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Abstract  

The likelihood calculation of a vast number of particles is the computational bottleneck for 

the particle filter in applications where the observation information is rich. For fast computing 

the likelihood of particles, a numerical fitting approach is proposed to construct the 

Likelihood Probability Density Function (Li-PDF) by using a comparably small number of 

so-called fulcrums. The likelihood of particles is thereby analytically inferred, explicitly or 

implicitly, based on the Li-PDF instead of directly computed by utilizing the observation, 

which can significantly reduce the computation and enables real time filtering. The proposed 

approach guarantees the estimation quality when an appropriate fitting function and properly 

distributed fulcrums are used. The details for construction of the fitting function and fulcrums 

are addressed respectively in detail. In particular, to deal with multivariate fitting, the 

nonparametric kernel density estimator is presented which is flexible and convenient for 

implicit Li-PDF implementation. Simulation comparison with a variety of existing 

approaches on a benchmark 1-dimensional model and multi-dimensional robot localization 

and visual tracking demonstrate the validity of our approach. 
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1 INTRODUCTION 
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where ݐ indicates discrete time, ݔ௧ ∈ Թௗೣ  denotes the state, ݕ௧ ∈ Թௗ೤  denotes the observation, ݑ௧  and ݒ௧ 

denote stochastic noise affecting the state transition equation ௧݂: Թௗೣ ൈ Թௗೠ ՜ Թௗೣ , and the observation 

equation ݄௧: Թௗೣ ൈ Թௗೡ ՜ Թௗ೤ , respectively. Furthermore, let ݔ଴:௧ ؜ ሺݔ଴, ,ଵݔ … , ௧ሻݔ  and ݕ଴:௧ ,଴ݕሺ؜ ,ଵݕ … ,  .௧ሻ be the history path of the signal and of the observation process respectivelyݕ

A standard and convenient solution to the SSM-based filtering problem is the Recursive Bayesian 

estimation, which is based on two assumptions as follows: 

(A.1) The states follow a first-order Markov process 

( ) ( )0: 1 1t t t tp x x p x x− −=  (2) 

(A.2) The observations are independent of the given states 
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Using the Bayes' rule, the required marginal posterior density is found as 
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where ݌ሺݕ௧|ݔ௧ሺ௜ሻሻ is the likelihood. This can be determined in two steps that form one iteration: 

(Step.1) Prediction (Chapman-Kolmogorov equation) 

This paper concerns the design of a high-speed particle filter (PF) for a variety of nonlinear state estimation

problems such as localization, positioning and tracking. Computing efficiency is a critical requirement in

industry but is particularly challenging for the application of the particle filter. In brief, the nonlinear filtering 

recursively estimates the nonlinear sequence of posterior densities of the state given a sequence of

observations, which can be written in the form of the discrete dynamic State Space Model (SSM) 
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(Step.2) Updating or correction (Bayes’ rule) 
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However, these two steps is only conceptual and the involved integration is generally incomputable. To 

solve the integration, we have to turn to suboptimal simulation-based methods, such as the Point-Mass (PM) 

filter [1, 2], the unscented filter [3] and Monte Carlo methods. The Monte Carlo method has become one of 

the standard and popular tools for sophisticated models, typically including Markov Chain Monte Carlo 

(MCMC) [12] and Sequential Monte Carlo (SMC) (often called PF; staged reviews of the state of art can be 

found in [4, 5, 6, 7, 8]), etc. Specifically in PF, the posterior density is represented by a set of particles with 

associated weights, and generally the computation complexity is directly proportional to the number of 

particles used as each particle needs at least to execute the state-prediction and weight-updating steps in 

parallel. 

The PF has been widely used for nonlinear and non-Gaussian SSMs. However, it suffers from heavy 

computation due to a vast number of particles necessarily used, which is its primary disadvantage as 

compared to closed-form solutions like Kalman filters. In real-life applications, the weight-updating step is 

hardware-sensitive and is often more computationally intensive than the state-prediction step. This is 

particularly true for positioning [8, 9], visual tracking [10-11], robot localization [14-16] and Machine 

prognosis [17-18]. In these applications, the estimation accuracy and computing speed are both restricted 

heavily by the updating step. Based on this fact, this paper investigates speeding up the updating step so that 

to speed up PF without reducing the estimation quality. 

We propose a numerical fitting approach to calculate the likelihood of particles that does not need to reduce 

the number of particles. Our approach is based on the understanding that the direct likelihood calculation 

based on observations is computationally more intensive as compared to the numerical fitting used. 



 

Numerical fitting has proved to be a powerful and universal method for data prediction and has been used in 

a range of statistical applications where adequate analytical solutions may not exist. In the field of Kalman 

filtering, the well-known unscented transform technique is a proven type of statistical linear regression [3]. 

To our knowledge, this is the first attempt to employ the numerical fitting technique for likelihood calculation 

for PF. Both the ideas of inferring the likelihood of particles by others and employing numerical fitting to 

construct arbitrary PDF for particle filtering are new. 

The remainder of this paper is organized as follows. A brief review of the state of the art in the development 

of fast processing PF is described in section 2. The conceptual framework and implementation details of the 

proposed approach are given in section 3. Simulations are presented in section 4 and the conclusion is given 

in section 5. 

2 BRIEF REVIEW: FAST PARTICLE FILTERING 

The primary obstacle for the application of the particle filter is from its computational inefficiency. One of 

the most straightforward and effective solutions to improve its speed is to minimize the required number of 

particles, see [19-20]. However, caution has to be exercised on reducing the number of particles as a smaller 

number of particles make it hard to approximate the underlying Probability Distribution Function (PDF) 

properly and to cope with the information imprecision. Several advanced forms of the particle filter have 

been proposed to work well with fewer samples, but it is seldom possible to get a win-win situation for 

general cases. For example, the cost reference PF [10] work with as few as ten particles for the 1-demensional 

estimation. In [11] the importance density in particles can be modified to interpret the posterior state by using 

pseudo-likelihoods to reduce the number of particles required. The box particle [13] occupies a small and 

controllable rectangular region in the state space, which reduces the computational complexity in high 

dimensional problems and is suitable for parallel processing. 

A typical assumption underlying PF is that all samples can be updated whenever new sensor information 

arrives. Under real-life conditions, however, it is possible that the update may not be completed before the 



 

next sensor observation arrives. This can be the case for computationally complex sensor models or 

whenever the underlying posterior requires large sample sets, see [19]. To avoid the loss of observations 

when the rate of incoming sensor data is higher than the updating rate, a mixture of individual sample sets are 

used by distributing the samples among the observations within an update window. It is fair to say that the 

best way to avoid information loss is to improve the sampling speed so that observations obtained by sensors 

can be maximally employed. 

Efforts have been made to increase the filtering speed by simplifying the updating step that creates the main 

computational burden. This can be achieved in two ways. One way is to reduce the number of required 

updating cycles. The other way is to reduce the computation of each updating cycle. In the first way, only 

observations that fall inside a specific scope around the particle have significant impact to the weight of the 

particle, while those outside of the scope have negligible impact and are therefore not taken into account [21]. 

This reduces the number of cycles of computationally intensive updating without reducing the number of 

particles used. In the second method, solutions are proposed to deal with observations for fast processing. For 

example, an adjustable observation model is proposed in [22] that can change between connected component 

analysis and k-means to obtain a balance between tracking precision and reduced runtime.  

Real-time techniques such as parallel processing, dimension decomposition, multi-resolution processing, 

etc. provide possibilities for fast processing of PF. The essence of distributed PF is to distribute the algorithm 

among different computing agents for fast parallel computing. Given the fast development of computers, 

multicore platforms and general purpose graphics processing units are now available on almost every 

computer, and distributed computing becomes more popular and promising [24, 25]. One of the biggest 

challenges for developing parallel PF is the resampling operation that requires the joint processing of all 

particles and therefore prevents parallelization of PFs. To combat or to avoid this, various solutions for 

parallel resampling and parallel particle filtering have been proposed, see [23]. There is another type of PF 

which assume the underlying distribution is Gaussian and thereby resampling can be avoided [26].  

The dimension- decomposition idea of Rao–Blackwellization (RB) [27] is to divide the state so that the 



 

Kalman filter is used for the part of the state that is linear, and PF is used for the other part that is nonlinear, 

which inspires many similar developments to reduce the dimensions of the state space that needs to be 

processed. For example, the proposed method estimates orientation by using a particle filter, while the 

position and velocity is estimated by using KF [9]. Furthermore, to remove the linear limitation of Kalman 

filter, the Decentralized PF (DPF) [28] splits the filtering problem into two nested sub-problems and handles 

each individually using PFs. This differs from RB in the manner that two parts are all approximated by 

conditional PFs.  

Furthermore, one may partition the state space into more subspaces and run separate PFs in each subspace 

[29]. A similar idea is implemented in [6] which represents each component as a single chain Bayesian 

network and uses PF to track each component for multi-component tracking. Similarly, the so-called 

partitioned sampling consists of dividing the state space into two or more partitions and sequentially applying 

the dynamics for each partition followed by an appropriate weighted resampling operation [30]. Splitting the 

state space is also an appealing and even necessary way to deal with high dimensionality [43]. Meanwhile, 

the time scale separation exhibited in [31] allows two simplifications of PF: 1) to use the averaging principle 

for the dimensional reduction of the dynamics for each particle during the prediction step and 2) to factorize 

the transition probability for the RB of the update step. The resulting PF is faster and has smaller variance 

than the original PF. On the other side, MCMC is more effective than PFs in high-dimensional spaces and 

therefore can be employed to benefit the PF [12] but it is not so suitable for online calculation. It is fair to say 

that high-dimensionality remains challenging for the application of PFs [32, 42, 43]. 

3 THE CORE IDEA: LI-PDF BASED WEIGHT UPDATING  

3.1 The conceptual framework 

The PF evaluates the posterior PDF by a set of particles ݔ௧ሺ௜ሻ with associated non-negative weight ݓ௧ሺ௜ሻ that 

employs the strong law of large numbers (SLLN), i.e. 
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where ܰ is the number of particles, 0=ݐ denotes the initialized particles set. The weight of particles is 

determined based on Sequential Importance Sampling (SIS) 
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where ݍሺ·ሻ  is the proposal important density, also called evidence, ݌ሺݕ௧|ݔ௧ሺ௜ሻሻ  is the likelihood of the 

particle ݔ௧ሺ௜ሻ given observation ݕ௧ which is critical to the PF. There is a variety of ways to design efficient 

important function and sampling methods. For simplicity, the proposal density is often chosen as ݌ሺݔ௧|ݔ௧ିଵሻ 

which minimizes the variance of the importance weights conditional upon the simulated trajectory ݔ଴:௧ିଵሺ௜ሻ and 

the observation ݕଵ:௧ [27]. Moreover, resampling may be applied to reset particles' weight [23] to be equal or 

approximately equal so that to combat weight degeneracy, i.e. the classical Sampling Importance Resampling 

(SIR), which is also referred to as branching and interacting particle system [33]. 

This study focuses on numerically fitting the Probability Density Function of the Likelihood (Li-PDF) and 

then use it to calculate the likelihood of each particle  

( ) ( )( ) ( )i i
t t t tp y x L x=  (9) 

where ܮ௧ሺ·ሻ is the Li-PDF at time ݐ, which can be either explicit or implicit as defined later in this paper. The 

following two definitions are at the core of our approach.  

Definition 1. The task of numerical fitting is to recover ݕ ൌ ݂ሺݔ;  are the parameters that are to ܥ ሻ, whereܥ

be determined by using a given data based on the belief that this data contains a slowly varying component, 

which captures the trend of, or the information about, ݕ, and a varying component of comparatively small 

amplitude which is the error or noise in the data. There are two forms of numerical fitting: regression and 

interpolation, which are distinguished from one another based on whether the function works on the data (that 

is interpolation) or not (regression).  



 

Definition 2. The given data points used for fitting in our approach are called fulcrums. Fulcrums and 

particles have the same characteristics, see section 3.2. 

Simply stated, the likelihood of the particles is obtained by fitting the likelihoods of the fulcrums in the 

Li-PDF approach, as depicted in Fig. 1. In Fig. 1, the horizontal axis and the vertical axis represent the state 

and likelihood respectively. Circles represent the particles while boxes represent the specific fulcrums and 

their likelihoods (the red dotted lines) are known. Firstly, the likelihoods of the fulcrums are fitted with their 

state to get the Li-PDF, as represented by the red curve. This curve is then used to obtain the particles' 

likelihood i.e. the height of black lines. In this way, no matter how many particles there are, we can fit all of 

them to get their likelihoods instead of direct calculation based on the observation. 

The present approach implicitly assume that the likelihood function is continuous and has a smooth 

distribution, which is the case in most applications. The framework of the explicit Li-PDF based particle filter 

is described in Algorithm 1. The details of the algorithm are given in the following subsections.   

Remark 1. Our approach does not have to be based on the SIR filter but it can be also combined with 

advanced PFs such as Auxiliary PF [34] and Gaussian PF [26]. Also, the Li-PDF approach follows no single 

set form but may instead have multiple implementation stages. Section 3.5 will show that the observation 

function (instead of the likelihood PDF) might be fitted firstly, after which only one more step of 

conversation is required to obtain the final likelihood PDF. Furthermore, the fitting of the observation 

function can be implemented in a batch manner for further speeding up with accuracy.  

Remark 2. It has become a common idea to develop analytic technologies to improve random-sampling 

based approximation of PF, including the regularized PF (RPF) [35], kernel PF (KPF) [36], convolution PF 

[37] and feedback PF [38], but with very different implementations and purposes. In addition, Gaussian 

mixtures (GMs) are used [39] to represent the posterior PDF and the observation likelihood function. The 

continuous function in the form of either kernels [35, 36] or GMs [39] is propagated over time and is used to 

calculate the estimate. These PFs do not run faster than SIR PF if the same number of particles is used. In 

contrast, the likelihood function constructed online in our approach will not be propagated over time and no 



 

special assumption such as Gaussian distribution is required and a faster speed is achieved. 

 

Fig.1 Schematic diagram of the Li-PDF approach for likelihood calculation 

Algorithm 1: Explicit Li-PDF based PF (one iteration) 
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1. Selective Resampling (do if the variance of normalized weights is greater than a pre-specified threshold) 

Unbiased resampling that equally weight resampled particles e.g. systematic/residual resampling [23] is 

preferred  

2. Prediction 

For ݅ ൌ 1 ՜ ܰ, sample from the proposal: 

( )i
tx ~ ( )( ) ( )

1 ,i i
t t tq x x y−  

3. Li-PDF construction 

3.1 Construct ܯ fulcrums (see subsection 3.2): ሺ ଵܺ, ܺଶ, … ܺெሻ  

3.2 Calculate their likelihoods: ௠ܻ ൌ  ௧ሻ of ܺ௠ݔ|௧ݕሺ݌

3.3 Numerically fit the likelihood of fulcrums with their states to get the Li-PDF ܮ௧ሺ·ሻ (see subsections 

3.3/3.4), which satisfies: 
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 ሺ ଵܻ, ଶܻ, … ெܻሻ≅ ܮ௧ሺ ଵܺ, ܺଶ, … ܺெሻ 

4. Updating 

Update the weights by using their fitted value of ܮ௧ሺ·ሻ, i.e. for ݅ ൌ 1 ՜ ܰ, update the weight: 
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Normalize the weights: ( ) ( ) ( )/ Ni i j
t t tj

w w w= ∑  

3.2 Non-negligible support fulcrums 

There are two methods to construct fulcrums: One method is to simply select some particles from the 

particle set (non-uniformly distributed) and the other is to create new data-points in the state space (uniformly 

distributed). According to the SLLN, more fulcrums are more likely to get a better fitting approximation, but 

at the higher cost of computation. The fulcrums should be distributed appropriately so that they have an 

adequate representation of all the particles with the fewest possible fulcrums. In our approach, a grid-based 

method is adopted to generate uniformly distributed fulcrums that cover the non-negligible region 

By partitioning the state space of particles into rectangular cells, the fulcrums can be easily created by the 

centers of those cells. This method of approximating the probability density by rectangular delimited 

data-points is flexible and convenient for implementation (the data structure created is easy to handle in 

computers), which is subject to the independence between different dimensions. This data model has also 

been employed in the PM filter. Specifically, the anticipative boundary-based grid and the non-negligible 

support principle proposed in [1, 2] are readily suitable for our approach by a sensible albeit convenient 

conversion from the predictive PDF in the PM filter to the Li-PDF in the PF.   

In contrast to interpolation, which predicts within the range of values in the dataset used for model fitting, 

prediction outside this range of the data is known as extrapolation. The further the extrapolation goes outside 

the data, the more likely it is for the model to fail due to differences between the fitting assumptions and the 

sample data or the true values. To avoid this, fulcrums are constructed in the state space ܫ௧ to cover the 



 

complete state-space of particles with a boundary margin ݎ 
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where ݔ௧ሾ௟ሿ is the state value in the ݈th coordinate, ܮ is the total dimensionality, ݎሾ௟ሿ is the ݈th dimension 

boundary margin which will be determined on the observation noise as in [1] 

[ ] [ ]l l
tr a Q=  (11) 

where ܳ௧ is the observation noise covariance and ܽ is the parameter that determines the non-negligible level.  

It remains to be shown how many fulcrums are required. One adaptive technique for setting the number of 

grid points [1] is that the number of data points ܯ௧ሾ௟ሿ satisfies  
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where Ω௧ is a significant support of the predictive PDF ݌ሺݔ௧|ݕ௧ିଵሻ, ݄ሺݔሻ is the observation function, ߛ ൐ 0 

is the second design parameter. In our approach, we adopt a much simpler calculation form as follows 
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where λ is a modified parameter to replace ߛ with consideration of the observation equation. This can be 

determined offline according to our preference of the accuracy. 

Since the fulcrum is the crossing point of the partitioning of each dimensionality, the total number of 

fulcrums is just the product of the partitioning number of each dimensionality  
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If we delimit the fulcrums with a fixed interval ݀ሾ௟ሿ, i.e. 

[ ]
[ ]

[ ] 1

l
l t

l

Id
M

=
−

 (15) 

Then, the fulcrums can be defined at the space crossing of the following coordinates: 



 

( )[ ] [ ] [ ] [ ] [ ]
, particles

1, : min 1l l l l l
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There is no doubt that the larger the observation noise, the more fulcrums it requires. Choosing a sensible 

number of fulcrums with respect to the observation noise is important in our approach. For simplicity and fast 

online computation in multiple dimension situations, the following number ሾ௟ሿܯ  is suggested in our 

application such that 

[ ] [ ]1, :  or 1l
tl L M p∀ ∈ =  (17) 

where ݌ is a specified value loosely satisfying (13),  ܯሾ௟ሿ ൌ 1 means the insignificant ݈th dimensionality is 

not partitioned.  

To note, fulcrums can be added into the particle set. This will not increase additional likelihood 

computation as the likelihood of the fulcrums has already been calculated. Obviously, the total number of 

particles that will affect the computation of other parts of the filter may be increased, unless a solution is 

found to remove some unwanted particles.  

Remark 3. The primary limitation of the grid partitioning is due to the sensitivity to the dimensionality of 

the state space. To mitigate this limitation, partitioning the state space only in part/primary dimensions is 

highly recommended. For example, in the case of the state that consists of position, velocity, etc., the grid 

partitioning can be realized only in the position space (as shown in the robot localization in Section 4.2). 

3.3 Least squares numerical fitting 

Numerical fitting is accomplished in practice by selecting a linear or nonlinear function  

    ( )1 2; , ..., ky f x c c c=  (18) 
that depends on certain parameters ܿଵ, ܿଶ, … , ܿ௞. It should be noted that the fitting data may not strictly work 

on the function, instead a fitting error generally exists, i.e.  

( )1 2; , ...,m m k my f x c c c e= +  (19) 

where ݕ௠ is the measured value of the dependent variable, ܿଵ, ܿଶ, … , ܿ௞ are the required parameters. In our 

approach, the given data ሺݔ௠, ݉ ,௠ሻݕ ൌ 1, 2 … ,  is the likelihood, and ݂ሺ·ሻ ݕ ,is the state ݔ ,are fulcrums ܯ



 

is the required Li-PDF.  

The dependence of the likelihood function on the parameters can be either linear or nonlinear. For the 

nonlinear likelihood function, solutions include approximate linearization with tolerable errors (given in 

appendix) and conversion methods of the nonlinearity (see subsection 3.5). Otherwise, some nonlinear 

regression method is required, such as the Gauss-Newton method. The Gauss-Newton method is one 

algorithm for minimizing the sum of the squares of the residuals between data and nonlinear equations, in 

which the least-squares theory may be used.  

In what follows, we first consider the basic univariate variable fitting, while the intractable multivariate 

fitting will be described in subsection 3.4 where a local smoothing strategy is proposed for convenient 

implementation.  

Normally, one will try to select a function ܮሺݔሻ that depends linearly on the parameters, in the form of 

1 1 2 2( ) ( ) ( ) ... ( )k kL x c x c x c xφ φ φ= + + +  (20) 

where ሼߔ௜ሺݔሻሽare a priori selected sets of functions, for example, the set of monomials ሼݔ௜ିଵሽ or the set of 

trigonometric functions ሼsinݔ݅ߨሽ, and ሼܿ௜ሽ are parameters which must be determined. In this paper, we call ݇ 

the order of the fitting function. In over-determined systems, as in our case, ݇ is much smaller than the 

number ܯ of fulcrums 

M k>>  (21) 

To specify the form of the functions in (20), the best case is when the function is known in advance. 

Otherwise, reasonable assumptions and offline searching for the optimal fitting model is necessary. To find 

the optimal fitting model, offline study might be helpful. Once the approximating function form and fulcrums 

have been defined, as explained in sections 4. 2 and 4. 3 respectively, the next step is to determine the 

population parameters ܿଵ, ܿଶ, … , ܿ௞ to get a “good” approximation. As a general idea, the residuals 

( )1 2; , ..., , 1,2,...m m m kd f L x c c c m M= − =  (22) 

are simultaneously made as small as possible. One tries to make some norm of the M-vector d ൌ



 ሾ݀ଵ, ݀ଶ, … , ݀ெሿ்  as small as possible - typically such as the 2-norm  
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This leads to a linear system of equations to determine the minimum ܿ̂௞’s. The resulting approximation ܮሺݔ; ܿ̂ଵ, ܿ̂ଶ, … , ܿ̂௞ሻ is known as the least squares approximation to the given data and ܿ̂௞’s are called least 

squares estimates of the population parameters.  

An appropriate fitting model and proper distributed fulcrums are two critical factors needed to achieve 

good fitting results. The Goodness-of-fit could be tested to decide whether it is possible to proceed or search 

for a more suitable Li-PDF model, one that will better represent the true observation. Available 

Goodness-of-fit tests include the Kolmogorov-Smirnov test, Anderson-Darling test, Chi-Square test, etc. 

[41]. 

3.4 Piecewise fitting function and Kernel density estimation 

For many practical systems, however, it is difficult or even impossible to find a single function to represent 

the likelihood function in the entire state space, especially for the intractable multivariate fitting 

(Hyper-surface problem). As such, a flexible piecewise constant form could be chosen where the fitting 

function is of lower order. Accompanied with the piecewise fitting/local regression strategy, the linearization 

of the nonlinear dependence on parameters will be more theoretically tenable and easier to implement. This 

can also reduce the required fitting function order that promises a smaller linearization error (see also the 

appendix).  

To perform the Piecewise/Segmented fitting, the independent variable is partitioned into intervals, and then 

a separate segment is fitted to each interval and the boundaries between the segments. The fitting function is 

thus a sequence of grafted sub functions  
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where ݔଵ, ,ଶݔ … ,  ,௥ are called join points which are boundaries between intervals. In our current approachݔ

sub functions ܨ௜ሺݔ;  ௜ in each interval (including twoܯ ௜ሻ are of the same order ݇, the number of fulcrumsܥ

join points) satisfies  

[ ]1, : 1   ii r M k∀ ∈ > +  (25) 

It is shown in [40] that the piecewise constant approximations are the best when the densities are 

reasonably smooth in the scale of the grid. This indicates that the piecewise intervals should be partitioned 

such that the likelihood PDF in each interval is reasonably lower-order smooth.  

The employment of numerical fitting will potentially slow down the weight concentration of particles as it 

reduces the high likelihood but increases the low likelihood. This will be helpful to alleviate the sample 

degeneracy/impoverishment, which is a particular challenge for the particle filter [32]. 

We should note that our goal is to calculate the likelihood of particles but not to explicitly obtain the 

Li-PDF, which is only an intermediate process. Thus, in the piecewise fitting, we can use nonparametric local 

smoothing techniques, e.g. Kernel Density Estimator (KDE), to derive the likelihood of particles by using the 

fulcrums without explicitly obtaining the Li-PDF. This method, termed the implicit Li-PDF approach, will 

greatly simplify the multivariate fitting for convenient implementation. Next, we will illustrate how it works. 

For a particle with state ݔ௧ሺ௝ሻ, denoting its nearest ܯ௝ fulcrums in a limited scale and their likelihoods as ሼݔ௜, ௜ሽ௜ୀଵ,ଶ,…,ெೕ݌ , the required likelihood ݌ሺݕ௧ሺ௝ሻ|ݔ௧ሺ௝ሻሻ  KDE can be defined as the Nadaraya-Watson 

kernel-weighted average of these fulcrum likelihoods 
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with the kernel given as 
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where ݄ఒ  is a specified bandwidth termed the interval width, and ܦሺݐሻ is a positive real valued function 

whose value does not increase with an increasing distance between ݔ௧ሺ௝ሻ and ݔ௜.  
Two quite convenient kernel smoothers are available: the nearest neighbor smoother and the uniform 

kernel average smoother. The idea of the nearest neighbor (NN) smoother is as follows. For each point ݔ௧ሺ௝ሻ, 
take ܯ௝ nearest neighbor fulcrums ݔ௜ and estimate the likelihood of the particle ݌ሺݕ௧ሺ௝ሻ|ݔ௧ሺ௝ሻሻ by averaging 

the values of these neighbors likelihood. Formally, for (27) 

( )( ) ,j
NN t iK x x h=  (28) 

In contrast to this, the uniform kernel function can be defined as 

( )( )
( )
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uniform t i j

t i

hK x x
x x

=
−

 (29)  

As the estimate of this uniform kernel smoother, every fulcrum ݔ௜ in the bounded interval ݄ contributes to 

the likelihood of the particle  ݔ௧ሺ௝ሻ in a manner inversely proportional to their distance from the particle. The 

NN smoother and uniform kernel smoother will be applied subsequently in our simulations in Section 4.  

It is necessary to note that the observation functions are actually limited to a few simple types in real life 

filtering problems. For example, in tracking and localization problems, the observation functions that 

correspond to different types of sensors, whether detecting the position or bearing of the target (s), are simply 

of a lower order than 3. Furthermore, the observation function is often assumed to be with additive Gaussian 

noises. That is to say, the observation function and the likelihood function are not arbitrary in math; instead, 

they are a smooth distribution with low order, which are much easier for numerical fitting than they seem. 

3.5 A polynomial fitting example 

While boosting the processing speed of PF, it is important for our approach to guarantee the approximation 

accuracy. In order to have an intuitive understanding of the numerical fitting process and its results, the 



 

following popular univariate SSM is considered. The system dynamic and observation equations are, 

respectively, 
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20.05t t ty x v= +  (31) 

where ݑ௧ and ݒ௧ are zero mean Gaussian random variables with variance 10 and 1 respectively. 

Assuming the unknown observation equation is ݕ௧ሺ௜ሻ ൌ ݃ሺݔ௧ሺ௜ሻሻ, the likelihood function can be obtained 

through one more step, i.e. the following Gaussian model 

( ) ( )2( ) ( )1 1exp
22

i i
t t t tL y y y

π
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (32) 

where ݕ௧ is the real observations and ݕ௧ሺ௜ሻ is the observation of particle/fulcrum ݔ௧ሺ௜ሻ. As shown, the likelihood 

function is in fact nonlinear (most commonly it is an exponential function which corresponds to Gaussian 

observation noise). Instead of using nonlinear fitting methods that are sometimes quite complex to 

implement, one may choose to linearize the nonlinearity. Equation (32) can be linearized by taking its natural 

logarithm to yield 

( ) ( )2( ) ( )1 1ln ln
22

i i
t t t tL y y y

π
⎛ ⎞= × − −⎜ ⎟
⎝ ⎠

 (33) 

Thus, the function lnܮ௧ሺݔሻ with independent variable ݔ has a linear dependence on the parameters. However, 

for this model we only fit the observation function ݕ௧ሺ௜ሻ ൌ ݃ሺݔ௧ሺ௜ሻሻ. Fulcrums can be uniformly distributed 

with parameter ݎ ൌ 1 in (11), and the 2-order polynomial in the following trinomial form is assumed as the 

observation equation 

2
3 2 1y c x c x c= + +  (34) 

Then we get the Li-PDFሺܮ௧°gሻሺݔ௧ሺ௜ሻሻ, which is 

( ) ( )2( ) ( )2 ( )
3 2 1

1 1exp
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π
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(35) 



 

This is known as a nonlinear conversion that changes the nonlinear fitting function to a linear one, which 

has high potential to apply to SSM with Gaussian observation noise. In Fig. 2, the ‘ideal’ true 

observations ሺݕ ൌ  ଶሻ without noise are shown in ‘black’ curve and its direct noisy observations in (31)ݔ0.05

of 100 random samples are shown in red circles. The least squares fitting results of the noisy observations in 

(34) of M fulcrums (ܯ ൌ 5, 10, 30, 50 separately; for 2-order function, ܯ ൐൐ 2 according to the condition 

(21)) are shown with respective colored lines. The fitted functions (in one trial) are as follows: 

2

2

2

2

0.0478 0.0140 0.7750   (5 fulcrums)
0.0398 0.0122 0.8667   (10 fulcrums)
0.0486 0.0121 0.2818   (30 fulcrums)
0.0504 0.0245 0.1050   (50 fulcrums)

y x x
y x x
y x x
y x x

= + +

= + +
= − +
= + −

 

The results show that our numerical fitting approach gets more accurate observations than direct 

observation. These good results benefit from our pre-knowledge that the observation equation is a 2-order 

polynomial, although this is a fairly weak assumption. Obviously, the fitting results can grow stronger as the 

knowledge of the observation model improves. This will be further shown in our simulation section 4.1. For 

example, if we know the fitting function is in the monomial form  

2
3y c x=  (36) 

then more precise fitting results can be obtained (as shown in Fig. 3) by using the same fulcrums. For 

example, in one trial, we get: ܿଷ=0.0570 (5 fulcrums), ܿଷ=0.0518(10 fulcrums), ܿଷ=0.0530 (30 fulcrums), ܿଷ=0.0487 (50 fulcrums).  

The above example has just exhibited a potential application of the numerical fitting tool to estimate the 

observation function (if it is unknown and needs to be estimated). Furthermore, if the observation equation is 

known (as the case of most common SSMs), the numerical fitting method can be applied in a batch manner in 

which it does not need to online fit the equation of (34) or (36) for each step but directly use the known one. 

The fitted observation function or even the exact function y ൌ ଶݔ0.05  can be taken as granted in the 

subsequent filtering steps to infer the likelihood of particles for saving computation. We refer to this form of 

fitting method as the batch fitting in which the function of interest is constant. This however is inapplicable to 



 

the likelihood PDF which is generally not a constant function. We will demonstrate this in our simulations. 

 

Fig. 2 Observations without noise, observations with noise and Eq. (34)-based fitting function using different 

number of fulcrums 

 

Fig. 3 Observations without noise, observations with noise and Eq. (36)-based fitting function using different 

numbers of fulcrums 
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4 SIMULATIONS 

In order to verify the validity of our approach, typical filtering problems including the aforementioned 

1-dimensional model and robot localization are considered in this section.  

4.1 One-dimensional model: Fitting observation function 

For the nonlinear system described in equations (30), (31), the root mean square error (RMSE) in the time 

series is used to evaluate the estimation accuracy, which is calculated by 

( )
1/2
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T

t t
t

x x
T =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  (37) 

where ݔො is the estimate of the state, ܶ is the sum of iterations. A big ܶ =10,000 is chosen and a sequence 

number of particles from 10 to 500 with interval of 10 is separately used. 

First, different orders of polynomial with 10 fulcrums are used in the regression model (34) to fit the 

observation function. The RMSE results of the Li-PDF based PFs are given in Fig. 4, from which it can be 

seen that the 1st-order polynomial fitting result is really poor whereas 2nd-order and higher form 

polynomials get much better estimation accuracy. This indicates that a proper (no smaller than the true order) 

fitting function is critically important for our approach.  

Secondly, the RMSE of the basic particle filter and the Li-PDF based particle filters using different 

numbers of fulcrums (for 2nd-order fitting polynomial) is given in Fig. 5. The results indicate that the Li-PDF 

based PF can obtain a comparable estimation accuracy with the SIR filter, as long as an enough number of 

fulcrums are used (satisfying Eq. (13)).  

Thirdly, the comparison of the Li-PDF PF (including the batch form with given observation function) and 

several other known nonlinear filters including the SIR PF, auxiliary PF (APF) [34], Gaussian PF (GPF) [26], 

Kernel PF (KPF) [36] and Unscented Kalman filter (UKF, with the unscented transform parameter set 

as ߙ ൌ 1, ߚ ൌ 0, ߢ ൌ 2) [44] are given in Fig. 6 and Fig. 7 for the RMSE and processing time respectively. 

Here, the Li-PDF PF uses 10 fulcrums and fitting function (36) at all steps, while the batch Li-PDF PF uses 

100 fulcrums and fitting function (36) at the first step. Their average performance over different numbers of 



 

particles is given in Table I where the weight updating is not vectorized in Matlab as explained below.  

The results show that the UKF does not work for this highly nonlinear model as its RMSE is high (see [26] 

as well) while all PFs perform very similarly. In detail, the GPF and the APF is somewhat inferior to the 

(batch) Li-PDF PFs, the SIR and the KPF on average. When the number of particles is small, the (batch) 

Li-PDF PFs performs better than others. 

The Matlab programming itself can highly determine the computing speed. Especially, the vectorization 

i.e. the data are processed in the unit of matrix can highly speed up the computation. The processing time of 

all filters are given in Fig.7 for the case without vectorization of the weight updating step and are given in 

Fig.8 for the case of using vectorization for updating. As a fact, in the multi-dimensional state space, 

vectorization might be infeasible (e.g. when dimensions are correlated), i.e. Fig.7. We must therefore deal 

with each particle separately, the computational demand of the PFs (including GPF, KPF, APF and SIR) will 

unsurprisingly increase in proportion with the growth of the number of particles used as shown in Fig.7; see 

our next simulation. For this case, the UKF is obviously the fastest. The batch Li-PDF based PF is the second 

(it does not need to online fit the equation of (36) for each step but directly use the known one), GPF is the 

third (no resampling is needed) and the Li-PDF PF is the fourth (the computation does not linearly depend on 

the number of particles). All of them are highly faster than the KPF, APF and SIR (especially when the 

number of particles is large). KPF and APF are slower than the SIR. In contrast, in the Li-PDF PFs the 

number of fulcrums is constant and their likelihood calculation does not necessarily increase with the number 

of particles. This is just the superiority of our approach that can remove the high dependence of the 

computational time required on the number of particles used. What has been increased is only the inference 

calculation of the likelihood of particles via the likelihood of fulcrums which is computationally fast.   

To note, the processing speed of the Li-PDF PF can only be improved when the time cost for the fitting is 

less than the likelihood computation it has saved. Since the updating step (31) when the vectorization is 

employed is nothing more than the job of solving (34), it is not surprising that the computing speed of the 

Li-PDF PF has not been improved but instead reduced in such a simple simulation when vectorization is 



 

utilized or when the number of particles is very small. As noted, this model is significantly different to the 

applications of multiple dimensionalities, in which the weight updating is much more computationally 

intensive than the state prediction and resampling and in which the multi-dimensional state is often unable for 

the vectorization of the weight updating. 

In particular, in such a 1D model, the resampling will not take a large part of the computation in the PF and 

therefore the GPF is very fast which does not need to perform resampling. However, in high-dimension 

models where the weight updating is much more computation-consuming than the resampling and the state 

prediction, the computation advantage of the GPF will not be so obvious but the Li-PDF will further speed up 

the PF. This will be demonstrated in our next simulation. 

Table I Average Performance of filters (without vectorization) 

 N=50 N=200
RMSE Time RMSE Time

UKF 7.641 3.491 7.641 3.427

SIR 5.623 10.840 4.895 38.196

APF 5.805 18.044 5.060 66.885

KPF 5.706 12.514 4.896 42.910

GPF 5.821 2.412 5.038 5.955

Li-PDF 5.546 12.210 5.004 13.906

Batch Li-PDF 5.548 1.704 4.883 3.170



 

 

Fig.4 RMSE of the basic SIR PF and the Li-PDF based PFs that use different orders of polynomials 

 

Fig.5 RMSE of the basic PF and the Li-PDF based PFs that use different numbers of fulcrums 
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Fig.6 RMSE of different filters against the number of particles used  

 
Fig.7 Computing time of different filters for 10,000 steps (the weight updating of particles is not vectorized)  
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Fig.8 Computing time of different filters for 10,000 steps (the weight updating of particles is vectorized) 
 

4.2 Multi-dimensional model: Fitting likelihood PDF 

In general, the SIR PF seems to be the fastest computationally while existing variant PFs are often more 

computationally intensive except for the GPF which does not need to perform resampling. Therefore, in our 

second simulation, our comparison has not included all of these advanced PFs except SIR and GPF. 

The application of PF to mobile robot localization is usually referred to as the Monte Carlo localization (MCL) 

[14]. In this section, we present a typical MCL application via simulation for accurate comparison and analysis. In 

order to develop the details of MCL, let ݔ௧ ൌ ሺݔ, ,ݕ ,ݔሻ் be the robot’s position in Cartesian space ሺߠ  ሻ alongݕ

with its heading direction ߠ denotes the robot’s state at time instant ݕ ,ݐ௧ is the observation at time ݐ, and ݑ௧ is the 

odometer data (control observation) between time ݐ െ 1 and ݐ. The prediction and observation updating model 

required by MCL is set as follows 
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Supposing ݑ௧ିଵ  has a movement effect ሺ∆ݏ, ሻ்ߠ∆  on the robot, ∆ݏ is the translational distance, and ∆ߠ  the 

change of robot’s heading direction from time ݐ െ 1 to ݐ. Then, the motion model ݌ሺݔ௧|ݔ௧ିଵ,  ௧ିଵሻ can be easilyݑ

obtained as 
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 (40) 

where ݒ௧ିଵ is the system uniform noise with zero mean and diagሾ∆s ൈ 20%, ∆θ ൈ 5%ሿ் variance in our case. 

In particular, the particle which falls into obstructs will be discarded (by setting its weight to zero) in resampling. 

The likelihood-based weight updating ݌ሺݕ௧|ݔ௧ሻ depends on the perceptual data, which can be proximity data 

(scanning radar or sonar), or visual data from image/video, which can be much more complex and 

computationally intensive. The nearest-neighbor data association used for scan matching in our simulation can be 

described as 

( ) ( ) ( )1
,

,

1 1 ˆ ˆexp
2(2 )

T

t t i j i j i jn
i j

p y x y y S y y
Sπ

−⎛ ⎞∝ − − −⎜ ⎟
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 (41) 

where ௜ܵ,௝  is the covariance matrix of the difference ݕො௜ െ ,ሺ0ࣨ~ݏ ௝, the Gaussian observation noise isݕ 5ሻ for 

each scanning distance, ݊ is the number of scanning lines and we choose ݊ ൌ 36 and 180 respectively in our 

case. A bigger ݊ indicates a higher resolution and is more time-consuming. Equation (41) also indicates it is 

impossible to apply vectorization for weight updating as is done in the one-dimensional SSM like (30~31). 

The Li-PDFs could facilitate the entire state space ሺݔ, ,ݕ ,ݔሻ் or simplify the Cartesian space ሺߠ  ሻ்only. Thisݕ

simplification is possible because the direction ߠ relies strongly on its position ሺݔ,  ሻ்if the covariance matrixݕ

௜ܵ,௝  can be known based on the observations. In this case, it is set ݎሾ௟ሿ ൌ 1 in (11), ݌ ൌ 10 in (17) so that 100 

fulcrums are used in the position space ሺݔ,  ሻ்and the linear uniform fitting method is adopted. In addition, theݕ

Li-PDF approach is applied after ݐ ൌ 3 since at the starting stage (ݐ ൑ 3) particles are very widely distributed 



 

(e.g. the case is plotted in Fig. 9 for ݐ ൌ 2) which is unsuitable for constructing the Li-PDF. To determine whether 

it becomes suitable for fitting, one suggestion here is to measure the variance of the particle distribution. Here, we 

use the threshold method.  

To evaluate the filtering performance, the Euclidean Distance (ED) is defined between the position estimate ሺݔො, ,ݔොሻ்and the ground truth ሺݕ  ሻ்that is calculated byݕ

( ) ( )2 2ˆ ˆED x x y y= − + −  (42) 

The path of the robot is from 'S' to 'T' in Fig. 9. The points represent particles and the rectangle boxes represent 

the stops of robot. In one trial when 500 particles and 100 fulcrums are used and it is set n=36, the distribution of 

particles, surfaces of Li-PDF, and the discrepancy between likelihood of particles that are obtained by the Li-PDF 

and by direct observation-based calculation at two stops are given in Fig. 10.  

Both the number ܰ of particles and the number ܯ of fulcrums are critical to the performance of PFs. To capture 

the average performance, 100 MC trials were run. The EDs when different numbers ܰ of particles are used are 

plotted by time steps in Fig. 11, which indicates that the Li-PDF approach has indeed reduced the estimation 

accuracy somewhat as compared with the SIR PF and the GPF (the latter two perform similarly). In view of the 

high nonlinearity of the simulation model, the estimation accuracy is acceptable. For a huge number of particles 

e.g. 500, a small number of fulcrums (100) can fit the likelihood efficiently. Furthermore, it can be seen that for 

the same number of fulcrums, applying more particles does not generate better results. This also exposes the fact 

that it is not suitable to use a relatively small number of fulcrums to fit the likelihood of too many particles; 

instead, the ratio of the number of fulcrums to the number of particles should be set in a reasonable scope. Too 

small a ratio (too few fulcrums) leads to worse results, while too high a ratio does not benefit the processing 

speed. 

The mean ED from stops 3 to 24 against the number ܯ of fulcrums is plotted in Fig. 12, which shows that the 

larger the number of fulcrums, the more accurate is the approximation. The reason that the result is better for a 

larger number of particles is because of the very first steps as shown in Fig. 11 (while in the latter steps, a greater 

number of particles leads to worse estimation accuracy). Note that the Li-PDF approach does not fit during the 



 

initial stage where particles are distributed broadly in the state space. The computing time of the Li-PDF based 

PF, SIR and GPF against the number of particles are given in Table II and Table III respectively for the scanning 

data size ݊ ൌ 36 and 180. The results demonstrate again the fast processing advantage of our Li-PDF approaches 

(that the computing speed of PF is no more limited so heavily by the number of particles), especially when 

informational-rich observations (݊ ൌ 180) are applied.  

The resampling that is dimension-free takes a large part of computation in the simple 1D model but not in this 

complicated multi-dimensional models. Here, the weight updating of particles is the primary computation of the 

PF. Therefore, the GPF is faster than the SIR (not so obviously as in the first 1D simulation) but is much slower 

than the Li-PDF MCL. Comparably, the Li-PDF approach is qualified to significantly reduce the computation 

requirement while maintaining approximation quality. 

There is a trade-off between increasing the processing speed by reducing likelihood calculation and improving 

the estimation accuracy by maintaining accurate likelihood calculation. As such, it is highly recommended to use 

an off-line search for the optimal number of fulcrums, as well as the fitting function as aforementioned. The 

choice also depends on the practitioner’s preference between the estimation accuracy and the processing speed. 

Our Li-PDF approach provides a choice for applications in which a fast processing speed is much preferred. 

Table II Real-time Performance of PFs (Second) When the Scanning Data Size n=36 
 

Number of particles 100 500 1000 
Basic SIR PF 0.593 3.668 10.078
Gaussian PF 0.594 3.654 9.5165
Li-PDF PF 0.787 2.140 4.1419

Table III Real-time Performance of PFs (Second) When the Scanning Data Size n=180 
 

Number of particles 100 500 1000 
Basic SIR PF 3.417 20.937 50.768
GPF 3.566 15.707 47.321
Li-PDF PF 3.806 6.547 11.871

 
 



 

 

Fig.9 The robot trajectory and the distribution of particles (black point) when the robot is at the second stop  
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Fig.10 Distribution of particles (upper row), Li-PDF 3D surfaces (middle row) and the discrepancy between 

likelihood of particles that are obtained by the Li-PDF and by direct observation-based calculation (bottom row) 

in different stops (N=500, M=100, n=36). 

 

 

Fig.11 Estimation error by steps when different numbers of particles are used (n=36, M=100 in Li-PDF PFs) 
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Fig.12 Mean ED against the number of fulcrums used (n=36) 

4.3 Color histograms based target tracking  

As a support document to our submission, the proposed approach in the submission is employed in particle 

filter to track a helicopter in a video as shown in Fig.13. To enhance the reproducibility of the experiment, we 

adopt a public instance shared by Sébastien Paris based on the very basic color histogram observation model 

proposed in [42] which is available on http://www.mathworks.com/matlabcentral/fileexchange/17960. The 

focus of our approach is not computer vision and for the detail of the observation model, see [1]. This 

experiment will not form part of the final manuscript. 

We introduce the colour histograms based observation model given in [1] firstly. The colour distribution 

py={py
(u)}u=1,2,…,m at location y is calculated as 
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where I is the number of pixels in the region (I=120 in our case), δ(·) is the Kronecker delta function, k(·) is a 

weighting function of pixels, the parameter a is used to adapt the size of the region, and f is the normalization 

factor. It is satisfied that ( )
1

1m u
yu

p
=

=∑ . 
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where Hx, Hy are the length of the half x, y separate axes of the ellipse used to determine the color distribution. 

We initialize the state space for the first frame manually. Each sample of the distribution represents an 

ellipse and is given as 

{ }, , , , , ,x ys x x y y H H a=  (47) 

where x, y specify the location of the ellipse, x , y the motion, and a is the corresponding scale change. The 

fitting is currently implemented in the 2-dimesion position space 

( ),t t
x x y=  (48) 

The system dynamics are described by a first-order auto-regressive model given as:  

( )1 0,t ts As R+ = +N  (49) 

where ࣨ stands for Gaussian distribution, Matrix A defines the deterministic component of the model and R 

is the covariance as  
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where ∆t =0.7 in our case as the tracking video is partitioned into 400 frames, Rxt and Re are the position 

covariance and the ellipse covariance respectively.  
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where, δxt
2=0.35, δHx

2=0.1, δHy
2=0.1, δH2ߠ=π/60.  

For the observation model, the likelihood of particles are proportional to the Bhattacharyya distance 

between the color window of the predicted location in the nth frame pn={p(u)}u=1,2,…,m and the reference 

q={q(u)}u=1,2,…,m 

2

2 2
1 [ , ]

2 21 1( )
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where σ is the measurement noise σ = 0.2, d is the Bhattacharyya distance defined as  

[ ]1 ,d p qρ= −  (51) 

ρ[p, q] is the Bhattacharyya coefficient. In our discrete case, the histograms are calculated in the HSV space 

using discrete 8×8×4 bins color window (m=256 ) as follows  
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It is obvious that the measurement updating function is much more computationally expensive than the state 

dynamic function. 

In contrast experiments, the same number of particles is employed in the basic PF and the Li-PDF based 

PFs. For the Li-PDF approach, it is set ݎሾ௟ሿ ൌ 5 in (11), ݌ ൌ 10 in (17) of the submission so that 100 fulcrums 

are used. The Li-PDF is directly constructed by using the nearest neighbor based griddata fitting function in 

Matlab, which is applicable to the multiple dimension case. For most visual tracking video, we do not have 

the accurate data of the true trajectory but instead we can only have a coarse approximation of the ground 

truth by manually estimating frame by frame. The trajectories of our approach and basic PF when using 500 

particles are given in Fig. 14 for one trial and the EDs of both filters against frames are given in Fig. 15. The 

mean ED at each step in the basic SIR PF is 3.8939 while in our approach it is 4.5209 based on the coarse 



 

ground truth. This indicates a reduction of the estimation accuracy in our Li-PDF approach. As the results 

therein revealed that the error of the Li-PDF approach is significant at the initial stage, the proposed Li-PDF 

approach is more suitable to be applied during the relative ‘stable’ tracking stage rather than at the beginning 

stage of the filter to achieve a better result.  

Next, the amount of loss in tracking (the tracker completely drift), 5 out of 20 trials, is the same, indicating 

the comparable robustness in the proposed method comparing the basic PF. To display an insight of the 

Li-PDF, the Li-PDF surf is plotted in Fig. 16 and the discrepancy between the likelihood of particles that are 

obtained by the Li-PDF approach and by direct calculation is plotted in Fig. 17. Note that some 

regions/particles may be weighted negative in our approach as shown in Fig. 16. This makes sense for 

numerical fitting but not for the PF. To correct this, the negative weights can be set to zero.  

The real-time performances of different filters are given in table CI. It can be seen that the computing time 

of the Li-PDF based PF does not linearly increase with the number of particles but the basic PF does. This 

demonstrates that the computational complexity of our approach is no longer heavily limited by the number 

of particles N (but instead it depends more on the number M of fulcrums used). This compares favourably 

with the computational cost of most current PFs if a small number of fulcrums are used. This will be 

appealing for the case that requires extremely massive number of particles. As stated, this is because the 

evolving system dynamics is computationally effortless as compared to the likelihood computation based on 

color histograms. This holds for most of visual tracking scene. 

TABLE IV REAL-TIME PERFORMANCE OF PARTICLE FILTERS (SECOND) 

Number of particles 100 250 500 1000 2000 

Basic PF 14.652 19.677 26.541 44.166 75.213 

Li-PDF PF 15.346 15.578 16.546 17.131 17.869 

 

 



 

 
Fig.13 Snapshot of the last frame (red curve represents the estimated trajectory)  

 
Fig.14 Helicopter trajectories comparison of the basic SIR PF and the Li-PDF based PF (the so-called ground 

truth trajectory is not accurate but is manually estimated only) 
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Fig.15 EDs of the basic SIR PF and the Li-PDF based PF based on a coarse ground truth 

 

 
Fig.16 Li-PDF surf of fulcrums for the last frame (the yellow points represent the likelihood of particles that 

are calculated directly based on observations)  
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Fig.17 Discrepancy between the likelihood of particles that are interpolated by the Li-PDF approach and 

directly calculated based on observations 
 

4.4 Discussion 

Numerical fitting has been proven as a powerful tool for data prediction in many statistical applications as 

well as in our simulations. It is necessary to note that in most of known SSMs the observation function and 

the likelihood function actually appear to be easy for numerical fitting. The present Li-PDF approach can 

therefore be easily implemented. However, the simulations have exhibited its extra limitations for the 

likelihood calculation for which counter measures are needed. 

First, direct numerical fitting may obtain negative likelihoods, which is not reasonable to update the particle 

weight that must be positive. To correct this, the negative likelihood can be set to zero. 

Secondly, when a fixed number of fulcrums are used, more particles do not always lead to better estimation. 

To obtain the optimal approximation, the ratio of the number of fulcrums used to the number of particles 

should be set within a reasonable scope, for which we suggest the scope of [1/5, 1/2].  

Thirdly, the Li-PDF approach is more suitable for relatively stable filtering in which the state transition is 

140
150

160
170

70
80

90
100

110
-20

-15

-10

-5

0

5

x 10
-3

XY

Li
ke

lih
oo

d 
di

sc
re

pe
nc

y



 

stable and the variance of the particle distribution is relatively small. Finding an ingenious solution to apply 

the numerical fitting approach to complicated state dynamics models and to situations when particles are 

distributed very widely in the state space still requires further research.  

Finally, current Li-PDF applications use a fixed number of fulcrums and a constant form of fitting function 

which are simple but may not always be desirable since the complexity of the likelihood function often vary 

over time. Therefore, advanced/adaptive Li-PDF approaches that are able to adjust the number of fulcrums 

and the order of the fitting function would be valuable. This may be realized with the help of the online 

Goodness-of-fit test and is the subject of our future research. Further theoretical work will also include the 

convergence and stability analysis of the Li-PDF based particle filter. 

5 CONCLUSIONS 

This paper has proposed a novel particle filter that numerically fit the likelihood PDF (Li-PDF) in real time for 

speedy weight updating, which exhibits a significant mollification of the contradiction between the computational 

cost and the approximation accuracy in the particle filter. Using a relatively small number of fulcrums to infer the 

likelihood of particles, the Li-PDF approach alleviates the proportional dependence of the computational demand 

of PF on the number of particles used. It has been detailed how the numerical fitting method can be implemented 

on the observation function or directly on the likelihood function, namely implicit Li-PDF and explicit Li-PDF 

approaches. Exact simulation results have demonstrated that the processing speed of PF has been highly 

accelerated by the Li-PDF approach without losing the estimation accuracy. Meanwhile, an awareness of the 

limitations concerning the numerical fitting method for the Li-PDF calculation was also discussed with potential 

solutions provided.  

In addition, the proposed numerical fitting method shows a potential ability for estimating the observation 

model. The future focus will be twofold: further development of advanced adaptive Li-PDF approaches that are 

capable of adjusting the number of fulcrums and the order of the fitting function for more challenging 

environments; and the employment of the numerical fitting tool within PF for system identification/parameter 



 

estimation. 

APPENDIXES 

For engineering convenience, one may directly assume the Li-PDF function having linear dependence on 

the parameters as in (19). However, the assumption of the linearity dependence does not hold for most 

practical systems. This appendix gives the linearization error of converting a nonlinear fitting model to be 

one linear function. The analysis is based on the Taylor series expansion.  

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series of a real 

function f(x) about a point x=x0 is given by 

( ) ( ) ( ) ( ) ( )
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n
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n
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where Rn is a remainder term known as the Lagrange remainder, which is given by 
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where x* ∈[x0, x] lies somewhere in the interval from x0 to x.  

Thus, if we use the engineering-friendly monomials function as in (19), there is at least a systematic error of 

Rn occurring. This can be referred to as the system truncation error.   

The expression Rn in (A.2) indicates that the closer the prediction data x is with x0 (the smaller (x-x0) is), the 

more feasible it is to express the function in that interval in a lower order and with a smaller Rn. That is to say, 

the closer the particle is to the fulcrums (i.e. the smaller the piecewise interval), the more accurate and 

reliable the Li-PDF approach will be. This explains why the piecewise fitting is suggested in our approach to 

deal with the trade-off between smaller piecewise intervals and higher computational requirement. 
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