
Particle Filtering-based Maximum Likelihood
Estimation for Financial Parameter Estimation

Jinzhe Yang
Imperial College & SWIP
London & Edinburgh, UK

jinzhe.yang@swip.com

Binghuan Lin
Techila Technologies Ltd

Tampere University of Technology
Tampere, Finland

binghuan.lin@techilatechnologies.com

Wayne Luk
Imperial College

London, UK
wl@doc.ic.ac.uk

Terence Nahar
SWIP

London, UK
terence.nahar@swip.com

Abstract—This paper presents a novel method for estimating
parameters of financial models with jump diffusions. It is a
Particle Filter based Maximum Likelihood Estimation process,
which uses particle streams to enable efficient evaluation of con-
straints and weights. We also provide a CPU-FPGA collaborative
design for parameter estimation of Stochastic Volatility with
Correlated and Contemporaneous Jumps model as a case study.
The result is evaluated by comparing with a CPU and a cloud
computing platform. We show 14 times speed up for the FPGA
design compared with the CPU, and similar speedup but better
convergence compared with an alternative parallelisation scheme
using Techila Middleware on a multi-CPU environment.

I. INTRODUCTION

Particle Filter (PF), also known as Sequential Monte Carlo
method (SMC), is a computationally intensive state estimation
technique that is applied to solve dynamic problems involving
non-normality and non-linearity. Information about how the
method should evolve is contained in every single particle,
and in order to acquire accurate estimation results, the number
of particles is often large. Empirically, the more complex
the system, the larger the amount of particles. A common
concern is that the computational intensity for solving real-
world problems using PF is high, and time constraint limits
the applicability of PF to fields with runtime requirement. A
detailed discussion of PF methods in practice can be found in
[1].

Parameter estimation is one of the most crucial topics in
the finance industry, especially for buy-side practitioners. The
parameters are estimated from historical data and could be
used to predict future movements of the market. Because of
the lack of likelihood functions for jump diffusion models,
practitioners use Bayesian methods as default estimation tools,
such as Markov Chain Monte Carlo (MCMC) methods. This
paper explores an alternative estimation method, the maximum
likelihood estimation (MLE), for financial parameter estima-
tion.

Some attempts have been made for parameter estimation
using PF, but they only cover models without jump diffusion.
The particles are treated as the evaluation function for the
MLE, so the likelihood function could also be provided by the
PF. The restriction of PF is that it brings heavy computational
burden which might be infeasible for traditional platforms. It
can take a few days or even up to weeks to calculate the

result, which cannot meet runtime requirement in practice. In
addition, high performance computing (HPC) technologies are
still new to the finance industry. We provide a PF based MLE
solution to estimate parameters of jump diffusion models, and
we utilise HPC technology to speedup the estimation scheme
so that it would be acceptable for practical use.

This paper presents the algorithm development, as well
as the pipeline design solution in FPGA technology, of PF
based MLE for parameter estimation of Stochastic Volatility
with Correlated and Contemporaneous Jumps (SVCJ) [2]. The
contributions of this paper are summarised as follows:

• We provide a PF-based MLE method that is parallelisable
and robust. It can be a potential competitor for default
estimation tools used for jump-diffusion models such as
MCMC.

• We develop a collaborative CPU-FPGA platform for this
method, making full use of both CPU and FPGA by
resampling on multi-threaded CPU and enabling efficient
evaluation of constraints and weights on FPGA.

• We offer optimisations through algorithmic method
to minimise bottlenecks in complex computation, and
though memory optimisation to reduce bandwidth over-
head.

• We benchmark different parallelisation schemes of parti-
cle filtering on different computing platforms.

II. BACKGROUND

Introducing jump components of diffusion models used in
finance is one of the main developments in financial modeling
literature during the past decade. This paper focuses on
the affine jump diffusion model, which has good analytical
properties. On the one hand, this method allows the derivation
of semi-closed form for option pricing formulae that enable
fast option pricing. This feature is a necessary criterion of the
model to be acceptable by the financial industry. On the other
hand, this model captures large movements in the financial
market by incorporating jump components.

In our approach, the joint dynamic (SVCJ) of log-price st
and stochastic variance Vt is given by:

dst = (µ− 1/2Vt)dt+
√
VtdW

s
t + d(

Nt∑
j=1

Zs
j ) (1)



dVt = κ(θ − Vt)dt+ σ
√
VtdW

v
t + d(

Nt∑
j=1

Zv
j ) (2)

where Nt ∼ poi(λdt) is a Poisson distributed random number
that describes the number of jumps, Zs

j = µs + ρsZ
v
j + σsεj ,

εj ∼ N(0, 1) (normal distribution) and Zv
j ∼ exp(µv)

(exponential distribution) are random numbers that describe
the jump size in log-price process and variance process,
respectively.

The set of parameters from the SVCJ model that we estimate
are: µ, µv , µy , κ, θ, σv , σy , ρ, ρj and λ, where

• µ: long term mean of the return
• µv: rate of exponential jump size in volatility
• µy: mean of jump size in return
• κ: rate of mean reversion
• θ: long term variance
• σv: volatility of volatility
• σy: volatility of jump size in return
• ρ: correlation between volatility process and return pro-

cess
• ρj : correlation between jumps in return and in volatility
• λ: jump intensity
Some of the parameters above are not provided in formula 1

and 2, because they appear when the model is discretised: it is
transformed into functions of finite set of state variables with
known joint distribution. It is a generic model representing
jump-diffusion models:

• When λ = 0 (SV), it is a Heston Model [3].
• When µv = 0 (SVJ), it is a Bates Model [4].

In other words, the model we estimate is more general than
several widely used financial models. Following the literature,
we assume two Brownian motions W s and W v are correlated
with correlation coefficient ρ. This enables the model to
capture the well-known leverage effect in financial time series.

III. ALGORITHM DEVELOPMENT

Estimation of diffusion models in finance has long been
a challenge due to the existence of latent states and the
discreteness of observable data. Mixing a jump process and
the original process naturally introduces more difficulties by
providing more flexibility to the model.

Maximum likelihood estimation (MLE) is a widely used
statistical tool to estimate the parameters of a model. By
maximising the likelihood function, the estimation procedure
fits the model to the observed data. We use stock prices as a
set of the observations and variance as the latent states.

We first develop a Sequential Importance Resampling (SIR)
strategy for our parameter estimation. It is a standard strategy
for models with/without jumps. However, the result accuracy
are different between the two kinds of models. For models
without jumps, such as the Heston Model, it could provide ac-
curate parameter sets. Nevertheless, when it is applied to jump-
diffusion models, where we take distribution q(Vt+1|V i

t , st+1)
as prior distribution p(Vt+1|V i

t ), we may suffer from sample
impoverishment of the particles in the occurrence of jumps
[5].

We extend the SIR algorithm to become the auxiliary
particle filter (APF) to handle such problem. In contrast to
a standard SIR particle filter, where the sampling of Vt+1 is
blind of st+1, APF samples Vt+1 from p(Vt+1|Vt, st+1), and
using auxiliary variables as an approximation when the exact
distribution of p(Vt+1|Vt, st + 1) is not available.

Based on [6] and [7], we extend the algorithm to the SVCJ
model.

Algorithm 1 APF
for t=1 to T do

for n=1 to N do
Generate auxiliary variable of volatility as the expected
integrated volatility: v̂t = Vt−1 + κ(θ − Vt−1) +
ρσv(yt−1 − µ+ 1

2Vt−1 − Jt−1) + Jt−1µv

Compute first stage weights wt ∝ p(st|st−1, v̂t)
Resample Vt−1, v̂ according to the first stage weights.
for n=1 to N do

Propagating the current particles by generating:
Number of jumps J ,
Jump sizes in return Zy

Jump sizes in volatility Zv using v̂t;
Generating volatility from p(Vt|st, st−1, J, Zv, Zy)
Calculate second stage reweighting π as in standard
auxiliary particle filter using importance sampling rule.

Resample V , J , Zv , Zy

According to [8], the likelihood function can be derived as:

LIK = p̂(s1)

T∏
t=2

p̂(st|st−1) (3)

As proved in [9], the likelihood estimator Ld
N is an unbiased

estimator of the likelihood Ld of the state space model (Euler
discretisation of the original jump-diffusion process).

Furthermore, the likelihood of the discrete process con-
verges to the likelihood of the diffusion process. Denote the
set of model parameters by θ. As ∆t→ 0,

Ld(θ)→ Lc(θ) (4)

where Lc is the likelihood of the original jump diffusion
process.

Since we can get an estimation of likelihood as a byproduct
of the particle filtering procedure, it is straightforward to con-
struct the particle filtering-based MLE by taking the estimator
based on particle filtering as the objective function of an
optimisation algorithm. To summarise the MLE procedure: for
each iteration of MLE, we input a set of estimated parameters,
the PF outputs all corresponding results and evaluates the
likelihood function, the optimiser refers to the likelihood and
generates another set of parameters. The iteration terminates
when the likelihood converges or reaches the maximum iter-
ation. The resulting parameter set is the one with the highest
likelihood.



IV. HARDWARE DESIGN

A. System

The computational cost of the MLE procedure depends
on the optimiser and evaluation of the likelihood function.
If the evaluation of the likelihood function is cheap and
the optimiser is fast, then the MLE is cheap. However, this
is not true for jump-diffusion models. First, the likelihood
estimator approximated by particle filter is non-smooth with
respect to model parameters, disabling the use of gradient-
based optimisers. Second, to have a good approximation of
the likelihood, a large number of particles could be needed.
As a result, the evaluation of the likelihood function is very
time consuming.

The propagation of particles is parallel; exchange of infor-
mation (data) is only necessary during the stage of normalising
weight and resampling.

Due to the need for resampling and normalisation, acceler-
ating our scheme has two main challenges:

• Heavy calculations inside the particles.
• Large amount of particles for resampling.

The difficulty behind each challenge is: computing resource
and random memory access, respectively. FPGA data-flow
paradigm performs ideally only when data are accessed se-
quentially. Otherwise, much of the bandwidth is wasted. Espe-
cially when sampling from very large amount of numbers, the
random memory access would be the performance bottleneck,
and to our knowledge, when the population is as large as
our case, sampling method based on FPGA could be much
slower than the CPU. On the other hand, the CPU has multiple
levels of cache that enables fast and flexible memory access.
Since resampling would take twice in a single time step,
we design our system to take advantage of both CPU and
FPGA: on FPGA, we exploit spatial parallelism and process
the particles in a pipelined data path, and on the CPU, the
flexible and fast memory allocation could provide significantly
better performance for resampling. In addition, a resampling
process with very small population would also be processed
on FPGA.

The system design for our approach can be found in Figure
1. Kernel 1 calculates the auxiliary variable of volatility as
the expected integrated volatility, which is also the calculation
inside the first loop in algorithm 1. The CPU concurrently
generates the random numbers which could be used for the
resampling and kernel 2. After CPU receives all the expected
volatility and weights from kernel 1, it starts resampling based
on the weights, and the resampled data, as well as the random
numbers, would be the input to kernel 2. Kernel 2 handles
the second stage reweighting, which is the second loop in
algorithm 1. The CPU and the FPGA collaborate similarly on
the resampling process after kernel 1.

B. Kernel

As for the pipelined PF design inside the kernel, according
to the formulae in the previous section, there are three random
numbers for a single time step: two normally distributed

Fig. 1. Overall Design

random numbers for describing the movement of s and V ,
and an exponentially distributed random number for εv . Three
challenges are identified:

1) Heavy data transfer requirement between CPU and
FPGA for each iteration.

2) Calculation for normal probability density function and
Poisson probability density function requires many re-
sources as they are both frequently used.

3) When calculating the weights, a random sample process
with small population is involved, and transferring the
data back to CPU for the resampling is significantly
inefficient.

To address challenge 1, we provide a scheme that reduces
I/O streams for data transfer between iterations. Regarding
four random numbers are needed for each particle at each
iteration (the additional one is a uniform distributed random
number between [0,1], for the resampling process with small
population on FPGA), and the random numbers are inde-
pendent with the resampling process, the CPU generates the
random numbers for the next iteration while the FPGA is
resampling for the current iteration. When the FPGA finishes
transferring variable streams to the CPU, the CPU writes
the generated random numbers to DRAM on the FPGA card
concurrently with the resampling process in the CPU. The
random numbers could be directly read from DRAM by the
kernel.

Challenge 2 implies avoiding kernel divide operators and
control for factorial. We avoid using divide operators in
two ways, attempts, adjusting the calculation sequence to
merge different divide operators, and pre-calculating constant
dividends on the CPU and sending the FPGA their reciprocal.
Also, we pre-calculate the reciprocal of factorial results that
could be used for Poisson probability distribution function.
Those pre-calculated results are uploaded to FPGA memory
initially.

To address challenge 3, we formalise the weights for re-
sampling, apply an accumulator for adding the weights, and a



counter for recording the index. For each step, we sequentially
add a weight to the accumulator, and the counter adds one.
After comparing the number inside the accumulator with the
random number, we output the result in the accumulator as
well as the counter, if the number inside the accumulator is
greater than the random number; otherwise we continue the
step by accepting the next weight.

V. RESULT

Our FPGA-based data pipelines have the bottleneck of data
size in both CPU and FPGA. For CPU, to achieve high
accuracy, the number of particles is set to be 1 million. For the
FPGA pipeline, the high cost of I/O bandwidth restricts our
performance: the bandwidth is almost fully occupied while the
hardware usage is only 55%. Thus, disregarding the bandwidth
bottleneck, our performance should be nearly doubled. To
make a fair comparison, our single-core sequential code and
the host code for FPGA are written in C and compiled by
the Intel C Compiler. The CPU we use both for software
execution and for FPGA host is a 2.67GHz Xeon 5650
multicore processor, with 12 cores and 24 threads. Our FPGA
result is based on Vertex-6 SX4757, with a clock frequency
of 50MHz.

For the cloud computing version, we apply an external
scheme. We divide the particle swarm of N particles into
M groups, each of which containing K particles, where
N = M ×K, and the likelihood estimator is given by:

Ld
N(θ) ≈ 1

M
Ld
K(θ) (5)

It is called an external scheme since in our FPGA design,
resampling process would take place for all particles; how-
ever, our cloud implementation uses local resampling scheme
within each node. More precisely, when particle shrinks at
a node, resampling is processed only for the particles in
this node [10]. The external scheme is simple and requires
less implementation effort. We take M = 20, so we can
maintain a million particles on 20 nodes. The acceleration
factor is approximately 14 times. The required quantity of K
is expected to increase with the frequency of jumps. However,
the disadvantage of local resampling (for the external scheme)
is its worse convergence than the internal scheme performed
by our PFGA design.

CPU CPU+FPGA speedup
1st Stage PF 35.54s 8.07s 4.4x
2nd Stage PF 159.93s 8.09s 19.8x

Total PF 195.47s 16.16s 12.1x
Total 408.47s 24.53 16.7x

TABLE I
CPU AND FPGA PERFORMANCE, 1 MILLION PARTICLES

LUTs FFs BRAMs DSPs
Total Available 297600 595200 1064 2016

Total Resource Used 234635 342461 237 1124
% Resource Used 78.84% 57.54% 22.27% 55.75%

TABLE II
FPGA USAGE INFORMATION

Table I summarises the performance of CPU and reconfig-
urable system, while Table II provides the hardware resource
usage information. Table III compares the pros and cons of
the FPGA and the Cloud implementations.

FPGA Cloud
Parallel Scheme Internal External

Resampling Overall Resampling Local Resampling
Convergence Better Worse
Development Costly Easy

Power Consuption Energy Efficient Power Consuming

TABLE III
COMPARISON BETWEEN FPGA & CLOUD

VI. CONCLUSION

This paper has demonstrated how PF is accelerated using
FPGA technology, which provides a promising solution for
parameter estimation of SVCJ. The FPGA design is shown to
be faster and more energy efficient than those based on CPU
and Cloud. The estimated parameters could be used for future
usage such as pricing a financial instrument.

We are working on two improvements: clock frequency
and the resampling scheme. Currently the clock frequency is
50MHz, because we employ floating-point arithmetic for our
FPGA design. By adopting fixed-point arithmetic, the clock
frequency could rise easily. Another improvement is to merge
the two resampling steps while guaranteeing accuracy, because
resampling twice is the most time consuming part so far.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n 289032. This work
is also supported in part by the UK EPSRC, by the Maxeler
University Programme, by the HiPEAC NoE, by Altera, and
by Xilinx.

REFERENCES

[1] A. Doucet, N. d. Freitas, and N. Gordon, Sequential Monte Carlo
methods in practice. Springer, 2001.

[2] D. Duffie, J. Pan, and K. Singleton, “Transform analysis and asset
pricing for affine jump-diffusions,” Econometrica, vol. 68, no. 6, pp.
1343–1376, 2000.

[3] S. L. Heston, “A closed-form solution for options with stochastic
volatility with applications to bond and currency options,” Review of
financial studies, vol. 6, no. 2, pp. 327–343, 1993.

[4] D. S. Bates, “Post-’87 crash fears in the s&p 500 futures option market,”
Journal of Econometrics, vol. 94, no. 1-2, pp. 181–238, 2000.

[5] B. Lin, “State filtering of jump diffusion model,” 2013.
[6] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle

filters,” Journal of the American statistical association, vol. 94, no. 446,
pp. 590–599, 1999.

[7] M. S. Johannes, N. G. Polson, and J. R. Stroud, “Optimal filtering of
jump diffusions: Extracting latent states from asset prices,” Review of
Financial Studies, vol. 22, no. 7, pp. 2759–2799, 2009.

[8] M. K. Pitt, “Smooth particle filters for likelihood evaluation and max-
imisation,” Warwick Economic Research Papers, 2002.

[9] P. Del Moral, Feynman-Kac formulae: genealogical and interacting
particle systems with applications. Series: Probability & Applications
Springer Verlag, 2004.

[10] J. Mı́guez, “Analysis of parallelizable resampling algorithms for particle
filtering,” in Signal Processing, 2007, pp. 3155–3174.


