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Topic 1

Estimation - A Quick Revision

1.1 Introduction

This lecture will begin to cover a topic central to mobile robotics — Estimation. There
is a vast literature on Estimation Theory encompassing a rich variation of techniques and
ideas. We shall focus on some of the most commonly used techniques which will provide the
tools to undertake a surprisingly diverse set of problems. We shall bring them to bear on
real life mobile-robot problems. Although we shall discuss and illustrate these techniques
in a domain specific fashion, you will do well to keep in your mind that these are general
techniques and can be applied to loads of other non-robotic problems1.

1.2 What is Estimation?

To make sure we are all on the same page it is worth stating (in a wordy fashion) what we
mean by “Estimation”:

“Estimation is the process by which we infer the value of a quantity of interest,
x, by processing data that is in some way dependent on x .”

1For this reason some of this material was previously taught in the B4-Estimation class
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What is Estimation? 7

There is nothing surprising there —it fits intuitively with our everyday meaning of the
word. However, we may have our interest piqued when we impose the following additional
characteristics to an estimator.

• We expect the measurements to be noise corrupted and would expect to see this un-
certainty in input transformed to uncertainty in inference.

• We do not expect the measurements to always be of x directly. For example a GPS
receiver processes measurements of time (4 or more satellites transmit “time-of-day-
at-source”) and yet it infers Euclidean position.

• We might like to incorporate prior information in our estimation. For example we may
know the depth and altitude of a submarine but not its latitude.

• We might like to employ a model that tells us how we expect a system to evolve over
time. For example given a speed and heading we could reasonably offer a model on
how a ship might move between two time epochs — open-loop.

• We expect these models to be uncertain. Reasonably we expect this modelling error
to be handled in the estimation process and manifest itself in the uncertainty of the
estimated state.

Pretty quickly we see that if we can build an estimator capable of handling the above
conditions and requirements we are equipping ourselves with a powerful and immensely
useful inference mechanism.

Uncertainty is central to the problem of estimation (and robotics). After all, if it weren’t
for uncertainty many problems would have a simple algebraic solution —“give me the dis-
tances to three known points and the algebraically-determined intersection of three circles
will define my location”. We will be trying to find answers to more realistic questions like
“I have three measurements (all with different uncertainty) to three surveyed points (known
roughly) — what is your best estimate of my location?”. Clearly this is a much harder
and more sophisticated question. But equipped with basic probability theory and a little
calculus the next sections will derive techniques capable of answering these questions using
a few modest assumptions.

1.2.1 Defining the problem

Probability theory and random-variables are the obvious way to mathematically manipulate
and model uncertainties and as such much of this lecture will rely on your basic knowledge

7



Maximum Likelihood Estimation 8

of these subjects. We however undertake a quick review.

We want to obtain our best estimate x̂ for a parameter x given a set of k measurements
Zk = {z1, z2 · · · zk}. We will use a “hat” to denote an estimated quantity and allow the
absence of a hat to indicate the true (and unknowable) state of the variable.

We will start by considering four illuminating estimation problems - Maximum Likeli-
hood, Maximum a-posterior, Least Squares and Minimum Mean Squared Error.

1.3 Maximum Likelihood Estimation

It is sane to suppose that a measurement z that we are given is in some way related to
the state we wish to estimate 2. We also suppose that measurements (also referred to as
observations in these notes) are not precise and are noise corrupted. We can encapsulate
both the relational and uncertain aspects by defining a likelihood function:

L , p(z|x) (1.1)

The distribution p(z|x) is the conditional probability of the measurement z given a particular
value of x. Figure 1.3 is just such a distribution — a Gaussian in this case( C is just a
normalising constant):

p(z|x) =
1

C
e−

1
2
(z−x)T P−1(z−x) (1.2)

Notice that equation 1.2 is a function of both x and z . Crucially we interpret L as func-
tion of x and not z as you might initially think. Imagine we have been given an observation
z and an associated pdf L for which we have a functional form of (Equation 1.2). We form
our maximum likelihood estimate x̂m.l by varying x until we find the maximum likelihood.

Given an observation z and a likelihood function p(z|x), the maximum like-
lihood estimator - ML finds the value of x which maximises the likelihood
function L , p(z|x).

x̂m.l = arg max
x

p(z|x) (1.3)

2clearly, as if they were independent Zkwould contain no information about x and the sensor providing
the measurements wouldn’t be much good
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Maximum A-Posteriori - Estimation 9
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Figure 1.1: A Gaussian Likelihood function for a scalar observation z

1.4 Maximum A-Posteriori - Estimation

In many cases we will already have some prior knowledge on x . Imagine x is a random
variable which we have good reason to suppose is distributed as p(x ). For example, perhaps
we know the intended (by design) rotational velocity µp of a CDROM drive - we might model
our prior knowledge of this as a gaussian ∼ N (µp, σ

2
p). If we have a sensor that can produce

an observation z of actual rotation speed with a behaviour modelled as p(z|x) we can use
Bayes rule to come up with a posterior pdf p(x|z) that incorporates not only the information
from the sensor but also our assumed prior knowledge on x :

p(x|z) =
p(z|x)p(x)

p(z)

= C × p(z|x)p(x)

The maximum a-posteriori - MAP finds the value of x which maximises p(z|x)p(x) (the
normalising constant is not a function of x ).

Given an observation z ,a likelihood function p(z|x) and a prior distribution on
x , p(x), the maximum a posteriori estimator - MAP finds the value of x
which maximises the posterior distribution p(x|z)

x̂map = arg max
x

p(z|x)p(x) (1.4)

9



Maximum A-Posteriori - Estimation 10

Lets quickly finish the CD example, assume our sensor also has a gaussian likelihood
function, centered on the observation z but with a variance σ2

z :

p(x) = C1 exp{−(x− µp)
2

2σ2
p

}

p(z|x) = C2 exp{−(z− x)2

2σ2
z

}

p(x|z) =
p(z|x)p(x)

p(z)

= C(z)× p(z|x)× p(x)

= C(z) exp{−(x− µp)
2

2σ2
p

− (z− x)2

2σ2
z

}

p(z|x) is maximum when the exponent is zero. A simple way to find what value of x achieves
this is to re-write the exponent of p(z|x) as

(x− α)2

β2
= −(x− µp)

2

2σ2
p

− (z− x)2

2σ2
z

(1.5)

Expanding the R.H.S and comparing coefficients swiftly leads to:

α =
σ2

zµp + σ2
pz

σ2
z + σ2

p

β2 =
σ2

zσ
2
p

σ2
z + σ2

p

Therefore the MAP estimate x̂ is
σ2

zµp+σ2
pz

σ2
z+σ2

p
and it has variance

σ2
zσ2

p

σ2
z+σ2

p
. It is interesting and

informative to note that as we increase the prior uncertainty in the CD speed by increasing
σp towards infinity then x̂ tends towards z —the ML estimate. In other words when we have
an uninformative prior the MAP estimate is the same as the ML estimate. This makes sense
as in this case the only thing providing information is the sensor (via its likelihood function).

There several other things that you should be sure you appreciate before progressing:

Decreasing posterior variance Calling the posterior variance σ2
+ ( which is β2 above),

we note it is smaller than that of the prior. In the simple example above this can
be seen as 1

σ2
+

= 1
β2 = 1

σ2
p

+ 1
σ2

z
. This is not surprising as the measurement is adding

information 3

3Indeed a useful metric of information is closely related to the inverse of variance — note the addition of
inverses...

10



Minimum Mean Squared Error Estimation 11

Update to prior In the Gaussian example above we can also write x̂map as an adjustment
to the prior mean:

x̂map = µp +
σ2

p

σ2
p + σ2

z

× (z− µp) (1.6)

clearly if the observation matches the mode of the prior (expected) distribution then
x̂map is unchanged from the prior (but it’s uncertainty still decreases). Also note that
the correction z−µp is scaled by the relative uncertainty in both prior and observation
- if the observation variance σ2

z is huge compared to σ2
p (i.e. the sensor is pretty

terrible) then irrespective of the magnitude of z− µp, x̂map is still µp and the decrease
in uncertainty is small. This too makes sense — if a sensor is very noisy we should
not pay too much attention to disparities between expected (the prior) and measured
values. This is a concept that we will meet again soon when we discuss Kalman
Filtering.

1.5 Minimum Mean Squared Error Estimation

Another key technique for estimating the value of a random variable x is that of minimum
mean squared error estimation. Here we assume we have been furnished with a set of
observations Zk. We define the following cost function which we try to minimise as a
function of x̂ :

x̂mmse = arg min
x̂
E{(x̂− x)T (x̂− x)|Zk} (1.7)

The motivation is clear, we want to find an estimate of x that given all the measurement
minimises the expected value of sum of the squared errors between the truth and estimate.
Note also that we are trying to minimise a scalar quantity.

Recall from probability theory that

E{g(x)|y} =

∫ ∞

−∞
g(x)p(x|y)dx (1.8)

the cost function is then:

J(x̂,x) =

∫ ∞

−∞
(x̂− x)T (x̂− x)p(x|Zk)dx (1.9)

Differentiating the cost function and setting to zero:

∂J(x̂,x)

∂x̂
= 2

∫ ∞

−∞
(x̂− x)p(x|Zk)dx = 0 (1.10)

11



Recursive Bayesian Estimation 12

Splitting apart the integral, noting that x̂ is a constant and rearranging:
∫ ∞

−∞
x̂p(x|Zk)dx =

∫ ∞

−∞
xp(x|Zk)dx (1.11)

x̂

∫ ∞

−∞
p(x|Zk)dx =

∫ ∞

−∞
xp(x|Zk)dx (1.12)

x̂ =

∫ ∞

−∞
xp(x|Zk)dx (1.13)

x̂mmse = E{x|Zk} (1.14)

Why is this important? - it tells us that the mmse estimate of a random variable
given a whole bunch of measurements is just the mean of that variable conditioned on the
measurements. We shall use this result time and time again in coming derivations.

Why is it different from the Least Squares Estimator? They are related (the
LSQ estimator can be derived from Bayes rule) but here x is a random variable where in
the LSQ case x was a constant unknown. Note we haven’t discussed the LSQ estimator yet
- but by the time you come to revise from these notes you will have.

1.6 Recursive Bayesian Estimation

The idea of MAP estimation leads naturally to that of recursive Bayesian estimation. In
MAP estimation we fused both a-priori beliefs and current measurements to come up with
an estimate, x̂ , of the underlying world state x . If we then took another measurement
we could use our previous x̂ as the prior, incorporate the new measurement and come up
with a fresh posterior based now, on two observations. The appeal of this approach to a
robotics application is obvious. A sensor (laser radar etc) produces a time-stamped sequence
of observations. At each time step k we would like to obtain an estimate for it’s state given
all observations up to that time ( the set Zk). We shall now use Bayes rule to frame this
more precisely:

p(x,Zk) = p(x|Zk)p(Zk) (1.15)

and also

p(x,Zk) = p(Zk|x)p(x) (1.16)

12



Recursive Bayesian Estimation 13

so

p(x|Zk)p(Zk) = p(Zk|x)p(x) (1.17)

if we assume (reasonably) that given the underlying state, observations are conditionally
independent we can write

p(Zk|x) = p(Zk−1|x)p(zk|x) (1.18)

where zk is a single observation arriving at time k. Substituting into 1.17 we get

p(x|Zk)p(Zk) = p(Zk−1|x)p(zk|x)p(x) (1.19)

now we invoke Bayes rule to re-express the p(Zk−1|x) term

p(Zk−1|x) =
p(x|Zk−1)p(Zk−1)

p(x)
(1.20)

and substituting to reach

p(x|Zk)p(Zk) = p(zk|x)
p(x|Zk−1)p(Zk−1)

p(x)
p(x) (1.21)

= p(zk|x)p(x|Zk−1)p(Zk−1) (1.22)

so

p(x|Zk) =
p(zk|x)p(x|Zk−1)p(Zk−1)

p(Zk)
(1.23)

note that

p(zk|Zk−1) =
p(zk,Z

k−1)

p(Zk−1)
(1.24)

=
p(Zk)

p(Zk−1)
(1.25)

so

p(Zk−1)

p(Zk)
=

1

p(zk|Zk−1)
(1.26)

13



Recursive Bayesian Estimation 14

finally then we arrive at our desired result:

p(x|Zk) =
p(zk|x)p(x|Zk−1)

p(zk|Zk−1)

where the denominator is just a normaliser

(1.27)

So what does this tell us? Well, we recognise p(x|Zk) as our goal - the pdf of x conditioned
on all observations we have received up to and including time k. The p(zk|x) term is just the
likelihood of the kth measurement. Finally p(x|Zk−1) is a prior — it is our last best estimate
of x at time k−1 which at that time was conditioned on all the k−1 measurements that had
been made up until that time. The recursive Bayesian estimator is a powerful mechanism
allowing new information to be added simply by multiplying a prior by a (current) likelihood.

Note that nothing special has been said about the form of the distributions manipulated
in the above derivation. The relationships are true whatever the form of the pdfs. However
we can arrive at a very useful result if we consider the case where we assume Gaussian priors
and likelihoods... the linear Kalman Filter.

14



Topic 2

Least Squares Estimation

2.1 Motivation

Imagine we have been given a vector of measurements z which we believe is related to a
state vector of interest x by the linear equation

z = Hx (2.1)

We wish to take this data and solve this equation to find x in terms of z . Initially you
may naively think that a valid solution is

x = H−1z (2.2)

which is only a valid solution if H is a square matrix with | H |6= 0 — H must be invertible.
We can get around this problem by seeking a solution x̂ that is closest to the ideal1 The
metric of “closest” we choose is the following:

x̂ = arg min
x
|| Hx− z ||2 (2.3)

x̂ = arg min
x

{
(Hx− z)T (Hx− z)

}
(2.4)

Equation 2.4 can be seen to be a “least squares” criterion. There are several ways to solve
this problem we will describe two of them - one appealing to geometry and one to a little
calculus.

1For this section we will assume that we have more observations than required ie dim(z) > dim(x) which
assures that there is a unique “best” solution

15



Motivation 16

2.1.1 A Geometric Solution

Recall from basic linear algebra that the vector Hx is a linear sum of the columns of H. In
other words Hx ranges over the column space of H. We seek a vector x such that Hx is
closest to the data vector z . This is achieved when the error vector e = Hx−z is orthogonal
to the space in which Hx is embedded. Thus e must be orthogonal to every column of H:

HT (Hx− z) = 0 (2.5)

which can be rearranged as

HTHx = HTz (2.6)

x = (HTH)−1HTz (2.7)

This is the least squares solution for x . The matrix (HTH)−1HT is called the pseudo-inverse
of H.

2.1.2 LSQ Via Minimisation

We can expand and set the derivative of Equation 2.4 to zero :

|| Hx− z ||2 = xTHTHx− xTHTz− zTHx + zTz (2.8)

∂ || Hx− z ||2
∂x

= 2HTHx− 2HTz (2.9)

= 0

⇒ x = (HTH)−1HTz (2.10)

The least squares solution for the linear system Ax = b with Am,n m > n is

x̂ = (ATA)−1ATb (2.11)

16



Weighted Least Squares 17

2.2 Weighted Least Squares

Imagine now that we have some information regarding how reliable each of the elements in
z is. We might express this information as a diagonal measurement covariance matrix R :

R =




σ2
z1 0 0
0 σ2

z2 · · ·
...

...
. . .


 (2.12)

It would be natural to weight each element of the error vector e according to our uncertainty
in each element of the measurement vector z - ie by R−1. The new minimisation becomes:

x̂ = arg min
x
|| R−1(Hx− z) ||2 (2.13)

Carrying this through the same analysis yields the weighted linear least squares esti-
mate:

x̂ = (HTR−1H)−1HR−1z (2.14)

2.2.1 Non-linear Least Squares

The previous section allows us to derive a least squares estimate under a linear observation
model. However most interesting problems will involve non-linear models - measuring the
Euclidean distance between two points for example. We now have a new minimisation task:

x̂ = arg min
x
|| h(x)− z ||2 (2.15)

We begin by assuming we have some initial guess of a solution x0. We seek a vector δ
such that x1 = x0 + δ and || h(x1) − z ||2 is minimised. To proceed we use a Taylor series
expansion:

h(x0 + δ) = h(x0) +∇Hx0δ (2.16)

|| h(x1)− z ||2 =|| h(x0) +∇Hx0δ − z ||2 (2.17)

=|| ∇Hx0︸ ︷︷ ︸
A

δ − (z− h(x0))︸ ︷︷ ︸
b

||2 (2.18)

where

∇Hx0 =
∂h

∂x
=




∂h1

∂x1
· · · ∂h1

∂xm
...

...
∂hn

∂x1
· · · ∂hn

∂xm




︸ ︷︷ ︸
evaluated at x0

(2.19)

17



Weighted Least Squares 18

Equation 2.18 can be seen to be a linear least square problem - something we have already
solved and stated in equation 2.11. By inspection then we can write an expression for δ that
minimises the right hand side of 2.18:

δ =
(∇Hx0

T∇Hx0

)−1∇Hx0

T [z− h(x0)] (2.20)

We now set x1 = x0+δ and iterate again until the norm falls below a tolerance value. Like the
linear case, there is a natural extension to the weighted non linear case. For a measurement
z with variance R the weighted non-linear least squares algorithm is as follows:

1. Begin with an initial guess x̂

2. Evaluate
δ =

(∇Hx̂
TR−1∇Hx̂

)−1∇Hx̂
TR−1[z− h(x̂)]

3. Set x̂ = x̂ + δ

4. If || h(x̂)− z ||2> ε goto 2 else stop.

2.2.2 Long Baseline Navigation - an Example

So why is the non-linear LSQ problem interesting? Well, non-linear least squares
allows us to solve some interesting and realistic navigation problems. For example, consider
the case of an autonomous underwater vehicle (AUV) moving within a network of acoustic
beacons. The AUV shown in figure 2.2.2 is about to be launched on a mine detection mission
in the Mediterranean. Within the hull (which floods) is a transceiver which emits a “call”
pulse into the water column. Beacons deployed at known locations detect this pulse and
reply with “acknowledge” pulses which are detected by the transceiver. The difference in
time between “call” and “acknowledge” is proportional to the distance between vehicle and
each beacon. Figure 2.2.2 shows a diagram of this kind of navigation (which is very similar
to how GPS works).

Imagine the vehicle is operating within a network of 4 beacons. We wish to find an
LSQ estimate of the vehicle’s position xv = [x, y, z]T . Each beacon i is at known position
xbi = [xbi, ybi, zbi]

T . We shall assume that the observations become available simultaneously

18



Weighted Least Squares 19

Figure 2.1: A Long Baseline Acoustic Network for an Autonomous Underwater Vehicle
(AUV)

so we can stack them into a single vector2. The model of the long-baseline transceiver
operating in water with speed of sound c can be written as follows:

z =
[
t1 t2 t3 t4

]T
= h(xv) (2.21)



t1
t2
t3
t4


 =

2

c




|| xb1 − xv ||
|| xb2 − xv ||
|| xb3 − xv ||
|| xb4 − xv ||


 (2.22)

so

∇Hxv = − 2

rc




∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

∆x4 ∆y4 ∆z4


 (2.23)

where

∆xi = xbi − x

∆yi = ybi − y

∆zi = zbi − z

r =
√

(xbi − x)2) + (ybi − y)2) + (zbi − z)2)

2In practice of course the signal that travels the furthest comes in last - the measurements are staggered.
This is only a problem if the vehicle is moving
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Figure 2.2: An autonomous underwater vehicle about to be launched. The large fork on the
front is a sonar designed to detect buried mines. Within the hull is a transceiver which emits
a “call” pulse into the water column. Beacons deployed at known locations detect this pulse
and reply with a “acknowledge” pulses which are detected by the transceiver. The difference
in time between “call” and “acknowledge” is proportional to the distance between vehicle
and each beacon. (photo courtesy of MIT) see figure 2.2.2

With the jacobian calculated and given a set of four measurements to the beacons we
can iteratively apply the non-linear least squares algorithm until the change in xv between
iterations becomes small enough to disregard. You might be surprised that many of the
oil rigs floating in the Gulf of Mexico basically use this method to calculate their position
relative to the well-head thousands of meters below them. Oil rigs are perhaps one of the
largest mobile-robots you are likely to encounter.

One issue with the Least Squares solution is that enough data has to be accumulated to
make the system observable - HTH must be invertible. For example, in our subsea example,
acoustic-refractive properties of the water column may mean that replies from a particular
beacon are never detected. Alternatively acoustic noise may obliterate the true signal leading
to false detections. Figure 2.2.2 shows some real LBL data from vehicle shown in Figure
2.2.2. Most of the noise is due to the enormously powerful fork-like sonar on its nose.

The Kalman filter which we shall discuss, derive and use shortly is one way to overcome
this problem of instantaneous un-observability.
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Figure 2.3: Some real data from the ocean. The synthetic aperture adds a lot of noise to the
LBL sensing scheme. However it is possible to separate true signal from noise as shown in
the lower graphs. The y axes are time of flight × c giving effective distance between vehicle
and beacons.
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Topic 3

Kalman Filtering -Theory, Motivation
and Application

Keep in mind

The following algebra is simple but a little on the laborious side and was provided here
for completeness. The following section will involve a linear progression of simple algebraic
steps. I hope you will derive some degree of intellectual satisfaction in seeing the equations
being derived using only Bayes rule. Of course, like many things in engineering, derivations
need not be done at every invocation of a smart idea but it is important to understand the
underlying principles. The exams will not ask for a complete derivation of the Kalman filter
but may ask you to explain the underlying concepts with reference to the key equations.

3.1 The Linear Kalman Filter

We will now assume that the likelihood p(z|x) and a prior p(x) on x are Gaussian. Further-
more, initially, we are going to model our sensor as something that produces a observation
z which is a noise corrupted linear function of the state x :

z = Hx + w (3.1)

Here w is a gaussian noise with zero mean and covariance R so that

p(w) =
1

(2π)n/2 | R |1/2
exp{−1

2
wTR−1w}. (3.2)
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The Linear Kalman Filter 23

Note that up until now the examples have often been dealing with scalar 1D distributions.
Here we generalise to the multidimensional case but things should still look familiar to you.
We shall let the state have nx dimensions and the observation vector have nz dimensions.

This allows us to write down a likelihood function:

p(z|x) =
1

(2π)nz/2 | R |1/2
exp{−1

2
(z−Hx)TR−1(z−Hx)} (3.3)

.

We can also use a multidimensional Gaussian with mean xª and covariance Pª to describe
our prior belief in x :

p(x) =
1

(2π)nx/2 | Pª |1/2
exp{−1

2
(x− xª)TP−1

ª (x− xª)} (3.4)

.

Now we can use Bayes rule to figure out an expression for the posterior p(x|z).:

p(x|z) =
p(z|x)p(x)

p(z)
(3.5)

=
p(z|x)p(x)∫∞

−∞ p(z|x)p(x)dx
(3.6)

=

1
(2π)nz/2|R|1/2 exp{−1

2
(z−Hx)TR−1(z−Hx)} 1

(2π)nx/2|Pª|1/2 exp{−1
2
(x− xª)TP−1

ª (x− xª)}
C(z)

(3.7)

This looks pretty formidable but we do know that we will end up with a gaussian (gaussian
× gaussian = gaussian) and scale factors are not important therefore we can disregard the
denominator and focus on the product:

exp{−1

2
(z−Hx)TR−1(z−Hx)} exp{−1

2
(x− xª)TP−1

ª (x− xª)} (3.8)

or equivalently:

exp{−1/2
(
(z−Hx)TR−1(z−Hx) + (x− xª)P−1

ª (x− xª)T
)} (3.9)

We know (because gaussian × gaussian = gaussian) that we can find a way to express the
above exponent in a quadratic way:

(x− x⊕)TP−1
⊕ (x− x⊕) (3.10)
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.

We can figure out the new mean x⊕ and covariance P⊕ by expanding expression 3.9 and
comparing terms with expression 3.10. Remember we want to find the new mean because
Equation 1.14 tells us this will be the MMSE estimate. So expanding 3.9 we have:

xTP−1
ª x−xT

ªP−1
ª xª−xTP−1

ª xª+xT
ªP

−1
ª xª+xTHTR−1Hx−xTHTR−1z−zR−1Hx+zTR−1z

(3.11)

Now collecting terms this becomes:

xT (P−1
ª +HTR−1H)x−xT (P−1

ª xª+HTR−1z)−(xTP−1
ª +zR−1H)x+(xT

ªP
−1
ª xª+zTR−1z)

(3.12)
Expanding 3.10:

xTP−1
⊕ x− xTP−1

⊕ x⊕ − xT
⊕P

−1
⊕ x + xT

⊕P
−1
⊕ x⊕. (3.13)

Comparing first terms in 3.12 and 3.13 we immediately see that

P⊕ = (P−1
ª + HTR−1H)−1. (3.14)

Comparing the second terms we see that:

P−1
⊕ x⊕ = P−1

ª xª + HTR−1z. (3.15)

Therefore we can write the MMSE estimate, x⊕ as

x⊕ = (P−1
ª + HTR−1H)−1(P−1

ª xª + HTR−1z). (3.16)

We can combine this result with our understanding of the recursive Bayesian filter we
covered in section 1.6. Every time a new measurement becomes available we update our
estimate and its covariance using the above two equations.

There is something about the above two equations 3.14 and 3.16 that may make them
inconvenient — we have to keep inverting our prior covariance matrix which may be com-
putationally expensive if the state-space is large 1. Fortunately we can do some algebra to
come up with equivalent equations that do not involve an inverse.

We begin by stating a block matrix identity. Given matrices A , B and C the following
is true (for non-singular A ):

(A + BCBT )−1 = A−1 −A−1B(C−1 + BTA−1B)−1BTA−1 (3.17)

1in some navigation applications the dimension of x can approach the high hundreds
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We can immediately apply this to 3.14 to get:

P⊕ = Pª −PªHT (R + HPªHT )−1HPª (3.18)

= Pª −WSWT (3.19)

(3.20)

or

= (I−WH)Pª (3.21)

where

S = HPªHT + R (3.22)

W = PªHTS−1 (3.23)

Now look at the form of the update equation 3.16 it is a linear combination of x and z .
Combining 3.20 with 3.16 we have:

x⊕ = (P−1
ª + HTR−1H)−1(P−1

ª xª + HTR−1z) (3.24)

= (P−1
ª + HTR−1H)−1(HTR−1z) + (I−WH)Pª(P−1

ª xª) (3.25)

= (P−1
ª + HTR−1H)−1(HTR−1z) + xª + W(−Hxª) (3.26)

= Cz + xª + W(−Hxª) (3.27)

where

C = (P−1
ª + HTR−1H)−1HTR−1 (3.28)

Taking a step aside we note that both

HTR−1(HPªHT + R) = HTR−1HPªHT + HT (3.29)

and also

(P−1
ª + HTR−1H)PªHT = HT + HTR−1HPªHT (3.30)

so

(P−1
ª + HTR−1H)−1HTR−1 = PªHT (HPªHT + R)−1 (3.31)

therefore

C = PªHTS−1 (3.32)

= Wfrom 3.23 (3.33)
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Finally then we have
x⊕ = xª + W(z−Hxª) (3.34)

We can now summarise the update equations for the Linear Kalman Filter:

The update equations are as follows. Given an observation z
with uncertainty (covariance) R and a prior estimate xª with
covariance Pª the new estimate and covariance are calculated
as:

x⊕ = xª + Wν

P⊕ = Pª −WSWT

where the “Innovation” ν is

ν = z−Hxª

the “Innovation Covariance” S is given by

S = HPªHT + R

and the “Kalman Gain” W is given by

W = PªHTS−1

3.1.1 Incorporating Plant Models - Prediction

The previous section showed how an observation vector (z ) related in some linear way to
a state we wish to estimate (x ) can be used to update in a optimal way a prior belief
/estimate. This analysis lead us to the so called Kalman update equations. However there
is another case which we would like to analyse: given a prior at time k − 1, a (imperfect)
model of a system that models the transition of state from time k− 1 to k, what is the new
estimate at time k?
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Mathematically we are being told that the true state behaves in the following fashion:

x(k) = Fx(k − 1) + Bu(k) + Gv(k) (3.35)

Here we are modelling our uncertainty in our model by adding a linear transformation
of a “white noise” 2 term v with strength (covariance) Q. The term u(k) is the control
vector at time k. It models actions taken on the plant that are independent of the state
vector itself. For example, it may model an acceleration on a model that assumes constant
velocity. (A good example of u is the steer angle on a car input into the system by a driver
(machine or human))

The i|j notation

Our general approach will be based on an inductive argument. However first we shall intro-
duce a little more notation. We have already shown (and used) the fact that given a set Zk

of k observations the MMSE estimate of x is

x̂mmse = E{x|Zk} (3.36)

We now drop the “mmse” subscript and start to use two parenthesised time indexes i and
j. We use x̂(i|j) to mean the “MMSE estimate of x at time i given observations up until
time j”. Incorporating this into Equation 3.36 we have

x̂(i|j) = E{x(i)|Zj}. (3.37)

We also use this notation to define a covariance matrix P(i|j) as

P(i|j) = E{(x(i)− x̂(i|j))(x(i)− x̂(i|j))T |Zj} (3.38)

which is the mean square error of the estimate x̂(i|j)3.

2a random variable distributed according to a zero-mean gaussian pdf
3If this sounds confusing focus on the fact that we are maintaining a probability distribution for x . Our

estimate at time i using measurements up until time j (x̂(i|j)) is simply the mean of this distribution and
it has variance P(i|j). If our distribution is in fact a Gaussian then these are the only statistics we need to
fully characterize the pdf. This is exactly what a Kalman filter does — it maintains the statistics of a pdf
that “best” represents x given a set of measurements and control inputs
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x̂ (i—j) is the estimate of x at time i given measurements up until time j. Com-
monly you will see the following combinations:

• x̂(k|k) estimate at time k given all available measurements. Often simply
called the estimate

• x̂(k|k − 1) estimate at time k given first k − 1 measurements. This is often
called the prediction

Now back to our question about incorporating a plant model F and a control signal u.
Imagine at time k we have been provided with MMSE estimate of x (k-1). Using our new
notation we write this estimate and its covariance as x̂(k − 1|k − 1) and P(k − 1|k − 1).
We are also provided with a control signal u(k) we want to know how to figure out a new
estimate x̂(k|k− 1) at time k. Note that we are still only using measurements up until time
(k − 1) ( i > j in Equation 3.37) however we are talking about an estimate at time k. By
convention we call this kind of estimate a “prediction”. You can think of predicting as an
“open loop” step as no measurements of state are used to correct the calculation.

We can use our “conditional expectation result” to progress:

x̂(k|k − 1) = E{x(k|Zk−1} (3.39)

= E{Fx(k − 1) + Bu(k) + Gv(k)|Zk−1} (3.40)

= FE{x(k − 1)|Zk−1}+ Bu(k) + GE{v(k)|Zk−1} (3.41)

= Fx̂(k − 1|k − 1) + Bu(k) + 0 (3.42)

This is a both simple and intuitive result. It simply says that the best estimate at time k
given measurements up until time k − 1 is simply the projection of the last best estimate
x̂(k − 1|k − 1) through the plant model. Now we turn our attention to the propagation of
the covariance matrix through the prediction step.

P(k|k − 1) = E{(x(k)− x̂(k|k − 1))(x(k)− x̂(k|k − 1))T |Zk−1} (3.43)

perfoming the subtraction first

x(k)− x̂(k|k − 1) = (Fx(k − 1) + Bu(k) + Gv(k))− (Fx̂(k − 1|k − 1) + Bu(k)) (3.44)

= F(x(k − 1)− x̂(k − 1|k − 1)) + Gv(k) (3.45)
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so

P(k|k − 1) = E{(F(x(k − 1)− x̂(k − 1|k − 1)) + Gv(k))× (3.46)

(F(x(k − 1)− x̂(k − 1|k − 1)) + Gv(k))T |Zk−1} (3.47)

Now we are going to make a moderate assumption: that the previous estimate x̂(k−1|k−1)
and the noise vector (modelling inaccuracies in either model or control) are uncorrelated (i.e.
E{(x(k − 1)− x̂(k − 1|k − 1))v(k)T} is the zero matrix). This means that when we expand
Equation 3.47 all cross terms between x̂(k − 1|k − 1) and v(k) disappear. So:

P(k|k − 1) = FE{(x(k − 1)− x̂(k − 1|k − 1))(x(k − 1)− x̂(k − 1|k − 1))T |Zk−1}FT +
(3.48)

GE{v(k)v(k)T |Zk−1}GT (3.49)

P(k|k − 1) = FP(k − 1|k − 1)FT + GQGT (3.50)

This result should also seem familiar to you ( remember that if x ∼ N(µ, Σ) and y = Mx
then y ∼ N(Mµ,MΣMT ) ?).

3.1.2 Joining Prediction to Updates

We are now almost in a position to put all the pieces together. To start with we insert our
new temporal-conditional notation into the Kalman update equations. We use x̂(k|k− 1) as
the prior xª and process an observation z at time k. The posterior x⊕ becomes x̂(k|k)

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k)

P(k|k) = P(k|k − 1)−W(k)SW(k)T

ν(k) = z(k)−Hx(k|k − 1)

S = HP(k|k − 1)HT + R

W(k) = P(k|k − 1)HTS−1

So now we are in a position to write down the “standard Linear Kalman Filter Equations”.
If the previous pages of maths have started to haze your concentration wake up now as you
will need to know and appreciate the following:
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Linear Kalman Filter Equations

prediction:

x̂(k|k − 1) = Fx̂(k − 1|k − 1) + Bu(k) (3.51)

P(k|k − 1) = FP(k − 1|k − 1)FT + GQGT (3.52)

update:

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k) (3.53)

P(k|k) = P(k|k − 1)−W(k)SW(k)T (3.54)

where

ν(k) = z(k)−Hx̂(k|k − 1) (3.55)

S = HP(k|k − 1)HT + R (3.56)

W(k) = P(k|k − 1)HTS−1 (3.57)

3.1.3 Discussion

There are several characteristics of the Kalman Filter which you should be familiar with
and understand well. A firm grasp of these will make your task of implementing a KF for a
robotics problem much easier.

Recursion The Kalman Filter is recursive. The output of one iteration becomes the input
to the next.

Initialising Initially you will have to provide P(0|0) and x̂(0|0). These are initial guesses
(hopefully derived with some good judgement)

Structure The Kalman filter has a predictor-corrector architecture. The prediction step
is corrected by fusion of a measurement. Note that the innovation ν is a difference
between the actual observation and the predicted observation (Hx̂(k|k − 1)). If these
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two are identical then there is no change to the prediction in the update step —both
observation and prediction are in perfect agreement. Fusion happens in data space.

Asynchronisity The update step need not happen at every iteration of the filter. If at a
given time step no observations are available then the best estimate at time k is simply
the prediction x̂(k|k − 1).

Prediction Covariance Inflation Each predict step inflates the covariance matrix — you
can see this by the addition of GQGT . This makes sense sice we are only using a
pre-conceived idea of how x will evolve. By our own admission — the presence of a
noise vector in the model — the model is inaccurate and so we would expect certainty
to dilate (uncertainty increase) with each prediction.

Update Covariance Deflation Each update step generally4 deflates the covariance ma-
trix. The subtraction of WSWT 5 during each update illustrates this. This too makes
sense. Each observation fused contains some information and this is “added” to the
state estimate at each update. A metric of information is related to the inverse of
covariance — note how in equation 3.16 HTR−1H is added to the inverse of P, this
might suggest to you that information is additive. Indeed, equation 3.16 is the so called
“information form” of the Kalman Filter.

Observability The measurement z need not fully determine the state x (ie in general H
is not invertible). This is crucial and useful. In a least squares problem at every
update there have to be enough measurements to solve for the state x , However the
Kalman filter can perform updates with only partial measurements. However to get
useful results over time the system needs to be observable otherwise the uncertainty in
unobserved state components will grow without bound. Two factors make this possible
: the fact that the priors presumably contain some information about the unobserved
states (they were observed in some previous epoch) and the role of correlations.

Correlations The covariance matrix P is highly informative. The diagonals are the princi-
pal uncertainties in each of the state vector elements. The off diagonals tell us about
the relationships between elements of our estimated vector x̂ — how they are corre-
lated. The Kalman filter implicitly uses these correlations to update states that are not
observed directly by the measurement model! Let’s take a real life example. Imagine
we have a model [F,BQ] of a plane flying. The model will explain how the plane
moves between epochs as a function of both state and control. For example at 100m/s,
nose down 10 deg, after 100ms the plane will have travelled 10m forward (y direction)
and perhaps 1.5 m down (in z direction). Clearly the changes and uncertainties in y
and z are correlated — we do not expect massive changes in height for little change

4technically it never increases it
5which will always be positive semi definite
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Figure 3.1: Flow chart for the Kalman filter. Note the recursive structure and how simple it
is to implement once the model matrices F and H have been specified along with the model
uncertainty matrices R and Q .

in distance-over-ground in normal flight conditions. Now comes the clever part. The
plane is equipped with an altimeter radar which measures height above the ground - a
direct measurement of z. Fusing this measurement in the Kalman filter will result in a
change in estimated height and also a change in y-position. The reason being that the
correlations between height and y-position maintained in the covariance matrix mean
that changes in estimated height should imply changes in estimated y-position because
the two states are co-dependent. The exercises associated with these lectures should
illustrate this fact to you further.
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3.2 Using Estimation Theory in Mobile Robotics

Previous pages have contained a fair amount of maths taking you through the derivation of
various estimators in a steady fashion. Remember estimation theory is at the core of many
problems in mobile robotics — sensors are uncertain, models are always incomplete. Tools
like the Kalman filter 6 give a powerful framework in which we can progress.

We will now apply these freshly derived techniques to problems in mobile robotics fo-
cussing particularly on navigation. The following sections are not just a stand-alone-example.
Within the analysis, implementation and discussion a few new ideas are introduced which
will be used later in the course.

3.2.1 A Linear Navigation Problem - “Mars Lander”

A Lander is at an altitude x above the planet and uses a time of flight radar to detect
altitude—see Figure 3.2.1. The onboard flight controller needs estimates of both height
and velocity to actuate control surfaces and time rocket burns. The task is to estimate both
altitude and descent velocity using only the radar. We begin modelling by assuming that the
vehicle has reached its terminal velocity (but this velocity may change with height slowly).
A simple model would be:

x(k) =

[
1 δT
0 1

]

︸ ︷︷ ︸
F

x(k − 1) +

[
δT 2

2

δT

]

︸ ︷︷ ︸
G

v(k) (3.58)

where δT is the time between epochs and the state vector x is composed of two elements
altitude and rate of altitude change (velocity)

x(k) =

[
h

ḣ

]
. (3.59)

The process noise vector is a scalar, gaussian process with covariance Q. It represents noise
in acceleration (hence the quadratic time dependence when adding to a position-state).

Now we need to write down the observation equations. Think of the observation model
as “explaining the observations as a function of the thing you want to estimate”.

6it is not the only method though
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x


z


Figure 3.2: A simple linear navigation problem. A Lander is at an altitude x above the
planet and uses a time of flight radar to detect altitude. The onboard flight controller needs
estimates of both height and velocity to actuate control surfaces and time rocket burns. The
task is to estimate both altitude and descent velocity using only the radar.

So we can write

z(k) = Hx(k) + w(k) (3.60)

z(k) =
[

2
c

0
] [

h

ḣ

]
+ w(k) (3.61)

These are the “truth models” of the system (note there are no “hats” or (k—k) notations
involved). We will never known the actual value of the noises at any epoch but we model the
imperfections in the sensor and motions models that they represent by using their covariance
matrices (R and Q respectively) in the filter equations.

We are now in a position to implement this example in Matlab. Section 7.1 is a print
out of the entire source code for a solution - it can also be downloaded from the course
website ¡http://www.robots.ox.ac.uk/∼pnewman : teaching¿. The exact source created the
following graphs and so all parameters can be read from the listing. It’s important that
you can reconcile all the estimation equations we have derived with the source and also that
you understand the structure of the algorithm —the interaction of simulator, controller and
estimator.
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3.2.2 Simulation Model

The simulation model is non-linear. This of course is realistic — we may model the world
within our filter as a well behaved linear system 7 but the physics of the real world can be
relied upon to conspire to yield something far more complicated. However, the details of
the models employed in the simulation are not important. One point of this example is to
illustrate that sometimes we can get away with simple approximations to complex systems.
We only examine the vertical descent velocity (i.e. we ignore the coriolis acceleration)—
it’s as though we were dropping a weight vertically into a layer of atmosphere. The drag
exerted on the vehicle by the atmosphere is a function of both vehicle form-factor, velocity
and atmospheric density as a function of height (modelled as a saturating exponential).

7we shall shortly introduce a way to use non-linear models but the idea that the world is always more
complicated than we care to imagine is still valid
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Figure 3.3:

Vehicle Controller

The controller implemented does two things. Firstly when the vehicle descends below a
predetermined height it deploys a parachute which increases its effective aerodynamic drag.
Secondly, it fires retro-burners when it drops below a second altitude threshold. A simple
control law based on altitude and velocity is used to control the vehicle to touch down with
a low velocity. At the point when rockets are fired, the parachute is also jettisoned.

The important point here is that the controller operates on estimated quantities. If the
estimated quantities are in error it is quite easy to envision bad things happening. This is a
point common to all robotic systems—actions (involving substantial energies) are frequently
executed on the basis estimates. The motivation to understand estimation process and its
failure modes is clear!

Analysis of Mars Lander Simulation

Flight Pattern Figure 3.2.1 shows the simulated(true) and estimated states using the code
listed in Section 7.1. Initially the vehicle is high in thin atmosphere which produces
little drag. The vehicle accelerates through the high levels of the atmosphere. Soon the
density increases and the vehicle brakes under the effect of drag to reach a quasi-steady
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state terminal velocity. When the parachute opens the instantaneous increase drag
decelerates the vehicle rapidly until another steady state terminal velocity is achieved.
Finally shortly before landing the retro-burners are fired to achieve a smooth landing
- essentially decelerating the vehicle smoothly until touch down.

Fitness of Model The filter vehicle model < F,G > is one of constant velocity (noise
in acceleration). Off-the-blocks then we should expect good estimation performance
during periods of constant velocity. Examining the graphs we see this is true. When
the velocity is constant both position and velocity are tracked well. However during
periods of rapid acceleration we see poor estimates of velocity emerging. Note that
during these times the innovation sequence and truth-estimated graphs ‘spike’....

Derivation of Velocity Note that the observation model H does not involve the velocity
state and yet the filter is clearly estimating and tracking velocity pretty well. At no
point in the code can you find statements like vel = (xnew − xold)/∆T . The filter
is not explicitly differentiating position to derive velocity — instead it is inferring it
through the models provided. The mechanism behind this has already been discussed
in section 3.1.3. The filter is using correlations (off diagonals) in the 2 × 2 matrix P
between position and velocity states. The covariance matrix starts off being diagonal
but during the first prediction step it becomes fully populated. 8. Errors in position
are correlated through the vehicle model to errors in velocity. This is easy to spot in
the plant model as predicted position is a function of current position estimate and
velocity estimate. Here the KF is working as an observer of a hidden state — an
immensely useful characteristic. However there is no free lunch. Note how during
times of acceleration the velocity estimate lags behind the true velocity. This makes
sense 9 the velocity state is being dragged (and hence lags) through state space by the
correlations to directly observed position.

Filter Tuning An obvious question to ask is how can the filter be made “tighter”? How can
we produce a more agile tracker of velocity? The answer lies in part with the process
noise strength Q . The addition of GQGT at each time step dilutes the interstate
correlations. By making Q smaller we maintain stronger correlations and track inferred
velocity. But we cannot reduce Q too far— it has to model the uncertainty in our
model. If we reduce it too much we will have too much confidence in our predictions
and the update stage will have little corrective effect. The process of choosing a suitable
Q (and R ) is called tuning. It is an important part of KF deployment and can be hard
to do in practice. Fortunately there are a few concepts that can help in this process.
Their derivation is more suited for a course in stochastic estimation rather than mobile

8You should download the code and check this out for yourself. Try forcing the off diagonals to zero
and see the effect

9expand the KF update equations with a constant velocity model and full P matrix. Note how the
change in velocity W(2, 1) is a function of the off diagonals
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robotics and so some of them are stated here as a set of rules (valid for linear Gaussian
problems);

Innovation Sequence The innovation sequence should be a white (utterly random),zero
mean process. It is helpful to think heuristically of the innovation as the exhaust
from the filter. If the filter is optimal all information will have been extracted
from previous observations and the difference between actual and predicted ob-
servations will be noise10.

S-Bound The innovation covariance matrix S provides a 1σ2 statistical bound on
the innovations sequence. The ith element innovation sequence should lie with
+/ − √Sii. Figure 3.2.2 shows these bounds plotted. Note how during periods
of constant velocity the innovation sequence (a scalar sequence in this case) is
bounded around 66 percent of the time.

Normalised Innovation Squared The scalar quantity ν(k)TS−1ν(k) is distributed
according to chi-squared distribution with degree of freedom equal to the dimen-
sion of the innovation vector ν(k)

Estimate Error In a deployed system the only information available to the engi-
neer is the innovation sequence (see above). However if a simulation is available
comparisons between estimated and nominal true states can be made. The filter
should be unbiased and so the average error should be zero.

Normalised Estimate Error Squared If we denote the error at epoch k between
true and estimated states as x̃(k) then the quantity E{x̃(k)TP(k|k)−1x̃(k)} is
distributed according to chi-squared distribution with degrees of freedom equal
to the state dimension.

There is some skill involved in choosing values of R and Q such that the above crite-
ria are met, especially when the filter models are a poor representation of the truth.
The correct thing to do here is implement a better model. If however, other engi-
neering issues impede this course of action, the filter must be de-tuned (increase noise
strengths) in the hope of ‘lumping’ un-modelled characteristics into the noise vector.
This of course means that the filter looses any claim to optimality.

10There is a powerful geometric interpretation of the Kalman filter that fits closely to this analogy using
ideas of orthogonality
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3.3 Incorporating Non-Linear Models - The Extended

Kalman Filter

Up until now we have only considered linear models (although working in non-linear simu-
lated environments). It shouldn’t come as a surprise to you that the majority of real world
applications require the use of non-linear models. Think about an everyday example - a re-
ally simple GPS receiver sitting at xr = (x, y, z)T and measuring time of flight (equivalent)
to a satellite sitting at xs = (x, y, z)T

s . Clearly the time of flight measurement is “explained”
by the norm of the difference vector || xr − xs ||. This then requires the use of a non-linear
measurement model. Fortunately we shall see that non-linear models can easily be incorpo-
rated into the Kalman Filter equations (yielding a filter called the Extended Kalman Filter
or EKF) you are already familiar with. The derivations are given here for completeness and
the results are stated in Section 3.3.3.

3.3.1 Non-linear Prediction

We begin by writing a general form for a non-linear plant truth model:

x(k) = f(x(k − 1),u(k), k) + v(k) (3.62)

z(k) = h(x(k),u(k), k) + w(k). (3.63)

The trick behind the EKF is to linearize the non-linear models around the “best” current
estimate (best meaning prediction (k|k − 1) or last estimate (k − 1|k − 1)). This is done
using a Taylor series expansion. Assume we have an estimate x̂(k − 1|k − 1) then

x(k) = f(x̂(k − 1|k − 1),u(k), k) +∇Fx[x(k − 1)− x̂(k − 1|k − 1)] + · · · (3.64)

The term ∇Fx is understood to be the jacobian of (f) with respect to x evaluated at an
elsewhere specified point:

∇Fx =
∂f

∂x
=




∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm



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Now we know that x̂(k|k− 1) = E{x(k)|Zk−1} and x̂(k− 1|k− 1) = E{x(k− 1)|Zk−1}so
x̂(k|k − 1) = E{f(x̂(k − 1|k − 1),u(k), k) +∇Fx[x(k − 1)− x̂(k − 1|k − 1)] + · · ·+ v(k)|Zk−1}

(3.65)

= E{f(x̂(k − 1|k − 1),u(k), k)|Zk−1}+∇Fx[x̂(k − 1|k − 1)− x̂(k − 1|k − 1)]
(3.66)

= f(x̂(k − 1|k − 1),u(k), k) (3.67)

Which is an obvious conclusion — simply pass the last estimate through the non-linear model
to come up with a prediction based on a control signal u (k). To figure out how to propagate
the covariance (using only terms from the previous time step) we look at the behaviour of
x̃(k|k − 1) = x(k) − x̂(k|k − 1) because P(k|k − 1) = E{x̃(k|k − 1)x̃(k|k − 1)T |Zk−1}.
Understanding that the jacobians of f are evaluated at x̂(k − 1|k − 1) we can write

x̃(k|k − 1) = x(k)− x̂(k|k − 1) (3.68)

≈ f(x̂(k − 1|k − 1),u(k), k) +∇Fx[x(k − 1)− x̂(k − 1|k − 1)] + v(k)− (3.69)

f(x̂(k − 1|k − 1),u(k), k) (3.70)

= ∇Fx[x(k − 1)− x̂(k − 1|k − 1)] + v(k) (3.71)

= ∇Fx[x̃(k − 1|k − 1)] + v(k) (3.72)

(3.73)

So

P(k|k − 1) = E{x̃(k|k − 1)x̃(k|k − 1)T |Zk−1} (3.74)

≈ E{(∇Fxx̃(k − 1|k − 1) + v(k))(∇Fxx̃(k − 1|k − 1) + v(k))T |Zk−1} (3.75)

= E{∇Fxx̃(k − 1|k − 1)x̃(k − 1|k − 1)T∇Fx
T |Zk−1}+ E{v(k)v(k)T |Zk−1}

(3.76)

= ∇FxP(k − 1|k − 1)∇Fx
T + Q (3.77)

We now have the predict equations in the case of non-linear plant models. Note that fre-
quently the model will be in the form

x(k) = f(x(k − 1),u(k),v(k), k) (3.78)

where the noise v (k) is not simply additive. In this case one would proceed with a multivari-
ate Taylor11 series which swiftly becomes notationally complex and algebraically tiresome.
However the end result is intuitive. The state prediction remains unchanged but the predic-
tion equation becomes:

P(k|k − 1) = ∇FxP(k − 1|k − 1)∇Fx
T +∇GvQ∇Gv

T (3.79)

11alternatively stack x and v in a new vector y and differentiate with respect to y - the same result follows.
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where ∇Fu is the jacobian of f w.r.t the noise vector. (Don’t worry many examples to follow
— also look at the source code provided ) It is a common practice to make the substitution
u(k) = un(k) + v(k) where un(k) is a nominal control which is then corrupted by noise. In
this case ∇Gv = ∇Gu. You will see this again soon. In the meantime, look at the example
source code provided.

3.3.2 Non-linear Observation Model

Now we turn to the case of a non-linear observation model (for example a range and bearing
sensor) of the general form

z(k) = h(x(k)) + w(k) (3.80)

By using the same technique used for the non-linear prediction step we can show that the
predicted observation z(k|k− 1) (Hx̂(k|k− 1) in the linear case) is simply the projection of
x̂(k|k − 1) through the measurement model:

z(k|k − 1) = E{z(k)|Zk−1} (3.81)

z(k|k − 1) = h(x̂(k|k − 1)). (3.82)

Now we wish to derive an expression for S, the innovation covariance. We begin by expressing
the observation and the estimated observation error z̃(k|k − 1) using a Taylor series:

z(k) ≈ h(x̂(k|k − 1)) +∇Hx(x̂(k|k − 1)− x(k)) + · · ·+ w(k) (3.83)

z̃(k|k − 1) = z(k)− z(k|k − 1) (3.84)

= h(x̂(k|k − 1)) +∇Hx(x̂(k|k − 1)− x(k)) + · · ·+ w(k)− h(x̂(k|k − 1))
(3.85)

= ∇Hx(x̂(k|k − 1)− x(k)) + w(k) (3.86)

= ∇Hx(x̃(k|k − 1)) + w(k) (3.87)

So the covariance of the difference between actual and predicted observations (the innovation)
can be written as:

S = E{z̃(k|k − 1)z̃(k|k − 1)T |Zk−1} (3.88)

= E{(∇Hx(x̃(k|k − 1)) + w(k))(∇Hx(x̃(k|k − 1)) + w(k))T |Zk−1} (3.89)

= ∇HxE{x̃(k|k − 1)x̃(k|k − 1)T |Zk−1}∇Hx
T + E{w(k)w(k)T |Zk−1} (3.90)

= ∇HxP(k|k − 1)∇Hx
T + R (3.91)

You may be wondering where the E{x̃(k|k−1)w(k)T |Zk−1} terms have gone. They evaluate
to zero as (reasonably) we do not expect the noise in observations to be correlated to the
error in our prediction.
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We now have one last thing to figure out — how does a non-linear observation model
change the update equations resulting in x̂(k|k) and P(k|k)? The procedure should now be
becoming familiar to you: figure out an expression using a series expansion for x̃(k|k) and
take squared conditional expectation to evaluate P(k|k).

Assume that “somehow” we have a gain W (we’ll derive this in a minute) then we can
immediately write:

x̂(k|k) = x̂(k|k − 1)︸ ︷︷ ︸
prediction

+ W︸︷︷︸
gain

( z(k)︸︷︷︸
observation

− h(x̂(k|k − 1))︸ ︷︷ ︸
predictedobservation︸ ︷︷ ︸

innovation

(3.92)

We can now use this expression to make progress in figuring out P(k|k).

P(k|k) = E{x̃(k|k)x̃(k|k)T |Zk} (3.93)

x̃(k|k) = x̂(k|k)− x(k) (3.94)

= x̂(k|k − 1) + W(z(k)− h(x̂(k|k − 1)))− x(k) (3.95)

= x̂(k|k − 1) + Wz̃(k|k − 1)− x(k) (3.96)

and substituting equation 3.87

= x̂(k|k − 1) + W(∇Hx(x̃(k|k − 1)) + w(k))− x(k) (3.97)

= x̃(k|k − 1) + W∇Hxx̃(k|k − 1) + Ww(k) (3.98)

= [I−W∇Hx]x̃(k|k − 1) + Ww(k) (3.99)

An expression for P(k|k) follows swiftly as

P(k|k) = E{x̃(k|k − 1)x̃(k|k − 1)T |Zk} (3.100)

= E{([I−W∇Hx]x̃(k|k − 1) + Ww(k))([I−W∇Hx]x̃(k|k − 1) + Ww(k))T |Zk}
(3.101)

= [I−W∇Hx]E{x̃(k|k − 1)x̃(k|k − 1)T |Zk}[I−W∇Hx]
T + WE{w(k)w(k)T |Zk}WT

(3.102)

= [I−W∇Hx]P(k|k − 1)[I−W∇Hx]
T + WRWT (3.103)

Above, we have used the fact that the expectation of x̃ is zero and so the cross-terms of the
expansion evaluate to zero. We now just need to find an expression for W . Here we derive
the gain using a little calculus. Recall that behind all of this is a quest to minimise the mean
square estimation error (which is scalar):

J(x̂) = E{x̃(k|k)T x̃(k|k)|kZk} (3.104)

= Tr(P(k|k)) (3.105)
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Fortunately there is a closed form to the differential of such a function. If B is symmetric
for any A then

∂Tr(ABAT )

∂A
= 2AB

∂AC

∂A
= CT (3.106)

Applying this (and the chain rule) to Equation 3.103 and setting the derivative equal to zero
we get:

∂J(x̂)

∂W
= −2[I−W∇Hx]P(k|k − 1)∇Hx

T + 2WR = 0 (3.107)

W = P(k|k − 1)∇Hx
T (∇HxP(k|k − 1)∇Hx

T + R)−1 = P(k|k − 1)∇Hx
TS−1

(3.108)

where

S = (∇HxP(k|k − 1)∇Hx
T + R) (3.109)

Note that substituting P(k|k− 1)∇Hx
T = WS into Equation 3.103 leads to the form of

the covariance update we are already familiar with:

P(k|k) = P(k|k − 1)−WSWT (3.110)

3.3.3 The Extended Kalman Filter Equations

We can now state in a “good to remember this box” a rule for converting the linear Kalman
filter equations to the non-linear form:

To convert the linear Kalman Filter to the Extended Kalman Filter simply replace
F with ∇Fx and H with ∇Hx in the covariance and gain calculations only.
The jacobians are always evaluated at the best available estimate (x̂(k− 1|k− 1)
for ∇Fx and x̂(k|k − 1) for ∇Hx

.

For completeness here are the EKF equations. (You’ll need these for the class-work). If
you don’t feel you are on top of the previous maths - its not the end of the world. Make
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sure however you are familiar with the general form of the equations. (exam useful things
are in boxes in these notes (but not exclusively))

Prediction:

x̂(k|k − 1)︸ ︷︷ ︸
predicted state

=

plant model︷ ︸︸ ︷
f(x̂(k − 1|k − 1)︸ ︷︷ ︸

old state est

, u(k)︸︷︷︸
control

, k) (3.111)

P(k|k − 1)︸ ︷︷ ︸
predicted covariance

= ∇Fx P(k − 1|k − 1)︸ ︷︷ ︸
old est covariance

∇Fx
T +∇GvQ∇Gv

T

︸ ︷︷ ︸
process noise

(3.112)

z(k|k − 1)︸ ︷︷ ︸
predicted obs

=

observation model︷ ︸︸ ︷
h(x̂(k|k − 1)) (3.113)

Update:

x̂(k|k)︸ ︷︷ ︸
new state estimate

=

prediction and correction︷ ︸︸ ︷
x̂(k|k − 1) + W ν(k)︸︷︷︸

innovation

(3.114)

P(k|k)︸ ︷︷ ︸
new covariance estimate

= P(k|k − 1)−WSWT

︸ ︷︷ ︸
update decreases uncertainty

(3.115)

where

ν(k) =

measurement︷︸︸︷
z(k) −z(k|k − 1) (3.116)

W = P(k|k − 1)∇Hx
TS−1

︸ ︷︷ ︸
kalman gain

(3.117)

S = ∇HxP(k|k − 1)∇Hx
T + R︸ ︷︷ ︸

Innovation Covariance

(3.118)

∇Fx =
∂f

∂x
=




∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm




︸ ︷︷ ︸
evaluated at x̂(k − 1|k − 1)

∇Hx =
∂h

∂x
=




∂f1
∂x1

· · · ∂h1

∂xm
...

...
∂hn

∂x1
· · · ∂hn

∂xm




︸ ︷︷ ︸
evaluated at x̂(k|k − 1)

(3.119)
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We are now in a great position, possessing some very powerful tools which we shall now
apply to some key autonomous navigation problems.
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Topic 4

Vehicle Models and Odometry

4.1 Velocity Steer Model

This is a good point to write down a simple motion model for a mobile robotic vehicle. We
allow the vehicle to move on a 2D surface ( a floor) and point in arbitrary directions. We
parameterise the vehicle pose xv (the joint of position and orientation) as

xv =




xv

yv

θv


 . (4.1)

Figure 4.1 is a diagram of a non-holonomic (local degrees of freedom less than global
degree of freedom) vehicle with “Ackerman” steering. The angle of the steering wheels is
given by φ and the instantaneous forward velocity (sometimes called throttle) is V . With
reference to Figure 4.1, we immediately see that

ẋv = V cos(θv) (4.2)

ẏv = V sin(θv) (4.3)

(4.4)

Using the instantaneous center of rotation we can calculate the rate of change of orien-
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Figure 4.1: A non-holonomic vehicle with Ackerman steering

tation as a function of steer angle:

L

a
= tan(φ) (4.5)

aθ̇v = V (4.6)

θ̇v =
V

L
tan(φ) (4.7)

We can now discretise this model by inspection:

xv(k + 1) = f(xv(k),u(k)); u(k) =

[
V (k)
φ(k)

]
(4.8)




xv(k + 1)
yv(k + 1)
θv(k + 1)


 =




xv(k) + δTV (k) cos(θv(k))
yv(k) + δTV (k) sin(θv(k))

θv(k) + δTV (k) tan(φ(k))
L


 (4.9)

Note that we have started to lump the throttle and steer into a control vector — this makes
sense if you think about the controlling actions of a human driver. Equation 4.9 is a model for
a perfect, noiseless vehicle. Clearly this is a little unrealistic — we need to model uncertainty.
One popular way to do this is to insert noise terms into the control signal u such that

u(k) = un(k) + v(k) (4.10)

where un(k) is a nominal (intended) control signal and v(k) is a zero mean gaussian dis-
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tributed noise vector:

v(k) ∼ N (0,

[
σ2

V 0
0 σ2

φ

]
) (4.11)

u(k) ∼ N (un(k),

[
σ2

V 0
0 σ2

φ

]
) (4.12)

This completes a simple probabilistic model of a vehicle. We shall now see how propa-
gation of this model affects uncertainty in vehicle pose over time.

4.2 Evolution of Uncertainty

In this section we will examine how an initial uncertainty in vehicle pose increases over time
as the vehicle moves when only the control signal u is available. Hopefully you will realise
that one way to approach this is repetitive application of the prediction step of a Kalman
filter discussed in Section 3.1.1. The model derived in the previous section is non-linear and
so we will have to use the non-linear form of the prediction step.

Assume at time k we have been given a previous best estimate of the vehicle pose x̂v(k−
1|k − 1) and an associated covariance Pv(k − 1|k − 1). Equations 3.67 and 3.79 have that:

xv(k|k − 1) = f(x̂(k − 1|k − 1),u(k), k) (4.13)

Pv(k|k − 1) = ∇FxPv(k − 1|k − 1)∇Fx
T +∇FvQ∇Fv

T (4.14)

In this case

Q =

[
σ2

V 0
0 σ2

φ

]
(4.15)

We need to evaluate the Jacobians with respect to state and control noise at x̂(k− 1|k− 1).
We do this by differentiating each row of f by each state and each control respectively:

∇Fx =




1 0 −δTV sin(θv)
0 1 δTV cos(θv)
0 0 1


 (4.16)

∇Fu =




δT cos(θv) 0
δT sin(θv) 0

δT tan(φ)
L

δTV sec2(φ)
L


 (4.17)

Figure 4.2 shows the results of iterating equations 4.13 and 4.14 using the matlab code
printed in Section 7.2. Things are pretty much as we might expect. The uncertainty injected
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Figure 4.2: Evolution of uncertainty evolution of open loop the Ackermann Model. The
circles are the true location of the vehicle whereas the crosses mark the dead-reckoned lo-
cations. The orientation of the vehicle is made clear by the orientation of the triangles.
Note the divergence between true and dead-reckoned locations. This is typical of all dead
reckoning methods — the only thing that can be changed is the rate of divergence.

into the system via the noisy control makes the estimated covariance of the vehicles grow
without bound.

There is an important point to make here that you must understand. In actual real life
the real robot is integrating the noisy control signal. The true trajectory will therefore always
drift away from the trajectory estimated by the algorithms running inside the robot. This is
exactly the same as closing your eyes and trying to walk across University Parks. Your inner
ears and legs give you u which you pass through your own kinematic model of your body
in your head. Of course, one would expect a gross accumulation of error as the time spent
walking “open loop” increases. The point is that all measurements such as velocity and
rate of turn are measured in the vehicle frame and must be integrated, along with the noise
on the measurements. This always leads to what is called “dead reckoning drift”. Figure
4.3 shows the effect of integrating odometry on a real robot called “B21” shown in figure
4.3(right). The main cause of this divergence on land vehicles is wheel slip. Typically robot
wheels are fitted with encoders that measure the rotation of each wheel. Position is then
an integral-function of these “wheel counts”. The problem is a wheel or radius r may have
turned through θ but due to slip/skid the distance travelled over the ground is only (1−η)rθ
where η is an unobservable slip parameter.
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4.3 Using Dead-Reckoned Odometry Measurements

The model in Section 4.1 used velocity and steer angles as control input into the model. It is
common to find that this low level knowledge is not easy to obtain or that the relationship
between control, prior and prediction is not readily discernable. The architecture in figure
4.3 is a typical example.

DR Model


Encoder Counts


Hidden

Control


Nav


Physics


Other Measurements


Supplied Onboard

System


Navigation (to be installed by us)


Physics (to be estimated)


Dead Reckoned output

(drifts badly)


required (corrected)

navigation estimates


integration


Figure 4.3: Sometimes a navigation system will be given a dead reckoned position as input
without recourse to the control signals that were involved. Nevertheless the dead-reckoned
position can be converted into a control input (a stream of small motions) for use in the core
navigation system.

It would clearly be a bad plan to simply use a dead-reckoned odometry estimate as a
direct measurement of state in something like a Kalman Filter. Consider Figure 4.3 which
is the dead reckoned position of a B21 mobile robot (shown on right of figure) moving
around some corridors. Clearly by the end of the experiment we cannot reasonably interpret
dead-reckoned position as an unbiased measurement of position!

The low level controller on the vehicle reads encoders on the vehicle’s wheels and outputs
an estimate (with no metric of uncertainty) of its location. We can make a guess at the
kind of model it uses1 . Assume it has two wheels (left and right), radius r mounted either
side of its center of mass which in one time interval turn an amount δθl, δθr — as shown in
Figure 4.3. We align a body-centered co-ordinate frame on the vehicle as shown. We want

1This for illustration only - the real b21 vehicle is actually a synchronous drive machine in which all four
wheels change direction http://www.irobot.com
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Figure 4.4: Dead Reckoned position from a B21 mobile robot. The start and end locations
are actually the same place! See how you could roll the trajectory back over itself. This is
typical of dead reckoned trajectories — small angular errors integrate to give massive long
term errors

to express the change of position of the center of the vehicle as a function of δθl, δθr:

rδθr = (c− L/2)α (4.18)

rδθl = (c + L/2)α (4.19)

⇒ c =
L

2

δθl + δθr

δθl − δθr

(4.20)

⇒ α =
2r

L
(δθl − δθr) (4.21)

Immediately then we have




dx
dy
dθ


 =




(1− cos α)c
c sin α
−α


 (4.22)

Which for small α becomes:



dx
dy
dθ


 =




0
r(δθl + δθr)/2
−2r(δθl−δθr)

L


 (4.23)

The dead-reckoning system in the vehicle simply compounds these small changes in position
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Figure 4.5: Geometric Construction for a two wheel drive vehicle

and orientation to obtain a global position estimate. Starting from an initial nominal frame
at each iteration of its sensing loop it deduces a small change in position and orientation,
and then “adds” this to its last dead-reckoned position. Of course the “addition” is slightly
more complex than simple adding (otherwise the x coordinate would always be zero!). What
actually happens is that the vehicle composes successive co-ordinate transformation. This
is an important concept (which you will probably have met in other courses but perhaps
with a different notation) and will be discussed in the next section.

4.3.1 Composition of Transformations

Figure 4.3.1 shows three relationships between three coordinate frames. We can express any
coordinate j frame with respect to another frame i as a three-vector xi,j = [xyθ]. Here x and
y are translations in frame i to a point p and θ is anti-clockwise rotation around p. We define
two operators ⊕ and ª to allow us to compose (chain together) multiple transformations:

xi,k = xi,j ⊕ xj,k (4.24)

xj,i = ªxi,j (4.25)
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Figure 4.6: Three transformations between co-ordinate frames

With reference to figure 4.3.1 we see that x1,3 = x1,2 ⊕ x2,3. But what exactly are these
operators? Well, they are just a short hand for a function of one or two transformations:

x1 ⊕ x2 =

[
x1 + x2 cos θ1 − y2 sin θ1

y1 + x2 sin θ1 + y2 cos θ1

]
(4.26)

ªx1 =



−x1 cos θ1 − y1 sin θ1

x1 sin θ1 − y1 cos θ1

−θ1


 (4.27)

Be sure you understand exactly what these equations allow. They allow you to express
something (perhaps a point or vehicle) described in one frame, in another alternative frame.
We can use this notation to explain the compounding of odometry measurements. Figure
4.3.1 shows a vehicle with a prior pose xo(k− 1). The processing of wheel rotations between
successive readings (via Equation 4.23) has indicated a vehicle-relative transformation (i.e.
in the frame of the vehicle) u . The task of combining this new motion u(k) with the old
dead-reckoned estimate xo to arrive at a new dead-reckoned pose xo is trivial. It is simply:

xo(k) = xo(k − 1)⊕ u(k) (4.28)

We have now explained a way in which measurements of wheel rotations can be used to esti-
mate dead-reckoned pose. However we set out to figure out a way in which a dead-reckoned
pose could be used to form a control input or measurement into a navigation system. In

53



Using Dead-Reckoned Odometry Measurements 54

x
o
(k-1)


u(k)

x
o
(k)


Global Frame


Figure 4.7: Using transformation compositions to compound a local odometry measurement
with a prior dead-reckoned estimate to deduce a new dead-reckoned estimate.

other words we are given from the low-level vehicle software a sequence xo(1),xo(2) · · ·xo(k)
etc and we want to figure out u (k). This is now simple— we can invert equation 4.28 to get

u(k) = ªxo(k − 1)⊕ xo(k) (4.29)

Looking at the Figure 4.3.1 we can see that the transformation u(k) is equivalent to going
back along xo(k − 1) and forward along xo(k). This gives us a small control vector u (k)
derived from two successive dead-reckoned poses that is suitable for use in another hopefully
less error prone navigation algorithm. Effectively equation 4.29 subtracts out the common
dead-reckoned gross error - locally odometry is good - globally it is poor.

We are now in a position to write down a plant model for a vehicle using a dead-reckoned
position as a control input:

xv(k + 1) = f(xv(k),u(k)) (4.30)

= xv(k)⊕ (ªxo(k − 1)⊕ xo(k)︸ ︷︷ ︸
dr−control

) (4.31)

= xv(k)⊕ uo(k) (4.32)

It is reasonable to ask how an initial uncertainty in vehicle pose Pv propagates over time.
We know that one way to address this question is to propagate the second order statistics
(covariance) of a pdf for xv through f using equation 3.79. To do this we need to figure out the
jacobians of equation 4.32 with respect to xv and u. This is one area where the compositional
representation we have adopted simplifies matters. We can define and calculate the following
jacobians:
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J1(x1,x2) , ∂(x1 ⊕ x2)

∂x1
(4.33)

=




1 0 −x2 sin θ1 − y2 cos θ1

0 1 x2 cos θ1 − y2 sin θ1

0 0 1


 (4.34)

J2(x1,x2) , ∂(x1 ⊕ x2)

∂x2
(4.35)

=




cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1


 (4.36)

This allows us to write (substituting into equation 3.79) :

P(k|k − 1) = ∇FxPv(k − 1|k − 1)∇Fx
T +∇FvQ∇Fv

T (4.37)

= J1(xv,uo)Pv(k − 1|k − 1)J1(xv,uo)
T + J2(xv,uo)UoJ2(xv,uo)

T (4.38)

Here the matrix Uo describes the strength of noise in the small shifts in pose represented by
uo derived from two sequential dead-reckoned poses. A simple form of this matrix would be
purely diagonal 2:

Uo =




σ2
ox 0 0
0 σ2

oy 0
0 0 σ2

oθ


 (4.39)

where the diagonals are variances in odometry noise. For example if the odometry loop ran
at 20Hz and the vehicle is moving at 1m/s the magnitude of translation in u would be 5cm.
If we say slip accounts for perhaps one percent of distance travelled we might “try” a value
of σ2

ox = σ2
oy = (0.05/100)2. Allowing a maximum rotation of w perhaps a good starting

guess for σ2
oθ would be (w/100)2. These numbers will give sensible answers while the vehicle

is moving but not when it is stopped. Even when uo = 0 the covariance Pv will continue
to inflate. This motivates the use of a time varying Uo which is a function of uo(k). An
exercise you should think about.....

2implying we expect errors in x y and orientations to be uncorrelated which is probably not true in reality
but we will live with this approximation for now
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Topic 5

Feature Based Mapping and
Localisation

5.1 Introduction

We will now apply the estimation techniques we have learnt to two very important mobile
robotics tasks - Mapping and Localisation. Theses two tasks are fundamental to successful
deployment of autonomous vehicles and systems for example:

Mapping Managing autonomous open-cast
mining

GPS, Radar, Inertial

Battlefield Surveillance Cameras, GPS, Inertial
Fracture detection x-ray acoustic
Sub-sea Oil field detection on an
AUV

Acoustic Beacons, Inertial

Localisation GPS Satellite and time of flight
Museum Guides Sonar, Scanning Laser, Cameras
Hospital Delivery System Radio tags, laser cameras

A common way to approach these problems is to parameterise both the robot pose and
aspects of the environment’s geometry into one or more state vectors. For this course we
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will work mostly in 2D but the definitions that follow are, of course, valid for the full 3D
case.

5.2 Features and Maps

We suppose that the world is populated by a set of discrete landmarks or features whose
location / orientation and geometry (with respect to a defined coordinate frame) can be
described by a set of parameters which we lump into a feature vector xf .

We call a collection of n features a Map such that M = {xf ,1,xf ,2,xf ,3 · · ·xf ,n}. To keep
notation simple sometimes we will use M to denote the map vector which is simply the
concatenation of all the features:

M =




xf ,1

xf ,2
...

xf ,n


 (5.1)

In this course we will constrain ourselves to using the simplest feature possible - a point
feature such that for the ith feature:

xf ,i =

[
xi

yi

]
(5.2)

where x and y are the coordinates of the point in a global frame of reference. Point features
are not as uncommon as one might initially think. Points occur at the intersection of lines,
corners of rectangles, edges of objects (regions of maximal curvature)1.

5.3 Observations

We define two distinct types of observations all denoted as z — vehicle relative and absolute.

Absolute Absolute observations are made with the help of some external device and usually
involve a direct measurement of some aspect of the vehicle’s pose. The best examples

1Sure, our own vision system operates at a higher level recognising things like gorillas and sail-boats as
complete entities but lower-level geometric-primitive detection is buried in there as well.
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are a GPS and a compass. They depend on external infrastructure (taken as known)
and are nothing to do with the map.

Vehicle Relative This kind of observation involves sensing the relationship between the
vehicle and its immediate surroundings –especially the map, see figure 5.3. A great
example is the measurement of the angle and distance to a point feature with respect to
the robot’s own frame of reference. We shall also class odometry (integration of wheel
movement) as a vehicle-relative measurement because it is not a direct measurement
of the vehicle’s state.

x
v


x
fi


 
Features and Landmarks


Global Reference Frame


Mobile Vehicle


Vehicle-Feature Relative

Observation


Figure 5.1: Feature Based Navigation and Mapping

5.4 A Probabilistic Framework

It is informative to describe the localisation and mapping tasks in terms of likelihoods (ob-
servation pdf) and priors.

5.4.1 Probabilistic Localisation

For the localisation task we assume we have been given a map and receive a sequence of
vehicle-relative observations described by a likelihood p(Zk|M,xv). We wish to figure out
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a pdf for the vehicle pose given map and observations. We start by using the chain rule to
express the joint p(xv,M,Zk) in two different ways.

p(xv,M,Zk) = p(xv|M,Zk)× p(Zk|M)× p(M) (5.3)

= p(Zk|xv,M)× p(xv|M)× p(M) (5.4)

so

(5.5)

p(xv|M,Zk) =
p(Zk|xv,M)× p(xv|M)× p(M)

p(Zk|M)× p(M)
(5.6)

p(xv|M,Zk) =
p(Zk|xv,M)p(xv|M)∫∞

−∞ p(Zk|xv,M)p(xv|M)
(5.7)

(5.8)

5.4.2 Probabilistic Mapping

For the mapping side of things we are given the vehicle location (probably derived from
absolute observation) and an sequence of vehicle relative observations. We wish to find the
distribution of M conditioned on Zkand xv . We begin in a similar way to the localisation
case:

p(xv,M,Zk) = p(M|xv,Z
k)× p(Zk|xv)× p(xv) (5.9)

= p(Zk|xv,M)× p(M|xv)× p(xv) (5.10)

so

p(M|xv,Z
k) =

p(Zk|xv,M)× p(M|xv)× p(xv)

p(Zk|xv)× p(xv)
(5.11)

=
p(Zk|xv,M)× p(M|xv)∫∞
−∞ p(Zk|xv,M)× p(M|xv)

(5.12)

Don’t panic about the integrals in the denominators — they are just normalising con-
stants Equations. However, 5.7 and 5.12 should have a familiar form — we met them when
discussing Maximum a priori estimators, recursive bayesian estimation which collectively
lead us to discuss and explore the Kalman filter. The Kalman filter would appear to be an
excellent way in which to implement these equations. If we parameterise the random vectors

59



Feature Based Estimation for Mapping and Localising 60

xv and M with first and second order statistics (mean and variance) then the Kalman Filter
will calculate the MMSE estimate of the posterior. The first derivation of the Kalman filter
presented proceeded by assuming Gaussian distributions. In this case the Kalman filter is
the optimal Bayesian estimator. The Kalman filter provides a real time way to perform state
estimation on board a vehicle.

5.5 Feature Based Estimation for Mapping and Local-

ising

5.5.1 Feature Based Localisation

This is the simplest task. We are given a map M containing a set of features and a stream
of observations of measurements between the vehicle and these features (see figure 5.3). We
assume to begin with that an oracle is telling us the associations between measurements and
observed features. We assume the vehicle we are navigating is equipped with a range-bearing
sensor which returns the range and bearing to point like objects (the features). We will base
the ensuing simulation on a real vehicle - the B21 we have already met - this means that
we will have an additional sequence of dead-reckoned positions as input into the prediction
stage. We denote these as xo

We have already have the prediction equations from previous discussions ( Equation
5.13):

x̂(k|k − 1) = x̂(k − 1|k − 1)⊕ (ªxo(k − 1)⊕ xo(k)) (5.13)

x̂(k|k − 1) = x̂(k − 1|k − 1)⊕ uo(k) (5.14)

P(k|k − 1) = ∇FxP(k − 1|k − 1)∇Fx
T +∇FvQ∇Fv

T (5.15)

= J1(xv,uo)Pv(k − 1|k − 1)J1(xv,uo)
T + J2(xv,uo)UoJ2(xv,uo)

T (5.16)

Now we come to the observation equation which is simply a range ri and bearing θi to
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the ith feature:

z(k) ,
[
r
θ

]
(5.17)

= h(x(k),w(k)) (5.18)

=

[√
(xi − xv(k))2 + (yi − yv(k))2

atan2( yi−yv(k)
xi−xv(k)

)− θv

]
(5.19)

We differentiate w.r.t xv to arrive at the observation model jacobian:

∇Hx , ∂h

∂x
(5.20)

=

[
xi−xv(k)

r
yi−yv(k)

r
0

yi−yv(k)
r2 −xi−xv(k)

r2 −1

]
(5.21)

We assume independent errors on range and bearing measurements and use a diagonal
observation covariance matrix R :

R =

[
σ2

r 0
0 σ2

θ

]
(5.22)

Section 7.3 is a print out of an implementation of feature based localisation using the
models we have just discussed. You can also download the code from the course web-site
¡http://www.robots.ox.ac.uk/∼pnewman : teaching¿. Figure 5.5.1 shows the trajectory of the
vehicle as it moves through a field of random point features. Note that the code simulates
a sensor failure for the middle twenty percent of the mission. During this time the vehicle
becomes more and more lost. When the sensor comes back on line there is a jump in
estimated vehicle location back to one close to the true position (see figure 5.5.1).

5.5.2 Feature Based Mapping

Now we will consider the dual of Localisation - Mapping. In this case the vehicle knows
where it is but not what is in the environment. Perhaps the vehicle is fitted with a GPS
or some other localisation system using an a-priori map. To avoid initial confusion we’ll
imagine the vehicle has a ’super-gps’ on board telling it where it is at all times.

The state vector for this problem is now much larger -it will be the Map itself and
the concatenation of all point features. The observation equation is the same as for the
localisation case only now the feature co-ordinates are the free variables.
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Figure 5.3: Feature Based Localisation innovation and error/covariance plots. Notice how
when no measurements are made the vehicle uncertainty grows rapidly but reduces when
features are re-observed. The covariance bounds are 3-sigma and 1-sigma-bound on state
error and innovation plots respectively.

The prediction model for the state is trivial. We assume that features don’t move and
so x(k + 1|k)map = x(k|k)map.

Initially the map is empty and so we need some method to add “newly discovered’ features
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vehicle trajectory 

decreasing feature uncertainty 

Figure 5.4: Evolution of a map over time. The vertical axis is time (k). Covariance ellipses
for each feature are plotted in the z = k planes. Note how the filter converges to a perfect
map because no process noise is added in the prediction step

to it. To this end we introduce a feature initialisation function Y that take as arguments
the old state vector and an observation to a landmark and returns a new, longer state vector
with the new feature at its end. For the case of a range bearing measurement we would have
the following:

x(k|k)∗ = y(x(k|k), z(k),xv(k|k)) (5.23)

=

[
x(k|k)

g(x(k), z(k),xv(k|k))

]
(5.24)

=




x(k|k)
xv + r cos(θ + θv)
yv + r sin(θ + θv)


 (5.25)

(5.26)

where the coordinates of the new feature are given by the function g:

xfnew = g(x(k), z(k),xv(k|k)) (5.27)

= (

[
xv + r cos(θ + θv)
yv + r sin(θ + θv)

]
(5.28)

We also need to figure out how to transform the covariance matrix P when adding a new
feature. Of course we can use the jacobian of the transformation:
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P(k|k)∗ = ∇Yx,z

[
P(k|k) 0

0 R

]
∇Yx,z

T (5.29)

where

∇Yx,z =

[
In×n 0n×2

∇Gx ∇Gz

]
(5.30)

Now for the mapping case ∇Gx = 0 as the new feature is not dependent on any element
in the state vector (which only contains features). Therefore:

P(k|k)∗ =

[
P(k|k) 0

0 ∇GzR∇Gz
T

]
(5.31)

One thing to realise is that the observation Jacobian is now “long and thin”. When
observing feature i it is only non-zero at the “location” (indexes) of the feature in the state
vector:

∇Hx =

[ · · ·0 · · ·︸ ︷︷ ︸
otherfeatures

∇Hxfi︸ ︷︷ ︸
observedfeature

· · ·0 · · ·︸ ︷︷ ︸
otherfeatures

]
(5.32)

Figure 5.5.2 shows the evolution of the map over time. Note that as no process noise is
ever added to the system the uncertainty in feature locations after initialisation is always
decreasing. In the limit the map will be known perfectly. The code used to generate this
simulation for feature based mapping can be downloaded from the course web-site. You
might think it odd that in the limit the map becomes perfectly known. You might think
that intuitively there should always be some residual uncertainty. The point is that the
vehicle is continually being told where (via the super-GPS) it is and is not changing its
position estimate as a function of landmark observations. As a consequence all features
are independent (check this by examining the P matrix –it is block diagonal) and each
observation of them simply adds information and therefore reduces their uncertainty - again
and again and again.... This is in contrast to the next section where landmark observations
will be allowed to adjust map and vehicle estimates simultaneously!
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5.6 Simultaneous Localisation and Mapping - SLAM

SLAM is the generalised navigation problem. It asks if it is possible for a robot, starting
with no prior information, to move through its environment and build a consistent map of
the entire environment. Additionally the vehicle must be able to use the map to navigate
(localise) and hence plan and control its trajectory during the mapping process. The appli-
cations of a robot capable of navigating , with no prior map, are diverse indeed. Domains
in which ’man in the loop’ systems are impractical or difficult such as Martian exploration,
sub-sea surveys, and disaster zones are obvious candidates. Beyond these, the sheer increase
in autonomy that would result from reliable, robust navigation in large dynamic environ-
ments is simply enormous. Autonomous navigation has been an active area of research for
many years.

In SLAM no use is made of prior maps or external infrastructure such as GPS. A SLAM
algorithm builds a consistent estimate of both environment and vehicle trajectory using only
noisy proprioceptive (e.g., inertial, odometric) and vehicle-centric (e.g., radar, camera and
laser) sensors. Importantly, even though the relative observations are of the local environ-
ment, they are fused to create an estimate of the complete workspace.

The SLAM problem is of fundamental importance in the quest for autonomous mobile
machines. It binds aspects of machine learning, uncertainty management, perception, sensing
and control to enable a machine to discover and understand its surroundings with no prior
knowledge or external assistance.

This section will introduce a simple feature based approach to the SLAM problem. It
doesn’t work in real life for deployments in large areas because it involves running a Kalman
filter to estimate the entire map and vehicle state. The update of the covariance matrix
is therefore at best proportional to the square of the number of features. Given enough
features the system will grind to a halt. Figure 5.6 shows some of the kind of area that can
be mapped and localised in using this technique.

You’ll be pleased to know we have pretty much done all the work required to implement
a full SLAM algorithm. We will still employ the oracle that tells us which feature is being
seen with each observation. All we do now is change our state vector to include both vehicle
and map:

x ,




xv

xf ,1
...xf ,n


 (5.33)
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Figure 5.5: SLAM in a real environment. These figures are screen shots from an exper-
iment using a B21 robot in a hallway at MIT. Having built the map the vehicle used
it to navigate home to within a few cm of its start position. Videos can be found at
¡http://www.robots.ox.ac.uk/∼pnewman : teaching¿.

Of course to start with n = 0 but as new features are seen the state vector is grown
just as in the pure mapping case. The difference now is that the observation and feature
initialisation jacobians have two non-zero blocks. one with respect to the vehicle and one
with respect to the observed feature.
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∇Hx =
[∇Hxv · · · ∇Hxf ,1

]
(5.34)

∇Yx,z =

[
In×n 0n×2

∇Gx ∇Gz

]
(5.35)

=

[
In×n 0n×2[∇Gxv · · ·0 · · ·

] ∇Gz

]
(5.36)

Also note that the jacobian of the prediction models have changed in an obvious way:

∇Fx =

[∇Fxv 0
0 I2n×2n

]
(5.37)

=

[
J1(xv,u) 0

0 I2n×2n

]
(5.38)

∇Fu =

[
J2(xv,u) 0

0 02n×2n

]
(5.39)

(5.40)

because the prediction model is now:



xv(k + 1)
xf ,1(k)

...
xf ,n(k)


 =




xv(k)⊕ u(k)
xf ,1(k)

...
xf ,n(k)


 (5.41)

Note that the features are not expected to move between time steps (pretty much what you
would hope for when using a map!) and they are noiseless. Only the vehicle has process
noise injected into its covariance matrix during a prediction step.

The matlab code for an EKF, feature based SLAM algorithm can be found on the course
web-site. You should be able to recognise it as a union of previous localisation and mapping
examples. Figure 5.6 shows a few snap shots of the algorithm running.

5.6.1 The role of Correlations

Note that the covariance matrix now has some structure to it -you can partition map Pmm

and vehicle Pvv blocks.

P =

[
Pvv Pvm

PT
vm Pmm

]
(5.42)
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Of diagonals Pvm are the correlations between map and vehicle. Its pretty clear that there
should be correlations between map and vehicle as they are so interrelated. Consider the
following sequence of events. From the moment of initialisation the feature’s location is a
function of vehicle location and so errors in the vehicle location will also appear as errors
in feature location. Now recall the discussion regarding correlations in section 3.1.3 —
correlations cause adjustments in one state to ripple into adjustments in other states. This
is of course also true in this kind of approach to the SLAM problem. Remarkably every
observation of a feature affects the estimate of every other feature in the map. It’s as though
they are all tied up together with elastic bands - pulling at one will pull at the others in
turn.

There are some further characteristics of the SLAM problem that transcend the estima-
tion method being used. You should be able to check that they are true by running the
example code:

• The feature uncertainties never drop below the initial uncertainty of the vehicle. This
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makes sense, if you start with say 10m of uncertainty relative to Carfax tower mapping
and re-observing things within the Thom building is never going to reduce your overall
uncertainty. The best you can hope for is to reduce all features to the lower bound -
your initial uncertainty. Compare this to the ever decreasing uncertainty of features
in the mapping only case.

• The feature uncertainties never increase but the vehicle uncertainty can. The prediction
model is the identity matrix for the map - we don’t expect it to move. Furthermore the
map has a noiseless model and so the prediction step does not inflate the covariance
of the map.

The SLAM problem is a very topical problem and is attracting interest from the AI,
robotics and machine learning communities. If you want to find out more just ask....
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Topic 6

Miscellaneous Matters

This section is meant to help you with the class work and covers things that you may need
to know but that don’t really fit in the main body of the notes

6.1 Drawing Covariance Ellipses

The n-dimensional multivariate-normal distribution has form

p(x) =
1

(2π)n/2 | P |1/2
exp{−1

2
(x− µx)

TP−1(x− µx)} (6.1)

The exponent (x − µx)
TP−1(x − µx) defines contours on the bell curve. A particularly

useful contour is the “1− σ bound” where (x− µx)
TP−1(x− µx) = 1. It is really useful to

be able to plot this contour to illustrate uncertainties in 2D. We can disregard the vector µx

as it simply shifts the distribution. So we have

xTP−1x = 1 (6.2)

we can use eigenvalue decomposition to factorise P as VDVT where V is some rotation
matrix and D is a diagonal matrix of principal values

xT (VDVT )−1x = 1 (6.3)

70



Drawing Covariance Ellipses 71

X

p(x,y)

Y

Figure 6.1: A bi-variate normal distribution. The thick contour is the 1 − σ bound where
(x− µx)

TP−1(x− µx) = 1
.

using the fact that V is orthonormal:

xTVD−1VTx = 1 (6.4)

xTVD−1/2D−1/2VTx = 1 (6.5)

xTKKTx = 1 (6.6)

where

K = VD−1/2. (6.7)

now for any point y = [x, y]T which is on the unit circle, yTy = 1, so

xTKKTx = yTy (6.8)

KTx = y (6.9)

⇒ x = VD1/2y (6.10)

So to draw an ellipse described by a 2 × 2 covariance matrix P we take a whole bunch of
points on the unit circle and multiply them by VD1/2 and plot the resulting points. This
makes sense, intuitively the variance is in “units squared”— D1/2 is a diagonal matrix of
standard deviations - the semi-major and semi-minor axes of the ellipse. The fist thing we
do is scale the unit circle by these factors. Then we rotate the ellipse by V — recall that
the correlations between x and y (off diagonals in P ) induce a rotation in the ellipse?
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2
σ
xx


2
σ
yy


α


Figure 6.2: The relationship between geometry of the 1 − σ bound for a bivariate normal
distribution and its covariance matrix.

Figure 6.1 shows the relation ship between P and the plotted form for a bivariate normal
distribution.

P =

[
σ2

xx σ2
xy

σ2
xy σ2

yy

]
(6.11)

tan 2α =
2σ2

xy

σ2
xx − σ2

yy

(6.12)
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6.2 Drawing High Dimensional Gaussians

Obviously it is hard to draw a high dimensional gaussian on a screen or paper. For example
we may have a covariance matrix that corresponds to a large state vector:

x =



a
b
c


 (6.13)

P =




[
σa11

2 σa12
2

σa21
2 σa22

2

]}
Paa · · · · · ·

...

marginal of component b︷ ︸︸ ︷[
σb11

2 σb12
2

σb21
2 σb22

2

]}
Pbb · · ·

...
...

[
σc11

2 σc12
2

σc21
2 σc22

2

]}
Pcc




(6.14)

So to plot a 2D representation of the ith entity in a state vector simply plot the ellipse for
the ith 2 by 2 block in P .
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Topic 7

Example Code

7.1 Matlab Code For Mars Lander Example

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% A MARS LANDER −−− EXAMPLE CODE C4
% P. Newman 2003
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−− TOP LEVEL LOOP −−−−−−−−−−−−−−−−−−−−−%
function SimulateMarsLander
close a l l ; clear a l l ;

global Params ; global XTrue ; global Veh ic l eSta tus ; global Store ;

%se t up parameters
D o I n i t i a l i s e ;

%i n i t i a l c ond i t i on s o f e s t imator
XEst = [ Params .X0+Params . I n i t i a lH e i g h tE r r o r ; Params .V0+Params . I n i t i a lV e l o c i t yE r r o r ] ;
PEst = diag ( [ Params . I n i t i a lH e i gh t S td ˆ2 , Params . I n i t i a lV e l o c i t y S t d ˆ 2 ] ) ;

%s to r e i n i t i a l c ond i t i on s :
DoStore (1 ,XEst , PEst , [ 0 ] , [ 0 ] ,NaN) ;

k = 2 ;
while (˜ Veh i c l eS ta tus . Landed & k <Params . StopTime/Params .dT)

% simu la t e the world
DoWorldSimulation (k ) ;

74



Matlab Code For Mars Lander Example 75

% read from sensor
z (k ) = GetSensorData (k ) ;

% es t imate the s t a t e o f the v e h i c l e
[ XEst , PEst , S , Innovat ion ] = DoEstimation (XEst , PEst , z ( k ) ) ;

% make d e c i s i on s based on our esimated s t a t e
DoControl (k , XEst ) ;

% s to r e r e s u l t s
DoStore (k , XEst , PEst , Innovation , S , z ( k ) ) ;

%t i c k . . .
k = k+1;

end ;

%draw p i c t u r e s . . . .
DoMarsGraphics ( k ) ;

return ;

%−−−−−−−−− PROBLEM SET UP AND INITIALISATION −−−−−−−−−−−−−−−−−−−−−%
% users changes parameters here
function D o I n i t i a l i s e
global Params ;
global XTrue ;
global Veh ic l eSta tus ;
global Store ;

%−−−−−− user c on f i g u r a b l e parameters −−−−−−−−−−−−−
Params . StopTime = 600 ;%run fo r how many seconds (maximum)?
Params .dT = 0 . 1 ; % Run nav i ga t i on at 10Hz
Params . c l i g h t = 2.998 e8 ;
Params . EntryDrag = 5 ; % l i n e a r drag cons tant
Params . ChuteDrag = 2.5∗Params . EntryDrag ; % l i n e a r drag cons tant wi th chute open
Params . g = 9 . 8 / 3 ; % assumed g r a v i t y on mars
Params .m = 50 ; % mass o f v e h c i l e
Params . RocketBurnHeight = 1000 ; % when to turn on brakes
Params . OpenChuteHeight = 4000 ; %when to open chute
Params .X0 = 10000 ; % true entry h e i g h t
Params .V0 = 0 ; % true entry v e l o c i t y
Params . I n i t i a lH e i g h tE r r o r = 0 ; % error on entry h e i g h t
Params . I n i t i a lV e l o c i t yE r r o r = 0 ; % error on entry v e l o c i t y
Params . I n i t i a lH e i g h t S td = 100 ; %uncer ta in t y in i n i t i a l c ond i t i on s
Params . I n i t i a lV e l o c i t y S t d = 20 ; %uncer ta in t y in i n i t i a l c ond i t i on s
Params . BurnTime = NaN;
Params . ChuteTime = NaN;
Params . LandingTime = NaN;

%i n i t i a l v e h i c l e cond i t i on at entry in t o atmosphere . . .
Veh ic l eS ta tus . ChuteOpen = 0 ;
Veh i c l eS ta tus . RocketsOn = 0 ;
Veh i c l eS ta tus . Drag = Params . EntryDrag ;
Veh i c l eS ta tus . Thrust = 0 ;

75



Matlab Code For Mars Lander Example 76

Veh ic l eS ta tus . Landed = 0 ;

%process p l an t model ( cons tant v e l c o i t y wi th no i se in a c c e l e r a t i o n )
Params .F = [1 Params .dT ;

0 1 ] ;

%process no i se model (maps a c c e l e r a t i o n no i se to o ther s t a t e s )
Params .G = [ Params .dTˆ2/2 ; Params .dT ] ;

%ac tua l proces s no i se t r u e l y occur ing − atmospher entry i s a bumpy bu s ine s s
%note t h i s no i se s t r en g t h − not the d ea c c e l e r a t i on o f the v e h i c l e . . . .
Params . SigmaQ = 0 . 2 ; %msˆ{−2}

%process no i se s t r en g t h how much a c c e l e r a t i o n ( var inace ) in one t i c k
% we expec t ( used to ’ exp la in ’ i naccurac i e s in our model )
%the 3 i s s c a l e f a c t o r ( s e t i t to 1 and r e a l and model led no i s e s w i l l
%be equa l
Params .Q = (1 . 1∗Params . SigmaQ )ˆ2 ; %(msˆ2 s t d )

%obse r va t i on model ( e x p l a i n s o b s e r va t i on s in terms o f s t a t e to be es t imated )
Params .H = [2/ Params . c l i g h t 0 ] ;

%obse r va t i on no i se s t r en g t h (RTrue) i s how noisey the sensor r e a l l y i s
Params . SigmaR = 1.3 e−7; %( seconds ) 3 .0 e−7 corresponds to around 50m error . . . .

%ob s e r va t i on expec ted no i se s t r en g t h (we never know t h i s parameter e x a c t l y )
%s e t the s c a l e f a c t o r to 1 to make model and r e a l l i t y match
Params .R = (1 . 1∗Params . SigmaR )ˆ2 ;

%i n i t i a l c ond i t i on s o f ( t rue ) world :
XTrue ( : , 1 ) = [ Params .X0 ; Params .V0 ] ;

Params
return ;

%−−−−−−−−−−−−−−−−−− MEASUREMENT SYSTEM −−−−−−−−−−−−−−−−−−%
function z = GetSensorData (k )
global XTrue ;
global Params ;

z = Params .H∗XTrue ( : , k ) + Params . SigmaR∗ randn ( 1 ) ;
return ;

%−−−−−−−−−−−−−−− ESTIMATION KALMAN FILTER −−−−−−−−−−−−−−−%
function [ XEst , PEst , S , Innovat ion ] = DoEstimation (XEst , PEst , z )
global Params ;
F = Params .F ;G = Params .G;Q = Params .Q;R = Params .R;H = Params .H;

%pred i c t i on . . .
XPred = F∗XEst ;
PPred = F∗PEst∗F’+G∗Q∗G’ ;

% prepare f o r update . . .
Innovat ion = z−H∗XPred ;
S = H∗PPred∗H’+R;
W = PPred∗H’∗ inv (S ) ;
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% do update . . . .
XEst = XPred+W∗ Innovat ion ;
PEst = PPred−W∗S∗W’ ;
return ;

%−−−−−−−−−−−−−−− ITERATE SIMULATION −−−−−=−−−−−−−−−−−−−−−%
function DoWorldSimulation (k )

global XTrue ; global Params ; global Veh ic l eSta tus ;

o l dv e l = XTrue (2 , k−1);
o ldpos = XTrue (1 , k−1);
dT = Params .dT ;

%f r i c t i o n i s a func t i on o f h e i g h t
cxtau = 500 ; % s p a t i a l e xponen t i a l f a c t o r f o r atmosphere d en s i t y )
AtmospherDensityScaleFactor = (1−exp(−(Params .X0−oldpos )/ cxtau ) ) ;
c = AtmospherDensityScaleFactor ∗Veh ic l eSta tus . Drag ;

%clamp between 0 and c f o r numerical s a f e t y
c = min(max( c , 0 ) , Veh i c l eS ta tus . Drag ) ;

%simple Euler i n t e g r a t i o n
acc = (−c∗ o ldve l− Params .m∗Params . g+Veh i c l eS ta tus . Thrust )/Params .m + Params . SigmaQ∗randn ( 1 ) ;
newvel = o l dv e l+acc ∗dT;
newpos = oldpos+o ldv e l ∗dT+0.5∗ acc ∗dTˆ2 ;
XTrue ( : , k ) = [ newpos ; newvel ] ;

%−−−−−−−−−−−−−−− LANDER CONTROL −−−−−−−−−−−−−−−−−−−−−−−−−%

function DoControl (k , XEst )

global Params ; global Veh ic l eSta tus ;

i f (XEst(1)<Params . OpenChuteHeight & ˜ Veh i c l eS ta tus . ChuteOpen )
%open parachute :
Veh ic l eSta tus . ChuteOpen = 1 ;
Veh i c l eS ta tus . Drag = Params . ChuteDrag ;
fpr intf ( ’ Opening Chute at time %f \n ’ , k∗Params .dT ) ;
Params . ChuteTime = k∗Params .dT ;

end ;

i f (XEst(1)<Params . RocketBurnHeight )
i f (˜ Veh i c l eS ta tus . RocketsOn )

fpr intf ( ’ Re l eas ing Chute at time %f \n ’ , k∗Params .dT ) ;
fpr intf ( ’ F i r i ng Rockets at time %f \n ’ , k∗Params .dT ) ;
Params . BurnTime = k∗Params .dT ;

end ;

%turn on t h r u s t e r s
Veh ic l eSta tus . RocketsOn = 1 ;
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%drop chute . .
Veh ic l eSta tus . Drag = 0 ;

%simple l i t t e l c o n t r o l l e r here ( from vˆ2 = uˆ2+2as ) and +mg fo r we igh t o f v e h i c l e
Veh ic l eSta tus . Thrust = (Params .m∗XEst (2)ˆ2−1)/(2∗XEst (1))+0.99∗Params .m∗Params . g ;

end ;

i f (XEst(1)<1)
%stop when we h i t the ground . . .
fpr intf ( ’ Landed at time %f \n ’ , k∗Params .dT ) ;
Veh i c l eS ta tus . Landed = 1 ;
Params . LandingTime = k∗Params .dT ;
break ;

end ;

return ;

%−−−−−−−−−−−−−−− MANAGE RESULTS STORAGE −−−−−−−−−−−−−−−−−−−−−−%
function DoStore (k , XEst , PEst , Innovation , S , z )
global Store ;
i f ( k==1)

Store . XEst = XEst ;
Store . PEst = diag (PEst ) ;
Store . Innovat ion = Innovat ion ;
Store . S = S ;
Store . z = z ;

else
Store . XEst = [ Store . XEst XEst ] ;
Store . PEst = [ Store . PEst diag (PEst ) ] ;
Store . Innovat ion = [ Store . Innovat ion Innovat ion ] ;
Store . S = [ Store . S diag (S ) ] ;
Store . z = [ Store . z z ] ;

end ;
return ;

7.2 Matlab Code For Ackerman Model Example

function AckermannPredict
clear a l l ;
close a l l ;

dT = 0 . 1 ;%time s t e p s s i z e
nSteps = 600 ;%leng t h o f run
L = 2 ;%leng t h o f v e h i c l e
SigmaV = 0 . 1 ; %3cm/s s t d on speed
SigmaPhi = 4∗pi /180 ; % s t e e r inaccuracy

%i n i t i a l knowledge pdf ( p r i o r @ k = 0)
P = diag ( [ 0 . 2 , 0 . 2 , 0 ] ) ; x = [ 0 ; 0 ; 0 ] ; xtrue = x ;

Q = diag ( [ SigmaVˆ2 SigmaPhi ˆ 2 ] ) ;
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%−−−−−−−− Set up g raph i c s −−−−−−−−−−−%
f igure ( 1 ) ; hold on ; axis equal ; grid on ; axis ([−20 20 −5 25 ] )

xlabel ( ’ x ’ ) ; ylabel ( ’ y ’ ) ;
t i t l e ( ’ unce r ta in ty bounds f o r Ackermann model ’ ) ;

%−−−−−−−− Main loop −−−−−−−−−−−%
for ( k = 1 : nSteps )

%con t r o l i s a w i g g l e a t cons tant v e l o c i t y
u = [ 1 ; pi /5∗ sin (4∗pi∗k/nSteps ) ] ;

%ca l c u l a t e j a cob i ans
JacFx = [1 0 −dT∗u (1)∗ sin ( x ( 3 ) ) ; 0 1 dT∗u (1)∗ cos ( x ( 3 ) ) ; 0 0 1 ] ;
JacFu = [dT∗cos ( x ( 3 ) ) 0 ; dT∗ sin ( x ( 3 ) ) 0 ; dT∗ tan (u (2 ) ) /L dT ∗u (1)∗ sec (u ( 2 ) ) ˆ 2 ] ;

%pred i c t i on s t e p s
P = JacFx ∗ P ∗JacFx ’ + JacFu∗Q∗JacFu ’ ;
xtrue = AckermannModel ( xtrue , u+[SigmaV ; SigmaPhi ] . ∗ randn ( 2 , 1 ) ,dT,L ) ;
x = AckermannModel (x , u , dT,L ) ;

%draw oc c a s i ona l l y
i f (mod(k−1,30)==0)

P l o tE l l i p s e (x ,P , 0 . 5 ) ; DrawRobot (x , ’ r ’ ) ; plot ( xtrue ( 1 ) , xtrue ( 2 ) , ’ ko ’ ) ;
end ;

end ;

print −deps ’ AckermannPredict . eps ’%save the p i c t u r e

%−−−−−−−−−−−− MODEL −−−−−−−−−−−−−−%
function y = AckermannModel (x , u , dT,L)
y (1 , 1 ) = x (1) + dT∗u (1)∗ cos ( x ( 3 ) ) ;
y (2 , 1 ) = x (2) + dT∗u (1)∗ sin ( x ( 3 ) ) ;
y (3 , 1 ) = x (3) + dT∗u (1)/L∗tan (u ( 2 ) ) ;

%−−−−−−−− Drawing Covariance −−−−−%
function eH = P l o tE l l i p s e (x ,P, nSigma )
P = P( 1 : 2 , 1 : 2 ) ; % only p l o t x−y par t
x = x ( 1 : 2 ) ;
i f (˜any(diag (P)==0))

[V,D] = eig (P) ;
y = nSigma ∗ [ cos ( 0 : 0 . 1 : 2 ∗ pi ) ; sin ( 0 : 0 . 1 : 2 ∗ pi ) ] ;
e l = V∗sqrtm (D)∗y ;
e l = [ e l e l ( : , 1 ) ]+ repmat (x , 1 , s ize ( e l , 2 )+1) ;
eH = l ine ( e l ( 1 , : ) , e l ( 2 , : ) ) ;

end ;

%−−−−−−−− Drawing Veh ic l e −−−−−%
function DrawRobot (Xr , c o l ) ;

p=0.02; % percentage o f axes s i z e
a=axis ;
l 1=(a(2)−a (1 ) )∗p ;
l 2=(a(4)−a (3 ) )∗p ;
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P=[−1 1 0 −1; −1 −1 3 −1];%bas i c t r i a n g l e
theta = Xr(3)−pi /2 ;%ro t a t e to po in t a long x ax i s ( t h e t a = 0)
c=cos ( theta ) ;
s=sin ( theta ) ;
P=[c −s ; s c ]∗P; %ro t a t e by t h e t a
P(1 , : )=P( 1 , : ) ∗ l 1+Xr ( 1 ) ; %sca l e and s h i f t to x
P(2 , : )=P( 2 , : ) ∗ l 2+Xr ( 2 ) ;
H = plot (P( 1 , : ) ,P( 2 , : ) , co l , ’ LineWidth ’ , 0 . 1 ) ;% draw
plot (Xr (1 ) ,Xr ( 2 ) , sprintf ( ’%s+’ , c o l ) ) ;

7.3 Matlab Code For EKF Localisation Example

function EKFLocal isation
close a l l ; clear a l l ;
global xTrue ; global Map; global RTrue ; global UTrue ; global nSteps ;

nSteps = 6000 ;

Map = 140∗rand (2 ,30)−70;

UTrue = diag ( [ 0 . 0 1 , 0 . 0 1 , 1 ∗ pi / 1 8 0 ] ) . ˆ 2 ;
RTrue = diag ( [ 2 . 0 , 3 ∗ pi / 1 8 0 ] ) . ˆ 2 ;

UEst = 1.0∗UTrue ;
REst = 1.0∗RTrue ;

xTrue = [1;−40;−pi / 2 ] ;
xOdomLast = GetOdometry ( 1 ) ;

%i n i t i a l c ond i t i on s :
xEst =xTrue ;
PEst = diag ( [ 1 , 1 , ( 1 ∗ pi / 1 8 0 ) ˆ 2 ] ) ;

%%%%%%%%% storage %%%%%%%%
InnovStore = NaN∗zeros (2 , nSteps ) ;
SStore = NaN∗zeros (2 , nSteps ) ;
PStore = NaN∗zeros (3 , nSteps ) ;
XStore = NaN∗zeros (3 , nSteps ) ;
XErrStore = NaN∗zeros (3 , nSteps ) ;

%i n i t i a l g raph i c s
f igure ( 1 ) ; hold on ; grid o f f ; axis equal ;
plot (Map( 1 , : ) ,Map( 2 , : ) , ’ g∗ ’ ) ; hold on ;
set ( gcf , ’ doub l ebu f f e r ’ , ’ on ’ ) ;
hObsLine = l ine ( [ 0 , 0 ] , [ 0 , 0 ] ) ;
set ( hObsLine , ’ l i n e s t y l e ’ , ’ : ’ ) ;

for k = 2 : nSteps

%do world i t e r a t i o n
SimulateWorld (k ) ;

%f i g u r e out c on t r o l
xOdomNow = GetOdometry (k ) ;
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u = tcomp ( t inv (xOdomLast ) ,xOdomNow) ;
xOdomLast = xOdomNow;

%do p r ed i c t i on
xPred = tcomp ( xEst , u ) ;
xPred (3 ) = AngleWrap ( xPred ( 3 ) ) ;
PPred = J1 ( xEst , u)∗ PEst ∗J1 ( xEst , u ) ’ + J2 ( xEst , u)∗ UEst ∗ J2 ( xEst , u ) ’ ;

%observe a randomn f e a t u r e
[ z , iFeature ] = GetObservation (k ) ;

i f (˜ isempty ( z ) )
%pred i c t o b s e r va t i on
zPred = DoObservationModel ( xPred , iFeature ,Map) ;

% ge t ob s e r va t i on Jacobian
jH = GetObsJac ( xPred , iFeature ,Map) ;

%do Kalman update :
Innov = z−zPred ;
Innov (2 ) = AngleWrap ( Innov ( 2 ) ) ;

S = jH∗PPred∗jH ’+REst ;
W = PPred∗jH ’∗ inv (S ) ;
xEst = xPred+ W∗ Innov ;
xEst (3 ) = AngleWrap ( xEst ( 3 ) ) ;

%note use o f ’ Joseph ’ form which i s numer ica l l y s t a b l e
I = eye ( 3 ) ;
PEst = ( I−W∗ jH )∗PPred∗( I−W∗ jH) ’+ W∗REst∗W’ ;
PEst = 0 . 5∗ ( PEst+PEst ’ ) ;

else
%Ther was no ob s e r va t i on a v a i l a b l e
xEst = xPred ;
PEst = PPred ;
Innov = [NaN;NaN] ;
S = NaN∗eye ( 2 ) ;

end ;

i f (mod(k−2,300)==0)
DoVehicleGraphics ( xEst , PEst ( 1 : 2 , 1 : 2 ) , 8 , [ 0 , 1 ] ) ;
i f (˜ isempty ( z ) )

set ( hObsLine , ’XData ’ , [ xEst ( 1 ) ,Map(1 , iFeature ) ] ) ;
set ( hObsLine , ’YData ’ , [ xEst ( 2 ) ,Map(2 , iFeature ) ] ) ;

end ;
drawnow ;

end ;

%s to r e r e s u l t s :
InnovStore ( : , k ) = Innov ;
PStore ( : , k ) = sqrt (diag (PEst ) ) ;
SStore ( : , k ) = sqrt (diag (S ) ) ;
XStore ( : , k ) = xEst ;
XErrStore ( : , k ) = xTrue−xEst ;
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end ;

DoGraphs ( InnovStore , PStore , SStore , XStore , XErrStore ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DoGraphs ( InnovStore , PStore , SStore , XStore , XErrStore )

f igure ( 1 ) ; print −depsc ’ EKFLocation . eps ’

f igure ( 2 ) ;
subplot ( 2 , 1 , 1 ) ; plot ( InnovStore ( 1 , : ) ) ; hold on ; plot ( SStore ( 1 , : ) , ’ r ’ ) ; plot(−SStore ( 1 , : ) , ’ r ’ )
t i t l e ( ’ Innovat ion ’ ) ; ylabel ( ’ range ’ ) ;
subplot ( 2 , 1 , 2 ) ; plot ( InnovStore ( 2 , : )∗180/ pi ) ; hold on ; plot ( SStore ( 2 , : )∗180/ pi , ’ r ’ ) ; plot(−SStore ( 2 , : )∗180/ pi , ’ r ’ )
ylabel ( ’ Bearing ( deg ) ’ ) ; xlabel ( ’ time ’ ) ;
print −depsc ’ EKFLocationInnov . eps ’

f igure ( 2 ) ;
subplot ( 3 , 1 , 1 ) ; plot ( XErrStore ( 1 , : ) ) ; hold on ; plot (3∗PStore ( 1 , : ) , ’ r ’ ) ; plot (−3∗PStore ( 1 , : ) , ’ r ’ ) ;
t i t l e ( ’ Covariance and Error ’ ) ; ylabel ( ’ x ’ ) ;
subplot ( 3 , 1 , 2 ) ; plot ( XErrStore ( 2 , : ) ) ; hold on ; plot (3∗PStore ( 2 , : ) , ’ r ’ ) ; plot (−3∗PStore ( 2 , : ) , ’ r ’ )
ylabel ( ’ y ’ ) ;
subplot ( 3 , 1 , 3 ) ; plot ( XErrStore ( 3 , : )∗180/ pi ) ; hold on ; plot (3∗PStore ( 3 , : )∗180/ pi , ’ r ’ ) ; plot (−3∗PStore ( 3 , : )∗180/ pi , ’ r ’ )
ylabel ( ’ \ theta ’ ) ; xlabel ( ’ time ’ ) ;
print −depsc ’ EKFLocationErr . eps ’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z , iFeature ] = GetObservation (k )
global Map; global xTrue ; global RTrue ; global nSteps ;

%fake sensor f a i l u r e here
i f (abs (k−nSteps /2) <0.1∗ nSteps )

z = [ ] ;
iFeature = −1;

else
iFeature = ce i l ( s ize (Map, 2 )∗ rand ( 1 ) ) ;
z = DoObservationModel ( xTrue , iFeature ,Map)+sqrt (RTrue)∗randn ( 2 , 1 ) ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z ] = DoObservationModel (xVeh , iFeature ,Map)
Delta = Map( 1 : 2 , iFeature )−xVeh ( 1 : 2 ) ;
z = [norm( Delta ) ;

atan2 ( Delta ( 2 ) , Delta (1))−xVeh ( 3 ) ] ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SimulateWorld (k )
global xTrue ;
u = GetRobotControl ( k ) ;
xTrue = tcomp ( xTrue , u ) ;
xTrue (3 ) = AngleWrap ( xTrue ( 3 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function jH = GetObsJac ( xPred , iFeature ,Map)
jH = zeros ( 2 , 3 ) ;
Delta = (Map( 1 : 2 , iFeature )−xPred ( 1 : 2 ) ) ;
r = norm( Delta ) ;
jH (1 , 1 ) = −Delta (1 ) / r ;
jH (1 , 2 ) = −Delta (2 ) / r ;
jH (2 , 1 ) = Delta (2 ) / ( r ˆ 2 ) ;
jH (2 , 2 ) = −Delta (1 ) / ( r ˆ 2 ) ;
jH (2 , 3 ) = −1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ xnow ] = GetOdometry (k )
p e r s i s t e n t LastOdom ; %in t e r n a l to robo t low− l e v e l c o n t r o l l e r
global UTrue ;
i f ( isempty (LastOdom ) )

global xTrue ;
LastOdom = xTrue ;

end ;
u = GetRobotControl ( k ) ;
xnow =tcomp (LastOdom , u ) ;
uNoise = sqrt (UTrue)∗randn ( 3 , 1 ) ;
xnow = tcomp (xnow , uNoise ) ;
LastOdom = xnow ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = GetRobotControl ( k )
global nSteps ;
u = [ 0 ; 0 .025 ; 0 .1∗ pi /180∗ sin (3∗pi∗k/nSteps ) ] ;
%u = [ 0 ; 0.15 ; 0 .3∗ p i /180 ] ;

7.4 Matlab Code For EKF Mapping Example

function EKFLocal isation
close a l l ; clear a l l ;
global xVehicleTrue ; global Map; global RTrue ; global UTrue ; global nSteps ;

nSteps = 600 ;
nFeatures = 6 ;
MapSize = 200 ;
Map = MapSize∗rand (2 , nFeatures)−MapSize /2 ;

UTrue = diag ( [ 0 . 0 1 , 0 . 0 1 , 1 ∗ pi / 1 8 0 ] ) . ˆ 2 ;
RTrue = diag ( [ 8 . 0 , 7 ∗ pi / 1 8 0 ] ) . ˆ 2 ;

UEst = 1.0∗UTrue ;
REst = 1.0∗RTrue ;

xVehicleTrue = [1;−40;−pi / 2 ] ;

%i n i t i a l c ond i t i on s − no map :
xEst = [ ] ;
PEst = [ ] ;
MappedFeatures = NaN∗zeros ( nFeatures , 2 ) ;
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%storage :
PStore = NaN∗zeros ( nFeatures , nSteps ) ;
XErrStore = NaN∗zeros ( nFeatures , nSteps ) ;

%i n i t i a l g raph i c s − p l o t t rue map
f igure ( 1 ) ; hold on ; grid o f f ; axis equal ;
plot (Map( 1 , : ) ,Map( 2 , : ) , ’ g∗ ’ ) ; hold on ;
set ( gcf , ’ doub l ebu f f e r ’ , ’ on ’ ) ;
hObsLine = l ine ( [ 0 , 0 ] , [ 0 , 0 ] ) ;
set ( hObsLine , ’ l i n e s t y l e ’ , ’ : ’ ) ;

for k = 2 : nSteps

%do world i t e r a t i o n
SimulateWorld (k ) ;

%simple p r e d i c t i on model :
xPred = xEst ;
PPred = PEst ;

%observe a randomn f e a t u r e
[ z , iFeature ] = GetObservation (k ) ;

i f (˜ isempty ( z ) )

%have we seen t h i s f e a t u r e b e f o r e ?
i f ( ˜ isnan ( MappedFeatures ( iFeature , 1 ) ) )

%pred i c t o b s e r va t i on : f i nd out where i t i s in s t a t e v ec t o r
FeatureIndex = MappedFeatures ( iFeature , 1 ) ;
xFeature = xPred ( FeatureIndex : FeatureIndex +1);
zPred = DoObservationModel ( xVehicleTrue , xFeature ) ;

% ge t ob s e r va t i on Jacobians
[ jHxv , jHxf ] = GetObsJacs ( xVehicleTrue , xFeature ) ;

% f i l l in s t a t e jacob ian
jH = zeros (2 , length ( xEst ) ) ;
jH ( : , FeatureIndex : FeatureIndex+1) = jHxf ;

%do Kalman update :
Innov = z−zPred ;
Innov (2 ) = AngleWrap ( Innov ( 2 ) ) ;

S = jH∗PPred∗jH’+REst ;
W = PPred∗jH ’∗ inv (S ) ;
xEst = xPred+ W∗ Innov ;

PEst = PPred−W∗S∗W’ ;
%note use o f ’ Joseph ’ form which i s numer ica l l y s t a b l e

% I = eye ( s i z e (PEst ) ) ;
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% PEst = ( I−W∗ jH )∗PPred∗( I−W∗ jH) ’+ W∗REst∗W’ ;

%ensure P remains symmetric
PEst = 0 . 5∗ ( PEst+PEst ’ ) ;

else
% t h i s i s a new f e a t u r e add i t to the map . . . .
nStates = length ( xEst ) ;

xFeature = xVehicleTrue (1:2)+ [ z (1)∗ cos ( z (2)+ xVehicleTrue ( 3 ) ) ; z (1)∗ sin ( z (2)+ xVehicleTrue ( 3 ) ) ] ;
xEst = [ xEst ; xFeature ] ;
[ jGxv , jGz ] = GetNewFeatureJacs ( xVehicleTrue , z ) ;

M = [ eye ( nStates ) , zeros ( nStates , 2 ) ;% note we don ’ t use jacob ian w. r . t v e h i c l e
zeros (2 , nStates ) , jGz ] ;

PEst = M∗ blkd iag (PEst , REst )∗M’ ;

%remember t h i s f e a t u r e as be ing mapped we s t o r e i t s ID and po s i t i o n in the s t a t e v ec t o r
MappedFeatures ( iFeature , : ) = [ length ( xEst )−1 , length ( xEst ) ] ;

end ;

else
%There was no ob s e r va t i on a v a i l a b l e

end ;

i f (mod(k−2,40)==0)
plot ( xVehicleTrue ( 1 ) , xVehicleTrue (2 ) , ’ r ∗ ’ ) ;

%now draw a l l the es t imated f e a t u r e po in t s
DoMapGraphics ( xEst , PEst , 5 ) ;

fpr intf ( ’ k = %d\n ’ , k ) ;

drawnow ;
end ;

%Storage :
for ( i = 1 : nFeatures )

i f (˜ isnan ( MappedFeatures ( i , 1 ) ) )
iL =MappedFeatures ( i , 1 ) ;
PStore (k , i ) = det (PEst ( iL : iL+1, iL : iL +1)) ;
XErrStore (k , i ) = norm( xEst ( iL : iL+1)−Map( : , i ) ) ;

end ;
end ;

end ;

f igure ( 2 ) ;
plot ( PStore ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z , iFeature ] = GetObservation (k )
global Map; global xVehicleTrue ; global RTrue ; global nSteps ;

%choose a random f ea t u r e to see from True Map
iFeature = ce i l ( s ize (Map, 2 )∗ rand ( 1 ) ) ;
z = DoObservationModel ( xVehicleTrue ,Map( : , iFeature ))+ sqrt (RTrue)∗randn ( 2 , 1 ) ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z ] = DoObservationModel (xVeh , xFeature )
Delta = xFeature−xVeh ( 1 : 2 ) ;
z = [norm( Delta ) ;

atan2 ( Delta ( 2 ) , Delta (1))−xVeh ( 3 ) ] ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SimulateWorld (k )
global xVehicleTrue ;
u = GetRobotControl ( k ) ;
xVehicleTrue = tcomp ( xVehicleTrue , u ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ jHxv , jHxf ] = GetObsJacs ( xPred , xFeature )
jHxv = zeros ( 2 , 3 ) ; jHxf = zeros ( 2 , 2 ) ;
Delta = ( xFeature−xPred ( 1 : 2 ) ) ;
r = norm( Delta ) ;
jHxv (1 , 1 ) = −Delta (1 ) / r ;
jHxv (1 , 2 ) = −Delta (2 ) / r ;
jHxv (2 , 1 ) = Delta (2 ) / ( r ˆ 2 ) ;
jHxv (2 , 2 ) = −Delta (1 ) / ( r ˆ 2 ) ;
jHxv (2 , 3 ) = −1;
jHxf ( 1 : 2 , 1 : 2 ) = −jHxv ( 1 : 2 , 1 : 2 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ jGx , jGz ] = GetNewFeatureJacs (Xv, z ) ;
x = Xv( 1 , 1 ) ;
y = Xv( 2 , 1 ) ;
theta = Xv( 3 , 1 ) ;
r = z ( 1 ) ;
bear ing = z ( 2 ) ;
jGx = [ 1 0 −r ∗ sin ( theta + bear ing ) ;

0 1 r ∗cos ( theta + bear ing ) ] ;
jGz = [ cos ( theta + bear ing ) −r ∗ sin ( theta + bear ing ) ;

sin ( theta + bear ing ) r ∗cos ( theta + bear ing ) ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = GetRobotControl ( k )
global nSteps ;
%u = [ 0 ; 0.25 ; 0 .3∗ p i /180∗ s in (3∗ p i ∗k/nSteps ) ] ;
u = [ 0 ; 0 .15 ; 0 .3∗ pi /180 ] ;
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7.5 Matlab Code For EKF SLAM Example

function EKFSLAM
close a l l ; clear a l l ;
global xVehicleTrue ; global Map; global RTrue ; global UTrue ; global nSteps ;
global Senso rSe t t i ng s ;

%change t h e s e to a l t e r sensor behav iour
Senso rSe t t i ng s . FieldOfView = 45 ;
Sen so rSe t t i ng s . Range = 100 ;

%how o f t en s h a l l we draw?
DrawEveryNFrames = 50 ;

%leng t h o f experiment
nSteps = 8000 ;

%when to take p i c t u r e s ?
SnapShots = ce i l ( linspace (2 , nSteps , 2 5 ) ) ;

%s i z e o f problem
nFeatures = 40 ;
MapSize = 200 ;
Map = MapSize∗rand (2 , nFeatures)−MapSize /2 ;

UTrue = diag ( [ 0 . 0 1 , 0 . 0 1 , 1 . 5 ∗ pi / 1 8 0 ] ) . ˆ 2 ;
RTrue = diag ( [ 1 . 1 , 5 ∗ pi / 1 8 0 ] ) . ˆ 2 ;

UEst = 2.0∗UTrue ;
REst = 2.0∗RTrue ;

xVehicleTrue = [0 ;0 ; − pi / 2 ] ;

%i n i t i a l c ond i t i on s − no map :
xEst =[ xVehicleTrue ] ;
PEst = diag ( [ 1 , 1 , 0 . 0 1 ] ) ;
MappedFeatures = NaN∗zeros ( nFeatures , 2 ) ;

%storage :
PStore = NaN∗zeros ( nFeatures , nSteps ) ;
XErrStore = NaN∗zeros ( nFeatures , nSteps ) ;

%i n i t i a l g raph i c s − p l o t t rue map
f igure ( 1 ) ; hold on ; grid o f f ; axis equal ;
plot (Map( 1 , : ) ,Map( 2 , : ) , ’ g∗ ’ ) ; hold on ;
set ( gcf , ’ doub l ebu f f e r ’ , ’ on ’ ) ;
hObsLine = l ine ( [ 0 , 0 ] , [ 0 , 0 ] ) ;
set ( hObsLine , ’ l i n e s t y l e ’ , ’ : ’ ) ;
a = axis ; axis ( a ∗ 1 . 1 ) ;

xOdomLast = GetOdometry ( 1 ) ;
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for k = 2 : nSteps

%do world i t e r a t i o n
SimulateWorld (k ) ;

%f i g u r e out c on t r o l
xOdomNow = GetOdometry (k ) ;
u = tcomp ( t inv (xOdomLast ) ,xOdomNow) ;
xOdomLast = xOdomNow;

%we ’ l l need t h i s l o t s . . .
xVehic l e = xEst ( 1 : 3 ) ;
xMap = xEst ( 4 :end ) ;

%do p r ed i c t i on ( the f o l l ow i n g i s s imply the r e s u l t o f mu l t i p l y i n g
%out b l o c k form of j a cob i ans )
xVehic lePred = tcomp ( xVehic le , u ) ;
PPredvv = J1 ( xVehic le , u )∗ PEst ( 1 : 3 , 1 : 3 ) ∗J1 ( xVehic le , u ) ’ + J2 ( xVehic le , u )∗ UEst ∗ J2 ( xVehic le , u ) ’ ;
PPredvm = J1 ( xVehic le , u )∗PEst ( 1 : 3 , 4 : end ) ;
PPredmm = PEst ( 4 : end , 4 : end ) ;

xPred = [ xVehic lePred ; xMap ] ;
PPred = [ PPredvv PPredvm ;

PPredvm ’ PPredmm ] ;

%observe a randomn f e a t u r e
[ z , iFeature ] = GetObservation (k ) ;

i f (˜ isempty ( z ) )
%have we seen t h i s f e a t u r e b e f o r e ?
i f ( ˜ isnan ( MappedFeatures ( iFeature , 1 ) ) )

%pred i c t o b s e r va t i on : f i nd out where i t i s in s t a t e v ec t o r
FeatureIndex = MappedFeatures ( iFeature , 1 ) ;
xFeature = xPred ( FeatureIndex : FeatureIndex +1);

zPred = DoObservationModel ( xVehic le , xFeature ) ;

% ge t ob s e r va t i on Jacobians
[ jHxv , jHxf ] = GetObsJacs ( xVehic le , xFeature ) ;

% f i l l in s t a t e jacob ian
jH = zeros (2 , length ( xEst ) ) ;
jH ( : , FeatureIndex : FeatureIndex+1) = jHxf ;
jH ( : , 1 : 3 ) = jHxv ;

%do Kalman update :
Innov = z−zPred ;
Innov (2 ) = AngleWrap ( Innov ( 2 ) ) ;

S = jH∗PPred∗jH’+REst ;
W = PPred∗jH ’∗ inv (S ) ;
xEst = xPred+ W∗ Innov ;
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PEst = PPred−W∗S∗W’ ;

%ensure P remains symmetric
PEst = 0 . 5∗ ( PEst+PEst ’ ) ;

else
% t h i s i s a new f e a t u r e add i t to the map . . . .
nStates = length ( xEst ) ;

xFeature = xVehic l e (1 :2)+ [ z (1)∗ cos ( z (2)+ xVehic l e ( 3 ) ) ; z (1)∗ sin ( z (2)+ xVehic l e ( 3 ) ) ] ;
xEst = [ xEst ; xFeature ] ; %augmenting s t a t e v e c t o r
[ jGxv , jGz ] = GetNewFeatureJacs ( xVehic le , z ) ;

M = [ eye ( nStates ) , zeros ( nStates , 2 ) ;% note we don ’ t use jacob ian w. r . t v e h i c l e
jGxv zeros (2 , nStates −3) , jGz ] ;

PEst = M∗ blkd iag (PEst , REst )∗M’ ;

%remember t h i s f e a t u r e as be ing mapped we s t o r e i t s ID and po s i t i o n in the s t a t e v ec t o r
MappedFeatures ( iFeature , : ) = [ length ( xEst )−1 , length ( xEst ) ] ;

end ;
else

xEst = xPred ;
PESt = PPred ;

end ;

i f (mod(k−2,DrawEveryNFrames)==0)
a = axis ;
c l f ;
axis ( a ) ; hold on ;
n = length ( xEst ) ;
nF = (n−3)/2;
DoVehicleGraphics ( xEst ( 1 : 3 ) , PEst ( 1 : 3 , 1 : 3 ) , 3 , [ 0 1 ] ) ;

i f (˜ isnan ( z ) )
h = l ine ( [ xEst ( 1 ) , xFeature ( 1 ) ] , [ xEst ( 2 ) , xFeature ( 2 ) ] ) ;
set (h , ’ l i n e s t y l e ’ , ’ : ’ ) ;

end ;
for ( i = 1 :nF)

iF = 3+2∗ i −1;
plot ( xEst ( iF ) , xEst ( iF+1) , ’b∗ ’ ) ;
P l o tE l l i p s e ( xEst ( iF : iF+1) ,PEst ( iF : iF+1, iF : iF +1) ,3) ;

end ;
fpr intf ( ’ k = %d\n ’ , k ) ;
drawnow ;

end ;

i f ( ismember (k , SnapShots ) )
iP i c = find ( SnapShots==k ) ;
print ( gcf , ’−depsc ’ , sprintf ( ’EKFSLAM%d . eps ’ , iP i c ) ) ;

end ;

end ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z , iFeature ] = GetObservation (k )
global Map; global xVehicleTrue ; global RTrue ; global nSteps ; global Senso rSe t t i ng s
done = 0 ;
Trys = 1 ;
z = [ ] ; iFeature = −1;
while (˜ done & Trys <0.5∗ s ize (Map, 2 ) )

%choose a random f ea t u r e to see from True Map
iFeature = ce i l ( s ize (Map, 2 )∗ rand ( 1 ) ) ;
z = DoObservationModel ( xVehicleTrue ,Map( : , iFeature ))+ sqrt (RTrue)∗randn ( 2 , 1 ) ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;
%look forward . . . and only up to 40m
i f (abs ( pi/2−z (2))< Senso rSe t t i ng s . FieldOfView∗pi /180 & z (1) < Senso rSe t t i ng s . Range )

done =1 ;
else

Trys =Trys+1;
z = [ ] ; iFeature = −1;

end ;
end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z ] = DoObservationModel (xVeh , xFeature )
Delta = xFeature−xVeh ( 1 : 2 ) ;
z = [norm( Delta ) ;

atan2 ( Delta ( 2 ) , Delta (1))−xVeh ( 3 ) ] ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SimulateWorld (k )
global xVehicleTrue ;
u = GetRobotControl ( k ) ;
xVehicleTrue = tcomp ( xVehicleTrue , u ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ jHxv , jHxf ] = GetObsJacs ( xPred , xFeature )
jHxv = zeros ( 2 , 3 ) ; jHxf = zeros ( 2 , 2 ) ;
Delta = ( xFeature−xPred ( 1 : 2 ) ) ;
r = norm( Delta ) ;
jHxv (1 , 1 ) = −Delta (1 ) / r ;
jHxv (1 , 2 ) = −Delta (2 ) / r ;
jHxv (2 , 1 ) = Delta (2 ) / ( r ˆ 2 ) ;
jHxv (2 , 2 ) = −Delta (1 ) / ( r ˆ 2 ) ;
jHxv (2 , 3 ) = −1;
jHxf ( 1 : 2 , 1 : 2 ) = −jHxv ( 1 : 2 , 1 : 2 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ jGx , jGz ] = GetNewFeatureJacs (Xv, z ) ;
x = Xv( 1 , 1 ) ;
y = Xv( 2 , 1 ) ;
theta = Xv( 3 , 1 ) ;
r = z ( 1 ) ;
bear ing = z ( 2 ) ;
jGx = [ 1 0 −r ∗ sin ( theta + bear ing ) ;
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0 1 r ∗cos ( theta + bear ing ) ] ;
jGz = [ cos ( theta + bear ing ) −r ∗ sin ( theta + bear ing ) ;

sin ( theta + bear ing ) r ∗cos ( theta + bear ing ) ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ xnow ] = GetOdometry (k )
p e r s i s t e n t LastOdom ; %in t e r n a l to robo t low− l e v e l c o n t r o l l e r
global UTrue ;
i f ( isempty (LastOdom ) )

global xVehicleTrue ;
LastOdom = xVehicleTrue ;

end ;
u = GetRobotControl ( k ) ;
xnow =tcomp (LastOdom , u ) ;
uNoise = sqrt (UTrue)∗randn ( 3 , 1 ) ;
xnow = tcomp (xnow , uNoise ) ;
LastOdom = xnow ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = GetRobotControl ( k )
global nSteps ;
%u = [ 0 ; 0.25 ; 0 .3∗ p i /180∗ s in (3∗ p i ∗k/nSteps ) ] ;
u = [ 0 ; 0 .15 ; 0 .2∗ pi /180 ] ;

%−−−−−−−− Drawing Covariance −−−−−%
function eH = P l o tE l l i p s e (x ,P, nSigma )
eH = [ ] ;
P = P( 1 : 2 , 1 : 2 ) ; % only p l o t x−y par t
x = x ( 1 : 2 ) ;
i f (˜any(diag (P)==0))

[V,D] = eig (P) ;
y = nSigma ∗ [ cos ( 0 : 0 . 1 : 2 ∗ pi ) ; sin ( 0 : 0 . 1 : 2 ∗ pi ) ] ;
e l = V∗sqrtm (D)∗y ;
e l = [ e l e l ( : , 1 ) ]+ repmat (x , 1 , s ize ( e l , 2 )+1) ;
eH = l ine ( e l ( 1 , : ) , e l ( 2 , : ) ) ;

end ;

7.6 Matlab Code For Particle Filter Example

%Monte−ca r l o based l o c a l i s a t i o n
%note t h i s i s not coded e f f i c i e n t l y but ra the r to make the idea s c l e a r
%a l l l oop s shou ld be v e c t o r i z e d but t ha t g e t s a l i t t l e matlab−speak i n t e n s i v e
%and may o b l i t e r a t e the e l egance o f a p a r t i c l e f i l t e r . . . .

function MCL
close a l l ; clear a l l ;
global xTrue ; global Map; global RTrue ; global UTrue ; global nSteps ;

nSteps = 6000 ;

%change t h i s to see how s e n s i t i v e we are to the number o f p a r t i c l e
%( hypo theses run ) e s p e c i a l l y in r e l a t i o n to i n i t i a l d i s t r i b u t i o n !
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nPa r t i c l e s = 400 ;

Map = 140∗rand (2 ,30)−70;

UTrue = diag ( [ 0 . 0 1 , 0 . 0 1 , 1 ∗ pi / 1 8 0 ] ) . ˆ 2 ;
RTrue = diag ( [ 2 . 0 , 3 ∗ pi / 1 8 0 ] ) . ˆ 2 ;

UEst = 1.0∗UTrue ;
REst = 1.0∗RTrue ;

xTrue = [1;−40;−pi / 2 ] ;
xOdomLast = GetOdometry ( 1 ) ;

%i n i t i a l c ond i t i on s : − a po in t c loud around t r u t h
xP =repmat ( xTrue , 1 , nPa r t i c l e s )+diag ( [ 8 , 8 , 0 . 4 ] ) ∗ randn (3 , nPa r t i c l e s ) ;

%%%%%%%%% storage %%%%%%%%

%i n i t i a l g raph i c s
f igure ( 1 ) ; hold on ; grid o f f ; axis equal ;
plot (Map( 1 , : ) ,Map( 2 , : ) , ’ g∗ ’ ) ; hold on ;
set ( gcf , ’ doub l ebu f f e r ’ , ’ on ’ ) ;
hObsLine = l ine ( [ 0 , 0 ] , [ 0 , 0 ] ) ;
set ( hObsLine , ’ l i n e s t y l e ’ , ’ : ’ ) ;
hPoints = plot (xP ( 1 , : ) , xP ( 2 , : ) , ’ . ’ ) ;

for k = 2 : nSteps

%do world i t e r a t i o n
SimulateWorld (k ) ;

%a l l p a r t i c l e s are e q u a l l y important
L = ones ( nPar t i c l e s , 1 ) / nPa r t i c l e s ;

%f i g u r e out c on t r o l
xOdomNow = GetOdometry (k ) ;
u = tcomp ( t inv (xOdomLast ) ,xOdomNow) ;
xOdomLast = xOdomNow;

%do p r ed i c t i on
%fo r each p a r t i c l e we add in con t r o l v e c t o r AND noise
%the con t r o l no i se adds d i v e r s i t y w i th in the genera t ion
for (p = 1 : nPa r t i c l e s )

xP ( : , p ) = tcomp (xP ( : , p ) , u+sqrt (UEst )∗randn ( 3 , 1 ) ) ;
end ;

xP ( 3 , : ) = AngleWrap (xP ( 3 , : ) ) ;

%observe a randomn f e a t u r e
[ z , iFeature ] = GetObservation (k ) ;

i f (˜ isempty ( z ) )
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%pred i c t o b s e r va t i on

for (p = 1 : nPa r t i c l e s )
%what do we expec t o b s e r va t i on to be f o r t h i s p a r t i c l e ?
zPred = DoObservationModel (xP ( : , p ) , iFeature ,Map) ;

%how d i f f e r e n t
Innov = z−zPred ;

%ge t l i k e l i h o o d (new importance ) . Assume gauss ian here but any pdf works !
%i f p r ed i c t e d obs i s very d i f f e r e n t from ac tua l obs t h i s score w i l l be low
%−>t h i s p a r t i c l e i s not very good at r ep r e s en t i n g s t a t e . A lower score means
%i t i s l e s s l i k e l y to be s e l e c t e d f o r the next genera t ion . . .
L(p) = exp(−0.5∗ Innov ’∗ inv (REst )∗ Innov )+0.001 ;

end ;
end ;

%r e s e l e c t based on we i gh t s :
%p a r t i c l e s wi th b i g we i gh t s w i l l occupy a g r ea t e r percentage o f the
%y ax i s in a cummulative p l o t
CDF = cumsum(L)/sum(L ) ;
%so randomly ( uniform ) choos ing y va l u e s i s more l i k e l y to correspond to
%more l i k e l y ( b e t t e r ) p a r t i c l e s . . .
i S e l e c t = rand ( nPar t i c l e s , 1 ) ;
%f ind the p a r t i c l e t ha t corresponds to each y va lue ( j u s t a l ook up )
iNextGenerat ion = interp1 (CDF, 1 : nPar t i c l e s , i S e l e c t , ’ n ea r e s t ’ , ’ extrap ’ ) ;
%copy s e l e c t e d p a r t i c l e s f o r next genera t ion . .
xP = xP ( : , iNextGenerat ion ) ;

%our es t imate i s s imply the mean o f teh p a r t i c l e s
xEst = mean(xP , 2 ) ;

i f (mod(k−2,10)==0)

f igure ( 1 ) ;
set ( hPoints , ’XData ’ ,xP ( 1 , : ) ) ;
set ( hPoints , ’YData ’ ,xP ( 2 , : ) ) ;
i f (˜ isempty ( z ) )

set ( hObsLine , ’XData ’ , [ xEst ( 1 ) ,Map(1 , iFeature ) ] ) ;
set ( hObsLine , ’YData ’ , [ xEst ( 2 ) ,Map(2 , iFeature ) ] ) ;

end ;
f igure ( 2 ) ; plot (xP ( 1 , : ) , xP ( 2 , : ) , ’ . ’ ) ;
drawnow ;

end ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z , iFeature ] = GetObservation (k )
global Map; global xTrue ; global RTrue ; global nSteps ;

%fake sensor f a i l u r e here
i f (abs (k−nSteps /2) <0.1∗ nSteps )
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z = [ ] ;
iFeature = −1;

else
iFeature = ce i l ( s ize (Map, 2 )∗ rand ( 1 ) ) ;
z = DoObservationModel ( xTrue , iFeature ,Map)+sqrt (RTrue)∗randn ( 2 , 1 ) ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ z ] = DoObservationModel (xVeh , iFeature ,Map)
Delta = Map( 1 : 2 , iFeature )−xVeh ( 1 : 2 ) ;
z = [norm( Delta ) ;

atan2 ( Delta ( 2 ) , Delta (1))−xVeh ( 3 ) ] ;
z (2 ) = AngleWrap ( z ( 2 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SimulateWorld (k )
global xTrue ;
u = GetRobotControl ( k ) ;
xTrue = tcomp ( xTrue , u ) ;
xTrue (3 ) = AngleWrap ( xTrue ( 3 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ xnow ] = GetOdometry (k )
p e r s i s t e n t LastOdom ; %in t e r n a l to robo t low− l e v e l c o n t r o l l e r
global UTrue ;
i f ( isempty (LastOdom ) )

global xTrue ;
LastOdom = xTrue ;

end ;
u = GetRobotControl ( k ) ;
xnow =tcomp (LastOdom , u ) ;
uNoise = sqrt (UTrue)∗randn ( 3 , 1 ) ;
xnow = tcomp (xnow , uNoise ) ;
LastOdom = xnow ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = GetRobotControl ( k )
global nSteps ;
u = [ 0 ; 0 .025 ; 0 .1∗ pi /180∗ sin (3∗pi∗k/nSteps ) ] ;
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