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EKF localization with landmarks

e assume that a unicycle-like robot is equipped with a
sensor that measures range (relative distance) and
bearing (relative orientation) to certain landmarks

e landmarks may be artificial or natural
e the position of the landmarks is fixed and known

e depending on the robot configuration, only a subset of
the landmarks is actually visible

e suitable sensors are laser rangefinders, stereo cameras
or RFID sensors
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e odometric equations can be used as a discrete-time
model of the robot; e.g., using Euler method

Th4+1 = Tk T v scos O + U1 .k

Yk+1 = Yk + vkdsSn O + v i
9A7+1 — 9/{ + w,lﬂ'TS‘ + U3 [

where v = (v1,k v2.x v3%)T is a white gaussian noise
with zero mean and covariance matrix V:

e assume that L landmarks are present, and denote by
(21,4,41,i) the position of the ¢-th landmark

o let Lx<L be the number of landmarks that the robot
can actually see at step £
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e each of the L; measurements actually contains two
components, i.e.,a range component and a bearing
component

* assume that for each measurement the identity of
observed landmark is known (landmarks are tagged,
e.g., by shape, color or radio frequency)

e we build the association map of step £

a:{1,2,.... Ly}t — {1,2,..., L}

measurements landmarks

hence, a(7) is the index of the landmark observed by
the 7-th measurement
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e the output equation is
hl(qlm (Z(l)) W1k
th(qlc? Q(Lk)) Wy, , k

1-th landmark range

v
\/(xk — xl,a(i))z T (yk — yl,a(z’)>2

atall?(yz,a(z) — Yk Lla(i) — xk‘) — Oy,

1-th landmark bearing

and wr = (wik ... wr, k)T is a white gaussian noise
with zero mean and covariance matrix W
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e we want to maintain an accurate estimate of the
robot configuration in the presence of process and
measurement noise: this is the ideal setting for KF

e actually, since both process and output equations are
nonlinear, we must apply the EKF and, to this end, the
equations must be linearized

* process dynamics linearization
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* output equation linearization
Oh

0q. ;
9k qk:qk+1|k

Ohp,

oa. .
T 9=y 11k

Tr41|k—T1,a(s) Uk+1|k—Yl,a(i) 0
Oh; V @kt =T1,a() 2+ Ort11k—Y1,a)® /@116 —T1,a0)) 2 (k116 —Y1,a(:))?
Iqy, qk:qk+1|k _(gk+12|k_?;/l,a(z’)) i ik—}-l”gc_xf,a(i) ~ 1
(Trt1|k—T1,a(i))*F(Yrt1)k—Y1,a(:)) (Trt11k—T1,a(:))*F(Yrt1|k—Y1,a(i))

* at this point, just crank the EKF engine
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a typical result
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data association

e remove the hypothesis that the identity of each
observed landmark is known: in practice, landmarks
can be undistinguishable by the sensor

e the association map must be estimated as well

¢ basic idea: associate each observation to the landmark
that minimizes the magnitude of the innovation

e at the £+ 1-th step,consider the 7-th measurement
Y:.k+1 and compute all the candidate innovations

Vij = Yi k1 — hfz.(qAquLl]k::j)

actual  expected measurement if y; +1
measurement  referred to the j-th landmark
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e the smaller the innovation v;;, the more likely that the
1-th measurement corresponds to the j-th landmark

* however, the innovation magnitude must be weighted
with uncertainties in prediction and measurement; in
the EKF these are both encoded in the matrix

Sij =Hi(k+1,j)PyyipHi(k+1.5)" + W,
/" /"

measurement uncertainty measurement uncertainty
due to prediction uncertainty due to sensor noise

e to determine the association function, let
Xij = Vi S,ij Vi

and let a(i) = j, where j minimizes Y:;
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EKF localization on a map

e assume that a metric map M of the environment is
known to the robot

e this may be a line-based map or an occupancy grid
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e assume that the robot is equipped with a range finder;
e.g., a laser sensor, whose typical scan looks like this
(note the uncertainty intervals)

"4
”~

< mj

e use the whole scan as output vector: its components
are the range readings in all available directions
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e the innovation is then computed as the difference
between the actual scan and the predicted scan

Vi+1l = Yp41 — h<&k+1\lc= M)

where h( ) computes the predicted scan by placing
the robot at a configuration in the map

e note that no data association is needed; on the other
hand, aliasing may severely displace the estimate

e both the process dynamics (i.e., the robot kinematic
model) and the output function h are nonlinear, and
therefore the EKF must be used
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a typical result
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* robotized wheelchair
with high slippage

e 5 ultrasonic sensors
with 2 Hz rate

e shadow zone behind
the robot
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EKF SLAM

e remove the hypothesis that the environment is known
a priori: as it moves, the robot must use its sensors to
build 2 map and at the same time localize itself

e SLAM: Simultaneous Localization And Map-building

e in probabilistic SLAM, the idea is to estimate the map
features in addition to the robot configuration

e here we discuss a simple landmark-based version of
the problem which can be solved using KF or EKF
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® assumptions:

- the robot is an omnidirectional point-robot, whose
configuration is then a cartesian position

- . landmarks are distributed in the environment
(their position is unknown)

- the robot is equipped with a sensor that can see,
identify and measure the relative position of all
landmarks wrt itself (infinite FOV + no occlusions)

e define an extended state vector to be estimated

Y Y 2 & T
r=(xy =1 yn ... TiL YiL)
robot landmark | landmark L
position  position position
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e since the landmarks are fixed, the discrete-time model
of the robot+landmarks system is

10 Uz k
) 1 /Uy K
) 0 )
'/B}i?—|—1 — '/I;/{. + D :) (Iuil’.k) + D
U y,k :
) 0 )
) 0 )

where ur = (uz ruyk)T are the robot velocity inputs
and vzyx = (Vs k vy k)T is a2 white gaussian noise with
zero mean and covariance matrix Vi, i
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e this is clearly a linear model of the form

Ti+1 = Az + Buy + vy,

and the covariance of the process noise vy is

V:z?.y,k O ... 0O
0 0 ... 0

V=
0 0 ... 0

where uz k,uy 1 are the robot velocity inputs and
vr = (vik v2,k)T is a white gaussian noise with zero
mean and covariance matrix Vi«

Oriolo: Autonomous and Mobile Robotics - Landmark-based and SLAM



e the 7-th measurement contains the relative position of
the 2-th landmark wrt the sensor

Lli bk — Lk
Yy, =\ . , T Wi k
Yli.k — Yk
where w; . is a white gaussian noise with zero mean

and covariance matrix W ;

e it is a linear equation

Yik — C’imk T Wi

-1 0 0 ... 0 1
.- ( !

with

0O —1 0 ... 0
(2¢41)-th column
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e stack all measurements to create the output vector

Y — ka. + W
where

CL Wiy, k

and the covariance of the measurement noise is

Wl,ls 0 RPN )
0 W‘Z’A’. . o )
Wk: —
0 0 ... Wp,

* at this point, just crank the KF engine
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how realistic is KF/EKF localization?

e KF/EKF assume that the probability distribution for
the state is unimodal, and in particular a gaussian

e this requires an accurate estimate of the robot initial
configuration and also relatively small uncertainties
(position tracking problem)

e however, if the robot is released at an unknown (or
poorly known) position, the probability distribution
for the state becomes multimodal in the presence of
aliasing (kidnapped robot problem)
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