Skip to content

aniketde/ZeroShotDG

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

Zero Shot Domain Generalization

Accepted at The British Machine Vision Conference (BMVC) 2020

Standard supervised learning setting assumes that training data and test data come from the same distribution (domain). Domain generalization (DG) methods try to learn a model that when trained on data from multiple domains, would generalize to a new unseen domain. We extend DG to an even more challenging setting, where the label space of the unseen domain could also change. We introduce this problem as Zero-Shot Domain Generalization (to the best of our knowledge, the first such effort), where the model generalizes across new domains and also across new classes in those domains. We propose a simple strategy which effectively exploits semantic information of classes, to adapt existing DG methods to meet the demands of Zero-Shot Domain Generalization. We evaluate the proposed methods on CIFAR-10, CIFAR-100, F-MNIST and PACS datasets, establishing a strong baseline to foster interest in this new research direction.

This repository provides with a PyTorch implementation of our algorithms as described in the paper Zero Shot Domain Generalization

About

Zero Shot Domain Generalization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages