+2 in the command window.

The parameter x will appear in the Workspace.

Use the command who or whos to display a summary of the workspace in
the command window, and the command clear to remove all the
parameters in the workspace.
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Introduction to Matlab and Octave What can we put in the Workspace?

Parameters with one number I

mass=12

C14halflife=5730;

avogadro=6.022*10^23

As for file names, avoid using spaces, most symbols, or start parameter’s
names with numbers.

Ending with semicolon (;) prevents the output to be shown in the
command window, although the parameter is stored in memory. You can
check that the value of C14halflife is in memory by typing C14halflife in
the command window.
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Introduction to Matlab and Octave What can we put in the Workspace?

Parameters with one number II

Other “special” accepted values:

maxtime=Inf

mintime=-Inf

unknownvalue=NaN

Inf means “Infinite” and NaN means “Not a Number”. You can also
generate them by computing 1/0 or 0/0 in the command window.
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Introduction to Matlab and Octave What can we put in the Workspace?

Array of numbers

data=[254,782,65,5]

moredata=[23;36;47]

a=1:20

a=1:0.25:10

odds=1:2:100

pairs=2:2:100

emptyarray=[]

Use length(data) to check the size of your array.

Try also linspace(0,3,20) and logspace(0,2,5)

to get equally distributed numbers in the linear or logarithmic space. Use
odds' if you want it as a column.
Access a single (data(3) or data(end)) or several values of an array
(a(7:10))
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Introduction to Matlab and Octave What can we put in the Workspace?

Matrices I

A=[1,2,3 ; 4,5,6 ; 7,8,9]

B=[99,88,77 ; 66,55,44 ; 33,22,11]

C=ones(4,3) % number of rows,columns

D=zeros(4,3)

Note that anything you write after the % symbol is ignored. % is used for
comments.

You can also create a matrix by repeating an array using repmat:

repmat(data,3,1)

Use help repmat to know more about this.
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Introduction to Matlab and Octave What can we put in the Workspace?

Matrices II

These matrices are 2-D (rows and columns). However, MATLAB and
Octave are also able to handle matrices in multiple dimensions. E.g.
ones(3,2,5) is a 3-D matrix.

Use size(B) to check the size of your matrix (rows and columns), or
nnumel(B) to get the number of elements in B.
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Introduction to Matlab and Octave What can we put in the Workspace?

Strings

Strings are parameters containing text:

name='John'

students=[{'Gerry'},{'Trish'},{'Pablo'}]

Strings are useful when working with sample or location names. MATLAB
and Octave can handle strings and provide powerful tools to manipulate
and operating with text, such as regular expressions. However, these
programming languages were not primarily designed to work with text, and
string manipulation can be very frustrating at the beginning. Therefore,
we will restrict the use of text to sample names or simple labels.

Sometimes it will be useful to find a sample in a list. For example, use
strcmp to find the position of the student named Trish:
strcmp(’Trish’,students)
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Introduction to Matlab and Octave What can we put in the Workspace?

Small functions

Simple formulas can be defined by using defining the parameters with
@(Parameters):

temp fahrenheit = @(temp celsius)1.8 * temp celsius + 32

meters=@(ft)ft/3.2808

decay=@(halflife,time)exp(-log(2)/halflife*time)

Try temp fahrenheit(15) and decay(C14halflife,20000)
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Introduction to Matlab and Octave What can we put in the Workspace?

Boolean data I

Boolean data is a type of data that has one of two possible values: true
(1) or false (0). In MATLAB, logical is usually generated used equalities or
inequalities:

avogadro>1E23

mass==12

odds<10

odds(odds<10)

A>5

isinf(maxtime)

isnan(B)

isprime(7537)

Note that == and ∼= are used in MATLAB to determine equality or
inequality, and = to define a parameter.
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Introduction to Matlab and Octave What can we put in the Workspace?

Boolean data II

We can combine boolean data using boolean operators: & (and) and |

(or).

E.g. ( A<5 | B<30 ).

Boolean data can also be use as indexes if the boolean array or matrix has
the same size as the objective array or matrix.

E.g. A(A>5) or B(A<3) but not data(A<10).

This property is useful to easily create filters for our data:

data(data>50 & data<500)

clc to clean the Command window
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Introduction to Matlab and Octave What can we put in the Workspace?

Basic calculations

With numbers: mass*avogadro

With arrays and matrices: odds+pairs but odds.*pairs

Note the difference between B/A and B./A:

“.*”, “./” and “.^” are operators used to perform calculations element
by element (array operations). Avoid using “*”, “/” and “^” on matrices
unless you really want to do matrix operations following the rules of linear
algebra.

Call parts of another variable: You can access the number in the second
row and third column with A(2,3), the second row with B(2,:) or the
first column with A(:,1). MATLAB and Octave always follow the order
(row,column) in 2D matrices.
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Introduction to Matlab and Octave What can we put in the Workspace?

Random numbers

rand % any number between 0 and 1
rand(1,10) % a row of 10 random numbers
rand(10,1) % a column of 10 random numbers
rand(3,3) % a 3x3 matrix with random numbers between 0 and 1
A.*rand(3,3) % a matrix with random numbers between 0 and
numbers in matrix A
normrnd(11000,2000) % a random number from a gaussian
distribution of 11000±2000
normrnd(11000,2000,1,5000) % a row of 5000 random numbers
from a gaussian distribution of 11000±2000

Try hist(normrnd(11000,2000,1,5000)) and hist(rand(1,5000))

to plot the histograms corresponding to these random distributions.
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Introduction to Matlab and Octave Plots

Air pressure

Let’s define a function that calculates the pressure at a certain altitude:

pressure = @(altitude)1013.25*...

exp(-0.03417/0.0065*(log(288.15)-...

(log(288.15-0.0065*altitude))))

% standard atmosphere pressure (Lide, 1999)

Note that we can use three dots (...) to avoid long lines.

Then define x values between 0 (sea level) and 8848 m (Everest) every
100 m:

x=0:100:8848

And alculate their corresponding pressures:

y=pressure(x)
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Introduction to Matlab and Octave Plots

Simple plots

Try the following plots:

plot(x,y)

plot(x,y,'.r')

plot(x,y,'ob')

plot(x,y,'--k')

plot(x,y,'-g','LineWidth',2)

bar(x,y)

stairs(x,y)
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Introduction to Matlab and Octave Plots

Figure I

Create a figure and plot several things in it:

figure % open a new figure

hold on % do not clear when plotting different things

plot(x,y,’-b’)

plot(200,pressure(200),’hr’)

text(200,pressure(200),’East Kilbride’)

xlabel(’Altitude’)

ylabel(’Pressure’)

title(’My first plot with labels’)

Make y axis logarithmic: set(gca, ’YScale’, ’log’) (gca means “Get
current axes”)
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Introduction to Matlab and Octave Plots

Figure II

You can export your plots using the menu File > Save As in the figure
window. Exporting your plots as .eps or .pdf will allow you to edit them
with vector graphic editors like Adobe Illustrator or Inkscape.
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Introduction to Matlab and Octave Scripts

Scripts I

A script is a text file with a list of orders. In your current directory, create
radiocarbondating.m. Open it with the editor and write the following
orders:

%% This is a script that calculates radiocarbon ages and errors

%% By Me, 2019

%% Start with some cleaning

clear % this removes any previous parameter in the workspace

clc % this clears the command window

%% Define the formula that calculates the age from concentrations

C14age=@(modernconcentration,measuredconcentration)-...

8033*log(measuredconcentration./modernconcentration);

%% This is the data we have

modernc=1232;

errormodernc=13;

oldc=[567 1100 20 1252];

erroroldc=[6 20 5 50];
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Introduction to Matlab and Octave Scripts

Scripts II

%% Select the data we want to work with

n=1

%% Create 1000 random data based on the normal dristributions

randommodern=normrnd(modernc,errormodernc,1,1000);

randomold=normrnd(oldc(n),erroroldc(n),1,1000);

%% Calculate the ages of the distributions

ages=C14age(randommodern,randomold);

%% Plot the age distribution

figure

hold on

hist(ages)

title([’Sample ’ num2str(n)])

xlabel(’Age’)

ylabel(’Probability’)

%% Calculate the mean and the average

age=mean(ages)

errorage=std(ages)
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Introduction to Matlab and Octave Scripts

Scripts III

Now you can change the value of n to get the results of other data.

Note that we can make composed strings using brackets [] and the
function num2str(n) to convert numbers into strings.
Also note that we can use ... to avoid very long lines.
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Introduction to Matlab and Octave Loops

Loops

We often need to run a block of code several times. For example, in our
program radiocarbondating.m we could copy and paste the script 4
times changing n=1 by n=2, n=3 and n=4 to get all our ages calculated.
However, we avoid repeating code by writing a loop statement that
executes the code multiple times.

In radiocarbondating.m, we can substitute “n=1” by “for
n=[1,2,3,4]” and write “end” at the end of the script to perform the
calculations and plotting for the four samples.

The basic form of a loop in Matlab is:
for Parameter=List
% My repeating code

end
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Introduction to Matlab and Octave Loops

Error bars I

Create a new script called plot-with-error-bars.m that use a loop to plot
error bars of the individual concentrations:

%% This is a script that plots data with error bars

%% By Me, 2019

%% Start with some cleaning

clear % this removes any previous parameter in the workspace

clc % this clears the command window

close all hidden % close any pre vious figure

%% This is the data we have

data=[567 1100 20 1252 326 625];

errors=[6 20 5 50 32 100];

%% Figure

figure

hold on

for n=1:length(data) % start a loop

plot(n,data(n),’.b’) % Plot data

x=[n,n]; % x positions of the limits of the error bar line

y=[data(n)-errors(n),data(n)+errors(n)]; % y positions

plot(x,y,’-b’) % plot the error bar

end % end of the loop

xlabel(’Sample’)

ylabel(’Concentration’)
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Introduction to Matlab and Octave Loops

Error bars II

Another way of creating a loop is using the statement while:
n=0;

while n<10

n=n+1 % add 1 to the value of n

end
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Introduction to Matlab and Octave Conditional statements

if - end

Conditional statements allow us to select at run time which block of code
to execute. The simplest conditional statement is if, closed with end:

n=round(rand*100); % random number between 0 and 100

% rounded to the nearest integer

if n/2==round(n/2)

string=[num2str(n) ’ is pair’]

end
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Introduction to Matlab and Octave Conditional statements

if - elseif - else - end

We can define alternatives using if, elseif, else and end:

n=round(rand*100);

if n/2==round(n/2)

string=[num2str(n) ’ is pair’];

elseif isprime(n)

string=[num2str(n) ’ is odd and prime’];

else

string=[num2str(n) ’ is odd, but not prime’];

end

disp(string) % disp shows the string in the command window

You can also define conditional statements using switch (switch, case,
otherwise and end). Find yourself how to use the switch statement by
typing help switch in the command window!
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Introduction to Matlab and Octave Functions

Functions

A function is a script that works like a “black box”. You only see the final
output in the workspace, not all the parameters defined in the function.
When writing a function, or converting a script into a function, we have to
start the file with

function OUTPUTS = function name(INPUTS)

and write

end

at the end of the file.
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Introduction to Matlab and Octave Functions

14C age function I

Create a file called C14agefunction.m and copy:

function [age,errorage]=C14agefunction(oldc,erroroldc,modernc,errormodernc)

C14age=@(modernconcentration,measuredconcentration)-...

8033.*log(measuredconcentration./modernconcentration);

randomold=normrnd(oldc,erroroldc,1,10000);

randommodern=normrnd(modernc,errormodernc,1,10000);

ages=C14age(randommodern,randomold);

age=mean(ages);

errorage=std(ages);

end

Note that the function name has to be the same as the file name.
Otherwise you will get an error when running it.
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Introduction to Matlab and Octave Functions

14C age function II

Save the file, and then execute the following in the command window:

C14agefunction(50,10,1254,20)

[age,error]=C14agefunction(50,10,1254,20)
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Introduction to Matlab and Octave Built-in functions

Built-in functions

MATLAB and Octave come with a large number of built-in functions (e.g.
factorial, sin, sum, diff, max, magic, pi, median, chi2pdf,
interp1, contour, and many more).

You can learn how to use these functions using help (e.g. help

interp1), selecting the name of the function and pressing F1 in
MATLAB.

Also, you can discover more functions in the Internet. Just search for the
operation you want to do, including “Matlab” or “Octave” in your search.

We can even see how some of these built-in functions are made with edit.
Try edit magic to see the code of the function that generates magic
squares!
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Introduction to Matlab and Octave Built-in functions

Toolboxes and packages

There are some advances functions, like the ones used to work with maps,
that are not included in the basic package of MATLAB and Octave. These
“special packages” are called “toolboxes” in MATLAB and just
“packages” in Octave.

Toolboxes are installed using the MATLAB installer and they are
automatically loaded when you start MATLAB.

Octave packages can be installed using pkg install and the name of the
file where the package is. Before we start using an Octave package, we
have to load it with pkg load package name.

As one of the objectives of this course is learning to write code we can
share, most of the built-in functions that we are using in this course are
included in the basic versions of MATLAB and Octave. If a toolbox or
package is required, it will be clearly stated.
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling I

A glacier is a persistent body of dense ice that is constantly moving under
its own weight. (Wikipedia: Glacier)

(http://www.antarcticglaciers.org)
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling II

Consider the following climate simplifications:

Average monthly temperature (◦C) at sea level in Scotland:
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4 5 7 8 12 14 16 16 13 10 7 5

Temperature lapse rate: 8◦C/Km

Monthly precipitation (mm) in Scotland:
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
175 125 150 100 75 100 100 125 125 175 175 175
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling III

Consider the following snow/ice behaviour (huge simplifications):

All precipitation is snow when temperature is below 5◦C. All
precipitation is rain above 5◦C.

Daily temperature range is 5◦C, so day temperature is 2.5◦C above
the average.

Considering thermal conductivity of the snow mantle ∼5 W/K/m2, a
snow latent heat of fusion of 350 kJ/kg and a snow average density
of ∼0.3 Kg/l, an average of vertical 5 cm of snow per month will
be melted for each degree of day temperature over 0◦C.

If the snow survives for more than a year (annual mass balance > 0),
the snow will flow downhill at an horizontal speed of 10
inches/day.

The average glacier slope is 15◦.
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling IV
Mass balance:

1 Write a function that calculate the monthly snow mass balance (snow
accumulation-snow melting). Remember that the melting function
should not create snow!

2 Write a function that calculate the snow accumulated monthly.
Remember that (1) we can have snow inherited from the previous
month, and (2) the thickness of the snow mantle cannot be negative!

3 Write a piece of code that calculates the annual mass balance.
Introduce the possibility of emulate past and future climate conditions
by changing the temperature and precipitation uniformly (∆T and
∆P).

The output of the monthly functions should be an array of 12 numbers
when the input is one altitude, or a matrix when the input is a “column”
of altitude values.
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling V

Snow accumulation:

1 Placing a ski resort: what is the lowest altitude with 3 or more
months of snow?

2 According to these data, where could we find a glacier in Scotland
today? Note: the highest peak in Scotland is Ben Nevis, 1345 m
above sea level.
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling VI

The Glenshee ski area is located between 650 and 1050 m of altitude.
What impact would these scenarios have on the business by 2100?

Figure: earthobservatory.nasa.gov
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling VII

Glacier modeling exercises:

1 Write a piece of code that emulate the annual snow/ice mass flow.
Tip: calculate how much the snow/ice moves vertically in a year and
discretize the altitude reference accordingly, so the snow packed
during the previous year will move one position per year.

2 Write a script that runs the previous code until the thickness of the
snow/ice is stable.

3 According to this model, where should the glacial fronts have been
during the Younger Dryas (∆T=-4◦C)? and during last glaciation
(∆T=-6◦C)?
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Introduction to Matlab and Octave Exercises

Snow and glacier modelling VIII

Produce graphical outputs like these:
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Importing data & Statistics

Chapter 2: Importing data & Statistics

2 Importing data & Statistics
Importing .csv files
Importing data from text files using fopen and textscan

Input dialog
The normal distribution
Calculating the average
Types of “averages”
Error transmission
Rejecting outliers
Box plots
Histograms
Camel-plots
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Importing data & Statistics

Import functions

We can import our data in many ways. There are lots of built-in functions
that can be used to input data from different file types and different
formats: input, importdata, load, xlsread, imread, geotiffread,
arcgridread, usgsdem, etc. Here we will learn some of the simplest and
more universal ways of doing it: using csvread, textscan and directly
pasting data in a dialog box with inputdlg.
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.csv files I

CSV stands for “comma-separated values”. CSV files are text files widely
used to store tabular data in a simple format. All spreadsheet
manipulation programs, as Microsoft Excel, are able to import and export
CSV files. Each line in a CSV file corresponds to a row in a spreadsheet.
Values from different columns are separated by commas.
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.csv files II

Figure: Same .csv file in Excel and in a text editor.

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 53 / 181



Importing data & Statistics Importing .csv files

.csv files III
csvread(filename, row, col) reads data from the comma-separated
value formatted file starting at the specified row and column. The row and
column arguments are zero based, so that row=0 and col=0 specify the
first value in the file.

Note that only numeric data can be read using csvread. For example, the
file munros lon lat feet.csv contains text and data:

Name, long, lat, feet
Ben Nevis , -5.00352, 56.79697, 4409
Ben Macdui , -3.6691, 57.07042, 4295
Braeriach , -3.72885, 57.07824, 4252
Cairn Toul , -3.71092, 57.05432, 4236
... ... ... ...

So the orders csvread(’munros lon lat feet.csv’,0,0) does not
work or do not import the Munros’ names. To import the numerical data
from this file we should use:
munrodata=csvread(’munros lon lat feet.csv’,1,1)
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fopen and textscan I

We can import tabulated data, including text strings, from any text file.
To do so, we need to know how many rows with headers are in the file (in
this case: 1) , what is the symbol that delimiters the columns (in this
case: , ), and the type of data in the different columns. In this case, the
first column contains text (%s for string) and the three next columns
contain numbers (%f for floating-point number):

fid = fopen(’munros_lon_lat_feet.csv’);

munrodata = textscan(fid, ’%s %f %f %f’,...

’HeaderLines’, 1,’Delimiter’,’,’);

fclose(fid);
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fopen and textscan II

Once imported our data, we can organize it in different arrays:

names=munrodata{1};

lon=munrodata{2};

lat=munrodata{3};

feet=munrodata{4};
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Dialogs I

We can also input our data copied from a spreadsheet (like Excel) using
inputdlg as a string and then convert it into a matrix using textscan:

cstr = inputdlg (’Paste from excel’,’Input new data’);

mydata=textscan(cstr{1}, ’%s %f %f %f’);

When using this method to input data remember that:

The text strings (usually sample names) should not contain spaces
or certain symbols.
Avoid empty cells: you can use a 0 or NaN instead.
You should only copy rows with data. Avoid copying the headers.
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Gaussian distribution I

Most analytical data are considered Gaussian (or normal) distributions
(Fig. 5). This means that the true value of whatever we are measuring
could be equally higher or lower that the measured central value (the
data) and its probability is:

P = 1√
2πσ2
· e−

(x−µ)2

2σ2

where x are the possible values, µ is the central value (the mean), and σ is
the uncertainty (the standard deviation).
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Gaussian distribution II

Figure: For the normal distribution, the values less than one standard deviation
away from the mean account for 68.27% of the set; while two standard deviations
from the mean account for 95.45%; and three standard deviations account for
99.73%. Author: Dan Kernler. https://en.wikipedia.org/wiki/Normal distribution
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Gaussian distribution III

Create a function called normalprobs.m that calculates the probabilities
of an array x , given a piece of data as µ± σ:

function [P]=normalprobs(x,mu,sigma)

% Calculates the probability of x based on a gaussian mu +/- sigma

P=1/(2*pi*sigma^2)^0.5*exp(-(x-mu).^2./(2*sigma^2));

end

Then compare the following plots:

hist(normrnd(56,15,1,1000))

plot(1:100,normalprobs(1:100,56,15))
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Averages I

Geochronologists often produce a set of ages to date one geologic event.
Each of these ages are always the result of fitting a model to the
analytical data, usually some concentration(s) in a rock or mineral.
Generally, the relatively simple models used to generate “standard” ages
are based in assumptions on how the nature works. But the processes that
rule the concentrations in nature are always much more complicate than
assumed by our model. Thus, we should always expect some scatter in our
apparent ages due to this natural “noise”. However, in principle we don’t
known how much scatter can we attribute to the differences between the
nature and our model.
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Averages II

As we have seen before, any analytical data has also associated some
uncertainty related to the precision of our measurements (the error bars).
This known uncertainty should also contribute to the scatter of our data.

Before calculating the average of our ages, we should understand what
kind of uncertainty will dominate our averaged age. If we don’t have many
samples, a simple way of checking this is just plotting our ages. If we have
a large dataset, we can also compare our scatter with our individual
uncertainties using std(ages) and median(errors).
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Averages III

For example:

%% Group opf ages from LGM moraines

ages=[27311,18071,19698,19868,25357,21515,19486,18784,19311,...

14342,19412,18064,18554,18092,18194,19647,19390,18634,...

19900,18069];

errors=[8839,2263,1893,1780,1568,2754,2720,2516,1414,1265,...

2239,1389,3249,1287,1385,1323,1482,2044,1787,3392];

%% Plot ages

figure % start a new figure

hold on % keep all plotted elements

for n=1:length(ages)

% plot the error line

plot([n,n],[ages(n)-errors(n),ages(n)+errors(n)],’-b’)

% plot the central data

plot(n,ages(n),’.b’)

end

%% Calculations

SCATTER=std(ages)

ANALYTICAL_UNCERT=median(errors)
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Averages IV

Comparing scatter and analytical uncertainties, we can decide which is the
best way of averaging our data:

If scatter is much bigger (orders of magnitude) than our analytical
errors, we can just ignore the analytical uncertainties.

If the scatter is about the same or a few times bigger than the
analytical errors, our final age should reflect both the analytical and
model uncertainties.

If the scatter is much smaller than the analytical errors, we are
probably overestimating our analytical uncertainties. We should check
our previous calculations.
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Average of a group of numbers I

The most used type of average is the mean: mean(ages), which is the
same as sum(ages)/length(ages). The uncertainty of the mean is the
standard deviation: std(ages), which is

sqrt(sum((ages-mean(ages)).^2)/(length(ages)-1))

The Standard Deviation Of the Mean (SDOM) gives us an idea of how the
mean can change with new measurements:

std(ages)/sqrt(length(ages))
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Average of a group of numbers II
The SDOM is often used as the uncertainty of a large number of
analytical measurements on the same material, but it does not reflect
the uncertainty related to the natural variability expected in a group
of ages from the same geological formation.

In large datasets containing extreme values, the median could also be a
good choice to represent the data: median(ages). The median is less
affected by outliers than the mean, and is often the preferred measure of
central tendency when the distribution is not symmetrical. As for the
mean, we can calculate its uncertainty as:

sqrt(sum((ages-median(ages)).^2)/(length(ages)-1))

For analytical data, the standard deviation of the median is considered to
be a ∼ 25% higher than the SDOM.
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Average of a group of numbers and uncertainties I

When our data consist of a group of probability distributions (e.g. ages
and errors), we should take into account the errors in the calculation of
the average. If our data have different errors, the data with bigger errors
should weight less than the more precise data. To take this into account,
we can use the weighted mean:

WM=sum(ages./errors.^2)/sum(1./errors.^2)
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Average of a group of numbers and uncertainties II
The standard deviation of the weighted mean (SDOWM) average can be
calculated as:

SDOWM=sqrt(1/sum(1./errors.^2))

However, the SDOWM only reflects the uncertainty from the individual
errors and not the scatter of the data. A more realistic uncertainty could
be calculated as:

sqrt(std(ages)^2+SDOWM^2)
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Average of a group of numbers and uncertainties III

An alternative method to calculate the average and uncertainty of a group
of ages and errors is actually simulating their probability distributions:

simulations=1000;

% create a matrix to place data

fakedata=zeros(simulations,length(ages));

for n=1:simulations

% fill each line with random data

% based on individual ages and errors

fakedata(n,:)= normrnd(ages,errors);

end

MEAN=mean(fakedata(:))

% note that (:) converts a matrix into an array

UNCERTAINTY=std(fakedata(:))

hist(fakedata(:),30) % plot the fake data
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Error transmission I

Simulating the dispersion of the data by generating “fake data” according
to gaussian distributions is great trick to operate with probabilistic data,
getting a density distribution of the result. However, when the following
conditions are met, it is much more efficient to propagate errors
mathematically.

All operators (e.g. analytical data) are well-modeled by gaussian
distributions.
We are considering uncertainties of independent variables (no
covariance).
The uncertainty of the result is small enough to be well represented
by a normal distribution (i.e. the result is roughly lineal in the area of
the uncertainty and therefore the resulting distribution is not
asymmetrical).
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Error transmission II

If we can assume these conditions, the error propagation should be
performed by considering the partial derivatives of the result respect the
operators:

σf (a,b) =

√(
σa

δf (a,b)
δa

)2

+
(
σb

δf (a,b)
δb

)2

where a± σa and b ± σb are the operators within a standard deviation
(one sigma) uncertainties.
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Error transmission III

Here are some examples on common operations:

Operation Formula Uncertainty

Addition a + b
√
σ2
a + σ2

b

Subtraction a− b
√
σ2
a + σ2

b

Multiplication a · b
√

(σa · b)2 + (σb · a)2

Division a/b
√(

σa

b

)2
+
(
σb · a

b2

)2

Power ab
√(

σa·ab·b
a

)2

+ (σb · ab · ln a)
2

Natural logarithm a · ln(b)
√

(σa · ln(b))2 +
(
σb · ab

)2

Logarithm to base 10 a · log10(b)

√
(σa · log10(b))2 +

(
σb · a

b·ln(10)

)2

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 72 / 181



Importing data & Statistics Rejecting outliers

Rejecting outliers I

In statistics, an outlier is a data point that differs significantly from other
observations.

A simple method to identify outliers is using the Tukey’s fences based on
the data quartiles. This method identify outliers at deviations outside the
range from Q1 − 1.5 · (Q3 −Q1) to Q3 + 1.5 · (Q3 −Q1). We can calculate
this limits using the built-in function quantile:

Q1=quantile(ages,0.25);

Q3=quantile(ages,0.75);

outliers=ages(ages<(Q1-1.5*(Q3-Q1)) | ages>(Q3+1.5*(Q3-Q1)))
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Rejecting outliers II

Other approaches commonly used to identify outliers are based on the
goodness of fit. A simple way of measuring how close are our
measurements to our mean is the χ2 value:

χ2 =
(

x−x̄
σ

)2

Using σ =
√
σ2
x + σ2

x̄ we can calculate the individual values of χ2

considering all our uncertainties. Values of χ2 greater than 1 indicate that
the two values we are comparing, the individual data and our average, are
different within uncertainties.
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Rejecting outliers III

Exercise: Use the χ2 method to identify outliers of the ages respect their
weighted mean and standard deviation of the weighted mean.

In geosciences (e.g. studying a set of ages from a landform), outliers are
often due to the natural variability of the samples and not to experimental
errors. Therefore, when rejecting an outlier we are expected to give
an explanation of the geological process that caused that outlier.
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Box plots I

A common way of representing a dataset is using box plots. The data is
usually represented along the y axis, a box is drawn from Q1 to Q3. The
box is cut at the median (= Q2) and error bars are drawn outside the box
between the limits defined in section 8
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Box plots II
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Figure: In a box-plot, the inter-quartile range (IQR) is defined by the distance
between the first and third quartile Q1 - Q3, so 50% of our data are in the IQR,
25% is over Q3 and the rest 25% is under Q1.
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Box plots III
This code produces a box-plot of the given ages:

%% my data

ages=[27311,18071,19698,19868,25357,21515,19486,18784,19311,...

14342,19412,18064,18554,18092,18194,19647,19390,18634,...

19900,18069];

%% calculate the cuartiles

Q1=quantile(ages,0.25);

Q2=median(ages);

Q3=quantile(ages,0.75);

maxbar=Q3+1.5*(Q3-Q1);

minbar=Q1-1.5*(Q3-Q1);

outliers=ages(ages<minbar | ages>maxbar);
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Box plots IV
%% start a figure

figure

hold on

%% plot box at position x=2 and a width of 0.3

plot([2-0.3,2+0.3],[Q1,Q1],’-k’)

plot([2-0.3,2+0.3],[Q2,Q2],’-k’)

plot([2-0.3,2+0.3],[Q3,Q3],’-k’)

plot([2-0.3,2-0.3],[Q1,Q3],’-k’)

plot([2+0.3,2+0.3],[Q1,Q3],’-k’)

plot([2,2],[Q3,maxbar],’-k’)

plot([2,2],[Q1,minbar],’-k’)

plot([2-0.15,2+0.15],[minbar,minbar],’-k’)

plot([2-0.15,2+0.15],[maxbar,maxbar],’-k’)

plot(ones(size(outliers))*2,outliers,’.k’)

% ones(size(outliers) is used because

% in principle we do not know the size of

% the outliers array

%% beautify the axis

xlim([0 4])

set(gca,’xtick’,[]) % remove x ticks

ylim([0 max(ages)*1.5])

ylabel(’age’)

box on % draw upper and right lines
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Box plots V

Exercise: Write a function that draws the box plot at a given x position
and box width. Make the width of the caps half the width of the box. The
input should be: drawboxplot(data,x,width)

Then use the function to compare the altitudes of the eastern and western
munros from section 2.

Remember that you can recycle code using copy & paste!
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Histograms I

Another way of visualizing a the distribution of a large dataset is plotting
an histogram (e.g. hist(ages)). We can select the number of “bars” to
plot: hist(feet,30). We can also use the built-in function hist to
generate the counting data and plot it using plot:

figure

[counts,centers] = hist(feet,20);

plot(centers,counts,’*-r’)

Exercise: Compare graphically the mean + standard deviation, the box
plot and the histogram of these data. Which one reflect better the
variability of our ages?
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Camel-plots I

When our data have associated errors (like our ages and errors), the
histogram does not represent the relative weight of our individual data.
The probability distribution of the age 12000± 1500 can be depicted using
the function defined in section 4:

% Define the x values to plot

xref=linspace(0,50000,500);

% calculate the probability distribution

probs=normalprobs(xref,12000,1500);

% plot

figure

hold on

plot(xref,probs,’-b’)
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Camel-plots II

Exercise: Write a script that sum all the probabilities of the previously
defined ages for each xref and plot it. The plot of this sum should look
similar to the blue line in the next figure.
The generated plot show the density of our data better than the histogram.
These plots are sometimes called “probability density plots”. However,
these diagrams represent the distribution of our data, that highly depends
on how we selected the samples. Therefore, they do not necessarily
represent the probability distribution of the landform age and, according to
Greg Balco, they should be called “normal kernel density estimates.”
https://cosmognosis.wordpress.com/2011/07/25/what-is-a-camel-diagram-anyway/
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Camel-plots III
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Figure: The plot of the sum of probability distributions from our data is often
called “Camel-plot” (informally).
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Chapter 3: Data calibration

3 Data calibration
What is a calibration?
Calibration tools
Spectrometry data
Exercise: ICP-OES data calibration
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Calibrations I

Geochemical analysis often require calibrating a machine. A calibration is
a method that compares

Nominal values of something we consider real (e.g. known
concentrations of Fe in a solution), and

Directly measured data (e.g. counts per second from an ICP machine)

To perform a calibration we usually need to measure a set of known
samples (standards) in a machine.
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Calibrations II

Our standards will be a group of samples (usually artificial) containing no
analyte (e.g a tube with water) or a known value of the analyte (e.g. a
tube with liquid containing 10.2 parts per million of iron). Standards
containing no analyte are usually called blanks, and the known values are
often called nominal data. Excepting the blanks, the nominal values of the
standards are expected to have an associated uncertainty (e.g.
[Fe]=10.2± 0.1 ppm).

Also, the machine we are using will be probably repeating the
measurement on the same sample for 3 times or more. Therefore, the
measured data will also have an associated uncertainty, usually the
standard deviation of the measurements from the same sample.

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 87 / 181



Data calibration Calibration tools

Plotting data with x and y errors I

The first thing we should do to start calibrating any data is compare it
graphically.

Create the script my first calibration.m and copy the following ICP
calibration data:

% Nominal concentrations of iron in some standards

STDSnominal=[0,0.98,4.56,10.78,19.34,0,1.05,5.1,9.94,18.95];

% associated uncertainties

STDSnominal_uncert=[0,0.02,0.06,0.11,0.19,0,0.02,0.06,0.10,0.19];

% ICP measured values of standards in counts per second (cps)

STDScps=[425,1724,7443,15221,30973,146,1832,7378,15124,27701];

% associated uncertainties

STDScps_uncert=[214,140,377,329,381,249,311,280,1129,1140];

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 88 / 181



Data calibration Calibration tools

Plotting data with x and y errors II

The simplest way of representing these data with uncertainties is:

x=STDSnominal;

dx=STDSnominal_uncert;

y=STDScps;

dy=STDScps_uncert;

figure

hold on

for n=1:length(x)

plot([x(n),x(n)],[y(n)-dy(n),y(n)+dy(n)],’-b’)

plot([x(n)+dx(n),x(n)-dx(n)],[y(n),y(n)],’-b’)

end

plot(x,y,’.b’)
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Data calibration Calibration tools

Plotting data with x and y errors III

However, when we have both x and y uncertainties, the error bars do not
fully represent the probability distribution of the data in the 2-D space.
Assuming that σx and σy are independent (no coviariance), the probability
distribution at a point ( xi , yi ) can be defined by its χ2 value respect our
data x , y , σx and σy :

χ2 = ( xi−xσx
)2 + ( yi−yσy

)2

Assuming that all the points with χ2 = 1 are at the one-sigma confidence
level boundary, we could solve the previous equation as:

xi = x + σx · cos (θ)
yi = y + σy · sin (θ)

being θ between 0 and 2 · π (note that sin2 (θ) + cos2 (θ) is always 1).
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Plotting data with x and y errors IV

We can use this property to draw the ellipses corresponding to our data
within uncertainties:

figure

hold on

for n=1:length(x)

theta=linspace(0,2*pi,100);

xi=x(n)+dx(n)*cos(theta);

yi=y(n)+dy(n)*sin(theta);

plot(xi,yi,’-b’) % plot ellipse

end

plot(x,y,’+b’) % plot central point

Note that ellipsis from samples with no uncertainty in one of the axis (e.g.
blanks) look exactly as error bars.
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Linear regression I

A line is the simplest way of relating 2 sets of data (e.g. known
concentrations and signals given by a machine). One of the most used
methods to fit a line to our dataset is the “least-squares” regression. This
method minimizes the square of the distances between the line and our
data. Fortunately, there is a direct solution to solve this problem. The
general formulas to fit a line y = a · x + b to n data by least-squares are:

a = n·(
∑

xiyi )−(
∑

xi )·(
∑

yi )
n·(
∑

x2
i )−(

∑
xi )2

b =
(
∑

x2
i )·(
∑

yi )−(
∑

xi )·(
∑

xiyi )

n·
∑

x2
i −(

∑
xi )2
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Linear regression II

In MATLAB/Octave, we can create the function leastsquares.m as:

function [ myfit ] = leastsquares( x,y )

a=(length(x)*sum(x.*y)-sum(x)*sum(y))/(length(x)*sum(x.^2)-sum(x)^2);

b=(sum(x.^2)*sum(y)-sum(x)*sum(x.*y))/(length(x)*sum(x.^2)-sum(x)^2);

myfit = @(x) a*x+b;

end

and the average error of the data calibrated using leastsquares will be:

myfiterror= mean(abs(y-myfit(x))
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Data calibration Calibration tools

Linear regression III

Exercises:

Plot the ICP data from slide 88 together with its linear fit.

Use this data to calibrate a measurement of 9000 cps.

How would you propagate the uncertainty of the calibration?

Does myfiterror fully represent the calibration uncertainty?
We have not used the uncertainties in our calculations!

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 94 / 181



Data calibration Calibration tools

Interpolation and smoothing I

When we have a curve defined as y = f (x) we might be interested in
getting the xi value corresponding to a yi . This is the case of the function
myfit(x), where x represent concentrations and y are signals obtained by
ICP. The function leastsquares is a line and it would not be difficult to
calculte the inverse function mathematically:
y = a · x + b ⇒ x = (y − b)/a.

However, we often need to fill the gaps from incomplete datasets. For
example, the file gistemp.csv contains an estimate of global surface
temperature change every 5 years (GISTEMP data:

http://data.giss.nasa.gov/gistemp/).

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 95 / 181



Data calibration Calibration tools

Interpolation and smoothing II

Create a new script,load the data and plot it:

gistempdata=csvread(’gistemp.csv’,1,0);

years=gistempdata(:,1);

temp=gistempdata(:,2);

figure

hold on

plot(years,temp,’*k’)
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Data calibration Calibration tools

Interpolation and smoothing III

If we want to estimate the global surface temperature change every year,
we need to interpolate the data. To do so, we can use the built-in function
interp1. By default interp1(x,y,x0) will return the linear interpolation
of the x,y dataset at x0. Try:

myyears=min(years):1:max(years);

mytemp=interp1(years,temp,myyears);

plot(myyears,mytemp,’.-r’)

To avoid errors, the x values in textttinterp1(x,y,x0) should be sorted and
not repeated. If your data is not sorted, you can use sort the data using
sort: [x2,order]=sort(x); y2=y(order);
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Data calibration Calibration tools

Interpolation and smoothing IV

The linear interpolation is the default method used by interp1, so
interp1(x,y,x0) is equivalent to interp1(x,y,x0,’linear’). But we
can use other methods, such as ’spline’, or ’nearest’ to interpolate
our data. To see the differences, try:

myyears=min(years):1:max(years);

mytemp=interp1(years,temp,myyears,’spline’);

plot(myyears,mytemp,’.-b’)

Apart of the method, we can ask interp1 to also extrapolate data by
adding ’extrap’ after the method. If you want to know more about
interp1, type help interp1.

Exercise: use extrapolation to predict the global surface temperature
change during the next century.
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Data calibration Calibration tools

Interpolation and smoothing V

In other cases, instead of increasing the resolution of our data, we might
be interested in smoothing it (e.g. to remove high frequency noise). For
example:

smoothingtime=50;

yearssmooth=1900:10:2000;

for n=1:length(yearssmooth)

% select data around the year yearssmooth(n)

selecteddata=(abs(yearssmooth(n)-years)<smoothingtime/2);

tempsmooth(n)=mean(temp(selecteddata));

end

plot(yearssmooth,tempsmooth,’-m’)

This method is called “moving average”.

Exercise: extrapolate the smoothed temperatures to predict the global
surface temperature change during the next century.
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Data calibration Spectrometry data

Blank Equivalent Concentration I

In spectrometry,the Blank Equivalent Concentration (BEC) is defined as
the concentration that would correspond to the signal of the blank. It is
usually determined by the following formula:

BEC = Iblank
Istandard−Iblank

· Cstandard

being I the signals measured, usually in counts per second (cps), and C
the nominal concentration. Considering that we are going to be working
with datasets involving several standards, we can define the BEC
graphically as the negative of the x-intercept of our calibration line.
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Data calibration Spectrometry data

Blank Equivalent Concentration II
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Figure: Graphical calculation of the Blank Equivalent Concentration (BEC)
according to the calibration represented by the red line.
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Data calibration Spectrometry data

Blank Equivalent Concentration III

The BEC gives us an idea of how the background level of our machine
compares with the measurements of our standards. We could think that a
low BEC value implies that our measurements are going to be more
precise. However, the precision of the measurements will depend on the
stability of the background rather than the background value.
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Data calibration Spectrometry data

Blank Equivalent Concentration IV
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Figure: Two blank measurements compared. The measurements of the analyte
#1 in the blank show a lower background, but the background of the analyte #2
measurements is more precise.
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Data calibration Spectrometry data

Blank Equivalent Concentration V

The stability of the background is what defines the precision of our
measurements, rather then the background value. Similarly, we should
calculate the variability of our BEC to get an idea of the noise of our
measurements in concentration units. There are different ways of
calculating the BEC “noise” (σBEC ). We could just calculate it based on
the scatter of our blank data. However, this would not reflect the scatter
of our standards. Fig. 10 shows the σBEC calculated from the uncertainty
of our calibration.

Exercise: recycle the code generated before (calculation of myfiterror)
to calculate the uncertainty of the BEC corresponding to the calibration
data shown in the slide 88. Tip: you can use maths to get the inverse of
myfit or use interp1.
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Data calibration Spectrometry data

Blank Equivalent Concentration VI
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Figure: Graphical calculation of the Blank Equivalent Concentration (BEC) and
its uncertainty σBEC .
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Data calibration Spectrometry data

Limits of detection and quantification I

The Limit of Detection (LOD) or Detection Limit is defined as the
smallest measurable concentration. It is the concentration of a theoretical
sample that will produce a signal strong enough to be distinguishable from
the background noise. Assuming that this signal is going to have a noise
similar to the background, the difference between the signals from the
sample and the blank should be bigger than two times the noise. That is
why the LOD is numerically defined as LOD = 3 · noise. This is often
calculated by calibrating the concentration corresponding to
Iblank + 3 · σIblank , being σIblank the standard deviation of the intensities
measured on blank samples.
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Data calibration Spectrometry data

Limits of detection and quantification II

This approach assumes that our theoretical smallest measurable samples
will produce a signal as scattered as our blank. However, sometimes, the
measures of our samples are more similar to standards than to blanks (e.g.
due to matrix effects). This is why considering LOD = 3 · σBEC would be
a more conservative way of calculating our LOD.
Likewise, the Limit of Quantification (LOQ) is usually defined as 10 times
the blank noise, so the uncertainty associated with the lowest sample that
can produce quantitative data is ∼ 10%. As for the LOD, we can calculate
the LOQ using the BEC uncertainty: LOQ = 10 · σBEC .
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Data calibration Spectrometry data

Calibrating data I

Once we have calculated the algorithms that relate the ICP signal with
concentrations and concentration uncertainties, we are ready to calibrate
the signals from our “unknown samples” in our script
my first calibration.m:

% ICP measured values of unknowns in counts per second (cps)

SAMPLEScps=[9782,28746,13471,5870,28173,30492,13739,3588,813,12805];

% associated uncertainties

SAMPLEScps_uncert=[181,1042,1214,76,2899,2532,809,243,275,716];
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Data calibration Spectrometry data

Calibrating data II

To make this easier, we can define our calibration line as a reference xcal

and ycal:

xcal=linspace(min(x),max(x),100);

ycal=myfit(xcal);

and transform the signals yunk into concentrations xunk using interp1:

yunk=SAMPLEScps; dyunk=SAMPLEScps_uncert;

xunk=interp1(ycal,xcal,yunk,’linear’,’extrap’)

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 109 / 181



Data calibration Spectrometry data

Calibrating data III

As the calibration is a line, we can also transform the measurement
uncertainties into concentrations using:

measurementuncert=...

( interp1(ycal,xcal,yunk+dyunk,’linear’,’extrap’)-...

interp1(ycal,xcal,yunk-dyunk,’linear’,’extrap’) )/2
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Data calibration Spectrometry data

Calibrating data IV

The measurement uncertainty is the internal uncertainty of our data,
which is the errors we should use to compare our samples between them.
However, as usually we want to compare our data with data that has not
been calibrated simultaneously (e.g. samples measured one month ago),
we should also include the calibration uncertainty into the external
uncertainty (dxunk):

calibrationuncert=...

( interp1(ycal,xcal,yunk+myfiterror,’linear’,’extrap’)-...

interp1(ycal,xcal,yunk-myfiterror,’linear’,’extrap’) )/2

dxunk=sqrt(calibrationuncert.^2+measurementuncert.^2);
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Data calibration Spectrometry data

Calibrating data V

Including the graphical representation of the unknown data, the script
my first calibration.m could be something similar to this:

%% This is my first calibration script

clear % clear all previous data

close all hidden % close all figures

% Nominal concentrations of iron in some standards

STDSnominal=[0,0.98,4.56,10.78,19.34,0,1.05,5.1,9.94,18.95];

% associated uncertainties

STDSnominal_uncert=[0,0.02,0.06,0.11,0.19,0,0.02,0.06,0.10,0.19];

% ICP measured values of standards in counts per second (cps)

STDScps=[425,1724,7443,15221,30973,146,1832,7378,15124,27701];

% associated uncertainties

STDScps_uncert=[214,140,377,329,381,249,311,280,1129,1140];

x=STDSnominal; dx=STDSnominal_uncert;

y=STDScps; dy=STDScps_uncert;
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Data calibration Spectrometry data

Calibrating data VI

% ICP measured values of unknowns in counts per second (cps)

SAMPLEScps=[9782,28746,13471,5870,28173,30492,13739,3588,813,12805];

% associated uncertainties

SAMPLEScps_uncert=[181,1042,1214,76,2899,2532,809,243,275,716];

yunk=SAMPLEScps; dyunk=SAMPLEScps_uncert;

%% Calibration and uncertainty

myfit = leastsquares(x,y);

myfiterror= mean(abs(y-myfit(x)));

%% Calibration line

xcal=linspace(min(x),max(x),100);

ycal=myfit(xcal);

ycalerror=myfiterror;
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Data calibration Spectrometry data

Calibrating data VII

%% BEC, LOD, LOQ

bec=-interp1(ycal,xcal,0,’linear’,’extrap’);

dbec=interp1(ycal,xcal,myfiterror,’linear’,’extrap’)+bec;

LOD=3*dbec;

LOQ=10*dbec;

%% Calibrate unknowns

xunk=interp1(ycal,xcal,yunk,’linear’,’extrap’);

calibrationuncert=...

interp1(ycal,xcal,yunk+myfiterror,’linear’,’extrap’)-xunk;

measurementuncert=...

interp1(ycal,xcal,yunk+dyunk,’linear’,’extrap’)-xunk;

dxunk=sqrt(calibrationuncert.^2+measurementuncert.^2);
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Data calibration Spectrometry data

Calibrating data VIII

%% Start a figure

figure

hold on

% plot the unknowns with error-bars

for n=1:length(xunk)

plot(xunk(n),yunk(n),’.k’)

plot([xunk(n)-dxunk(n),xunk(n)+dxunk(n)],[yunk(n),yunk(n)],’-k’)

plot([xunk(n),xunk(n)],[yunk(n)-dyunk(n),yunk(n)+dyunk(n)],’-k’)

end
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Data calibration Spectrometry data

Calibrating data IX

% plot the standards with ellipsis

for n=1:length(x)

theta=linspace(0,2*pi,100);

xi=x(n)+dx(n)*cos(theta);

yi=y(n)+dy(n)*sin(theta);

plot(xi,yi,’-b’)

end

plot(x,y,’.b’)

% plot the calibration

plot(xcal,ycal,’-r’)

plot(xcal,ycal+myfiterror,’--r’)

plot(xcal,ycal-myfiterror,’--r’)

% put labels

ylabel(’Intensity (cps)’)

xlabel(’Concentration (ppm)’)
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Data calibration Spectrometry data

Calibrating data X

And the generated figure will be similar to this:
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Figure: Example of figure output of a calibration. Blanks and standards are
depicted in blue, unknowns in black and the calibration line within uncertainty in
red.
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Data calibration Spectrometry data

Calibrating data XI

As you can see in the figure, the previous script overestimate the
uncertainties of the lowest concentrations by considering myfiterror as a
constant, where it should be a function of the ICP signal. Therefore, we
obtain overestimated LOD and LOQs. You can try to improve the simplistic
mean(abs(y-myfit(x))) with some other code.

Also, note that we have ignored the uncertainties of the calibration data
STDSnominal uncert and STDScps uncert. We should also transmit those
uncertainties in the external uncertainties. We could do that mathematically
(calculating the partial derivatives for the formulas in the leastsquares.m

function) or programmatically (fitting a large number of different lines with
data generated using normrnd ).

An example of a full propagation of uncertainties is shown in
my second calibration.m.
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Data calibration Spectrometry data

Calibrating data XII
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Figure: Another example of calibration. Here, the scatter and the uncertainties of
the standards are fully propagated.
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Data calibration Spectrometry data

Calibrating data XIII

Finally, you can convert your script into a function that you can use in the
future to calibrate your own data:

function [ SAMPLESppm SAMPLESppm_uncert] = calibfunction(STDSppm,STDSppm_uncert,...

STDScps,STDScps_uncert,...

SAMPLEScps,SAMPLEScps_uncert)

% Paste here some of the code used in my_first_calibration

% - Remember no to paste the input data (STDSppm,SAMPLEScps, etc.)

% - Do not paste the plotting code unless you need it!

end
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Data calibration Spectrometry data

Reporting data with uncertainties I

At the end of our scripts we will probably want to include an easy way of
exporting the numerical results we obtained, like the concentrations and
uncertainties xunk and dxunk. The simplest way is by printing what we
want in the command window using the built in function disp. As we
want to mix our numerical parameters with strings, we will have to use
num2str to transform our numbers into strings.
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Data calibration Spectrometry data

Reporting data with uncertainties II

clc % clear the command window

disp([’Blank equivalent concentration: ’ num2str(bec) ’ ppm’])

disp([’Limit of detection: ’ num2str(LOD) ’ ppm’])

disp([’Limit of quantification: ’ num2str(LOQ) ’ ppm’])

disp([’Concentrations and uncertainties:’])

for n=1:length(xunk)

disp([num2str(xunk(n)) ’ +/- ’ num2str(dxunk(n))])

end

If we want to be able to paste our copy and paste our data in Excel, we
can replace ’ +/- ’ by the tab character char(9).
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Data calibration Spectrometry data

Reporting data with uncertainties III

A common mistake when reporting data with errors is using more digits
than the significant figures. For example, the last numbers of 6.3976 from
the data 6.3976± 0.46537 are meaningless. A couple of significant figures
in the uncertainty is usually enough, so in our report we should just write
6.40± 0.47, as this distribution is identical to 6.3976± 0.46537. We can
use round to trim useless digits from our mu±sigma data:

decimalpositions=1-floor(log10(sigma));

newmu=round(mu,decimalpositions);

newsigma=round(sigma,decimalpositions);

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 123 / 181



Data calibration Spectrometry data

Reporting data with uncertainties IV

Exercise: Add the “reporting code” in my first calibration.m to:

Displays the concentrations below the LOD as “< LOD ppm”.

Displays the concentrations below the LOQ as “∼ conc. ppm”.

Displays the concentrations above the LOQ “conc. ± uncert. ppm”
using only their significant figures.
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Data calibration Exercise: ICP-OES data calibration

ICP-OES data calibration

The file ICPdata GU20171012.csv contains real raw ICP-OES data
exported from the ICP machine (one line per analyte in chronological
order) and an extra column with the nominal concentrations of the
standards in ppm.

Write a script that reduces the ICP-OES data and report calibrated
concentrations for each analyte.
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Data calibration Exercise: ICP-OES data calibration

Tips

Some useful functions that you might need:

fopen and textscan from chapter 2.

STD=∼isnan(nominal) select lines containing nominal values (the
values in the nominal array are not-not-a-number).

unique(analytename) returns a list of unique values of
analytename.

strcmp(string, list of strings) returns the positions of the
string in the array list of strings. This is useful when you want
to work with only the lines that refer to a specific analyte. E.g. inside
this loop:
for this analyte=unique(analytename)’

selectdata=strcmp(this analyte, analytename);

...and work with selectdata in here...

end.
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Modeling

Chapter 4: Modeling

4 Modeling
Forward problem
Inverse problem
Cosmogenic depth-profile dating
Monte Carlo methods
Convergence methods
Goal-seeking algorithms
Summary
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Modeling

Numerical models

Numerical models are widely used to solve physical or chemical problems
by describing processes using equations and numbers.

We can generally describe a numerical model as y = F (x), where x are the
causes of the process, F are the algorithms that describe the process, and
y are the consequences of the process.

In Earth Sciences, we typically know the consequences (y) of the process
we are studying (e.g. a concentration of something as a result of time,
that will be the main cause in a geochronology problem), and we want to
know the causes x . Therefore, finding or approximating the inverse model
x = F ′(y) would be very useful for our purposes.

The way we solve a problem involving numerical models will depend on
whether or not we can find or approximate the inverse model.
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Modeling Forward problem

Forward problem

Forward models as y = F (x) are used to make informed predictions.
However, when we can find the inverse of our model x = F ′(y), we can
solve our problem directly.

In geochronology, this x = F ′(y) typically means expressing the true age
of a sample as a function of concentrations and other known parameters.

Mathematically, a forward problem is a well-posed problem, where a
unique solution exists and the solutions change continuously with the
known parameters.
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Modeling Forward problem

Radiocarbon calibration I

A good example of a forward problem is the calculation of a calibrated 14C
age from an apparent 14C age, as the 14C ages calculated in the slide 38.

Apparent radiocarbon ages are calibrated using calibration lines. You can
download the data corresponding to a calibration line from here:
https://journals.uair.arizona.edu/index.php/radiocarbon/article/downloadSuppFile/16947/275

You should get a file called 16947-25973-2-SP.14c. Save it in your
working folder and open it as text: you will find out that is a comma
separated file (csv).
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Modeling Forward problem

Radiocarbon calibration II

If we have a radiocarbon age (e.g. 2000± 20), we should be able to create
a script to calibrate the entire probability distribution of the age (see slide
58) along the calibration curve using interp1 and produce an output like
this:
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(code in the next slides)
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Modeling Forward problem

Radiocarbon calibration III
%% import calibration curve

fid = fopen(’16947-25973-2-SP.14c’);

imported = textscan(fid, ’%f %f %f %f %f’,...

’HeaderLines’, 12,’Delimiter’,’,’);

fclose(fid);

% select the data from the calibnration curve

calBP=imported{1};

C14=imported{2};

%% interpolate calibration curve to arrays of 1 position per calibrated year

refcalBP=min(calBP):1:max(calBP);

refC14=interp1(calBP,C14,refcalBP);

%% input our data

C14age=2000;

C14ageerr=20; % one sigma error

% calculate probabilities of my data

C14probs=normalprobs(refC14,C14age,C14ageerr);
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Modeling Forward problem

Radiocarbon calibration IV
%% Plot the calibration curve and our data

% select only the "most" probable data to plot

sel=(C14probs>max(C14probs)/1000);

figure % start figure

% plot the part of the calibration curve that is relevent for us

subplot(3,3,[2 6])

plot(refcalBP(sel),refC14(sel))

title(’Calibration curve’)

% plot our data

subplot(3,3,[1 4])

plot(C14probs(sel),refC14(sel))

ylabel(’C14 age’)

xlabel(’P’)

% plot the data calibrated

subplot(3,3,[8 9])

plot(refcalBP(sel),C14probs(sel))

xlabel(’calibrated C14 age’)

ylabel(’P’)
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Modeling Forward problem

Radiocarbon calibration V

Note that:

We are ignoring the uncertainty of the calibration curve
(imported{3}). To know how to incorporate all the errors, check the
script “MatCal” by Lougheed & Obrochta (2016):
http://dx.doi.org/10.5334/jors.130

To represent several subplots in the same window we are using
subplot(r,c,[a b]), where r and c are the number of rows and
columns, and a and b are corners of the area where we want to plot.
E.g. subplot(3,4,[7 12]) would start plotting in the blue area:
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Modeling Inverse problem

Inverse problem

Sometimes it is not possible to express our problem as x = F ′(y), because
sometimes it is impossible to get the inverse of F (x).

Most geochemical models used in geochronology allow the calculation of a
theoretical concentration or measurable signal C as a function of time t
and other parameters: C = f (t,C0, ...). However, some of these problem
cannot be solved for t = f (C ,C0, ...). In this cases, we will need to guess
the age t corresponding to our known concentrations C ,C0, etc.
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Modeling Inverse problem

Ill-posed problem

Mathematically, this kind of problems are often ill-posed problems.
Therefore, we cannot assume that they have a unique solution and we
should check the sensitivity of our results to a change in our known
parameters.

In geochronology, this means that apart of answering the main question:

Which ages are compatible with my data?

but we should also answer the question:

Which ages are not compatible with my data?
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Modeling Cosmogenic depth-profile dating

Cosmogenic depth-profile dating

The accumulation of 10Be under a sedimentary surface depends on the
inherited 10Be concentration (C0), the different 10Be production rates
(Psp., Pf µ and Pµ−) and attenuation lengths (Λsp., Λf µ and Λµ−), the
10Be decay constant (λ), the density of the sediment (ρ), the depth (z),
the erosion rate of the surface (ε) and the age of the landform (t):

C = C0 +
Psp.
ε

Λsp.
+λe

− z·ρ
Λsp.

(
1− e

−t
(
λ+ ε

Λsp.

))
+

Pµ−
ε

Λ
µ−

+λe
− z·ρ

Λ
µ−

(
1− e

−t
(
λ+ ε

Λ
µ−

))
+

Pfµ
ε

Λfµ
+λe

− z·ρ
Λfµ

(
1− e

−t
(
λ+ ε

Λfµ

))

This equation cannot be solved for t. Also, when we have a dataset of
10Be concentrations under a surface (a 10Be depth-profile), we want to
solve the problem for C0, ε and t. How can we do this?
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Modeling Cosmogenic depth-profile dating

10Be accumulation model

The following function calculates theoretical 10Be concentrations:

function [ C ] = exposure_model(P,L,l,density,z,C0,erosion,t)

C=C0+...

P(1)./(l+erosion.*density./L(1)).*exp(-z.*density./L(1)).*...

(1-exp(-(l+erosion.*density./L(1)).*t))+...

P(2)./(l+erosion.*density./L(2)).*exp(-z.*density./L(2)).*...

(1-exp(-(l+erosion.*density./L(2)).*t))+...

P(3)./(l+erosion.*density./L(3)).*exp(-z.*density./L(3)).*...

(1-exp(-(l+erosion.*density./L(3)).*t));

end
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Modeling Cosmogenic depth-profile dating

10Be data I

The following code defines all the known parameters and the 10Be
concentrations from the sampled depth-profile for an alluvial fan in
Almeŕıa (Spain):

%% Production rates

P=[4.35,0.0985,0.0855]; % production rates in at/g/a

L=[160,1137,1842]; % attenauation lengths in g/cm^2

l=4.9975E-7; % decay contant in a^(-1)

%% Field data

density=1.8; % g/cm^3

z=[267,195,141,95,46,3]; % depth of the sameples in cm

Be10=[91000,184000,265000,430000,732000,1070000]; % 10Be concentrations in atoms/g

Be10error=[9100,16000,18000,29000,61000,81000]; % 10Be uncertainties in atoms/g
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Modeling Cosmogenic depth-profile dating

10Be data II

Try exposure model(P,L,l,density,10,0,0.0001,10000) to
calculate the 10Be concentration accumulated in a sample 10 cm below a
10 ka old surface being eroded at a rate of 1 mm/ka (0.0001 cm/a).

We can reproduce the theoretical depth profile for these conditions along
the first 3 m under the surface:

zref=0:300; % depth reference in cm

concentrations=exposure_model(P,L,l,density,zref,0,0.0001,10000);

plot(concentrations,-zref,’-b’)

Now we just need to find which theoretical values of inheritance, age and
erosion rates (the last 3 parameters in the exposure model function)
match our Be10 concentrations within Be10error uncertainties!
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Modeling Monte Carlo methods

Monte Carlo methods I

The simplest way of guessing the values for C0,erosion,t that fit our
data Be10 at our depths z could be just trying a lot of random values of
C0,erosion,t and check which theoretical concentrations are closer to
our data. This is called a Monte Carlo experiment.
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Modeling Monte Carlo methods

Monte Carlo methods II

To perform this Monte Carlo experiment, we should define a way of
measuring how close is our model to our data. A χ2 function (similar to
the one at the slide 73) would do the job:

χ2 =
n∑

sample=1

(
Cmodel(zsample)−Csample

σCsample

)2
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Modeling Monte Carlo methods

Monte Carlo methods III

The following code runs a Monte-Carlo experiment of 100 000 models
assuming that ε is between 0 and 50 m/Ma (0.005 cm/a), the landfom
age is between less than 3 Ma (3E6 a), and C0 is smaller than the lowest
concentration.

%% Monte carlo experiment

nummodels=100000; % define how many models

C0i=rand(1,nummodels)*min(Be10); % random inheritences

ti=rand(1,nummodels)*3e6; % random ages

erosioni=rand(1,nummodels)*0.005; % random erosion rates

chisquarevalues=rand(1,nummodels)*NaN; % allocate memory for the chi square array

% calculate the chi squared vales for each model

for n=1:nummodels

% calculate the model concetratios for the depths z

Cmodel=exposure_model(P,L,l,density,z,C0i(n),erosioni(n),ti(n));

% calculate the chi squared for this model

chisquarevalues(n)=sum(((Cmodel-Be10)./Be10error).^2);

end
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Modeling Monte Carlo methods

Monte Carlo methods IV

Which models should we consider to represent the uncertainty of
the results?

When fitting a model to data, we have to report how many parameters are
we trying to fit and how many data we have. The number of parameters
should be lower that the data points and the difference between them are
the Degrees of Freedom of our model. In our model we have
DOF = 6 - 3 = 3 degrees of freedom.

When performing this kind of inverse modeling, the models that fit the
data with a χ2 value below the minimum χ2 value plus the degrees of
freedom are often considered to fit the data within one sigma confidence
level.
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Modeling Monte Carlo methods

Monte Carlo methods V

Therefore, we can calculate which of the models fit our data within
one-sigma, assuming that this is defined by the models with χ2 values
between the minimum χ2 and χ2+DOF:

DOF=3; % degrees of freedom (# of samples - # of parameters)

minchi=min(chisquarevalues); % minimum chi-square value (best model)

best=find(chisquarevalues==minchi); % location of the best model

% location of the models fitting the data within one-sigma

onesigma=find(chisquarevalues<minchi+DOF);

% display previous infrormation

disp([’Min chi-squared value = ’ num2str(minchi)])

disp([num2str(length(onesigma)) ’ modles fitting one sigma’])

disp([’Age: ’ num2str(min(ti(onesigma))/1e3) ’ - ’...

num2str(max(ti(onesigma))/1e3) ’ ka’])

disp([’Erosion: ’ num2str(min(erosioni(onesigma))*1e4) ’ - ’...

num2str(max(erosioni(onesigma))*1e4) ’ m/Ma’])

disp([’Inheritance: ’ num2str(min(C0i(onesigma))) ’ - ’...

num2str(max(C0i(onesigma))) ’ atoms/g’])
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Modeling Monte Carlo methods

Monte Carlo methods VI

What is the best result?

Does it fit the data well? (χ2 ' 0)

Plot randomized values against their corresponding χ2 values to get a
idea of the distribution of the results. Tip: plot only the χ2 values
below the best value+10.

Plot the sample 10Be concentrations and the theoretical 10Be of the
best fit.

Select the models fitting the data within one-sigma confidence level
and plot these models in grey (’Color’,[0.7 0.7 0.7]).
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Modeling Monte Carlo methods

Monte Carlo methods VII

We should get a high number of fitting models to get an idea of which the
distribution of the parameters values that fit our data. Try increasing the
number of random models to get at least 300 fitting models.
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Modeling Convergence methods

Convergence

Another way of getting more models fitting our data is changing the limits
of the randomized parameters while generating more models. For example,
until now we have been considering ages that are between 0 and 3 Ma, but
after running about 105 models, it is pretty clear that the ages fitting the
data are lower than 1 Ma, and that the erosion rates should be lower than
5 m/Ma (0.0005 cm/a). Re-run your solver applying better limits.

We can even program our solver to start converging after a learning
process of a certain number of models, automatizing what we have just
done manually. However, we should be cautious making our random
models to converge very fast because we can miss solutions that fit our
data. To avoid that, we could make them converge to χ2 values
< χ2

min. + 10 · DOF . Actually, we should also allow our random models to
diverge out of the initial limits when we find good solutions close to our
limits.
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Modeling Goal-seeking algorithms

Goal-seeking algorithms I

Until now, we have been solving the question “Which ages are compatible
with my data?”, but are not explicitly answering the question “Which ages
are not compatible with my data?”.

The cosmogenic depth-profile models often show that the fitting models
are scattered towards old ages. This is because the fitting area in the ε− t
space is a narrow valley that we can easily miss when randomizing the ε
and t values.
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Modeling Goal-seeking algorithms

Goal-seeking algorithms II

To avoid this, we can randomize only the C0 and t parameters and make
our program to seek actively which is the best ε that fit the data for each
of the models. This operation is sometimes called “χ2 minimization”. χ2

minimization slows down our program but will guarantee that the models
outside the fitting age range do not fit our data.

To minimize the value of χ2 we can use some built-in functions as
fminunc or fminsearch (type help fminsearch for more information).
However, the way these algorithms work change in the different versions of
MATLAB and Octave, so we will never be sure that our program is going
to work the same way in someone else computer. Therefore, it is highly
recommended to build our own minimization algorithm.
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Modeling Goal-seeking algorithms

Goal-seeking algorithms III

An easy solution could be to use interp1 as a goal seeker of the
deviations. The piece of code in the next slide includes this goal seeker in
the modeling loop to force getting always the best erosion rate.

How many models do you need to run now to get 300 fitting resutls?
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Modeling Goal-seeking algorithms

Goal-seeking algorithms IV

% start testing models

for n=1:nummodels

erosionref=[0,logspace(-5,2,100),10^10]’; % define an array with erosion rates

% calculate the deviations corresponding to each erosion rate

% deviations are defined as the sum of (Cmodel-Csample)/Uncertainty

% for all the samples

deviations=...

sum(...

(exposure_model(P,L,l,density,z,C0i(n),erosionref,ti(n))-Be10)./...

Be10error...

,2);

% Interpolate the erosion rate values to find the one the model that

% fit the data better (for the age and Co corresponding to this random

% model). THen store the result at erosioni(n), ooverwriting the

% previously defined value.

erosioni(n)=interp1(deviations,erosionref,0);

% calculate the model concetratios for the new erosion rate at the depths z

Cmodel=exposure_model(P,L,l,density,z,C0i(n),erosioni(n),ti(n));

% calculate the chi squared for this model

chisquarevalues(n)=sum(((Cmodel-Be10)./Be10error).^2);

end
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Modeling Summary

Summary

Using convergence (and divergence) algorithms help our inverse
modeling program to run faster and allow us to set wide starting
limits.

Using goal-seeking algorithms slows down the calculation of each
individual simulation. However, it usually allows us to run less
models, and also guarantee the reproducibility and accuracy of our
results. Compare the two plots representing the solutions in the ε− t
space with and without using χ2 minimization:
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Modeling Summary

Exercise I

Use previous models to solve the age of a landform with the following 10Be
depth profile:

Sample depth [10Be]
cm 103 atoms/g

250 25±2
163 45±3
113 60±5
73 100±7
43 140±10
11 200±15

Start testing ages between 0 and 10 Ma and try introducing some
convergence code. This will allow you to create a code that will work on
any 10Be database.
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Modeling Summary

Exercise II
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Maps

Chapter 5: Maps

5 Maps
Install a toolbox or package
Import a toolbox not included in MATLAB
Plotting maps
Import maps without mapping tools
Geomorphic calculations on DEMs
Exercise: model glaciations
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Maps Install a toolbox or package

Loading the mapping tools

Most mapping tools are not installed in the basic versions of MATLAB or
Octave. To install them, we will need to do the following:

1 In MATLAB we can install the Mapping Toolbox if it is not installed
yet. Check if it is installed in the
Home tab > Add-Ons > Manage Add-Ons. If it is not, you gen get it
from https://www.mathworks.com/products/mapping.html

2 In Octave you need the mapping package (check if you already have
it with pkg list). If you do not, you can install it by typing
pkg install -forge mapping in the command window or from
https://octave.sourceforge.io/mapping/index.html
In Octave, we need to “activate” the packages in every session if we
want to use them. To do so type or write at the top of your script
pkg load mapping

It is also recommended to load the input/output package:
pkg load io
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Maps Install a toolbox or package

Mapping tools

The mapping tools allow us to:

Calculate azimuths between two points (azimuth), get angular
distances between coordinates (distance), converting angular
distances to kilometres (rad2km) and many other calculations on
maps.

Read shape files and raster files with shaperead and rasterread.

Plot maps using mapshow.

However, in geosciences we often need to perform specific calculations on
digital elevation models that are only included in the MATLAB Mapping
Toolbox (as gradientm or viewshed) and other topographic derivates
(gradient, flow accumulation, stream order, etc.) that are not included in
any official toolbox or package.
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Maps Import a toolbox not included in MATLAB

TopoToolbox I

TopoToolbox is a is a MATLAB program for the analysis of digital
elevation models (DEMs) developed by Schwanghart & Kuhn (2010) that
provides a set of functions that support the analysis of relief and flow
pathways in digital elevation models
(https://doi.org/10.1016/j.envsoft.2009.12.002).

It can be downloaded from
https://www.mathworks.com/matlabcentral/fileexchange/50124-
topotoolbox

But since the objective of this course is to understand the fundamentals
necessary to develop our own tools, we will focus on using the tools
included in MATLAB and Octave.
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Maps Import a toolbox not included in MATLAB

TopoToolbox II

Figure: Example layout of topoapp, a graphical user interface that enables access
to the majority of TopoToolbox functions. See
https://doi.org/10.5194/esurf-2-1-2014 for details
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Maps Plotting maps

Plotting maps using the mapping tools

Calculate the azimuth from SUERC ([lat,lon]=[55.75,-4.16]) and
George Square ([lat,lon]=[55.86,-4.25]).

Calculate the distance in km from SUERC to George Square.

Download the shapefile of UK from
https://biogeo.ucdavis.edu/data/gadm3.6/shp/gadm36 GBR shp.zip
and extract the coastline shape files gadm36 GBR 0.shp,

gadm36 GBR 0.shx, gadm36 GBR 0.prj, etc. to your folder.

Plot the map gadm36 GBR 0.shp using mapshow or geoshow.

Extract the X and Y coast points using
data=shaperead(’gadm36 GBR 0.shp’) and plot them using
plot(data.X,data.Y,’-r’)

Calculate what is the minimum distance from SUERC to the coast in
a straight line. And the maximum!
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Maps Import maps without mapping tools

Import Esri grid files I

.asc files are widely used to export Digital Elevation Models. They are
plain text files (ASCII) containing a matrix of elevations.

At the top of the file they also contain the following information:
- ncols and nrows: the number of columns and rows of the elevation matrix.
- xllcorner and yllcorner: the coordinates of the lower left corner of the lower left
cell.

- cellsize: the actual distance between two cells.

Open the file Scotland.asc as text. In this file, the xllcorner,
yllcorner and cellsize are in geographic units (decimal degrees of
longitude and latitude) and the elevations are in metres, but sometimes all
these parameters are in metres. Make sure you know the units before using
a .asc file!
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Maps Import maps without mapping tools

Import Esri grid files II
Import the data in Scotland.asc using textread to transform the .asc
data into X , Y and Z coordinates:

textdata=textread(’Scotland.asc’, ’%s’);

rawelevations=textread(’Scotland.asc’, ’%f’,’headerlines’,6);

ncols=str2double(textdata(2));

nrows=str2double(textdata(4));

xllcorner=str2double(textdata(6));

yllcorner=str2double(textdata(8));

cellsize=str2double(textdata(10));

X=ones(nrows,ncols).*[xllcorner:cellsize:xllcorner+cellsize*(ncols-1)];

Y=ones(nrows,ncols).*[yllcorner:cellsize:yllcorner+cellsize*(nrows-1)]’;

Z=zeros(nrows,ncols);

n=0;

for r=1:nrows

for c=1:ncols

n=n+1;

Z(r,c)=rawelevations(n);

end

end

You have just created a script that reads .asc files without toolboxes!
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Maps Import maps without mapping tools

Import Esri grid files III
Now you can plot your DEM using any of these plotting tools:

surf(X,Y,Z)

meshc(X,Y,Z)

contour(X,Y,Z,[0.1,200:200:2000]) % the 0.1 m contour is the coastline

contour(X,Y,Z,[0.1,500:500:2000],’-b’,’ShowText’,’on’)

contour3(X,Y,Z,[0.1,50:50:2000])

plot(X(Z>915),Y(Z>915),’.r’) % Munros!
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Maps Import maps without mapping tools

Import Esri grid files IV

Use interp2 to get the altitudes of SUERC and George Square.

Calculate the actual distance from SUERC to George Square.

Plot the elevation transect from SUERC to the closest Munro.

Plot the elevation histogram of Scotland.
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Maps Geomorphic calculations on DEMs

Calculate slopes I

We can calculate the slope vectors using the function gradient:

% calculate the spacing in metres

xspacing=mean(1000*rad2km(deg2rad(distance(Y(:),X(:),Y(:),X(:)+cellsize))));

yspacing=mean(1000*rad2km(deg2rad(distance(Y(:),X(:),Y(:)+cellsize,X(:)))));

[dx, dy] = gradient(-Z,xspacing,yspacing);

figure; hold on

contour(X,Y,Z,[0.1,200:200:2000])

quiver(X,Y,dx,dy) % displays slope vectors as arrows
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Maps Geomorphic calculations on DEMs

Calculate slopes II

Note that:

We have to provide the xspacing and yspacing in metres to get the
partial derivatives δz/δx and δz/δy
(dx and dy) in m/m (unitless). We could calculate the same as follows:

[dxunscaled, dyunscaled] = gradient(-Z);

dx=dxunscaled/xspacing; dy=dyunscaled/yspacing;

The x spacing could not constant in large maps when the points are
spaced at constant geographical longitudes (see
distance(Y(:),X(:),Y(:),X(:)+cellsize)). That is why sometimes the
cellsize is in metres. Here, we are approximating the longitude
spacing on the entire map by its average.

We are calculating the gradient of -Z because we want the slope to
be positive downhill.
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Maps Geomorphic calculations on DEMs

Calculate slopes III

Once we have the gradient, we can calculate the slopes:

∇z =

√(
δz

δx

)2

+

(
δz

δy

)2

In Matlab or Octave:

slopes=(dx.^2+dy.^2).^0.5;

If we want the slope angles in degrees: rad2deg(atan(slopes))
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Maps Geomorphic calculations on DEMs

Calculate flow direction I

We can calculate the azimuth of the flow direction with:

flowdir = azimuth(0,0,dy,dx);

But for modeling purposes it is useful to simplify the flow directions to the
closest neighbouring cell, using 1 of N, 2 for NE, 3 for E and so on:

8 1 2

7 0 3

6 5 4

Using 0 for cells with altitudes ≤ than the surroundings. These cells are
called sinks. This simplified way of representing the slopes is very useful to
program how the water, or the ice, will move in our map cell by cell.
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Maps Geomorphic calculations on DEMs

Calculate flow direction II

We can calculate flow direction following this simple approach:

%% Flow direction

FD=0.*Z; %% start with all cells as sinks

% remember that lower rows correspond to lower latitudes

kernelref=[6,5,4;7,0,3;8,1,2]; % direcction references

for r=2:nrows-1 % go though all the cells that are not at the borders

for c=2:ncols-1

Zkernel=Z(r-1:r+1,c-1:c+1);

if Z(r,c)==min(Zkernel(:)) % if sink

FD(r,c)=0;

else

% find the minimum Z

% get the first one if there are two minimums

position=find(Zkernel==min(Zkernel(:)),1,’first’);

FD(r,c)=kernelref(position);

end

end

end
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Maps Geomorphic calculations on DEMs

Fill sinks I

If you plot the sinks in the map:

figure; hold on

sel=(FD==0); % selct sinks

plot(X(sel),Y(sel),’.r’) % plot them in red

% overlap the controur plot

contour(X,Y,Z,[0.1,200:200:2000],’-k’)

You will find that:

1 The borders are considered sinks (as expected)

2 The sea is considered a sink (as expected)

3 There are too many sinks inland! This is a problem for our
programming purposes: we know that, even if these sinks are real, the
water would fill them and continue its way to the sea.
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Maps Geomorphic calculations on DEMs

Fill sinks II

To better mimic the behaviour of the water in our map, we should be able
to produce a flow-direction map where all the rivers go to the sea.

DEM manipulating programs usually have an option to fill sinks before
calculating flow-direction and flow-accumulation.

We can create our own sink filling algorithm by iteratively adding 1 meter
of altitude to all sinks until we reach a DEM with no sinks.

Find an example of sink-filling code in the next slide.
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Maps Geomorphic calculations on DEMs

Fill sinks III
%% Fill sinks

disp(’Filling sinks...’)

Zfilled=Z; % start a new map (identical)

convergence=0;

step=0;

baselevel=0; % sea level

while convergence<1

step=step+1;

previoustotal=sum(Zfilled(:));

for r=2:nrows-1 % ignore map borders

for c=2:ncols-1 % ignore map borders

% these are the elevations around Z(r,c), including (r,c)

Zkernel=Zfilled(r-1:r+1,c-1:c+1);

% find the minimum Z around (r,c). Ignore central value.

minimumZkernel=min(Zkernel([1,2,3,4,6,7,8,9]));

if Zfilled(r,c)>baselevel % do not touch the sea

% if it is a sink, add 1 m

Zfilled(r,c)=max(Zfilled(r,c),minimumZkernel+1);

end

end

end

% If we reach equilibrium (no sinks)

if sum(Zfilled(:))==previoustotal

convergence=1;

disp([’Sinks filled in ’ num2str(step) ’ steps’])

disp([num2str(sum(Zfilled(:))-sum(Z(:))) ’ total meters added’])

disp([num2str((sum(Zfilled(:))-sum(Z(:)))/numel(Z)) ’ average meters added’])

end

end

Z=Zfilled; % replace our map!
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Maps Geomorphic calculations on DEMs

Flow accumulation I

The next “map” that is usually calculated on a DEM is the
flow-accumulation.

The flow-accumulation parameter records how many cells are upstream a
specific cell. Cells with a a high flow-accumulation correspond to places
collecting a lot of water: streams or rivers.

Imagine that there is a short and homogeneous rain on our DEM. Only
one drop falls on each of our cells. We can programmatically follow the
path of each of drop from the original cell to a sink using the
flow-direction map. If every time we move one cell downstream we add up
all the drops we will be calculating the flow-accumulation on our map.

The code in the next slide calculates the flow-accumulation by following all
the water paths.
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Maps Geomorphic calculations on DEMs

Flow accumulation II
%% FLow-accumulation

FA=zeros(size(Z)); % start with a dry map

kernelref=[6,5,4;7,0,3;8,1,2]; % direcction references

drref=[-1,-1,-1;0,0,0;1,1,1]; % row direction reference

dcref=[-1,0,1;-1,0,1;-1,0,1]; % column direction reference

for r=1:nrows

for c=1:ncols

convergence=0;

prevr=r; prevc=c; % define previuos cell

FA(prevr,prevc)=FA(prevr,prevc)+1; % leave a drop here

% Start following the river downstream

while convergence==0

if FD(prevr,prevc)==0 % if sink

convergence=1;

else

% select the next celldownhill: new row and column

newr=prevr+drref(kernelref==FD(prevr,prevc));

newc=prevc+dcref(kernelref==FD(prevr,prevc));

% accumulate flow in the next cell

FA(newr,newc)=FA(newr,newc)+1;

prevr=newr;

prevc=newc;

end

end

end

end

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 175 / 181



Maps Geomorphic calculations on DEMs

Flow accumulation III

Now you can plot the “rivers” as the cells with more drops than the
average:

figure; hold on

sel=(FA>mean(FA(:))); % select cells with many drops

plot(X(sel),Y(sel),’.b’) % plot the rivers

% overlap the controur plot

contour(X,Y,Z,[0.1,200:200:2000],’-k’)
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Maps Geomorphic calculations on DEMs

Catchment related calculations I

Once we have calculated the flow-direction and flow-accumulation
matrices (FD and FA), we can start calculating parameters that can be
useful in Earth sciences.

There are many geological processes (e.g. erosion) that depend on what is
happening upstream a certain point.

A useful parameter that we might want to know is the average altitude of
the upstream catchment at any point in our DEM.

To calculate the average upstream altitude, we can recycle the structure
we used for the flow-accumulation calculation and calculate the
“accumulated altitude” at every cell of the map. To calculate the average
upstream altitude we will just need to divide the accumulated altitude by
the flow accumulation.
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Maps Geomorphic calculations on DEMs

Catchment related calculations II

%% Catchment altitude

AccumZ=Z; % start with the same DEM

kernelref=[6,5,4;7,0,3;8,1,2]; % direcction references

drref=[-1,-1,-1;0,0,0;1,1,1]; % row direction reference

dcref=[-1,0,1;-1,0,1;-1,0,1]; % column direction reference

for r=1:nrows

for c=1:ncols

convergence=0;

prevr=r; prevc=c; % define original cell

% Start following the river downstream

while convergence==0

if FD(prevr,prevc)==0 % if sink

convergence=1;

else

% select the next celldownhill: new row and column

newr=prevr+drref(kernelref==FD(prevr,prevc));

newc=prevc+dcref(kernelref==FD(prevr,prevc));

% accumulate Z in the next cell

AccumZ(newr,newc)=AccumZ(newr,newc)+Z(r,c);

prevr=newr;

prevc=newc;

end

end

end

end

AverageZ=AccumZ./FA;
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Maps Exercise: model glaciations

Scottish glaciers (again) I

Using the climate and mass balances defined in the first chapter (slide 42
and onwards), and assuming average temperatures 4◦C below current ones
and monthly precipitation 100 mm above current ones, model the Scottish
glaciers during Younger Dryas.

Consider that a glacier will be present in places with upstream mass
balances above 0.

Plot the results.
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Maps Exercise: model glaciations

Scottish glaciers (again) II

The output map should look like this:

-7 -6 -5 -4 -3 -2

56

56.5

57

57.5

58

58.5

Ángel Rodés (SUERC) MATLAB for Geoscientists v.2019.11.26 180 / 181



Maps Exercise: model glaciations

Scottish glaciers (again) III

Does the output look similar to what we know from geology?

MacLeod et al. (2011)

Why?
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