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§  Recall: Discrete filter 
§  Discretize the continuous state space 
§  High memory complexity 
§  Fixed resolution (does not adapt to the belief) 

§  Particle filters are a way to efficiently represent  
non-Gaussian distribution 

§  Basic principle 
§  Set of state hypotheses (“particles”) 
§  Survival-of-the-fittest 

Motivation 



Sample-based Localization (sonar) 
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§  Set of weighted samples 
 
 
 

Mathematical Description 

§  The samples represent the posterior 

State hypothesis Importance weight 
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§  Particle sets can be used to approximate functions 

Function Approximation 

§  The more particles fall into an interval, the higher 
the probability of that interval 
 

§  How to draw samples form a function/distribution? 
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§  Let us assume that f(x)<1 for all x 
§  Sample x from a uniform distribution 
§  Sample c from [0,1] 
§  if f(x) > c   keep the sample 

otherwise  reject the sample  

Rejection Sampling 

c

x
f(x) 

c 

x’ 

f(x’) 

OK 
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§  We can even use a different distribution g to 
generate samples from f 

§  By introducing an importance weight w, we can 
account for the “differences between g and f ” 

§  w = f / g 
§  f is often called 

target 
§  g is often called 

proposal 
§  Pre-condition: 

 f(x)>0 à g(x)>0 

Importance Sampling Principle 



Importance Sampling with Resampling: 
Landmark Detection Example 



Distributions 



10 

Distributions 

Wanted: samples distributed according to 
p(x| z1, z2, z3) 



This is Easy! 
We can draw samples from p(x|zl) by adding 
noise to the detection parameters. 



Importance Sampling 
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Importance Sampling with 
Resampling 

Weighted samples After resampling 



Particle Filters 
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Sensor Information: Importance Sampling 
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Robot Motion 

    

    



)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

α
α
α

=←

←

−

−

−

Sensor Information: Importance Sampling 

    

    

    



Robot Motion 
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Particle Filter Algorithm 

§  Sample the next generation for particles using the 
proposal distribution 

§  Compute the importance weights : 
 weight = target distribution / proposal distribution 

§  Resampling: “Replace unlikely samples by more 
likely ones” 
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1.   Algorithm particle_filter( St-1, ut, zt): 
2.   

3.  For                                                Generate new samples 

4.    Sample index j(i) from the discrete distribution given by wt-1 

5.   Sample     from                         using          and 

6.        Compute importance weight 

7.        Update normalization factor 

8.         Insert 

9.   For  

10.       Normalize weights 
 

Particle Filter Algorithm 
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draw xi
t-1 from Bel(xt-1) 

draw xi
t from p(xt | xi

t-1,ut) 

Importance factor for xi
t: 

wt
i =

target distribution
proposal distribution

=
η p(zt | xt ) p(xt | xt−1,ut ) Bel (xt−1)

p(xt | xt−1,ut ) Bel (xt−1)
∝ p(zt | xt )

Bel (xt ) = η p(zt | xt ) p(xt | xt−1,ut ) Bel (xt−1)∫ dxt−1

Particle Filter Algorithm 



Resampling 

§  Given: Set S of weighted samples. 

§  Wanted : Random sample, where the 
probability of drawing xi is given by wi. 

§  Typically done n times with replacement to 
generate new sample set S’. 



w2 

w3 

w1 wn 

Wn-1 

Resampling 
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§  Roulette wheel 
§  Binary search, n log n 

§  Stochastic universal sampling 
§  Systematic resampling 

§  Linear time complexity 
§  Easy to implement, low variance 



1.   Algorithm systematic_resampling(S,n): 

2.   
3.   For    Generate cdf 
4.       
5.       Initialize threshold 

6.   For    Draw samples … 
7.     While (            )  Skip until next threshold reached 
8.          
9.       Insert 
10.                                            Increment threshold 

11.  Return S’ 

Resampling Algorithm 

1
1,' wcS =∅=

ni …2=
i

ii wcc += −1

1],,0]~ 1
1 =− inUu

nj …1=

1
1

−
+ += nuu jj

ij cu >

{ }><∪= −1,'' nxSS i
1+= ii

Also called stochastic universal sampling 
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Mobile Robot Localization 

§ Each particle is a potential pose of the robot 
 

§  Proposal distribution is the motion model of 
the robot (prediction step) 
 

§  The observation model is used to compute 
the importance weight (correction step) 

[For details, see PDF file on the lecture web page] 



Start 

Motion Model  Reminder 



Proximity Sensor Model Reminder 

Laser sensor Sonar sensor 
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Sample-based Localization (sonar) 
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Initial Distribution 



48 

After Incorporating Ten  
Ultrasound Scans 
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After Incorporating 65 Ultrasound 
Scans 
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Estimated Path 
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Localization for AIBO robots 



Using Ceiling Maps for Localization 

[Dellaert et al. 99] 



Vision-based Localization 

P(z|x) 

h(x) 

z 



Under a Light 

Measurement z: P(z|x): 



Next to a Light 

Measurement z: P(z|x): 



Elsewhere 

Measurement z: P(z|x): 



Global Localization Using Vision 
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Limitations 

§  The approach described so far is able to  
§  track the pose of a mobile robot and to 
§  globally localize the robot. 

§  How can we deal with localization errors 
(i.e., the kidnapped robot problem)? 
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Approaches 

§  Randomly insert samples (the robot can be 
teleported at any point in time). 

§  Insert random samples proportional to the 
average likelihood of the particles (the robot 
has been teleported with higher probability 
when the likelihood of its observations 
drops).  
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Summary – Particle Filters 

§  Particle filters are an implementation of 
recursive Bayesian filtering 

§  They represent the posterior by a set of 
weighted samples 

§  They can model non-Gaussian distributions 
§  Proposal to draw new samples 
§  Weight to account for the differences 

between the proposal and the target 
§  Monte Carlo filter, Survival of the fittest, 

Condensation, Bootstrap filter 



61 

Summary – PF Localization 

§  In the context of localization, the particles 
are propagated according to the motion 
model. 

§  They are then weighted according to the 
likelihood of the observations. 

§  In a re-sampling step, new particles are 
drawn with a probability proportional to the 
likelihood of the observation.  


