
DRAFT — a final version will be posted shortly

CSE 483: Mobile Robotics

Lecture by: Prof. K. Madhava Krishna Lecture # 04
Scribe: Dhaivat Bhatt, Isha Dua Date: 14th November, 2016 (Monday)

Extended Kalman filter for localization(worked out example)

This document briefly walks through computational aspects of EKF localization for a toy
example. This document expects a reader to have familiarity with EKF filtering technique
to solve localization problem.

Here is the algorithm to perform EKF localization, At each iteration, state space represen-
tation of the the robot(µt−1), co-variance of the state space(Σt−1) and control(ut) at time
t are fed to the algorithm. The algorithm returns updated state space representation(µt)
of the robot and uncertainty associated with the robot state. (Σt).

1 : EXTENDED KALMAN FILTER(µt−1,Σt−1,ut, zt)

2 : µ̄t = g (ut , µt−1)

3 : Σt = Gt Σt−1 GT
t + Rt

4 : Kt = Σ̄t HT
t (Ht Σ̄t HT

t + Qt)
−1

5 : µt = µ̄t + Kt (zt − h (µ̄t))

6 : Σt = (I − Kt Ht)Σ̄t

7 : return µt, Σt

Overview:

Here, we are considering a simple problem where our robot can navigate in a 2D envi-
ronment. Features of the environment(landmarks) are already known. For this problem,
our environment has 4 landmarks.

In this document, we are considering 2 timesteps. We are solving this problem using
batch mode of Extended Kalman filter. Meaning, we execute correction step of EKF only
once. We incorporate entire sensor observation in a single go to correct predicted state of
the robot.

Data association problem is assumed to be solved. One landmark measurement will have
two components. Absolute distance between robot and the landmark, relative heading of
the robot and landmark.

The four landmarks considered are l1 = (5,5), l2 = (−5,5), l3 = (−5,−5) and l4 = (5,−5).
ID of l1 is 1, ID of l2 is 2, ID of l3 is 3 and ID of l4 is 4.

Environmental configuration:

Here is the figure of initial state of the environment. Red objects in the figure are the
landmarks and Blue object at the origin is initial position of the robot. The pointy end of
the object is heading of the robot.

At time t = 0, robot is at the origin of the co-ordinate system. Heading of the robot is
in positive direction of X − axis. Heading of the robot for this problem is measured with
respect to positive direction of X − axis. Robot orientation varies between (−π, π]. At
time t = 0, uncertainty in robot position is assumed to be 0. Meaning, co-variance matrix
of state space representation is a 3x3 zero matrix at initialization.

µ0 = (0,0,0)T

Σ0 =

0 0 0
0 0 0
0 0 0


Controls:

u1 =

(
3
π/6

)
u2 =

(
4

7π/36

)
Sensor observations are initialized with zeros.

Zt = (0,0︸︷︷︸
l1

, 0,0︸︷︷︸
l2

, 0,0︸︷︷︸
l3

, 0,0︸︷︷︸
l4

)T

2

Control noise(Rt) is a 3x3 matrix initialized as below.

Control noise Rt =

0.1 0 0
0 0.2 0
0 0 0.3



Observation noise Q =



0.1 0 0 0 0 0 0 0
0 0.2 0 0 0 0 0 0
0 0 0.1 0 0 0 0 0
0 0 0 0.2 0 0 0 0
0 0 0 0 0.1 0 0 0
0 0 0 0 0 0.2 0 0
0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0 0.2


Here, Qt is co-variance of the sensor noise. Let’s say the control u1 is executed. Now out
task is to get best estimate of the new state by incorporating all the uncertainties we have
modeled. Now, we will extensively go through aspects of applying EKF for localization
setting.

Estimating new robot state after applying control u1:

Step 1: Predicting new state of the robot using motion model

µ̄1 = g (u1 , µ0)

µ̄1 =

µ̄x1µ̄y1
µ̄θ1

 =

µx0µy0
µθ0

 +

T cos(µθ0 + φ)
T sin(µθ0 + φ)

φ



µ̄1 =

0
0
0

 +

3 cos(0 + π/6)
3 sin(0 + π/6)

π/6

 =

2.5981
1.5000
0.5236


Step 2: Predicting new co-variance of the robot state

Σ̄1 = G1 Σ0 GT
1 + Rt

G1 =

1.0000 0 −1.5000
0 1.0000 2.5981
0 0 1.0000



Σ̄1 =

1.0000 0 −1.5000
0 1.0000 2.5981
0 0 1.0000

0 0 0
0 0 0
0 0 0

 1.0000 0 0
0 1.0000 0

−1.5000 2.5981 1.0000

 +

0.1 0 0
0 0.2 0
0 0 0.3



Σ̄1 =

0.1000 0 0
0 0.2000 0
0 0 0.3000

 (1)

3

Above equation(1) is predicted estimate of uncertainty in the state of the robot. As we
can see, uncertainty in robot state has increased because of the control co-variance.(Rt)
Because, uncertainty in robot state was zero before applying control(u1).

Step 3: Estimating Kalman Gain(Kt)

Kt = Σ̄1 HT
t (Ht Σ̄t HT

t + Q)−1

In this step, we compute Kalman gain(Kt). Kt signifies which of the two estimates to
trust more. We fuse two independent estimates of robot poses. One we get from motion
model(Step 1) and other we get by incorporating sensor observation of the surrounding
environment. The disparity between what robot is perceiving(Zt) and what robot is ex-
pected to perceive(h(µ̄t)) will help us to get more precise estimate of robot state and will
also reduce uncertainty of the same.(

r
ψ

)
=

(√
(µxt+1

−mx)2 + (µyt+1
−my)2

tan−1((µyt+1
−my)/(µxt+1

−mx)) − µθt+1

)
(2)

In order to estimate Kalman gain, we need to estimate observation jacobian(Ht). Since we
are performing batch mode update, size of Ht will be 2nx3. Where, n is the number of
landmarks. In our case, size of Ht will be 8x3.

Let’s say our robot is firing sensors, and is able to perceive two landmarks l1 and l2 out of
four. Hence, first two rows(for l1 and next two rows(for l2 will have non-zero entries. Rows
5,6,7,8 will have all entries as 0.

Let’s say following are the expected observations for landmarks l1 and l2. These are
computed using equation 2.(

r1
ψ1

)
=

(
4.2445
0.4457

)
(3)

(
r2
ψ2

)
=

(
8.3654
1.9775

)
(4)

H1 =



− cos(µθ1 + ψ1) − sin(µθ1 + ψ1) 0

sin(µθ1 + ψ1)/r1 − cos(µθ1 + ψ1)/r1 −1

− cos(µθ1 + ψ2) − sin(µθ1 + ψ2) 0

sin(µθ1 + ψ2)/r2 − cos(µθ1 + ψ2)/r2 −1

0 0 0
0 0 0
0 0 0
0 0 0


4

Now, we estimate jacobian of the observation model and evaluate it at our expected
observations(3,4). we plug appropriate values in the above equation to compute the jaco-
bian.

H1 =



−0.5660 −0.8244 0
0.1942 −01330 −1.0000
0.8018 −0.5976 0
0.0714 0.0958 −1.0000

0 0 0
0 0 0
0 0 0
0 0 0


Now, we have Σ̄1, H1 and Qt. We plug in these matrices and estimate the Kalman
gain(K1).

Kalman gain K1 =

−0.2926 0.0236 −0.4028 −0.0068 0 0 0 0
−0.5357 −0.0381 −0.3803 0.0353 0 0 0 0
−0.0217 −0.3722 0.0454 −0.3762 0 0 0 0


Step 4: Correcting robot state:

Following is the observation vector(h(µ̄t)) for expected observation.

h(µ̄1) =



r1
φ1
r2
φ2
0
0
0
0


=



4.2425
0.4457
8.3654
1.9775

0
0
0
0


Let’s say this is what robot is perceiving after through it sensors. Let’s say following are
the readings of robot sensors(Zt).

Z1 =



4.2194
0.4861
8.3076
2.0483

0
0
0
0


Now, we take disparity between sensor observations(Zt) and expected observations(h(µ̄t))
to correct predicted state of the robot. Following is the updated estimate of robot pose(µ1).

µ1 =

2.5826
1.5364
0.4799


5

Step 5: Updating robot uncertainty:

Σ1 = (I − K1 H1)Σ̄1

This is the estimated robot uncertainty after fusing sensor data(Σ1).

Σ1 =

0.0507 0.0007 0.0050
0.0007 0.0645 −0.0008
0.0050 −0.0008 0.0755



6

This is end of the algorithm. We run it each time we apply control. In the above figure.
Red are the landmarks locations. Robot was initially at (0,0). After applying u1, it should
have reached at (2.5981,1.5), which is denoted by green dot in second figure of the previous
page. But because of control error, it didn’t reach its destination. Once we estimate final
state using Kalman filter, the best estimate is denoted by blue dot previous figure.

This is full cycle of Extended Kalman filter for localization setting. Now, new state of the
robot is µ1 = (2.5826,1.5364). New co-variance will be Σ1. After executing control u2,
Σ1, µ1 and u2 will be fed to the EKF algorithm, and again same procedure will be followed
to estimate new state.

If you find any mistake in calculation, feel free to shoot an email at dhaivat1994@gmail.com .

7

