
MATLAB
for

Geoscientists

Ángel Rodés

2021

2 Ángel Rodés

Contents

Contents 2

1 Introduction to Matlab and Octave 7

1.1 Installation . 7

1.2 Matrix-oriented programming 7

1.3 Why MATLAB/Octave? . 8

1.4 The interface . 8

1.5 What can we put in the Workspace? 11

1.6 Plots . 15

1.7 Scripts . 16

1.8 Loops . 18

1.9 Conditional statements . 19

1.10 Functions . 19

1.11 Built-in functions . 20

1.12 Exercises . 21

2 Importing data & Statistics 25

3

4 Ángel Rodés

2.1 Importing .csv files . 25

2.2 Importing data from text files using fopen and textscan . . 26

2.3 Input dialog . 27

2.4 The normal distribution . 27

2.5 Calculating the average . 29

2.6 Types of “averages” . 30

2.7 Error transmission . 32

2.8 Rejecting outliers . 33

2.9 Box plots . 34

2.10 Histograms . 36

2.11 Camel-plots . 36

3 Data calibration 39

3.1 What is a calibration? . 39

3.2 Calibration tools . 40

3.3 Spectrometry data . 43

3.4 Exercise: ICP-OES data calibration 51

4 Modeling 53

4.1 Forward problem . 53

4.2 Inverse problem . 55

4.3 Cosmogenic depth-profile dating 56

4.4 Monte Carlo methods . 57

MATLAB for Geoscientists 5

4.5 Convergence methods . 59

4.6 Goal-seeking algorithms . 60

4.7 Summary . 62

5 Maps 65

5.1 Install a toolbox or package 65

5.2 Import a toolbox not included in MATLAB 66

5.3 Plotting maps . 67

5.4 Import maps without mapping tools 67

5.5 Geomorphic calculations on DEMs 68

5.6 Exercise: model glaciations 74

6 Ángel Rodés

Chapter 1

Introduction to Matlab and
Octave

1.1 Installation

Install it!

Install MATLAB ® following the instructions from the IT services

https://www.gla.ac.uk/myglasgow/it/software/statistics/#/matlab

or install GNU Octave© from the Web

https://www.gnu.org/software/octave/

1.2 Matrix-oriented programming

Matrix-oriented programming

� MATLAB and Octave are presented as ”MATrix LABoratories”, com-
monly used for plotting of functions and data, implementation of al-
gorithms, creation of user interfaces, and interfacing with programs
written in other languages.

� MATLAB® is a proprietary programming language developed by Math-

7

8 Ángel Rodés

Works, Inc. GNU Octave© is free software under the terms of the
GNU General Public License.

� MATLAB and Octave use languages that are mostly compatible. In
this course we will use syntaxes compatible with both programs, unless
otherwise stated.

1.3 Why MATLAB/Octave?

MATLAB and/or Octave will allow you to:

� Manage large datasets (raw data, synthetic results, maps, etc.).

� Perform iterative calculations.

� Write self-explained calculations and share them with the scientific
community (i.e. suitable to be included in scientific publications).

� Plot exactly what you want.

� Learn a computing language that is easy.

� Learning how to program in MATLAB/Octave makes other languages
much easier to learn: Matlab/Octave are similar to R, Python, C++,
etc.

� Solve your own problems using your own programs, adapting exactly
to your needs!

1.4 The interface

The interface

Matlab and Octave come with very similar interfaces containing, at least,
the following elements:

� Address bar

� Browser

� Command window

� Workspace

MATLAB for Geoscientists 9

Figure 1.1: MATLAB interface.

� Editor

The command window This is the brain of the program. You can
use this as a simple calculator or to call functions or scripts. Ultimately,
this is the only element you need to use Matlab or Octave!

Try writing the following commands and hit enter:

� 97+6

� 23-36

� 23-6*6

� (23-6)*6

� 12742*pi

� 3^2

� sqrt(2)

� log(100)

� log10(100)

To clean the command window, use the command clc.
As most of the console interfaces, the command window has memory: try
using the up arrow key (↑).

10 Ángel Rodés

Figure 1.2: Octave GUI.

Current directory and browser

When you want to interact with files (e.g. calling your own scripts or
creating files with your results or graphs), you need to know where you are
working. Therefore, make sure that the address you see at the top of the
screen is the folder you want to work in. You can see, create, delete or open
your files using your system browser (explorer, finder, nautilus, etc.) or the
browser integrated in Matlab or Octave.

Create a new file called my-first-file.m.
Avoid using spaces, most symbols, or start with numbers when naming your
files. Instead of spaces, use the underscore symbol ().
Also, note that Matlab files always end with .m

The editor

This is just a basic text editor. The files that you can edit do not contain
any information about formatting. You can open these files using any text
editor (e.g. notepad). However, the integrated editor format the text to
highlight the meaning of the text in the Matlab language.

Open my first file.m and write:
% This is my first Matlab script.

disp(’Hello world’)

then run it using the command my first file (no .m) in the command

MATLAB for Geoscientists 11

window, or selecting run in the menu.

Workspace

This is the memory of Matlab/Octave. The last answer given in the
command window is usually stored as ans.

Write x=3+2 in the command window.
The parameter x will appear in the Workspace.

Use the command who or whos to display a summary of the workspace in
the command window, and the command clear to remove all the parameters
in the workspace.

1.5 What can we put in the Workspace?

Parameters with one number

� mass=12

� C14halflife=5730;

� avogadro=6.022*10^23

As for file names, avoid using spaces, most symbols, or start parameter’s
names with numbers.
Ending with semicolon (;) prevents the output to be shown in the command
window, although the parameter is stored in memory. You can check that the
value of C14halflife is in memory by typing C14halflife in the command
window.

Other “special” accepted values:

� maxtime=Inf

� mintime=-Inf

� unknownvalue=NaN

Inf means “Infinite” and NaN means “Not a Number”. You can also
generate them by computing 1/0 or 0/0 in the command window.

12 Ángel Rodés

Array of numbers

� data=[254,782,65,5]

� moredata=[23;36;47]

� a=1:20

� a=1:0.25:10

� odds=1:2:100

� pairs=2:2:100

� emptyarray=[]

Use length(data) to check the size of your array.

Try also linspace(0,3,20) and logspace(0,2,5)

to get equally distributed numbers in the linear or logarithmic space. Use
odds ' if you want it as a column.
Access a single (data(3) or data(end)) or several values of an array (a(7:10))

Matrices

� A=[1,2,3 ; 4,5,6 ; 7,8,9]

� B=[99,88,77 ; 66,55,44 ; 33,22,11]

� C=ones(4,3) % number of rows,columns

� D=zeros(4,3)

Note that anything you write after the % symbol is ignored. % is used
for comments.

You can also create a matrix by repeating an array using repmat:

repmat(data,3,1)

Use help repmat to know more about this.

These matrices are 2-D (rows and columns). However, MATLAB and
Octave are also able to handle matrices in multiple dimensions. E.g. ones(3,2,5)
is a 3-D matrix.

MATLAB for Geoscientists 13

Use size(B) to check the size of your matrix (rows and columns), or
nnumel(B) to get the number of elements in B.

Strings

Strings are parameters containing text:

� name='John'

� students=[{'Gerry'},{'Trish'},{'Pablo'}]

Strings are useful when working with sample or location names. MAT-
LAB and Octave can handle strings and provide powerful tools to manip-
ulate and operating with text, such as regular expressions. However, these
programming languages were not primarily designed to work with text, and
string manipulation can be very frustrating at the beginning. Therefore, we
will restrict the use of text to sample names or simple labels.

Sometimes it will be useful to find a sample in a list. For example, use
strcmp to find the position of the student named Trish: strcmp(’Trish’,students)

Small functions

Simple formulas can be defined by using defining the parameters with
@(Parameters):

� temp fahrenheit = @(temp celsius)1.8 * temp celsius + 32

� meters=@(ft)ft/3.2808

� decay=@(halflife,time)exp(-log(2)/halflife*time)

Try temp fahrenheit(15) and decay(C14halflife,20000)

Boolean data

Boolean data is a type of data that has one of two possible values: true
(1) or false (0). In MATLAB, logical is usually generated used equalities or
inequalities:

� avogadro>1E23

14 Ángel Rodés

� mass==12

� odds<10

� odds(odds<10)

� A>5

� isinf(maxtime)

� isnan(B)

� isprime(7537)

Note that == and ∼= are used in MATLAB to determine equality or in-
equality, and = to define a parameter.

We can combine boolean data using boolean operators: & (and) and |

(or).

E.g. (A<5 | B<30).

Boolean data can also be use as indexes if the boolean array or matrix
has the same size as the objective array or matrix.

E.g. A(A>5) or B(A<3) but not data(A<10).

This property is useful to easily create filters for our data:

data(data>50 & data<500)

clc to clean the Command window

Basic calculations

With numbers: mass*avogadro

With arrays and matrices: odds+pairs but odds.*pairs

Note the difference between B/A and B./A:

“.*”, “./” and “.^” are operators used to perform calculations element
by element (array operations). Avoid using “*”, “/” and “^” on matrices
unless you really want to do matrix operations following the rules of linear
algebra.

Call parts of another variable: You can access the number in the second
row and third column with A(2,3), the second row with B(2,:) or the

MATLAB for Geoscientists 15

first column with A(:,1). MATLAB and Octave always follow the order
(row,column) in 2D matrices.

Random numbers

� rand % any number between 0 and 1

� rand(1,10) % a row of 10 random numbers

� rand(10,1) % a column of 10 random numbers

� rand(3,3) % a 3x3 matrix with random numbers between 0 and 1

� A.*rand(3,3) % a matrix with random numbers between 0 and num-
bers in matrix A

� normrnd(11000,2000) % a random number from a gaussian distribu-
tion of 11000±2000

� normrnd(11000,2000,1,5000) % a row of 5000 random numbers from
a gaussian distribution of 11000±2000

Try hist(normrnd(11000,2000,1,5000)) and hist(rand(1,5000))

to plot the histograms corresponding to these random distributions.

1.6 Plots

Air pressure

Let’s define a function that calculates the pressure at a certain altitude:

pressure = @(altitude)1013.25*...

exp(-0.03417/0.0065*(log(288.15)-...

(log(288.15-0.0065*altitude))))

% standard atmosphere pressure (Lide, 1999)

Note that we can use three dots (...) to avoid long lines.

Then define x values between 0 (sea level) and 8848 m (Everest) every
100 m:

x=0:100:8848

16 Ángel Rodés

And alculate their corresponding pressures:

y=pressure(x)

Simple plots

Try the following plots:

� plot(x,y)

� plot(x,y,'.r')

� plot(x,y,'ob')

� plot(x,y,'--k')

� plot(x,y,'-g','LineWidth',2)

� bar(x,y)

� stairs(x,y)

Figure

Create a figure and plot several things in it:

figure % open a new figure

hold on % do not clear when plotting different things

plot(x,y,'-b')

plot(200,pressure(200),'hr')

text(200,pressure(200),'East Kilbride')

xlabel('Altitude')

ylabel('Pressure')

title('My first plot with labels')

Make y axis logarithmic: set(gca, ’YScale’, ’log’) (gca means “Get
current axes”) You can export your plots using the menu File > Save As
in the figure window. Exporting your plots as .eps or .pdf will allow you to
edit them with vector graphic editors like Adobe Illustrator or Inkscape.

1.7 Scripts

Scripts

MATLAB for Geoscientists 17

A script is a text file with a list of orders. In your current directory, create
radiocarbondating.m. Open it with the editor and write the following
orders:

%% This is a script that calculates radiocarbon ages and errors

%% By Me, 2019

%% Start with some cleaning

clear % this removes any previous parameter in the workspace

clc % this clears the command window

%% Define the formula that calculates the age from concentrations

C14age=@(modernconcentration,measuredconcentration)-...

8033*log(measuredconcentration./modernconcentration);

%% This is the data we have

modernc=1232;

errormodernc=13;

oldc=[567 1100 20 1252];

erroroldc=[6 20 5 50];

%% Select the data we want to work with

n=1

%% Create 1000 random data based on the normal dristributions

randommodern=normrnd(modernc,errormodernc,1,1000);

randomold=normrnd(oldc(n),erroroldc(n),1,1000);

%% Calculate the ages of the distributions

ages=C14age(randommodern,randomold);

%% Plot the age distribution

figure

hold on

hist(ages)

title(['Sample ' num2str(n)])

xlabel('Age')

ylabel('Probability')

%% Calculate the mean and the average

age=mean(ages)

errorage=std(ages)

Now you can change the value of n to get the results of other data.

Note that we can make composed strings using brackets [] and the
function num2str(n) to convert numbers into strings.
Also note that we can use ... to avoid very long lines.

18 Ángel Rodés

1.8 Loops

Loops

We often need to run a block of code several times. For example, in our
program radiocarbondating.m we could copy and paste the script 4 times
changing n=1 by n=2, n=3 and n=4 to get all our ages calculated. However,
we avoid repeating code by writing a loop statement that executes the code
multiple times.

In radiocarbondating.m, we can substitute “n=1” by “for n=[1,2,3,4]”
and write “end” at the end of the script to perform the calculations and plot-
ting for the four samples.

The basic form of a loop in Matlab is:
for Parameter=List

% My repeating code

end

Error bars

Create a new script called plot-with-error-bars.m that use a loop to
plot error bars of the individual concentrations:

%% This is a script that plots data with error bars

%% By Me, 2019

%% Start with some cleaning

clear % this removes any previous parameter in the workspace

clc % this clears the command window

close all hidden % close any pre vious figure

%% This is the data we have

data=[567 1100 20 1252 326 625];

errors=[6 20 5 50 32 100];

%% Figure

figure

hold on

for n=1:length(data) % start a loop

plot(n,data(n),'.b') % Plot data

x=[n,n]; % x positions of the limits of the error bar line

y=[data(n)-errors(n),data(n)+errors(n)]; % y positions

plot(x,y,'-b') % plot the error bar

end % end of the loop

xlabel('Sample')

ylabel('Concentration')

Another way of creating a loop is using the statement while:
n=0;

while n<10

n=n+1 % add 1 to the value of n

end

MATLAB for Geoscientists 19

1.9 Conditional statements

if - end

Conditional statements allow us to select at run time which block of code
to execute. The simplest conditional statement is if, closed with end:

n=round(rand*100); % random number between 0 and 100

% rounded to the nearest integer

if n/2==round(n/2)

string=[num2str(n) ' is pair']

end

if - elseif - else - end

We can define alternatives using if, elseif, else and end:

n=round(rand*100);

if n/2==round(n/2)

string=[num2str(n) ' is pair'];

elseif isprime(n)

string=[num2str(n) ' is odd and prime'];

else

string=[num2str(n) ' is odd, but not prime'];

end

disp(string) % disp shows the string in the command window

You can also define conditional statements using switch (switch, case,
otherwise and end). Find yourself how to use the switch statement by
typing help switch in the command window!

1.10 Functions

Functions

A function is a script that works like a “black box”. You only see the
final output in the workspace, not all the parameters defined in the function.
When writing a function, or converting a script into a function, we have to
start the file with

20 Ángel Rodés

function OUTPUTS = function name(INPUTS)

and write

end

at the end of the file.

14C age function

Create a file called C14agefunction.m and copy:

function [age,errorage]=C14agefunction(oldc,erroroldc,modernc,errormodernc)

C14age=@(modernconcentration,measuredconcentration)-...

8033.*log(measuredconcentration./modernconcentration);

randomold=normrnd(oldc,erroroldc,1,10000);

randommodern=normrnd(modernc,errormodernc,1,10000);

ages=C14age(randommodern,randomold);

age=mean(ages);

errorage=std(ages);

end

Note that the function name has to be the same as the file name. Oth-
erwise you will get an error when running it.

Save the file, and then execute the following in the command window:

C14agefunction(50,10,1254,20)

[age,error]=C14agefunction(50,10,1254,20)

1.11 Built-in functions

Built-in functions

MATLAB and Octave come with a large number of built-in functions
(e.g. factorial, sin, sum, diff, max, magic, pi, median, chi2pdf, interp1,
contour, and many more).

You can learn how to use these functions using help (e.g. help interp1),

selecting the name of the function and pressing F1 in MATLAB.

MATLAB for Geoscientists 21

Also, you can discover more functions in the Internet. Just search for the
operation you want to do, including “Matlab” or “Octave” in your search.

We can even see how some of these built-in functions are made with
edit. Try edit magic to see the code of the function that generates magic
squares!

Toolboxes and packages

There are some advances functions, like the ones used to work with maps,
that are not included in the basic package of MATLAB and Octave. These
“special packages” are called “toolboxes” in MATLAB and just “packages”
in Octave.

Toolboxes are installed using the MATLAB installer and they are auto-
matically loaded when you start MATLAB.

Octave packages can be installed using pkg install and the name of
the file where the package is. Before we start using an Octave package, we
have to load it with pkg load package name.

As one of the objectives of this course is learning to write code we can
share, most of the built-in functions that we are using in this course are
included in the basic versions of MATLAB and Octave. If a toolbox or
package is required, it will be clearly stated.

1.12 Exercises

Snow and glacier modelling

A glacier is a persistent body of dense ice that is constantly moving
under its own weight. (Wikipedia: Glacier)

22 Ángel Rodés

(http://www.antarcticglaciers.org)

Consider the following climate simplifications:

� Average monthly temperature (◦C) at sea level in Scotland:
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4 5 7 8 12 14 16 16 13 10 7 5

� Temperature lapse rate: 8◦C/Km

� Monthly precipitation (mm) in Scotland:
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
175 125 150 100 75 100 100 125 125 175 175 175

Consider the following snow/ice behaviour (huge simplifications):

� All precipitation is snow when temperature is below 5◦C. All
precipitation is rain above 5◦C.

� Daily temperature range is 5◦C, so day temperature is 2.5◦C above
the average.

� Considering thermal conductivity of the snow mantle ∼5 W/K/m2, a
snow latent heat of fusion of 350 kJ/kg and a snow average density
of ∼0.3 Kg/l, an average of vertical 5 cm of snow per month will
be melted for each degree of day temperature over 0◦C.

� If the snow survives for more than a year (annual mass balance > 0),
the snow will flow downhill at an horizontal speed of 10 inches/day.

MATLAB for Geoscientists 23

� The average glacier slope is 15◦.

Mass balance:

1. Write a function that calculate the monthly snow mass balance (snow
accumulation-snow melting). Remember that the melting function should
not create snow!

2. Write a function that calculate the snow accumulated monthly. Re-
member that (1) we can have snow inherited from the previous month,
and (2) the thickness of the snow mantle cannot be negative!

3. Write a piece of code that calculates the annual mass balance. Intro-
duce the possibility of emulate past and future climate conditions by
changing the temperature and precipitation uniformly (∆T and ∆P).

The output of the monthly functions should be an array of 12 numbers
when the input is one altitude, or a matrix when the input is a “column” of
altitude values.

Snow accumulation:

1. Placing a ski resort: what is the lowest altitude with 3 or more months
of snow?

2. According to these data, where could we find a glacier in Scotland
today? Note: the highest peak in Scotland is Ben Nevis, 1345 m above
sea level.

The Glenshee ski area is located between 650 and 1050 m of altitude. What
impact would these scenarios have on the business by 2100?

Glacier modeling exercises:

1. Write a piece of code that emulate the annual snow/ice mass flow.
Tip: calculate how much the snow/ice moves vertically in a year and
discretize the altitude reference accordingly, so the snow packed during
the previous year will move one position per year.

24 Ángel Rodés

Figure 1.3: earthobservatory.nasa.gov

2. Write a script that runs the previous code until the thickness of the
snow/ice is stable.

3. According to this model, where should the glacial fronts have been dur-
ing the Younger Dryas (∆T=-4◦C)? and during last glaciation (∆T=-
6◦C)?

Produce graphical outputs like these:

0 2 4

Km from sea

0

200

400

600

800

1000

1200

A
lt
it
u
d
e
 (

m
)

Glacier on slope

0 5 10 15 20

Snow/ice thickness (m)

0

200

400

600

800

1000

1200

Stable after 42 years

Chapter 2

Importing data & Statistics

Import functions

We can import our data in many ways. There are lots of built-in func-
tions that can be used to input data from different file types and differ-
ent formats: input, importdata, load, xlsread, imread, geotiffread,
arcgridread, usgsdem, etc. Here we will learn some of the simplest and
more universal ways of doing it: using csvread, textscan and directly
pasting data in a dialog box with inputdlg.

2.1 Importing .csv files

.csv files

CSV stands for “comma-separated values”. CSV files are text files widely
used to store tabular data in a simple format. All spreadsheet manipulation
programs, as Microsoft Excel, are able to import and export CSV files.
Each line in a CSV file corresponds to a row in a spreadsheet. Values from
different columns are separated by commas.

csvread(filename, row, col) reads data from the comma-separated
value formatted file starting at the specified row and column. The row and
column arguments are zero based, so that row=0 and col=0 specify the first
value in the file.

Note that only numeric data can be read using csvread. For example,

25

26 Ángel Rodés

Figure 2.1: Same .csv file in Excel and in a text editor.

the file munros lon lat feet.csv contains text and data:

Name, long, lat, feet
Ben Nevis , -5.00352, 56.79697, 4409
Ben Macdui , -3.6691, 57.07042, 4295
Braeriach , -3.72885, 57.07824, 4252
Cairn Toul , -3.71092, 57.05432, 4236
...

So the orders csvread(’munros lon lat feet.csv’,0,0) does not work
or do not import the Munros’ names. To import the numerical data from this
file we should use: munrodata=csvread(’munros lon lat feet.csv’,1,1)

2.2 Importing data from text files using fopen and
textscan

fopen and textscan

We can import tabulated data, including text strings, from any text file.
To do so, we need to know how many rows with headers are in the file (in
this case: 1) , what is the symbol that delimiters the columns (in this case:
,), and the type of data in the different columns. In this case, the first
column contains text (%s for string) and the three next columns contain
numbers (%f for floating-point number):

MATLAB for Geoscientists 27

fid = fopen('munros_lon_lat_feet.csv');

munrodata = textscan(fid, '%s %f %f %f',...

'HeaderLines', 1,'Delimiter',',');

fclose(fid);

Once imported our data, we can organize it in different arrays:

names=munrodata{1};

lon=munrodata{2};

lat=munrodata{3};

feet=munrodata{4};

2.3 Input dialog

Dialogs

We can also input our data copied from a spreadsheet (like Excel) using
inputdlg as a string and then convert it into a matrix using textscan:

cstr = inputdlg ('Paste from excel','Input new data');

mydata=textscan(cstr{1}, '%s %f %f %f');

When using this method to input data remember that:

� The text strings (usually sample names) should not contain spaces
or certain symbols.

� Avoid empty cells: you can use a 0 or NaN instead.

� You should only copy rows with data. Avoid copying the headers.

2.4 The normal distribution

Gaussian distribution

Most analytical data are considered Gaussian (or normal) distri-
butions (Fig. 2.2). This means that the true value of whatever we are

28 Ángel Rodés

measuring could be equally higher or lower that the measured central value
(the data) and its probability is:

P = 1√
2πσ2
· e−

(x−µ)2

2σ2

where x are the possible values, µ is the central value (the mean), and σ is
the uncertainty (the standard deviation).

Figure 2.2: For the normal distribution, the values less than one stan-
dard deviation away from the mean account for 68.27% of the set;
while two standard deviations from the mean account for 95.45%; and
three standard deviations account for 99.73%. Author: Dan Kernler.
https://en.wikipedia.org/wiki/Normal distribution

Create a function called normalprobs.m that calculates the probabili-
ties of an array x, given a piece of data as µ± σ:

function [P]=normalprobs(x,mu,sigma)

% Calculates the probability of x based on a gaussian mu +/- sigma

P=1/(2*pi*sigma^2)^0.5*exp(-(x-mu).^2./(2*sigma^2));

MATLAB for Geoscientists 29

end

Then compare the following plots:

� hist(normrnd(56,15,1,1000))

� plot(1:100,normalprobs(1:100,56,15))

2.5 Calculating the average

Averages

Geochronologists often produce a set of ages to date one geologic event.
Each of these ages are always the result of fitting a model to the
analytical data, usually some concentration(s) in a rock or mineral. Gener-
ally, the relatively simple models used to generate “standard” ages are based
in assumptions on how the nature works. But the processes that rule the
concentrations in nature are always much more complicate than assumed
by our model. Thus, we should always expect some scatter in our apparent
ages due to this natural “noise”. However, in principle we don’t known how
much scatter can we attribute to the differences between the nature and our
model.

As we have seen before, any analytical data has also associated some uncer-
tainty related to the precision of our measurements (the error bars). This
known uncertainty should also contribute to the scatter of our data.

Before calculating the average of our ages, we should understand what
kind of uncertainty will dominate our averaged age. If we don’t have many
samples, a simple way of checking this is just plotting our ages. If we
have a large dataset, we can also compare our scatter with our individual
uncertainties using std(ages) and median(errors).

For example:

%% Group opf ages from LGM moraines

ages=[27311,18071,19698,19868,25357,21515,19486,18784,19311,...

14342,19412,18064,18554,18092,18194,19647,19390,18634,...

19900,18069];

errors=[8839,2263,1893,1780,1568,2754,2720,2516,1414,1265,...

30 Ángel Rodés

2239,1389,3249,1287,1385,1323,1482,2044,1787,3392];

%% Plot ages

figure % start a new figure

hold on % keep all plotted elements

for n=1:length(ages)

% plot the error line

plot([n,n],[ages(n)-errors(n),ages(n)+errors(n)],'-b')

% plot the central data

plot(n,ages(n),'.b')

end

%% Calculations

SCATTER=std(ages)

ANALYTICAL_UNCERT=median(errors)

Comparing scatter and analytical uncertainties, we can decide which is
the best way of averaging our data:

� If scatter is much bigger (orders of magnitude) than our analytical
errors, we can just ignore the analytical uncertainties.

� If the scatter is about the same or a few times bigger than the analyt-
ical errors, our final age should reflect both the analytical and model
uncertainties.

� If the scatter is much smaller than the analytical errors, we are prob-
ably overestimating our analytical uncertainties. We should check our
previous calculations.

2.6 Types of “averages”

Average of a group of numbers

The most used type of average is the mean: mean(ages), which is the
same as sum(ages)/length(ages). The uncertainty of the mean is the
standard deviation: std(ages), which is

sqrt(sum((ages-mean(ages)).^2)/(length(ages)-1))

The Standard Deviation Of the Mean (SDOM) gives us an idea of how
the mean can change with new measurements:

std(ages)/sqrt(length(ages))

MATLAB for Geoscientists 31

The SDOM is often used as the uncertainty of a large number of an-
alytical measurements on the same material, but it does not reflect the
uncertainty related to the natural variability expected in a group
of ages from the same geological formation.

In large datasets containing extreme values, the median could also be
a good choice to represent the data: median(ages). The median is less
affected by outliers than the mean, and is often the preferred measure of
central tendency when the distribution is not symmetrical. As for the mean,
we can calculate its uncertainty as:

sqrt(sum((ages-median(ages)).^2)/(length(ages)-1))

For analytical data, the standard deviation of the median is considered to
be a ∼ 25% higher than the SDOM.

Average of a group of numbers and uncertainties

When our data consist of a group of probability distributions (e.g. ages
and errors), we should take into account the errors in the calculation of the
average. If our data have different errors, the data with bigger errors should
weight less than the more precise data. To take this into account, we can
use the weighted mean:

WM=sum(ages./errors.^2)/sum(1./errors.^2)

The standard deviation of the weighted mean (SDOWM) average can be
calculated as:

SDOWM=sqrt(1/sum(1./errors.^2))

However, the SDOWM only reflects the uncertainty from the individual
errors and not the scatter of the data. A more realistic uncertainty could
be calculated as:

sqrt(std(ages)^2+SDOWM^2)

An alternative method to calculate the average and uncertainty of a group
of ages and errors is actually simulating their probability distributions:

32 Ángel Rodés

simulations=1000;

% create a matrix to place data

fakedata=zeros(simulations,length(ages));

for n=1:simulations

% fill each line with random data

% based on individual ages and errors

fakedata(n,:)= normrnd(ages,errors);

end

MEAN=mean(fakedata(:))

% note that (:) converts a matrix into an array

UNCERTAINTY=std(fakedata(:))

hist(fakedata(:),30) % plot the fake data

2.7 Error transmission

Error transmission

Simulating the dispersion of the data by generating “fake data” accord-
ing to gaussian distributions is great trick to operate with probabilistic data,
getting a density distribution of the result. However, when the following con-
ditions are met, it is much more efficient to propagate errors mathematically.

� All operators (e.g. analytical data) are well-modeled by gaussian
distributions.

� We are considering uncertainties of independent variables (no co-
variance).

� The uncertainty of the result is small enough to be well repre-
sented by a normal distribution (i.e. the result is roughly lineal in the
area of the uncertainty and therefore the resulting distribution is not
asymmetrical).

If we can assume these conditions, the error propagation should be per-
formed by considering the partial derivatives of the result respect the oper-
ators:

σf(a,b) =

√(
σa

δf(a,b)
δa

)2
+
(
σb

δf(a,b)
δb

)2

where a ± σa and b ± σb are the operators within a standard deviation

MATLAB for Geoscientists 33

(one sigma) uncertainties.
Here are some examples on common operations:

Operation Formula Uncertainty

Addition a+ b
√
σ2
a + σ2

b

Subtraction a− b
√
σ2
a + σ2

b

Multiplication a · b
√

(σa · b)2 + (σb · a)
2

Division a/b

√(
σa
b

)2
+
(
σb · ab2

)2
Power ab

√(
σa·ab·b
a

)2
+ (σb · ab · ln a)

2

Natural logarithm a · ln(b)

√
(σa · ln(b))

2
+
(
σb · ab

)2
Logarithm to base 10 a · log10(b)

√
(σa · log10(b))

2
+
(
σb · a

b·ln(10)

)2

2.8 Rejecting outliers

Rejecting outliers

In statistics, an outlier is a data point that differs significantly from other
observations.

A simple method to identify outliers is using the Tukey’s fences based
on the data quartiles. This method identify outliers at deviations outside
the range from Q1−1.5 · (Q3−Q1) to Q3 +1.5 · (Q3−Q1). We can calculate
this limits using the built-in function quantile:

Q1=quantile(ages,0.25);

Q3=quantile(ages,0.75);

outliers=ages(ages<(Q1-1.5*(Q3-Q1)) | ages>(Q3+1.5*(Q3-Q1)))

Other approaches commonly used to identify outliers are based on the good-
ness of fit. A simple way of measuring how close are our measurements to
our mean is the χ2 value:

χ2 =
(
x−x̄
σ

)2

Using σ =
√
σ2
x + σ2

x̄ we can calculate the individual values of χ2 consid-

ering all our uncertainties. Values of χ2 greater than 1 indicate that the two

34 Ángel Rodés

values we are comparing, the individual data and our average, are different
within uncertainties.
Exercise: Use the χ2 method to identify outliers of the ages respect their
weighted mean and standard deviation of the weighted mean.

In geosciences (e.g. studying a set of ages from a landform), outliers are
often due to the natural variability of the samples and not to experimental
errors. Therefore, when rejecting an outlier we are expected to give
an explanation of the geological process that caused that outlier.

2.9 Box plots

Box plots

A common way of representing a dataset is using box plots. The data
is usually represented along the y axis, a box is drawn from Q1 to Q3. The
box is cut at the median (= Q2) and error bars are drawn outside the box
between the limits defined in section 2.8

This code produces a box-plot of the given ages:

%% my data

ages=[27311,18071,19698,19868,25357,21515,19486,18784,19311,...

14342,19412,18064,18554,18092,18194,19647,19390,18634,...

19900,18069];

%% calculate the cuartiles

Q1=quantile(ages,0.25);

Q2=median(ages);

Q3=quantile(ages,0.75);

maxbar=Q3+1.5*(Q3-Q1);

minbar=Q1-1.5*(Q3-Q1);

outliers=ages(ages<minbar | ages>maxbar);

%% start a figure

figure

hold on

%% plot box at position x=2 and a width of 0.3

plot([2-0.3,2+0.3],[Q1,Q1],'-k')

plot([2-0.3,2+0.3],[Q2,Q2],'-k')

plot([2-0.3,2+0.3],[Q3,Q3],'-k')

plot([2-0.3,2-0.3],[Q1,Q3],'-k')

plot([2+0.3,2+0.3],[Q1,Q3],'-k')

plot([2,2],[Q3,maxbar],'-k')

plot([2,2],[Q1,minbar],'-k')

plot([2-0.15,2+0.15],[minbar,minbar],'-k')

plot([2-0.15,2+0.15],[maxbar,maxbar],'-k')

plot(ones(size(outliers))*2,outliers,'.k')

% ones(size(outliers) is used because

% in principle we do not know the size of

MATLAB for Geoscientists 35

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

a
g
e

10
4

 Q
1

Q
2

 (median)
 Q

3

Q
1

-IQR

Q
3

+IQR

Figure 2.3: In a box-plot, the inter-quartile range (IQR) is defined by the
distance between the first and third quartile Q1 - Q3, so 50% of our data
are in the IQR, 25% is over Q3 and the rest 25% is under Q1.

% the outliers array

%% beautify the axis

xlim([0 4])

set(gca,'xtick',[]) % remove x ticks

ylim([0 max(ages)*1.5])

ylabel('age')

box on % draw upper and right lines

Exercise: Write a function that draws the box plot at a given x position and
box width. Make the width of the caps half the width of the box. The input
should be: drawboxplot(data,x,width)

Then use the function to compare the altitudes of the eastern and western
munros from section 2.2.

Remember that you can recycle code using copy & paste!

36 Ángel Rodés

2.10 Histograms

Histograms

Another way of visualizing a the distribution of a large dataset is plotting
an histogram (e.g. hist(ages)). We can select the number of “bars” to plot:
hist(feet,30). We can also use the built-in function hist to generate the
counting data and plot it using plot:

figure

[counts,centers] = hist(feet,20);

plot(centers,counts,'*-r')

Exercise: Compare graphically the mean + standard deviation, the box
plot and the histogram of these data. Which one reflect better the variability
of our ages?

2.11 Camel-plots

Camel-plots

When our data have associated errors (like our ages and errors), the
histogram does not represent the relative weight of our individual data. The
probability distribution of the age 12000 ± 1500 can be depicted using the
function defined in section 2.4:

% Define the x values to plot

xref=linspace(0,50000,500);

% calculate the probability distribution

probs=normalprobs(xref,12000,1500);

% plot

figure

hold on

plot(xref,probs,'-b')

Exercise: Write a script that sum all the probabilities of the previously
defined ages for each xref and plot it. The plot of this sum should look

MATLAB for Geoscientists 37

similar to the blue line in the next figure.

The generated plot show the density of our data better than the his-
togram. These plots are sometimes called “probability density plots”. How-
ever, these diagrams represent the distribution of our data, that highly de-
pends on how we selected the samples. Therefore, they do not necessarily
represent the probability distribution of the landform age and, according to
Greg Balco, they should be called “normal kernel density estimates.”
https://cosmognosis.wordpress.com/2011/07/25/what-is-a-camel-diagram-anyway/

0 1 2 3 4 5

Age 10
4

P

Normal kernel density estimate

Figure 2.4: The plot of the sum of probability distributions from our data
is often called “Camel-plot” (informally).

38 Ángel Rodés

Chapter 3

Data calibration

3.1 What is a calibration?

Calibrations

Geochemical analysis often require calibrating a machine. A calibration is a method
that compares

� Nominal values of something we consider real (e.g. known concentrations of Fe in
a solution), and

� Directly measured data (e.g. counts per second from an ICP machine)

To perform a calibration we usually need to measure a set of known samples (stan-
dards) in a machine.

Our standards will be a group of samples (usually artificial) containing no analyte (e.g a
tube with water) or a known value of the analyte (e.g. a tube with liquid containing 10.2
parts per million of iron). Standards containing no analyte are usually called blanks, and
the known values are often called nominal data. Excepting the blanks, the nominal values
of the standards are expected to have an associated uncertainty (e.g. [Fe]=10.2 ± 0.1
ppm).

Also, the machine we are using will be probably repeating the measurement on the
same sample for 3 times or more. Therefore, the measured data will also have an associated
uncertainty, usually the standard deviation of the measurements from the same sample.

39

40 Ángel Rodés

3.2 Calibration tools

Plotting data with x and y errors

The first thing we should do to start calibrating any data is compare it graphically.

Create the script my first calibration.m and copy the following ICP calibration
data:

% Nominal concentrations of iron in some standards

STDSnominal=[0,0.98,4.56,10.78,19.34,0,1.05,5.1,9.94,18.95];

% associated uncertainties

STDSnominal_uncert=[0,0.02,0.06,0.11,0.19,0,0.02,0.06,0.10,0.19];

% ICP measured values of standards in counts per second (cps)

STDScps=[425,1724,7443,15221,30973,146,1832,7378,15124,27701];

% associated uncertainties

STDScps_uncert=[214,140,377,329,381,249,311,280,1129,1140];

The simplest way of representing these data with uncertainties is:

x=STDSnominal;

dx=STDSnominal_uncert;

y=STDScps;

dy=STDScps_uncert;

figure

hold on

for n=1:length(x)

plot([x(n),x(n)],[y(n)-dy(n),y(n)+dy(n)],'-b')

plot([x(n)+dx(n),x(n)-dx(n)],[y(n),y(n)],'-b')

end

plot(x,y,'.b')

However, when we have both x and y uncertainties, the error bars do not fully represent
the probability distribution of the data in the 2-D space. Assuming that σx and σy are
independent (no coviariance), the probability distribution at a point (xi , yi) can be
defined by its χ2 value respect our data x, y, σx and σy:

χ2 = (xi−x
σx

)2 + (yi−y
σy

)2

Assuming that all the points with χ2 = 1 are at the one-sigma confidence level bound-
ary, we could solve the previous equation as:

xi = x+ σx · cos (θ)
yi = y + σy · sin (θ)

being θ between 0 and 2 · π (note that sin2 (θ) + cos2 (θ) is always 1).

MATLAB for Geoscientists 41

We can use this property to draw the ellipses corresponding to our data within uncertain-
ties:

figure

hold on

for n=1:length(x)

theta=linspace(0,2*pi,100);

xi=x(n)+dx(n)*cos(theta);

yi=y(n)+dy(n)*sin(theta);

plot(xi,yi,'-b') % plot ellipse

end

plot(x,y,'+b') % plot central point

Note that ellipsis from samples with no uncertainty in one of the axis (e.g. blanks)
look exactly as error bars.

Linear regression

A line is the simplest way of relating 2 sets of data (e.g. known concentrations and
signals given by a machine). One of the most used methods to fit a line to our dataset is
the “least-squares” regression. This method minimizes the square of the distances between
the line and our data. Fortunately, there is a direct solution to solve this problem. The
general formulas to fit a line y = a · x+ b to n data by least-squares are:

a =
n·(
∑

xiyi)−(
∑

xi)·(
∑

yi)

n·(
∑

x2
i
)−(
∑

xi)2

b =
(
∑

x2
i)·(
∑

yi)−(
∑

xi)·(
∑

xiyi)

n·
∑

x2
i
−(
∑

xi)2

In MATLAB/Octave, we can create the function leastsquares.m as:

function [myfit] = leastsquares(x,y)

a=(length(x)*sum(x.*y)-sum(x)*sum(y))/(length(x)*sum(x.^2)-sum(x)^2);

b=(sum(x.^2)*sum(y)-sum(x)*sum(x.*y))/(length(x)*sum(x.^2)-sum(x)^2);

myfit = @(x) a*x+b;

end

and the average error of the data calibrated using leastsquares will be:

myfiterror= mean(abs(y-myfit(x))

Exercises:

42 Ángel Rodés

� Plot the ICP data from slide 3.2 together with its linear fit.

� Use this data to calibrate a measurement of 9000 cps.

� How would you propagate the uncertainty of the calibration?

� Does myfiterror fully represent the calibration uncertainty?
We have not used the uncertainties in our calculations!

Interpolation and smoothing

When we have a curve defined as y = f(x) we might be interested in getting the xi
value corresponding to a yi. This is the case of the function myfit(x), where x represent
concentrations and y are signals obtained by ICP. The function leastsquares is a line and
it would not be difficult to calculte the inverse function mathematically: y = a · x+ b ⇒
x = (y − b)/a.

However, we often need to fill the gaps from incomplete datasets. For example, the
file gistemp.csv contains an estimate of global surface temperature change every 5 years
(GISTEMP data: http://data.giss.nasa.gov/gistemp/).

Create a new script,load the data and plot it:

gistempdata=csvread('gistemp.csv',1,0);

years=gistempdata(:,1);

temp=gistempdata(:,2);

figure

hold on

plot(years,temp,'*k')

If we want to estimate the global surface temperature change every year, we need to
interpolate the data. To do so, we can use the built-in function interp1. By default
interp1(x,y,x0) will return the linear interpolation of the x,y dataset at x0. Try:

myyears=min(years):1:max(years);

mytemp=interp1(years,temp,myyears);

plot(myyears,mytemp,'.-r')

To avoid errors, the x values in textttinterp1(x,y,x0) should be sorted and not repeated.
If your data is not sorted, you can use sort the data using sort: [x2,order]=sort(x);

y2=y(order);

The linear interpolation is the default method used by interp1, so interp1(x,y,x0)

is equivalent to interp1(x,y,x0,’linear’). But we can use other methods, such as
’spline’, or ’nearest’ to interpolate our data. To see the differences, try:

MATLAB for Geoscientists 43

myyears=min(years):1:max(years);

mytemp=interp1(years,temp,myyears,'spline');

plot(myyears,mytemp,'.-b')

Apart of the method, we can ask interp1 to also extrapolate data by adding ’extrap’

after the method. If you want to know more about interp1, type help interp1.

Exercise: use extrapolation to predict the global surface temperature change during the
next century.

In other cases, instead of increasing the resolution of our data, we might be interested in
smoothing it (e.g. to remove high frequency noise). For example:

smoothingtime=50;

yearssmooth=1900:10:2000;

for n=1:length(yearssmooth)

% select data around the year yearssmooth(n)

selecteddata=(abs(yearssmooth(n)-years)<smoothingtime/2);

tempsmooth(n)=mean(temp(selecteddata));

end

plot(yearssmooth,tempsmooth,'-m')

This method is called “moving average”.

Exercise: extrapolate the smoothed temperatures to predict the global surface temper-
ature change during the next century.

3.3 Spectrometry data

Blank Equivalent Concentration

In spectrometry,the Blank Equivalent Concentration (BEC) is defined as the concen-
tration that would correspond to the signal of the blank. It is usually determined by the
following formula:

BEC = Iblank
Istandard−Iblank

· Cstandard

being I the signals measured, usually in counts per second (cps), and C the nominal
concentration. Considering that we are going to be working with datasets involving several
standards, we can define the BEC graphically as the negative of the x-intercept of our
calibration line.

44 Ángel Rodés

1 2 3 4 5 6 7

Concentration (ppm)

2000

4000

6000

8000

In
te

n
s
it
y
 (

c
p

s
)

 Blanks

 Standards

 Standards

 -B

E
C

Figure 3.1: Graphical calculation of the Blank Equivalent Concentration
(BEC) according to the calibration represented by the red line.

The BEC gives us an idea of how the background level of our machine compares with the
measurements of our standards. We could think that a low BEC value implies that our
measurements are going to be more precise. However, the precision of the measurements
will depend on the stability of the background rather than the background value.

The stability of the background is what defines the precision of our measurements, rather
then the background value. Similarly, we should calculate the variability of our BEC to
get an idea of the noise of our measurements in concentration units. There are different
ways of calculating the BEC “noise” (σBEC). We could just calculate it based on the
scatter of our blank data. However, this would not reflect the scatter of our standards.
Fig. 3.3 shows the σBEC calculated from the uncertainty of our calibration.

Exercise: recycle the code generated before (calculation of myfiterror) to calculate
the uncertainty of the BEC corresponding to the calibration data shown in the slide 3.2.
Tip: you can use maths to get the inverse of myfit or use interp1.

MATLAB for Geoscientists 45

0 50 100

Measurement

0

50

100

150

200

250

B
la

n
k
 c

p
s

Analyte #1

0 50 100

Measurement

0

50

100

150

200

250

Analyte #2

Figure 3.2: Two blank measurements compared. The measurements of the
analyte #1 in the blank show a lower background, but the background of
the analyte #2 measurements is more precise.

Limits of detection and quantification

The Limit of Detection (LOD) or Detection Limit is defined as the smallest measurable
concentration. It is the concentration of a theoretical sample that will produce a signal
strong enough to be distinguishable from the background noise. Assuming that this signal
is going to have a noise similar to the background, the difference between the signals from
the sample and the blank should be bigger than two times the noise. That is why the
LOD is numerically defined as LOD = 3 ·noise. This is often calculated by calibrating the
concentration corresponding to Iblank + 3 ·σIblank , being σIblank the standard deviation of
the intensities measured on blank samples.

This approach assumes that our theoretical smallest measurable samples will produce a
signal as scattered as our blank. However, sometimes, the measures of our samples are
more similar to standards than to blanks (e.g. due to matrix effects). This is why consid-
ering LOD = 3 · σBEC would be a more conservative way of calculating our LOD.

Likewise, the Limit of Quantification (LOQ) is usually defined as 10 times the blank
noise, so the uncertainty associated with the lowest sample that can produce quantitative
data is ∼ 10%. As for the LOD, we can calculate the LOQ using the BEC uncertainty:
LOQ = 10 · σBEC .

46 Ángel Rodés

0.5 1

Concentration (ppm)

500

1000

1500

2000

Intensity (cps)

 Blanks

 Standards

BEC
BEC

Figure 3.3: Graphical calculation of the Blank Equivalent Concentration
(BEC) and its uncertainty σBEC .

Calibrating data

Once we have calculated the algorithms that relate the ICP signal with concentrations
and concentration uncertainties, we are ready to calibrate the signals from our “unknown
samples” in our script my first calibration.m:

% ICP measured values of unknowns in counts per second (cps)

SAMPLEScps=[9782,28746,13471,5870,28173,30492,13739,3588,813,12805];

% associated uncertainties

SAMPLEScps_uncert=[181,1042,1214,76,2899,2532,809,243,275,716];

To make this easier, we can define our calibration line as a reference xcal and ycal:

xcal=linspace(min(x),max(x),100);

ycal=myfit(xcal);

and transform the signals yunk into concentrations xunk using interp1:

yunk=SAMPLEScps; dyunk=SAMPLEScps_uncert;

MATLAB for Geoscientists 47

xunk=interp1(ycal,xcal,yunk,'linear','extrap')

As the calibration is a line, we can also transform the measurement uncertainties into
concentrations using:

measurementuncert=...

(interp1(ycal,xcal,yunk+dyunk,'linear','extrap')-...

interp1(ycal,xcal,yunk-dyunk,'linear','extrap'))/2

The measurement uncertainty is the internal uncertainty of our data, which is the
errors we should use to compare our samples between them. However, as usually we want
to compare our data with data that has not been calibrated simultaneously (e.g. samples
measured one month ago), we should also include the calibration uncertainty into the
external uncertainty (dxunk):

calibrationuncert=...

(interp1(ycal,xcal,yunk+myfiterror,'linear','extrap')-...

interp1(ycal,xcal,yunk-myfiterror,'linear','extrap'))/2

dxunk=sqrt(calibrationuncert.^2+measurementuncert.^2);

Including the graphical representation of the unknown data, the script my first calibration.m
could be something similar to this:

%% This is my first calibration script

clear % clear all previous data

close all hidden % close all figures

% Nominal concentrations of iron in some standards

STDSnominal=[0,0.98,4.56,10.78,19.34,0,1.05,5.1,9.94,18.95];

% associated uncertainties

STDSnominal_uncert=[0,0.02,0.06,0.11,0.19,0,0.02,0.06,0.10,0.19];

% ICP measured values of standards in counts per second (cps)

STDScps=[425,1724,7443,15221,30973,146,1832,7378,15124,27701];

% associated uncertainties

STDScps_uncert=[214,140,377,329,381,249,311,280,1129,1140];

x=STDSnominal; dx=STDSnominal_uncert;

y=STDScps; dy=STDScps_uncert;

% ICP measured values of unknowns in counts per second (cps)

SAMPLEScps=[9782,28746,13471,5870,28173,30492,13739,3588,813,12805];

% associated uncertainties

SAMPLEScps_uncert=[181,1042,1214,76,2899,2532,809,243,275,716];

yunk=SAMPLEScps; dyunk=SAMPLEScps_uncert;

%% Calibration and uncertainty

myfit = leastsquares(x,y);

48 Ángel Rodés

myfiterror= mean(abs(y-myfit(x)));

%% Calibration line

xcal=linspace(min(x),max(x),100);

ycal=myfit(xcal);

ycalerror=myfiterror;

%% BEC, LOD, LOQ

bec=-interp1(ycal,xcal,0,'linear','extrap');

dbec=interp1(ycal,xcal,myfiterror,'linear','extrap')+bec;

LOD=3*dbec;

LOQ=10*dbec;

%% Calibrate unknowns

xunk=interp1(ycal,xcal,yunk,'linear','extrap');

calibrationuncert=...

interp1(ycal,xcal,yunk+myfiterror,'linear','extrap')-xunk;

measurementuncert=...

interp1(ycal,xcal,yunk+dyunk,'linear','extrap')-xunk;

dxunk=sqrt(calibrationuncert.^2+measurementuncert.^2);

%% Start a figure

figure

hold on

% plot the unknowns with error-bars

for n=1:length(xunk)

plot(xunk(n),yunk(n),'.k')

plot([xunk(n)-dxunk(n),xunk(n)+dxunk(n)],[yunk(n),yunk(n)],'-k')

plot([xunk(n),xunk(n)],[yunk(n)-dyunk(n),yunk(n)+dyunk(n)],'-k')

end

% plot the standards with ellipsis

for n=1:length(x)

theta=linspace(0,2*pi,100);

xi=x(n)+dx(n)*cos(theta);

yi=y(n)+dy(n)*sin(theta);

plot(xi,yi,'-b')

end

plot(x,y,'.b')

% plot the calibration

plot(xcal,ycal,'-r')

plot(xcal,ycal+myfiterror,'--r')

plot(xcal,ycal-myfiterror,'--r')

% put labels

ylabel('Intensity (cps)')

xlabel('Concentration (ppm)')

And the generated figure will be similar to this:

� As you can see in the figure, the previous script overestimate the uncer-
tainties of the lowest concentrations by considering myfiterror as a con-

MATLAB for Geoscientists 49

0 5 10 15 20 25

Concentration (ppm)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

In
te

n
s
it
y
 (

c
p

s
)

10
4

Figure 3.4: Example of figure output of a calibration. Blanks and standards
are depicted in blue, unknowns in black and the calibration line within
uncertainty in red.

stant, where it should be a function of the ICP signal. Therefore, we ob-
tain overestimated LOD and LOQs. You can try to improve the simplistic
mean(abs(y-myfit(x))) with some other code.

� Also, note that we have ignored the uncertainties of the calibration data
STDSnominal uncert and STDScps uncert. We should also transmit those
uncertainties in the external uncertainties. We could do that mathematically
(calculating the partial derivatives for the formulas in the leastsquares.m

function) or programmatically (fitting a large number of different lines with
data generated using normrnd).

An example of a full propagation of uncertainties is shown in my second calibration.m.

Finally, you can convert your script into a function that you can use in the future to

calibrate your own data:

50 Ángel Rodés

0 0.5 1 1.5 2 2.5 3 3.5

Intensity (cps) 10
4

-5

0

5

10

15

20

25

30

C
o
n
c
e
n
tr

a
ti
o
n
 (

p
p
m

)

Figure 3.5: Another example of calibration. Here, the scatter and the un-
certainties of the standards are fully propagated.

function [SAMPLESppm SAMPLESppm_uncert] = calibfunction(STDSppm,STDSppm_uncert,...

STDScps,STDScps_uncert,...

SAMPLEScps,SAMPLEScps_uncert)

% Paste here some of the code used in my_first_calibration

% - Remember no to paste the input data (STDSppm,SAMPLEScps, etc.)

% - Do not paste the plotting code unless you need it!

end

Reporting data with uncertainties

At the end of our scripts we will probably want to include an easy way of exporting the
numerical results we obtained, like the concentrations and uncertainties xunk and dxunk.
The simplest way is by printing what we want in the command window using the built in
function disp. As we want to mix our numerical parameters with strings, we will have to
use num2str to transform our numbers into strings.

clc % clear the command window

MATLAB for Geoscientists 51

disp(['Blank equivalent concentration: ' num2str(bec) ' ppm'])

disp(['Limit of detection: ' num2str(LOD) ' ppm'])

disp(['Limit of quantification: ' num2str(LOQ) ' ppm'])

disp(['Concentrations and uncertainties:'])

for n=1:length(xunk)

disp([num2str(xunk(n)) ' +/- ' num2str(dxunk(n))])

end

If we want to be able to paste our copy and paste our data in Excel, we can replace ’

+/- ’ by the tab character char(9).

A common mistake when reporting data with errors is using more digits than the significant
figures. For example, the last numbers of 6.3976 from the data 6.3976 ± 0.46537 are
meaningless. A couple of significant figures in the uncertainty is usually enough, so in our
report we should just write 6.40±0.47, as this distribution is identical to 6.3976±0.46537.
We can use round to trim useless digits from our mu±sigma data:

decimalpositions=1-floor(log10(sigma));

newmu=round(mu,decimalpositions);

newsigma=round(sigma,decimalpositions);

Exercise: Add the “reporting code” in my first calibration.m to:

� Displays the concentrations below the LOD as “< LOD ppm”.

� Displays the concentrations below the LOQ as “∼ conc. ppm”.

� Displays the concentrations above the LOQ “conc. ± uncert. ppm” using only
their significant figures.

3.4 Exercise: ICP-OES data calibration

ICP-OES data calibration

The file ICPdata GU20171012.csv contains real raw ICP-OES data exported from the
ICP machine (one line per analyte in chronological order) and an extra column with the
nominal concentrations of the standards in ppm.

Write a script that reduces the ICP-OES data and report calibrated concentrations
for each analyte.

Tips

Some useful functions that you might need:

52 Ángel Rodés

Figure 3.6: ICP-OES at SUERC.

� fopen and textscan from chapter 2.

� STD=∼isnan(nominal) select lines containing nominal values (the values in the
nominal array are not-not-a-number).

� unique(analytename) returns a list of unique values of analytename.

� strcmp(string, list of strings) returns the positions of the string in the array
list of strings. This is useful when you want to work with only the lines that
refer to a specific analyte. E.g. inside this loop:

for this analyte=unique(analytename)’

selectdata=strcmp(this analyte, analytename);

...and work with selectdata in here...
end.

Chapter 4

Modeling

Numerical models

Numerical models are widely used to solve physical or chemical problems by describing
processes using equations and numbers.

We can generally describe a numerical model as y = F (x), where x are the causes of
the process, F are the algorithms that describe the process, and y are the consequences
of the process.

In Earth Sciences, we typically know the consequences (y) of the process we are
studying (e.g. a concentration of something as a result of time, that will be the main
cause in a geochronology problem), and we want to know the causes x. Therefore, finding
or approximating the inverse model x = F ′(y) would be very useful for our purposes.

The way we solve a problem involving numerical models will depend on whether or
not we can find or approximate the inverse model.

4.1 Forward problem

Forward problem

Forward models as y = F (x) are used to make informed predictions. However, when
we can find the inverse of our model x = F ′(y), we can solve our problem directly.

In geochronology, this x = F ′(y) typically means expressing the true age of a sample
as a function of concentrations and other known parameters.

Mathematically, a forward problem is a well-posed problem, where a unique solution
exists and the solutions change continuously with the known parameters.

53

54 Ángel Rodés

Radiocarbon calibration

A good example of a forward problem is the calculation of a calibrated 14C age from
an apparent 14C age, as the 14C ages calculated in the slide 1.10.

Apparent radiocarbon ages are calibrated using calibration lines. You can download
the data corresponding to a calibration line from here:
https://journals.uair.arizona.edu/index.php/radiocarbon/article/downloadSuppFile/16947/275

You should get a file called 16947-25973-2-SP.14c. Save it in your working folder and
open it as text: you will find out that is a comma separated file (csv).

If we have a radiocarbon age (e.g. 2000 ± 20), we should be able to create a script to
calibrate the entire probability distribution of the age (see slide ??) along the calibration
curve using interp1 and produce an output like this:

1850 1900 1950 2000 2050
1900

1950

2000

2050

2100
Calibration curve

0 0.01 0.02

P

1900

1950

2000

2050

2100

C
1
4
 a

g
e

1850 1900 1950 2000 2050

calibrated C14 age

0

0.01

0.02

P

(code in the next slides)

%% import calibration curve

fid = fopen('16947-25973-2-SP.14c');

imported = textscan(fid, '%f %f %f %f %f',...

'HeaderLines', 12,'Delimiter',',');

fclose(fid);

% select the data from the calibnration curve

calBP=imported{1};

C14=imported{2};

%% interpolate calibration curve to arrays of 1 position per calibrated year

refcalBP=min(calBP):1:max(calBP);

refC14=interp1(calBP,C14,refcalBP);

MATLAB for Geoscientists 55

%% input our data

C14age=2000;

C14ageerr=20; % one sigma error

% calculate probabilities of my data

C14probs=normalprobs(refC14,C14age,C14ageerr);

%% Plot the calibration curve and our data

% select only the "most" probable data to plot

sel=(C14probs>max(C14probs)/1000);

figure % start figure

% plot the part of the calibration curve that is relevent for us

subplot(3,3,[2 6])

plot(refcalBP(sel),refC14(sel))

title('Calibration curve')

% plot our data

subplot(3,3,[1 4])

plot(C14probs(sel),refC14(sel))

ylabel('C14 age')

xlabel('P')

% plot the data calibrated

subplot(3,3,[8 9])

plot(refcalBP(sel),C14probs(sel))

xlabel('calibrated C14 age')

ylabel('P')

Note that:

� We are ignoring the uncertainty of the calibration curve (imported{3}). To know
how to incorporate all the errors, check the script “MatCal” by Lougheed & Obrochta
(2016):
http://dx.doi.org/10.5334/jors.130

� To represent several subplots in the same window we are using subplot(r,c,[a

b]), where r and c are the number of rows and columns, and a and b are corners of
the area where we want to plot. E.g. subplot(3,4,[7 12]) would start plotting
in the blue area:

4.2 Inverse problem

Inverse problem

Sometimes it is not possible to express our problem as x = F ′(y), because sometimes
it is impossible to get the inverse of F (x).

56 Ángel Rodés

Most geochemical models used in geochronology allow the calculation of a theoretical
concentration or measurable signal C as a function of time t and other parameters: C =
f(t, C0, ...). However, some of these problem cannot be solved for t = f(C,C0, ...). In this
cases, we will need to guess the age t corresponding to our known concentrations C,C0,
etc.

Ill-posed problem

Mathematically, this kind of problems are often ill-posed problems. Therefore, we
cannot assume that they have a unique solution and we should check the sensitivity of
our results to a change in our known parameters.

In geochronology, this means that apart of answering the main question:

Which ages are compatible with my data?

but we should also answer the question:

Which ages are not compatible with my data?

4.3 Cosmogenic depth-profile dating

Cosmogenic depth-profile dating

The accumulation of 10Be under a sedimentary surface depends on the inherited 10Be
concentration (C0), the different 10Be production rates (Psp., Pfµ and Pµ−) and attenua-
tion lengths (Λsp., Λfµ and Λµ−), the 10Be decay constant (λ), the density of the sediment
(ρ), the depth (z), the erosion rate of the surface (ε) and the age of the landform (t):

C = C0 +
Psp.
ε

Λsp.
+λ

e
− z·ρ

Λsp.

(
1− e

−t
(
λ+ ε

Λsp.

))
+

P
µ−
ε

Λ
µ−

+λ
e
− z·ρ

Λ
µ−

1− e
−t
(
λ+ ε

Λ
µ−

)+
Pfµ
ε

Λfµ
+λ

e
− z·ρ

Λfµ

1− e
−t
(
λ+ ε

Λfµ

) (4.1)

This equation cannot be solved for t. Also, when we have a dataset of 10Be concen-
trations under a surface (a 10Be depth-profile), we want to solve the problem for C0, ε
and t. How can we do this?

10Be accumulation model

The following function calculates theoretical 10Be concentrations:

function [C] = exposure_model(P,L,l,density,z,C0,erosion,t)

MATLAB for Geoscientists 57

C=C0+...

P(1)./(l+erosion.*density./L(1)).*exp(-z.*density./L(1)).*...

(1-exp(-(l+erosion.*density./L(1)).*t))+...

P(2)./(l+erosion.*density./L(2)).*exp(-z.*density./L(2)).*...

(1-exp(-(l+erosion.*density./L(2)).*t))+...

P(3)./(l+erosion.*density./L(3)).*exp(-z.*density./L(3)).*...

(1-exp(-(l+erosion.*density./L(3)).*t));

end

10Be data

The following code defines all the known parameters and the 10Be concentrations from
the sampled depth-profile for an alluvial fan in Almeŕıa (Spain):

%% Production rates

P=[4.35,0.0985,0.0855]; % production rates in at/g/a

L=[160,1137,1842]; % attenauation lengths in g/cm^2

l=4.9975E-7; % decay contant in a^(-1)

%% Field data

density=1.8; % g/cm^3

z=[267,195,141,95,46,3]; % depth of the sameples in cm

Be10=[91000,184000,265000,430000,732000,1070000]; % 10Be concentrations in atoms/g

Be10error=[9100,16000,18000,29000,61000,81000]; % 10Be uncertainties in atoms/g

Try exposure model(P,L,l,density,10,0,0.0001,10000) to calculate the 10Be con-
centration accumulated in a sample 10 cm below a 10 ka old surface being eroded at a
rate of 1 mm/ka (0.0001 cm/a).

We can reproduce the theoretical depth profile for these conditions along the first 3
m under the surface:

zref=0:300; % depth reference in cm

concentrations=exposure_model(P,L,l,density,zref,0,0.0001,10000);

plot(concentrations,-zref,'-b')

Now we just need to find which theoretical values of inheritance, age and erosion rates
(the last 3 parameters in the exposure model function) match our Be10 concentrations
within Be10error uncertainties!

4.4 Monte Carlo methods

Monte Carlo methods

58 Ángel Rodés

The simplest way of guessing the values for C0,erosion,t that fit our data Be10 at
our depths z could be just trying a lot of random values of C0,erosion,t and check
which theoretical concentrations are closer to our data. This is called a Monte Carlo
experiment.

To perform this Monte Carlo experiment, we should define a way of measuring how close
is our model to our data. A χ2 function (similar to the one at the slide 2.8) would do the
job:

χ2 =
n∑

sample=1

(
Cmodel(zsample)−Csample

σCsample

)2

The following code runs a Monte-Carlo experiment of 100 000 models assuming that ε is
between 0 and 50 m/Ma (0.005 cm/a), the landfom age is between less than 3 Ma (3E6
a), and C0 is smaller than the lowest concentration.

%% Monte carlo experiment

nummodels=100000; % define how many models

C0i=rand(1,nummodels)*min(Be10); % random inheritences

ti=rand(1,nummodels)*3e6; % random ages

erosioni=rand(1,nummodels)*0.005; % random erosion rates

chisquarevalues=rand(1,nummodels)*NaN; % allocate memory for the chi square array

% calculate the chi squared vales for each model

for n=1:nummodels

% calculate the model concetratios for the depths z

Cmodel=exposure_model(P,L,l,density,z,C0i(n),erosioni(n),ti(n));

% calculate the chi squared for this model

chisquarevalues(n)=sum(((Cmodel-Be10)./Be10error).^2);

end

Which models should we consider to represent the uncertainty of the results?

When fitting a model to data, we have to report how many parameters are we trying
to fit and how many data we have. The number of parameters should be lower that the
data points and the difference between them are the Degrees of Freedom of our model.
In our model we have
DOF = 6 - 3 = 3 degrees of freedom.

When performing this kind of inverse modeling, the models that fit the data with a
χ2 value below the minimum χ2 value plus the degrees of freedom are often considered to
fit the data within one sigma confidence level.

Therefore, we can calculate which of the models fit our data within one-sigma, assuming
that this is defined by the models with χ2 values between the minimum χ2 and χ2+DOF:

MATLAB for Geoscientists 59

DOF=3; % degrees of freedom (# of samples - # of parameters)

minchi=min(chisquarevalues); % minimum chi-square value (best model)

best=find(chisquarevalues==minchi); % location of the best model

% location of the models fitting the data within one-sigma

onesigma=find(chisquarevalues<minchi+DOF);

% display previous infrormation

disp(['Min chi-squared value = ' num2str(minchi)])

disp([num2str(length(onesigma)) ' modles fitting one sigma'])

disp(['Age: ' num2str(min(ti(onesigma))/1e3) ' - '...

num2str(max(ti(onesigma))/1e3) ' ka'])

disp(['Erosion: ' num2str(min(erosioni(onesigma))*1e4) ' - '...

num2str(max(erosioni(onesigma))*1e4) ' m/Ma'])

disp(['Inheritance: ' num2str(min(C0i(onesigma))) ' - '...

num2str(max(C0i(onesigma))) ' atoms/g'])

� What is the best result?

� Does it fit the data well? (χ2 ' 0)

� Plot randomized values against their corresponding χ2 values to get a idea of the
distribution of the results. Tip: plot only the χ2 values below the best value+10.

� Plot the sample 10Be concentrations and the theoretical 10Be of the best fit.

� Select the models fitting the data within one-sigma confidence level and plot these
models in grey (’Color’,[0.7 0.7 0.7]).

We should get a high number of fitting models to get an idea of which the distribution of
the parameters values that fit our data. Try increasing the number of random models to
get at least 300 fitting models.

4.5 Convergence methods

Convergence

Another way of getting more models fitting our data is changing the limits of the
randomized parameters while generating more models. For example, until now we have
been considering ages that are between 0 and 3 Ma, but after running about 105 models,
it is pretty clear that the ages fitting the data are lower than 1 Ma, and that the erosion
rates should be lower than 5 m/Ma (0.0005 cm/a). Re-run your solver applying better
limits.

We can even program our solver to start converging after a learning process of a
certain number of models, automatizing what we have just done manually. However, we
should be cautious making our random models to converge very fast because we can miss
solutions that fit our data. To avoid that, we could make them converge to χ2 values
< χ2

min. + 10 ·DOF . Actually, we should also allow our random models to diverge out of
the initial limits when we find good solutions close to our limits.

60 Ángel Rodés

0 1 2

t 10
6

0

5

10

c
h
i-
s
q

0 2 4

erosion 10
-3

0

5

10

c
h
i-
s
q

0 2 4 6 8

C0 10
4

0

5

10

c
h
i-
s
q

0 5 10 15

[10Be] 10
5

-300

-250

-200

-150

-100

-50

0

-d
e
p
th

Figure 4.1: Mote Carlo simulations.

4.6 Goal-seeking algorithms

Goal-seeking algorithms

Until now, we have been solving the question “Which ages are compatible with my
data?”, but are not explicitly answering the question “Which ages are not compatible with
my data?”.

The cosmogenic depth-profile models often show that the fitting models are scattered
towards old ages. This is because the fitting area in the ε− t space is a narrow valley that
we can easily miss when randomizing the ε and t values.

To avoid this, we can randomize only the C0 and t parameters and make our program to
seek actively which is the best ε that fit the data for each of the models. This operation
is sometimes called “χ2 minimization”. χ2 minimization slows down our program but will
guarantee that the models outside the fitting age range do not fit our data.

To minimize the value of χ2 we can use some built-in functions as fminunc or fminsearch
(type help fminsearch for more information). However, the way these algorithms work
change in the different versions of MATLAB and Octave, so we will never be sure that our
program is going to work the same way in someone else computer. Therefore, it is highly
recommended to build our own minimization algorithm.

MATLAB for Geoscientists 61

0 1 2 3

erosion rate 10
-4

2.5

3

3.5

4

4.5

5

5.5

6

a
g
e

10
5

Figure 4.2: Erosion rate-age plot.

An easy solution could be to use interp1 as a goal seeker of the deviations. The piece
of code in the next slide includes this goal seeker in the modeling loop to force getting
always the best erosion rate.

How many models do you need to run now to get 300 fitting resutls?

% start testing models

for n=1:nummodels

erosionref=[0,logspace(-5,2,100),10^10]'; % define an array with erosion rates

% calculate the deviations corresponding to each erosion rate

% deviations are defined as the sum of (Cmodel-Csample)/Uncertainty

% for all the samples

deviations=...

sum(...

(exposure_model(P,L,l,density,z,C0i(n),erosionref,ti(n))-Be10)./...

Be10error...

,2);

62 Ángel Rodés

% Interpolate the erosion rate values to find the one the model that

% fit the data better (for the age and Co corresponding to this random

% model). THen store the result at erosioni(n), ooverwriting the

% previously defined value.

erosioni(n)=interp1(deviations,erosionref,0);

% calculate the model concetratios for the new erosion rate at the depths z

Cmodel=exposure_model(P,L,l,density,z,C0i(n),erosioni(n),ti(n));

% calculate the chi squared for this model

chisquarevalues(n)=sum(((Cmodel-Be10)./Be10error).^2);

end

4.7 Summary

Summary

� Using convergence (and divergence) algorithms help our inverse modeling program
to run faster and allow us to set wide starting limits.

� Using goal-seeking algorithms slows down the calculation of each individual sim-
ulation. However, it usually allows us to run less models, and also guarantee the
reproducibility and accuracy of our results. Compare the two plots representing
the solutions in the ε− t space with and without using χ2 minimization:

0 1 2 3

erosion rate 10
-4

2.5

3

3.5

4

4.5

5

5.5

6

a
g

e

10
5

vs.

Exercise

Use previous models to solve the age of a landform with the following 10Be depth
profile:

MATLAB for Geoscientists 63

Sample depth [10Be]
cm 103 atoms/g

250 25±2
163 45±3
113 60±5
73 100±7
43 140±10
11 200±15

Start testing ages between 0 and 10 Ma and try introducing some convergence code.
This will allow you to create a code that will work on any 10Be database.

Figure 4.3: Expected result.

64 Ángel Rodés

Chapter 5

Maps

5.1 Install a toolbox or package

Loading the mapping tools

Most mapping tools are not installed in the basic versions of MATLAB or Octave. To
install them, we will need to do the following:

1. In MATLAB we can install the Mapping Toolbox if it is not installed yet. Check
if it is installed in the Home tab > Add-Ons > Manage Add-Ons. If it is not, you
gen get it from https://www.mathworks.com/products/mapping.html

2. In Octave you need the mapping package (check if you already have it with pkg

list). If you do not, you can install it by typing pkg install -forge mapping in
the command window or from https://octave.sourceforge.io/mapping/index.html
In Octave, we need to “activate” the packages in every session if we want to use
them. To do so type or write at the top of your script pkg load mapping

It is also recommended to load the input/output package: pkg load io

Mapping tools

The mapping tools allow us to:

� Calculate azimuths between two points (azimuth), get angular distances between
coordinates (distance), converting angular distances to kilometres (rad2km) and
many other calculations on maps.

� Read shape files and raster files with shaperead and rasterread.

� Plot maps using mapshow.

However, in geosciences we often need to perform specific calculations on digital eleva-
tion models that are only included in the MATLAB Mapping Toolbox (as gradientm or

65

66 Ángel Rodés

viewshed) and other topographic derivates (gradient, flow accumulation, stream order,
etc.) that are not included in any official toolbox or package.

5.2 Import a toolbox not included in MATLAB

TopoToolbox

TopoToolbox is a is a MATLAB program for the analysis of digital elevation mod-
els (DEMs) developed by Schwanghart & Kuhn (2010) that provides a set of functions that
support the analysis of relief and flow pathways in digital elevation models (https://doi.org/10.1016/j.envsoft.2009.12.002).

It can be downloaded from https://www.mathworks.com/matlabcentral/fileexchange/50124-
topotoolbox

But since the objective of this course is to understand the fundamentals necessary to
develop our own tools, we will focus on using the tools included in MATLAB and Octave.

Figure 5.1: Example layout of topoapp, a graphical user interface
that enables access to the majority of TopoToolbox functions. See
https://doi.org/10.5194/esurf-2-1-2014 for details

MATLAB for Geoscientists 67

5.3 Plotting maps

Plotting maps using the mapping tools

� Calculate the azimuth from SUERC ([lat,lon]=[55.75,-4.16]) and George Square
([lat,lon]=[55.86,-4.25]).

� Calculate the distance in km from SUERC to George Square.

� Download the shapefile of UK from https://biogeo.ucdavis.edu/data/gadm3.6/shp/gadm36 GBR shp.zip
and extract the coastline shape files gadm36 GBR 0.shp, gadm36 GBR 0.shx, gadm36 GBR 0.prj,

etc. to your folder.

� Plot the map gadm36 GBR 0.shp using mapshow or geoshow.

� Extract the X and Y coast points using data=shaperead(’gadm36 GBR 0.shp’) and
plot them using plot(data.X,data.Y,’-r’)

� Calculate what is the minimum distance from SUERC to the coast in a straight
line. And the maximum!

5.4 Import maps without mapping tools

Import Esri grid files

.asc files are widely used to export Digital Elevation Models. They are plain text
files (ASCII) containing a matrix of elevations.

At the top of the file they also contain the following information:
- ncols and nrows: the number of columns and rows of the elevation matrix.
- xllcorner and yllcorner: the coordinates of the lower left corner of the lower left cell.
- cellsize: the actual distance between two cells.

Open the file Scotland.asc as text. In this file, the xllcorner, yllcorner and
cellsize are in geographic units (decimal degrees of longitude and latitude) and the
elevations are in metres, but sometimes all these parameters are in metres. Make sure you
know the units before using a .asc file!

Import the data in Scotland.asc using textread to transform the .asc data into X, Y

and Z coordinates:

textdata=textread('Scotland.asc', '%s');

rawelevations=textread('Scotland.asc', '%f','headerlines',6);

ncols=str2double(textdata(2));

nrows=str2double(textdata(4));

xllcorner=str2double(textdata(6));

yllcorner=str2double(textdata(8));

68 Ángel Rodés

cellsize=str2double(textdata(10));

X=ones(nrows,ncols).*[xllcorner:cellsize:xllcorner+cellsize*(ncols-1)];

Y=ones(nrows,ncols).*[yllcorner:cellsize:yllcorner+cellsize*(nrows-1)]';

Z=zeros(nrows,ncols);

n=0;

for r=1:nrows

for c=1:ncols

n=n+1;

Z(r,c)=rawelevations(n);

end

end

You have just created a script that reads .asc files without toolboxes!

Now you can plot your DEM using any of these plotting tools:

surf(X,Y,Z)

meshc(X,Y,Z)

contour(X,Y,Z,[0.1,200:200:2000]) % the 0.1 m contour is the coastline

contour(X,Y,Z,[0.1,500:500:2000],'-b','ShowText','on')

contour3(X,Y,Z,[0.1,50:50:2000])

plot(X(Z>915),Y(Z>915),'.r') % Munros!

� Use interp2 to get the altitudes of SUERC and George Square.

� Calculate the actual distance from SUERC to George Square.

� Plot the elevation transect from SUERC to the closest Munro.

� Plot the elevation histogram of Scotland.

5.5 Geomorphic calculations on DEMs

Calculate slopes

We can calculate the slope vectors using the function gradient:

% calculate the spacing in metres

xspacing=mean(1000*rad2km(deg2rad(distance(Y(:),X(:),Y(:),X(:)+cellsize))));

yspacing=mean(1000*rad2km(deg2rad(distance(Y(:),X(:),Y(:)+cellsize,X(:)))));

MATLAB for Geoscientists 69

[dx, dy] = gradient(-Z,xspacing,yspacing);

figure; hold on

contour(X,Y,Z,[0.1,200:200:2000])

quiver(X,Y,dx,dy) % displays slope vectors as arrows

Figure 5.2: quiver function displays slope vectors as arrows.

Note that:

� We have to provide the xspacing and yspacing in metres to get the partial deriva-
tives δz/δx and δz/δy (dx and dy) in m/m (unitless). We could calculate the same
as follows:

[dxunscaled, dyunscaled] = gradient(-Z);

dx=dxunscaled/xspacing; dy=dyunscaled/yspacing;

� The x spacing could not constant in large maps when the points are spaced at con-
stant geographical longitudes (see distance(Y(:),X(:),Y(:),X(:)+cellsize)).
That is why sometimes the cellsize is in metres. Here, we are approximating the
longitude spacing on the entire map by its average.

� We are calculating the gradient of -Z because we want the slope to be positive
downhill.

70 Ángel Rodés

Once we have the gradient, we can calculate the slopes:

∇z =

√(
δz

δx

)2

+

(
δz

δy

)2

(5.1)

In Matlab or Octave:

slopes=(dx.^2+dy.^2).^0.5;

If we want the slope angles in degrees: rad2deg(atan(slopes))

Calculate flow direction

We can calculate the azimuth of the flow direction with:

flowdir = azimuth(0,0,dy,dx);

But for modeling purposes it is useful to simplify the flow directions to the closest neigh-
bouring cell, using 1 of N, 2 for NE, 3 for E and so on:

8 1 2

7 0 3

6 5 4

Using 0 for cells with altitudes ≤ than the surroundings. These cells are called sinks.
This simplified way of representing the slopes is very useful to program how the water, or
the ice, will move in our map cell by cell.

We can calculate flow direction following this simple approach:

%% Flow direction

FD=0.*Z; %% start with all cells as sinks

% remember that lower rows correspond to lower latitudes

kernelref=[6,5,4;7,0,3;8,1,2]; % direcction references

for r=2:nrows-1 % go though all the cells that are not at the borders

for c=2:ncols-1

Zkernel=Z(r-1:r+1,c-1:c+1);

if Z(r,c)==min(Zkernel(:)) % if sink

FD(r,c)=0;

else

% find the minimum Z

% get the first one if there are two minimums

position=find(Zkernel==min(Zkernel(:)),1,'first');

FD(r,c)=kernelref(position);

end

end

end

MATLAB for Geoscientists 71

Fill sinks

If you plot the sinks in the map:

figure; hold on

sel=(FD==0); % selct sinks

plot(X(sel),Y(sel),'.r') % plot them in red

% overlap the controur plot

contour(X,Y,Z,[0.1,200:200:2000],'-k')

You will find that:

1. The borders are considered sinks (as expected)

2. The sea is considered a sink (as expected)

3. There are too many sinks inland! This is a problem for our programming purposes:
we know that, even if these sinks are real, the water would fill them and continue
its way to the sea.

To better mimic the behaviour of the water in our map, we should be able to produce
a flow-direction map where all the rivers go to the sea.

DEM manipulating programs usually have an option to fill sinks before calculating
flow-direction and flow-accumulation.

We can create our own sink filling algorithm by iteratively adding 1 meter of altitude
to all sinks until we reach a DEM with no sinks.

Find an example of sink-filling code in the next slide.

%% Fill sinks

disp('Filling sinks...')

Zfilled=Z; % start a new map (identical)

convergence=0;

step=0;

baselevel=0; % sea level

while convergence<1

step=step+1;

previoustotal=sum(Zfilled(:));

for r=2:nrows-1 % ignore map borders

for c=2:ncols-1 % ignore map borders

% these are the elevations around Z(r,c), including (r,c)

Zkernel=Zfilled(r-1:r+1,c-1:c+1);

% find the minimum Z around (r,c). Ignore central value.

minimumZkernel=min(Zkernel([1,2,3,4,6,7,8,9]));

if Zfilled(r,c)>baselevel % do not touch the sea

72 Ángel Rodés

% if it is a sink, add 1 m

Zfilled(r,c)=max(Zfilled(r,c),minimumZkernel+1);

end

end

end

% If we reach equilibrium (no sinks)

if sum(Zfilled(:))==previoustotal

convergence=1;

disp(['Sinks filled in ' num2str(step) ' steps'])

disp([num2str(sum(Zfilled(:))-sum(Z(:))) ' total meters added'])

disp([num2str((sum(Zfilled(:))-sum(Z(:)))/numel(Z)) ' average meters added'])

end

end

Z=Zfilled; % replace our map!

Flow accumulation

The next “map” that is usually calculated on a DEM is the flow-accumulation.

The flow-accumulation parameter records how many cells are upstream a specific
cell. Cells with a a high flow-accumulation correspond to places collecting a lot of water:
streams or rivers.

Imagine that there is a short and homogeneous rain on our DEM. Only one drop
falls on each of our cells. We can programmatically follow the path of each of drop from
the original cell to a sink using the flow-direction map. If every time we move one cell
downstream we add up all the drops we will be calculating the flow-accumulation on our
map.

The code in the next slide calculates the flow-accumulation by following all the water
paths.

%% FLow-accumulation

FA=zeros(size(Z)); % start with a dry map

kernelref=[6,5,4;7,0,3;8,1,2]; % direcction references

drref=[-1,-1,-1;0,0,0;1,1,1]; % row direction reference

dcref=[-1,0,1;-1,0,1;-1,0,1]; % column direction reference

for r=1:nrows

for c=1:ncols

convergence=0;

prevr=r; prevc=c; % define previuos cell

FA(prevr,prevc)=FA(prevr,prevc)+1; % leave a drop here

% Start following the river downstream

while convergence==0

if FD(prevr,prevc)==0 % if sink

convergence=1;

else

% select the next celldownhill: new row and column

MATLAB for Geoscientists 73

newr=prevr+drref(kernelref==FD(prevr,prevc));

newc=prevc+dcref(kernelref==FD(prevr,prevc));

% accumulate flow in the next cell

FA(newr,newc)=FA(newr,newc)+1;

prevr=newr;

prevc=newc;

end

end

end

end

Now you can plot the “rivers” as the cells with more drops than the average:

figure; hold on

sel=(FA>mean(FA(:))); % select cells with many drops

plot(X(sel),Y(sel),'.b') % plot the rivers

% overlap the controur plot

contour(X,Y,Z,[0.1,200:200:2000],'-k')

Catchment related calculations

Once we have calculated the flow-direction and flow-accumulation matrices (FD and
FA), we can start calculating parameters that can be useful in Earth sciences.

There are many geological processes (e.g. erosion) that depend on what is happening
upstream a certain point.

A useful parameter that we might want to know is the average altitude of the upstream
catchment at any point in our DEM.

To calculate the average upstream altitude, we can recycle the structure we used for
the flow-accumulation calculation and calculate the “accumulated altitude” at every cell
of the map. To calculate the average upstream altitude we will just need to divide the
accumulated altitude by the flow accumulation.

%% Catchment altitude

AccumZ=Z; % start with the same DEM

kernelref=[6,5,4;7,0,3;8,1,2]; % direcction references

drref=[-1,-1,-1;0,0,0;1,1,1]; % row direction reference

dcref=[-1,0,1;-1,0,1;-1,0,1]; % column direction reference

for r=1:nrows

for c=1:ncols

convergence=0;

prevr=r; prevc=c; % define original cell

% Start following the river downstream

while convergence==0

74 Ángel Rodés

if FD(prevr,prevc)==0 % if sink

convergence=1;

else

% select the next celldownhill: new row and column

newr=prevr+drref(kernelref==FD(prevr,prevc));

newc=prevc+dcref(kernelref==FD(prevr,prevc));

% accumulate Z in the next cell

AccumZ(newr,newc)=AccumZ(newr,newc)+Z(r,c);

prevr=newr;

prevc=newc;

end

end

end

end

AverageZ=AccumZ./FA;

5.6 Exercise: model glaciations

Scottish glaciers (again)

Using the climate and mass balances defined in the first chapter (slide 1.12 and on-
wards), and assuming average temperatures 4◦C below current ones and monthly precip-
itation 100 mm above current ones, model the Scottish glaciers during Younger Dryas.

Consider that a glacier will be present in places with upstream mass balances above
0.

Plot the results.

The output map should look like this:

-7 -6 -5 -4 -3 -2

56

56.5

57

57.5

58

58.5

MATLAB for Geoscientists 75

Does the output look similar to what we know from geology?

Figure 5.3: MacLeod et al. (2011).

Why?

	Contents
	Introduction to Matlab and Octave
	Installation
	Matrix-oriented programming
	Why MATLAB/Octave?
	The interface
	What can we put in the Workspace?
	Plots
	Scripts
	Loops
	Conditional statements
	Functions
	Built-in functions
	Exercises

	Importing data & Statistics
	Importing .csv files
	Importing data from text files using fopen and textscan
	Input dialog
	The normal distribution
	Calculating the average
	Types of ``averages"
	Error transmission
	Rejecting outliers
	Box plots
	Histograms
	Camel-plots

	Data calibration
	What is a calibration?
	Calibration tools
	Spectrometry data
	Exercise: ICP-OES data calibration

	Modeling
	Forward problem
	Inverse problem
	Cosmogenic depth-profile dating
	Monte Carlo methods
	Convergence methods
	Goal-seeking algorithms
	Summary

	Maps
	Install a toolbox or package
	Import a toolbox not included in MATLAB
	Plotting maps
	Import maps without mapping tools
	Geomorphic calculations on DEMs
	Exercise: model glaciations

